• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 3
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Vorsorgen für die Zukunft

Dossier

Soziale Sicherung und private Vorsorge Jeder Mensch muss in seinem Leben mit Krankheit, Alter, Arbeitslosigkeit oder Unfällen rechnen. In Deutschland bietet die gesetzliche Sozialversicherung Schutz vor den Folgen dieser Lebensrisiken. Der Sozialstaat steht jedoch vor großen Herausforderungen und wird soziale Schutzfunktionen in Zukunft nicht mehr im gewohnten Umfang wahrnehmen können. Für Jugendliche und Berufsstarterinnen und -starter ist die Planung der eigenen finanziellen und sozialen Absicherung deshalb ein wichtiges Thema. Frühe Vorsorge Welche Auswirkungen hat der demografische Wandel auf das spätere Einkommen als Rentnerin oder Rentner und wie kann man sinnvoll vorsorgen? Welche Formen der staatlichen Förderung existieren, und welche davon sind für junge Menschen relevant? Wie sichern sich Berufseinsteigerinnen und Berufseinsteiger gegen die finanziellen Folgen von Risiken wie Berufsunfähigkeit ab? Nur, wer die Leistungen der staatlichen Sicherungsnetze abschätzen kann, wird kompetent entscheiden können, in welchem Umfang eine zusätzliche private Vorsorge sinnvoll ist. Die Themen im Unterricht Auf Konsum zu verzichten und Geld fürs Alter zurückzulegen, das fällt vielen Menschen schwer – vor allem, wenn sie ein geringes Einkommen haben. Auch an Kenntnissen über verschiedene Formen der Vorsorge und staatliche Fördermöglichkeiten mangelt es häufig. Gerade Berufsanfängerinnen und Berufsanfänger fehlt noch der Überblick, und die Verlockung ist groß, das erste selbst verdiente Geld komplett für Klamotten und das Smartphone auszugeben. Hier ist zunehmend die Schule gefordert, die entsprechenden Kenntnisse praxisorientiert zu vermitteln. Eine Verantwortung dafür, die bestehenden Handlungsspielräume aufzuzeigen, besteht vor allem gegenüber Jugendlichen aus einkommens- und sozial schwächeren Familien. Eine Aufklärung sollte möglichst schon in der Sekundarstufe I stattfinden, damit auch die Schulabgangsklassen an Hauptschulen davon profitieren können.

  • Fächerübergreifend
  • Wirtschaft und Finanzen

Mikroelektronik im Unterricht

Dossier

Die Mikroelektronik spielt in der immer moderner werdenden Welt eine zunehmend wichtige Rolle. Mikroelektronik ist in (fast) allen elektronischen Geräten enthalten: zum Beispiel in Smartphones, Monitoren, Schultaschenrechnern, WLAN-Radios, Bluetooth-Lautsprechern, elektronischen Küchen- oder Körperwaagen oder Displays mit Anzeigen von Zug- oder Bus-Verspätungen. In Computern und Smartphones befinden sich Mikroprozessoren , die alle möglichen Berechnungen durchführen können. Für konkrete Anwendungen gibt es außerdem flexible Mikrocontroller und spezielle anwendungsspezifische integrierte Schaltungen. Alle Bausteine der Prozessoren und Controller werden auf Mikrochips vereint. Die Bedeutung des Mikroelektronik-Chipdesigns beziehungsweise der Hardware-Entwicklung soll mit dieser Themensammlung auch Schülerinnen und Schülern im Unterricht vermittelt werden. Lehrkräfte finden hier also Informationen, Anregungen und Unterrichtsmaterialien zur Einführung in die Mikroelektronik . Ergänzend stehen Arbeitsblätter und Unterrichtsanregungen zu mit der Mikroelektronik verwandten Unterrichtsthemen wie der Halbleiterphysik zur Verfügung. Die Materialien sind im MINT-Unterricht der Sekundarstufen einsetzbar, zum Beispiel in den Fächern Physik, Informatik oder Technik. Schülerwettbewerb "INVENT a CHIP" Herausgeber dieser Themensammlung ist der Verband der Elektrotechnik Elektronik und Informationstechnik e. V. (VDE). Dieser setzt sich seit vielen Jahren für die praxisorientierte Nachwuchsförderung ein, mit dem Ziel junge Menschen für Zukunftstechnologien zu gewinnen. Mit zahlreichen Initiativen weckt der VDE Begeisterung für Technik und engagiert sich für eine moderne Ingenieursausbildung. Eine herausragende Initiative der Nachwuchsförderung stellt der Schülerwettbewerb "INVENT a CHIP" dar, der seit 2006 vom VDE jährlich durchgeführt wird, gefördert vom Bundesministerium für Bildung und Forschung (BMBF) und mit wissenschaftlicher Unterstützung des Instituts für Mikroelektronische Systeme der Uni Hannover (IMS). Zielgruppe des Wettbewerbs sind Schülerinnen und Schüler der Jahrgangsstufen 9 bis 13 , die über ihre Lehrkräfte beziehungsweise den Unterricht erreicht werden sollen.

  • Fächerübergreifend
  • MINT: Mathematik, Informatik, Naturwissenschaften und Technik

Multiplikation und Division von Brüchen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Multiplikation und Division von Brüchen mit ganzen Zahlen sowie mit Brüchen. Arbeitsblätter, interaktive Excel-Sheets und interaktive Übungen festigen das Erlernte. In dieser Unterrichtseinheit wird die Idee der Multiplikation und Division von Brüchen erarbeitet. Dazu werden zuerst die beiden Rechenverfahren von Brüchen mit ganzen Zahlen vorgestellt. Bildlich werden die Bedeutungen beider Rechenoperationen eingeführt, so dass ein sauberes Verständnis aufgebaut wird, warum bestimmte Schritte zum Bearbeiten verwendet werden können. Darauf aufbauend werden die Verfahren zur Multiplikation und Division von Bruch mit Bruch erarbeitet. Das Material kann zur Einführung in die Thematik "Multiplikation und Division von Brüchen" verwendet werden, aber auch zur Wiederholung und Vertiefung. Auf dem ersten Arbeitsblatt wird den Lernenden bildlich vorgestellt, wie Brüche einfach mit einer ganzen Zahl multipliziert oder durch eine ganze Zahl dividiert werden können. Die Lernenden erhalten nach der Erarbeitung dazu ein interaktives Excel-Sheet um Multiplikation mit ganzer Zahl und Division durch eine ganze Zahl zu üben und das Wissen zu festigen. Darauf aufbauend gibt es verschiedene interaktive Übungen , die von den Lernenden zum Thema bearbeitet werden können. Eine Teilaufgabe stellt besonders große Ansprüche an die Lernenden: Sowohl die gelernten Verfahren anzuwenden, als auch Dinge zu memorieren werden gefordert. Auf dem zweiten Arbeitsblatt werden dann die Verfahren zur Multiplikation und Division mit und durch Brüche vorgestellt und erarbeitet. Auch daran schließen sich verschiedene interaktive Übungen an. Die Übungen unterteilen sich jeweils in zwei Kategorien: Zu jedem Blatt gibt es ein interaktives Excel-Sheet, in dem die Lernenden den Schwierigkeitsgrad eigenständig einstellen können. Außerdem gibt es weitere interaktive Übungen mit jeweils drei unterschiedlichen Versionen: eine leichtere Version und zwei mit steigerndem Schwierigkeitsgrad. Eine Einführung in die Bruchrechnung sowie das Addieren und das Subtrahieren von Brüchen bieten sich im Vorfeld dieser Unterrichtseinheit an. Auch das Kürzen und Erweitern von Brüchen sollten die Schülerinnen und Schüler sicher beherrschen, um diese sicher multiplizieren und dividieren zu können. Vorkenntnisse Voraussetzung ist ein sicherer Umgang mit dem Erweitern und Kürzen von Brüchen sowie die Kenntnis von Addition und Subtraktion von Brüchen. Didaktische Analyse Eine Sicherheit bei der Multiplikation und Division von Brüchen ist enorm wichtig. Die Art der interaktiven Übungen zu den Materialien soll es den Lernenden ermöglichen, vielfältig, differenziert und umfangreich zu üben. So kann eine Sicherheit durch die vielfältigen Aufgaben erarbeitet werden. Methodische Analyse Die Übungen am PC sind vielfältig, sodass die Lernenden beim Arbeiten immer neue Probleme bewältigen können. Vor allem in den aktiven Excel-Sheets erhalten die Lernenden immer neue Aufgaben und durch die Möglichkeit, einen individuellen Schwierigkeitsgrad zu wählen, können sich die Schülerinnen und Schüler ständig neu fordern. So können sich die Lernenden mit wechselnden Aufgaben und Schwierigkeitsgraden selbst Fortschritte und Sicherheit erarbeiten – verstärkt wird diese Möglichkeit durch individuelle Rückmeldungen, wie gut die einzelnen Aufgaben gelöst wurden. Eine besonders anspruchsvolle interaktive Übung rundet den Aufgabenkomplex ab. Fachkompetenz Die Schülerinnen und Schüler lernen einen Bruch mit einer ganzen Zahl zu multiplizieren. lernen einen Bruch durch eine ganze Zahl zu dividieren. erarbeiten sich das Verfahren zur Multiplikation von Brüchen. erarbeiten sich das Verfahren zur Division von Brüchen. üben das Erlernte selbstständig. Medienkompetenz Die Schülerinnen und Schüler üben den Umgang mit einer Tabellenkalkulation und erarbeiten sich Sicherheit. erweitern ihre Kenntnisse im Bezug auf Tabellenkalkulationen. Sozialkompetenz Die Schülerinnen und Schüler schätzen sich immer wieder selbst ein. arbeiten anhand von individuellen Rückmeldungen an Verbesserungen. geben Hilfeleistungen und fragen nach individuellen Hilfen von anderen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Subtraktion ganzer Zahlen mit GeoGebra

Unterrichtseinheit

In dieser Unterrichtseinheit zur Subtraktion ganzer Zahlen wird durch interaktive dynamische Arbeitsblätter eine Veranschaulichung der Subtraktion vermittelt. Die Mathematiksoftware GeoGebra kommt dabei zum Einsatz.Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Einführung der Subtraktion ganzer Zahlen Hier finden Sie Hinweise zur Funktionsweise und zum Einsatz des dynamischen Arbeitsblattes zur Subtraktion ganzer Zahlen. Vertiefung, Individualisierung und Wettbewerb In der Phase der Anwendung und Vertiefung erfolgt eine Variation der Aufgabenstellungen mithilfe eines interaktiven Arbeitsblattes. Die Schülerinnen und Schüler erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. können die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden. Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die dynamische Veranschaulichung realisiert werden kann, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die folgenden Webseiten können in den Stunden vor der hier vorgestellten Unterrichtseinheit verwendet werden: realmath.de: Das Zahlenpfeilmodell der Subtraktion Die Lernenden sollen die Darstellung ganzer Zahlen mit Zahlenpfeilen und die Subtraktion von natürlichen Zahlen mithilfe des Zahlenpfeilmodells kennen. realmath.de: Der Begriff der Gegenzahl Der Begriff der Gegenzahl einer ganzen Zahl sollte vorbesprochen sein. Hier finden sich Aufgaben für die Einführung und die Grundlegung dieses Begriffs. realmath.de: Welche Zahl muss man zu ... addieren, um ... zu erhalten? Zur Hinführung auf die Subtraktion ganzer Zahlen sollte auf Additionsaufgaben dieser Art nicht verzichtet werden. Das erste Online-Arbeitsblatt dient zur Erarbeitung der Regel für die Subtraktion ganzer Zahlen. Mit dem Button "Aufgabe neu" wird eine entsprechende Aufgabe erzeugt. Die Aufgabe kann anschließend im dynamischen Arbeitsblatt mit den Elementen "Minuend" und "Subtrahend" eingestellt werden. Zeitgleich wird die entsprechende Subtraktion im Zahlenpfeilmodell erzeugt, und das Ergebnis kann abgelesen werden. Dieses wird in das vorgesehene Feld eingetragen. Der Button "Auswertung" dient zur Kontrolle des Ergebnisses. Ist das Ergebnis richtig, so wird die zu dieser Subtraktion gehörige Additionsaufgabe erzeugt. Dabei wird der Minuend zum ersten Summanden, das Ergebnis bleibt erhalten. Nun soll der fehlende zweite Summand in das freie Feld eingetragen werden. Damit wird die Subtraktion durch die Addition der Gegenzahl ersetzt. Mit dem Button "Kontrolle " wird die Eingabe überprüft. Erarbeitungsphase Die Schülerinnen und Schüler probieren, beobachten, ordnen, vermuten und sollen so Schritt für Schritt den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen erkennen. Dazu bearbeiten sie Aufgaben auf die oben angesprochene Weise und halten die Ergebnisse auf dem von der Lehrkraft bereitgestellten Notizblatt fest. Sie sind beim Lösen der Aufgaben durch die dynamische Veranschaulichung ferner aufgefordert, herauszufinden, wie die Subtraktion ganzer Zahlen durch eine zugehörige Addition ersetzt werden kann. Ihre Vermutung können sie dadurch verifizieren, dass sie Aufgaben lösen, ohne dabei die Veranschaulichung zu benutzen. Haben die Schülerinnen und Schüler eine Regel gefunden, so sollen sie diese schriftlich auf dem Notizblatt festhalten. Zusammenfassung Im nächsten Unterrichtsschritt stellen die Lernenden ihre Ideen für den gesuchten Zusammenhang vor. Zusammen mit den Wertungen und Kommentaren der Lehrkraft ergibt sich so das Arbeitsergebnis, das die Lehrkraft als Zusammenfassung auf einer Folie, die dem Arbeitsblatt der Schülerinnen und Schüler entspricht, festhält. Die Einträge werden von den Schülerinnen und Schülern in ihr Arbeitsblatt übernommen. Durch die zusätzlich auf dem Arbeitsblatt eingefügten Zahlenpfeildarstellungen wird noch einmal Schritt für Schritt der Prozess der Regelfindung für alle Schülerinnen und Schüler nachvollziehbar festgehalten. Anwendung Auf dem Schülerarbeitsblatt finden sich zusätzlich einige Aufgaben zur Subtraktion ganzer Zahlen. Diese können anschließend in Auswahl in Partner- oder Einzelarbeit bearbeitet und anschließend besprochen werden. Nicht bearbeitete Aufgabe können als Hausaufgabe verwendet werden. Anwendung mit Wettbewerb Nun folgt eine Phase der Anwendung und Vertiefung durch erste Übungsaufgaben. Die Schülerinnen und Schüler sollen dabei die Aufgaben des zweiten interaktiven Arbeitsblattes bearbeiten. Online-Arbeitsblatt 2: Übung zur Subtraktion ganzer Zahlen Interaktives Arbeitsblatt mit Variationen der Aufgabenstellungen auf realmath.de, der Website des Autors. Einfacher Aufbau des Arbeitsblattes Der Aufbau des interaktiven Arbeitsblattes ist gemäß der Altersstufe der Schülerinnen und Schüler einfach gehalten. Sie sind hier aufgefordert, das Ergebnis einer Subtraktion aus vier vorgegebenen Antworten auszuwählen. Ist das Ergebnis angeklickt, so kann durch Betätigung des Buttons "Auswertung" die Eingabe überprüft werden. Mit "Neu erstellen" wird per Zufallsgenerator eine neue Subtraktionsaufgabe erstellt. Individuelle Betreuung Im Rahmen der Individualisierung des Unterrichts, indem nun jeweils zwei Schülerinnen und Schüler Aufgaben in Partnerarbeit bearbeiten, kann die Lehrkraft die Arbeitsweise der Schülerinnen und Schüler gezielt beobachten. Die fortwährende Anzeige des erreichten Punktestandes und die Anzahl der bearbeiteten Aufgaben im interaktiven Arbeitsblatt ermöglicht der Lehrkraft, jederzeit zu erkennen, bei welchem Schülerpaar noch Schwierigkeiten bestehen. Hier kann sie gezielt helfen. Schülerinnen und Schüler, die mit den Aufgaben gut zurecht kommen, kann sie durch Lob und Anerkennung ermuntern, weitere Aufgaben zu bearbeiten und ihre Kenntnisse weiter zu vertiefen. Das interaktive Arbeitsblatt bietet zudem einen Wettbewerb, bei dem derjenige gewinnt, der am Ende die meisten Punkte erreicht. Da die Punkte in einer Bestenliste gespeichert werden, kann dies für Schülerinnen und Schüler eine besondere Motivation darstellen. Aufgaben zur Nachbereitung finden sich in allen zugelassenen Schulbüchern. Sollten die im verwendeten PDF-Arbeitsblatt enthaltenen Aufgaben nicht alle gelöst worden sein, so können auch diese als Hausaufgabe verwendet werden. Auf der Webseite des Autors finden sich für die nachfolgenden Unterrichtsstunden sechs weitere interaktive Übungen zur Subtraktion ganzer Zahlen. In der sich im Unterricht anschließenden Übungsphase kann hier die eine oder andere Aufgabe ausgewählt werden, um so die folgenden Unterrichtsstunden abwechslungsreich zu gestalten. realmath.de: Weitere Interaktive Übungen Für die Nutzung muss Javascript aktiviert sein.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Gemischte Zahlen anschaulich subtrahieren

Unterrichtseinheit

In dieser Unterrichtseinheit wird am Beispiel der Veranschaulichung der Subtraktion gemischter Zahlen gezeigt, wie tragfähige Grundvorstellungen entwickelt werden können.Die Subtraktion gemischter Zahlen ist einer der Bereiche der Bruchrechnung, der sich durch eine hohe Fehlerquote bei Schülerinnen und Schülern auszeichnet. Grund dafür ist nicht selten die Tatsache, dass die Lernenden über unzureichende Grundvorstellungen verfügen. So ist es oftmals im Unterricht verwunderlich, dass Aufgaben wie zum Beispiel "1 minus 3/5", die allein auf der anschaulichen Ebene ohne jedes formale Rechenkalkül zu lösen wären, zu Fehlern führen. Die hier vorgestellte Lernumgebung möchte Wege aufzeigen, wie Schritt für Schritt Grundvorstellungen aufgebaut werden können, um Aufgaben des Typs "3 2/7 minus 1 4/7" auf der anschaulichen und bildlichen Ebene zu lösen. So erzeugte Grundvorstellungen können ein nachhaltiges Lernen fördern. Die Verwendung von interaktiven dynamischen Arbeitsblättern unterstützt die Lernenden und ermöglicht ihnen einen individuellen und eigenständigen Zugang zu Grundvorstellungen. Alle dynamischen Darstellungen wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um algebraische Zusammenhänge dynamisch zu veranschaulichen. Voraussetzungen und Hinweise zum Einsatz der Materialien Der komplexe und vielschichtige Aufgabentyp "Subtraktion zweier gemischter Zahlen" wird in vier Schritten veranschaulicht. Erste Unterrichtsstunde Die Schülerinnen und Schüler führen Übungen zur Subtraktion eines Bruchs von einer natürlichen Zahl und zur Subtraktion eines Bruchs von einer gemischten Zahl durch. Zweite Unterrichtsstunde Die Lernenden führen Übungen zur Subtraktion einer natürlichen Zahl von einer gemischten Zahl und zur Subtraktion zweier gemischter Zahlen durch. Dritte Unterrichtsstunde In der letzten Stunde der Unterrichtseinheit soll der Aspekt der unterrichtlichen Differenzierung im Mittelpunkt stehen. Die Schülerinnen und Schüler können natürliche Zahlen als Scheinbrüche in die Bruchzahlen einordnen. können Brüche von natürlichen Zahlen und gemischten Zahlen anschaulich und symbolisch subtrahieren. lernen die Subtraktion einer gemischter Zahl als Subtraktion einer natürlichen Zahl und eines Bruchs verstehen. können die Subtraktion gemischter Zahlen symbolisch ausführen. Das hier vorgestellte Übungskonzept setzt voraus, dass die Schülerinnen und Schüler die Darstellung von natürlichen Zahlen und gemischten Zahlen als in gleich große Segmente unterteilte Kreisflächen beziehungsweise Kreissegmente kennen. Sollten diese Voraussetzungen nicht gegeben sein, finden sich auf der Webseite des Autors entsprechende Veranschaulichungen und Übungen. Hier ein Beispiel: Bruchrechnen - Gemischte Zahl Die Lernenden müssen eine gemischte Zahl angeben, die in einer per Zufallsgenerator ausgewählten Zeichnung dargestellt ist. Die Unterrichtseinheit selbst beinhaltet insgesamt sieben Online-Arbeitsblätter, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss auf den Rechnern Javascript aktiviert und Java 1.4.2 (oder höher) installiert sein. Da der Aufgabentyp "Subtraktion zweier gemischter Zahlen" sehr komplex und vielschichtig ist, wird eine einzige Veranschaulichung mit interaktiven dynamischen Arbeitsblättern der Problemstellung nicht gerecht. Daher erfolgt die Veranschaulichung der Subtraktion von gemischten Zahlen in vier Schritten: Veranschaulichung der Subtraktion eines Bruchs von einer natürlichen Zahl Veranschaulichung der Subtraktion eines Bruchs von einer gemischten Zahl Veranschaulichung der Subtraktion einer natürlichen Zahl von einer gemischten Zahl Veranschaulichung der Subtraktion zweier gemischter Zahlen. Die Bedienung aller vier hier verwendeten interaktiven dynamischen Arbeitsblätter ist identisch und ermöglicht daher ein flüssiges, selbstständiges Arbeiten der Schülerinnen und Schüler. Die Lehrkraft sollte lediglich bei der Verwendung des ersten Arbeitsblatts dessen Bedienung erläutern: Bei allen Online-Arbeitsblättern werden beim Seitenstart eine Aufgabe und die zugehörige dynamische Zeichnung erstellt (siehe Abb. 1). Durch Betätigen des Schiebereglers "Nimm ... weg" kann die Aufgabe auf bildliche Art gelöst werden. Die Lösung kann dann in die dafür vorgesehenen Felder eingetragen werden. Mittels des Buttons "Lösung prüfen" können die Eingaben geprüft und mittels des Buttons "Neue Aufgabe stellen" viele weitere Aufgaben erzeugt werden. Die Einbettung der natürlichen Zahlen in die Bruchzahlen ist eine notwendige Grundlage für das Verständnis von gemischten Zahlen und deren Subtraktion. Um möglichen Fehlvorstellungen bei der Einbettung natürlicher Zahlen in die Bruchzahlen zu begegnen, wird zu Beginn eine visuelle Einbettung der natürlichen Zahlen in die Bruchzahlen vorgenommen. Als Anschauungsmodell zur Visualisierung wird im zugehörigen interaktiven dynamischen Arbeitsblatt (Abb. 1, Platzhalter bitte anklicken) die gleichmäßig unterteilte Kreisfläche verwendet. Diese Darstellung nimmt Bezug zur Alltagserfahrung der Schülerinnen und Schüler. So können die Lernenden zum Beispiel mit der Kreisfläche eine Pizza assoziieren. Die bräunliche Farbgebung der Kreisfläche und die gestrichelte Unterteilung in gleich große Stücke soll diese mögliche Assoziation einer vorgeschnittenen Pizza unterstützen. Die durch das interaktive dynamische Arbeitsblatt ermöglichte intuitive und anschauliche Begegnung mit Aufgaben der Art "1 minus 7/5" oder "3 - 1/3" soll die Schülerinnen und Schüler befähigen, Aufgaben dieses Typs - ohne jeden Rechenkalkül - einfach durch Anschauung zu lösen. Bei der Veranschaulichung der Subtraktion eines Bruchs von einer gemischten Zahl stehen zwei Gesichtspunkte im Vordergrund. Zum einen wird die bildliche Darstellung einer gemischten Zahl in Form von ganz gefüllten Kreisen und einem zusätzlichen Kreissegment eingeführt oder aus dem vorangegangenen Unterricht wieder aufgegriffen und zusätzlich die Subtraktion mit und ohne Umwandlung zum ersten Mal problematisiert. Bei der Gestaltung des zweiten interaktiven dynamischen Arbeitsblatts (Abb. 2) wurde auf Kontinuität geachtet, das heißt Aufbau und Funktionsweise entsprechen dem ersten Arbeitsblatt. Die Schülerinnen und Schüler müssen sich daher nicht erst an eine neue Aufgabenumgebung gewöhnen, sondern können sich unmittelbar mit der mathematischen Problemstellung auseinandersetzen. Ein fließender Übergang zur Bearbeitung von Aufgaben zur Subtraktion eines Bruchs von einer gemischten Zahl ist somit gegeben. Nachdem die Schülerinnen und Schüler die ersten beiden interaktiven dynamischen Arbeitsblätter bearbeitet haben, erfolgt eine Zusammenfassung der Ergebnisse im Heft. Beim Hefteintag ist darauf zu achten, dass die Verbindung zur vorherigen Arbeit der Schülerinnen und Schüler hergestellt wird. Hierzu kann das Arbeitsblatt "ab_hefteintag_1.pdf" verwendet werden, bei dem die Lernenden die Subtraktion eines Bruchs von einer natürlichen Zahl und die Subtraktion eines Bruchs von einer gemischten Zahl noch einmal zeichnerisch durchführen müssen. Damit soll einer allzu schnellen und rein symbolischen Lösung der Aufgaben begegnet und den Lernenden Zeit gegeben werden, ihr Vorgehen zu reflektieren. Den Abschluss der Unterrichtsstunde kann die Bearbeitung der Aufgaben der interaktiven dynamischen Arbeitsblätter ohne Veranschaulichung bilden. Je nach Klassensituation kann aber auch die Bearbeitung von Aufgaben auf bildlicher Ebene mithilfe des Arbeitsblatts "ab_hausaufgabe_1.pdf" fortgesetzt werden. Zur Erstellung von Hausaufgaben auf bildlicher Ebene kann die Kopiervorlage "bruchteile.pdf" verwendet werden. Die Vorgehensweise ist analog zur ersten Unterrichtsstunde. Zuerst setzen sich die Schülerinnen und Schüler mit den Aufgaben der interaktiven Arbeitsblätter auseinander. Die Notwendigkeit einer Veranschaulichung der Subtraktion einer natürlichen Zahl von einer gemischten Zahl (Abb. 3, Platzhalter bitte anklicken) mag auf den ersten Blick verwundern, da diese Subtraktion doch trivial erscheint. Doch sollte man zurückhaltend und vorsichtig sein, Aufgabenstellungen allzu schnell als trivial abzutun. Zudem ist die Veranschaulichung dieses Aufgabentyps für die abschließende Veranschaulichung der Subtraktion von gemischten Zahlen notwendig. Beabsichtigt man, die Subtraktion von gemischten Zahlen anschaulich in zwei Teilsubtraktionen zu zerlegen, nämlich in die Subtraktion einer natürlichen Zahl von der gemischten Zahl und eines Bruchs von der gemischten Zahl, sollte der erste Teilschritt vorher anschaulich als Grundlage gelegt werden. Der zeitliche Aufwand im Unterricht für die Veranschaulichung der Subtraktion einer natürlichen Zahl von einer gemischten Zahl ist gering. Die Einsicht der Schülerinnen und Schüler in den Zusammenhang ergibt sich rasch. Dennoch ist dieser Aufgabentyp für das Verständnis unverzichtbar. Die Bedienung des Online-Arbeitsblatts ist wieder analog zu den bisher verwendeten Arbeitsblättern. Nach den drei vorangestellten Beispielen wird abschließend die Veranschaulichung der Subtraktion zweier gemischter Zahlen mithilfe interaktiver dynamischer Arbeitsblätter dargestellt. Dabei werden die in den vorangegangenen Arbeitsblättern gewonnenen Anschauungen miteinander verbunden und zu einer Veranschaulichung zusammengeführt. Bei der Beschreibung der Veranschaulichung der Subtraktion zweier gemischter Zahlen wird im Folgenden nur auf den Aufgabentyp "Subtraktion mit Umwandlung" eingegangen, da sich die "Subtraktion ohne Umwandlung" aus dem vorgestellten Beispiel selbst erschließt. Das entsprechende Arbeitsblatt (Abb. 4) zeigt den gewohnten Aufbau. In der linken Spalte findet sich neben der Einführung wieder das interaktive Element mit der Aufgabenstellung, den Eingabefeldern, dem Button zur Überprüfung der Eingabe und der Möglichkeit, weitere Aufgaben zu erzeugen. Die beiden Schieberegler "Nimm ... weg" können unabhängig voneinander bewegt werden: Linker Schieberegler - Subtraktion einer natürlichen Zahl Wird der linke Schieberegler bewegt, so wird eine natürliche Zahl von der gemischten Zahl subtrahiert und die zugehörigen Darstellungen angepasst. Eine gefüllte Kreisfläche wird ausgeblendet und die symbolische Darstellung aktualisiert. Rechter Schieberegler - Subtraktion eines Bruchteils Wird der rechte der beiden Schieberegler "Nimm ... weg" nach rechts bewegt, wird jeweils ein Bruchteil subtrahiert. Die Subtraktion zweier gemischter Zahlen entsteht. Die Schülerinnen und Schüler entwickeln so eine tragfähige Grundvorstellung zur Subtraktion gemischter Zahlen. Die Zusammenfassung als Hefteintrag unterscheidet sich nicht von der der ersten Unterrichtsstunde. Dabei steht wieder das bildlich dargestellte Subtrahieren der gemischten Zahl im Vordergrund (ab_hefteintag_2). Als abschließende Lernzielkontrolle bietet es sich wieder an, die Aufgaben ohne Veranschaulichung zu lösen. Zur Hausaufgabenstellung mit Aufgaben auf bildlicher Ebene kann das Arbeitsblatt "ab_hausaufgabe_2" verwendet werden. Anhand von drei weiteren interaktiven Arbeitsblättern können die Schülerinnen und Schüler gemäß ihrer Kenntnissen und Fertigkeiten unterschiedliche Aufgaben bearbeiten oder bei Bedarf noch einmal zu den Veranschaulichungen zurückkehren, um Defizite aufzuarbeiten. Die Rolle der Lehrperson ist hierbei eine beobachtende. Sie kann bei Schwierigkeiten der Lernenden gezielt helfen, da sie von der unmittelbaren Korrektur der Schülereingaben befreit ist. Bei dieser Aufgabe geht es darum, gemischte Zahlen zu subtrahieren (Abb. 5, Platzhalter bitte anklicken). Im Gegensatz zur vorhergehenden Unterrichtsstunde wird nun auf eine Veranschaulichung verzichtet. Zudem werden die Zähler und Nenner größer, die Brüche bleiben aber gleichnamig. Als Anreiz werden für richtig gelöste Aufgaben Punkte vergeben. Die Summen der erreichten Punkte können in einer Bestenliste gespeichert werden. Bei der zweiten Aufgabe sollen die Schülerinnen und Schüler den fehlenden Subtrahenden einer Subtraktion gemischter Zahlen angeben (Abb. 6). Dies verlangt bereits eine vertiefte Einsicht in die Subtraktion. In der Rückmeldung auf falsche Eingaben erhalten die Lernenden die richtige Lösung angezeigt. Diese kann dann zum Ausgangspunkt einer Reflexion über die fehlerhafte Eingabe werden und die Schülerinnen und Schüler zu Diskussionen anregen. Auch bei dieser Aufgabe bietet die Punktevergabe und -speicherung einen äußeren Anreiz, mehrere Aufgaben dieses Typs zu bearbeiten. Bei der abschließenden Übung besteht die Aufgabe der Schülerinnen und Schüler darin, den fehlenden Minuenden einer Subtraktion gemischter Zahlen zu ermitteln (Abb. 7). Dabei wird der Zusammenhang von Subtraktion und Addition vertieft, da zur Lösung der jeweiligen Aufgaben zum Differenzwert lediglich der Subtrahend addiert werden muss. Erstmals werden dabei gemischte Zahlen verwendet, deren Nenner sich unterscheiden können. Damit leitet diese Aufgabe zur Subtraktion gemischter Zahlen mit unterschiedlichen Nennern und zur Arbeit im Klassenzimmer über.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Bruchzahlen verstehen: Addieren und Subtrahieren mit Brüchen auf Basis der Arten von Brüchen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit werden den Lernenden zuerst die verschiedenen Arten von Brüchen vorgestellt. Ausgehend davon wird das Addieren und Subtrahieren von Brüchen erarbeitet. Auf dieser Basis wird an interaktiven Übungen gearbeitet und das Wissen gefestigt. In dieser Einheit wird die Idee des Addierens und Subtrahierens von Brüchen erarbeitet. Dazu werden zuerst die verschiedenen Arten von Brüchen vorgestellt. Bildlich wird die Bedeutung dieser beiden Rechenoperationen eingeführt, sodass ein sauberes Verständnis aufgebaut wird, warum bestimmte Schritte zum Bearbeiten verwendet werden können. Das Material kann zur Einführung in die Thematik "Addition und Subtraktion von Brüchen" verwendet werden, aber auch zur Wiederholung und Vertiefung der Bruchrechnung . Zu Beginn wird das Verständnis der Lernenden für Bruchzahlen vertieft. Sie erhalten dazu ein Arbeitsblatt, welches echte, unechte Brüche und gemischte Zahlen vorstellt. Darauf aufbauend gibt es verschiedene interaktive Übungen , die von den Lernenden zum Thema bearbeitet werden können. Außerdem sind Übungsaufgaben in einem Excel-Sheet zusammengestellt, dessen Schwierigkeitsgrad angepasst werden kann. Anschließend wird die Addition und Subtraktion von Brüchen eingeführt. Zunächst wird den Lernenden bildlich vorgestellt, wann Brüche einfach addiert oder subtrahiert werden können. Auf dem zweiten Arbeitsblatt werden Ideen zur Addition und Subtraktion vorgestellt und erarbeitet. Auch daran schließen sich verschiedene interaktive Übungen an. In einem weiteren Excel-Sheet mit individuell einstellbarem Schwierigkeitsgrad können die Schülerinnen und Schüler sich in der Addition und Subtraktion von Brüchen üben. Die interaktiven Übungen "Bruchzahlen verstehen" liegen jeweils in drei Schwierigkeitsstufen vor. Das Thema "Bruchzahlen" im Mathematik-Unterricht Lernen die Schülerinnen und Schüler im Unterricht erstmals Bruchzahlen kennen, ist es nicht nur wichtig, dass sie mit diesen rechnen können. Auch zu verstehen, wofür die Bruchzahlen im Alltag stehen können und wie sie sinnvoll eingesetzt werden können, ist unabdingbar. In dieser Unterrichtseinheit wird daher auf dem lebensweltlichen Kontext gesetzt: Anhand der Feier des mathematik-interessierten Jungens Karl wird das Verständnis für unterschiedliche Arten von Bruchzahlen und das Rechnen mit Bruchzahlen geschult. Vorkenntnisse Voraussetzung für diese Unterrichtseinheit ist ein sicherer Umgang mit dem Erweitern und Kürzen von Brüchen sowie die Kenntnis von Grundlagen zum Bruchbegriff . Didaktische Analyse Eine Sicherheit bei der Addition und Subtraktion von Brüchen ist enorm wichtig. Die Art der interaktiven Übungen zu den Materialien soll es den Lernenden ermöglichen, vielfältig, differenziert und umfangreich zu üben. So kann eine Sicherheit durch die unterschiedlichen Aufgabentypen erarbeitet werden. Methodische Analyse Die Übungen am PC sind vielfältig, sodass die Schülerinnen und Schüler beim Arbeiten immer neue Probleme bewältigen können. Vor allem in den aktiven Excel-Sheets erhalten die Lernenden immer neue Aufgaben und durch die Möglichkeit, einen individuellen Schwierigkeitsgrad zu wählen, können sie sich ständig neu fordern. So erarbeiten sich die Schülerinnen und Schüler mit wechselnden Aufgaben und Schwierigkeitsgraden selbst Fortschritte und Sicherheit – verstärkt wird diese Möglichkeit durch individuelle Rückmeldungen, wie gut die einzelnen Aufgaben gelöst wurden. Eine besonders anspruchsvolle interaktive Übung rundet den Aufgabenkomplex ab. Fachkompetenz Die Schülerinnen und Schüler lernen echte Brüche, unechte Brüche und Scheinbrüche kennen. erarbeiten sich die Idee des Umrechnens von Bruchdarstellungen. erarbeiten sich die Idee, wie man Brüche addiert und subtrahiert. üben selbständig das erarbeitete Wissen. Medienkompetenz Die Schülerinnen und Schüler üben den Umgang mit einer Tabellenkalkulation und erarbeiten sich Sicherheit. erweitern ihre Kenntnisse im Bezug auf Tabellenkalkulationen. Sozialkompetenz Die Schülerinnen und Schüler schätzen sich immer wieder selbst ein. arbeiten anhand von individuellen Rückmeldungen an Verbesserungen. geben Hilfeleistungen und fragen nach individuellen Hilfen von anderen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Rationale Zahlen per Wochenplan vermitteln

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Begriffe und die Eigenschaften der Menge der Rationalen Zahlen (Q) kennen. Sie berechnen die rationalen Zahlen nach den Grundrechenarten. Sie lernen diese als eine Menge von Zahlen kennen, die am Zahlenstrahl und am Koordinatensystem abgelesen und abgetragen werden können. Ziel ist die Umsetzung durch eigenverantwortliches Arbeiten oder als Wechselunterricht im Sinne des selbstgesteuerten Lernens. Diese Unterrichtseinheit hat das Ziel, die Lerninhalte zum Thema "Rationale Zahlen" für eine 7. Klasse der Realschule im Wechselunterricht den Schülerinnen und Schülern zu vermitteln und damit eigenverantwortliches Arbeiten zu fördern. Die Unterrichtseinheit basiert auf dem Konzept des selbstgesteuerten Lernens mithilfe eines Wochenplans , Erklärvideos, einem Übungs- und einem Textaufgabenheft sowie einigen Übungstests. Die Einheit ist thematisch in vier Lernmodule eingeteilt: Lernmodul 1: Gegenzahl, Zahl und Betrag; Rationale Zahlen ordnen (Zahlenstrahl) Lernmodul 2: Rationale Zahlen addieren und subtrahieren Lernmodul 3: Rationale Zahlen multiplizieren und dividieren Lernmodul 4: Rationale Zahlen im Koordinatensystem Die Inhalte dieser Lernmodule sind jeweils von der inhaltlichen Beschreibung der Plenumsphase zu entnehmen. Das Basisdokument ist der Wochenplan (WP), der sich jeweils nach den folgenden Gesichtspunkten gliedert: Aneignen (Erklärvideos, Hinweis auf die Infokästen beim Übungsheft), Übungen (Aufgaben aus dem Übungsheft, Mathematikbüchern, Lernapps) und Überprüfung (Übungstests). Die Lernenden arbeiten in den Übungsphasen an den Lernmodulen wöchentlich nach eigenem Zeitplan. Die Lehrkraft klärt in den Plenumsphasen, die sich nach einem festgelegten Zeitraster orientieren, mit den Lerngruppen die Themen- und Aufgabenstellung des jeweiligen Lernmoduls. Es empfiehlt sich, mehrere solcher Phasen in einer Woche anzubieten, so dass die Lernenden weiter an den Aufgaben arbeiten können. Die Rückmeldungsphase gestaltet sich individuell über die Plenumsphasen und den Übungstests (UeT). Die Übungstests sind als bewertete Rückmeldungen konzipiert, damit die Schülerinnen und Schüler jeweils ihren Lernstand erkennen. Das Übungsheft (MkU) konzentriert sich inhaltlich auf das Üben und Vertiefen des aktuellen Themas in Bezug auf neue Aspekte. Verknüpfungen zu vorherigen Themen (unter anderem Bruchrechnung, Berechnung von Termen, Vorrangregeln) müssten auf andere Weise abgedeckt werden. Bewusst wurden die Arbeitsblätter AB3 und AB4 hinsichtlich der Aufgaben ähnlich gehalten, damit die Schülerinnen und Schüler eigenständig in der Lage sind, die Bedeutung von Rechenoperation und Vorzeichen herauszuarbeiten. Aus dem gleichen Grund beginnt jedes Übungsblatt mit einer kurzen Darstellung. Die Lernvideos orientieren sich an dem Übungsheft, so dass sich die Schülerinnen und Schüler daran orientieren können. Als Ergänzung zum Übungsheft (MkU) bietet sich das Textaufgabenheft (MkT) an. Die Texte wiederholen indirekt Themen aus der 5. bis 6. Klasse. Zu den Übungstests (UeT), Übungsheft (MkU) und Textaufgabenheft (MkT) werden Lösungen angeboten, so dass die Schülerinnen und Schüler eigenständig korrigieren können. Für die inhaltliche Umsetzung sind für die jeweiligen Lernmodule folgende Voraussetzungen relevant: Bestimmung der Begriffe Betrag, Zahl, Gegenzahl, Vorzeichen und Rechenoperation. Ebenso das Ordnen der Zahlen nach ihrer Wertigkeit und am Zahlenstrahl (Lernmodul 1). Bei der Addition und Subtraktion gilt es den Unterschied zwischen Rechenoperation und Vorzeichen herauszuarbeiten (Lernmodul 2). Bei der Multiplikation und Division gilt es ebenfalls die Bedeutung des Vorzeichens herauszuarbeiten (Lernmodul 3). Bei der Behandlung des Koordinatensystems baut man auf das Vorwissen über den 1. Quadranten auf, um dies auf die anderen Quadranten zu erweitern (Lernmodul 4). Fachkompetenz Die Schülerinnen und Schüler nutzen sinntragende Vorstellungen von rationalen Zahlen, insbesondere von natürlichen, ganzen und gebrochenen Zahlen entsprechend der Verwendungsnotwendigkeit. erläutern an Beispielen den Zusammenhang zwischen Rechenoperationen und deren Umkehrungen und nutzen diese Zusammenhänge. nutzen Rechengesetze, auch zum vorteilhaften Rechnen. Medienkompetenz Die Schülerinnen und Schüler suchen, verarbeiten und bewahren Inhalte und Materialien auf. kommunizieren und kooperieren auf verschiedenen Ebenen miteinander. setzen digitale Werkzeuge zum Lösen von Problemen ein. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren sachlich. bearbeiten gemeinsam Aufgaben. halten sich an Absprachen und Vereinbarungen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Die Grundrechenarten: interaktive Übungen mit h5p

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Die Grundrechenarten: interaktive Übungen mit h5p" lösen die Schülerinnen und Schüler an Computern Mathematikaufgaben, die mithilfe von h5p erstellt wurden. Der Computer bereichert hierbei als effizientes und motivierendes Werkzeug den Unterricht. h5p ist eine kostenlose und quelloffene Software zum Erstellen interaktiver Lerninhalte. Sie ermöglicht die schnelle und einfache Erstellung von Aufgaben, ohne dass Programmierkenntnisse nötig sind. Die interaktiven Übungen sind abwechslungsreich und können unterschiedliche Formen annehmen, zum Beispiel Quiz, Lückentext oder Bilderrätsel. Mithilfe der Aufgaben festigen die Schülerinnen und Schüler ihre Mathematikkenntnisse in den vier Grundrechenarten und üben sich gleichzeitig in der Bedienung interaktiver Anwendungen. Hier gelangen Sie zu den interaktiven Übungen Das Thema "Grundrechenarten" im Unterricht Die mit h5p erstellten interaktiven Aufgaben eignen sich für den Mathematikunterricht der Grundschule in den Klassen 1 bis 4. Die Aufgaben sind in unterschiedliche Schwierigkeitsgrade unterteilt: Die Additions- und Subtraktionsaufgaben sind konzipiert für den Einsatz in den Klassen 1 und 2. Die Multiplikations- und Divisions- sowie die gemischten Aufgaben sind geeignet für die Klassenstufen 3 und 4. Die interaktiven Übungen dienen der Festigung der bereits erlernten Grundrechenarten. Auf spielerische und motivierende Weise erproben die Schülerinnen und Schüler ihre Mathematikkenntnisse. Gleichzeitig üben sie sich im Umgang mit dem PC und interaktiven Lerninhalten. In jede Übung ist eine Auswertung integriert, die den Schülerinnen und Schülern die richtige Lösung anzeigt und auch eine Punktebewertung beinhaltet. Auf diese Weise ist eine individuelle Auswertung der eigenen Leistung möglich. Auch ein Wiederholen einzelner Übungen zur Leistungssteigerung ist vorgesehen. Die Schülerinnen und Schüler können sich zudem untereinander motivieren: Während der Lösung einiger Übungen wird automatisch die Zeit gemessen, sodass ein Wettkampfcharakter entstehen kann. Vorkenntnisse Vonseiten der Schülerinnen und Schüler sind keine besonderen Kenntnisse im Umgang mit dem Computer erforderlich. Die Lösungen werden mithilfe von Tastatur und Maus eingegeben. Zum Einstieg kann die Lehrkraft die Vorerfahrungen der Kinder abfragen und gegebenenfalls Hilfestellung bei den ersten Aufgaben geben. Erfahrungsgemäß verfügen die meisten Schülerinnen und Schüler in der Grundschule allerdings bereits über erste Erfahrungen im Umgang mit dem PC. Auch die Lehrkraft selbst benötigt keine besonderen IT-Kenntnisse für die Integration der Aufgaben in den Mathematik-Unterricht. Die Aufgaben sind mit selbsterklärenden kurzen Handlungsanweisungen versehen, sodass die Schülerinnen und Schüler weitestgehend selbstständig arbeiten können. Eigene Erstellung von h5p-Elementen Ergänzend zu dieser Unterrichtseinheit kann die Lehrkraft selbst interaktive Übungen auf Basis von h5p erstellen. Die frei verfügbare Software wurde für die Erstellung von Lehrinhalten konzipiert und zeichnet sich durch eine schnelle und intuitive Bedienung aus. Fachkompetenz Die Schülerinnen und Schüler festigen ihre Kenntnisse in den vier Grundrechenarten Addition, Subtraktion, Multiplikation und Division. üben ihre visuelle Wahrnehmung und das Erkennen geometrischer Formen. trainieren das Kopfrechnen. Medienkompetenz Die Schülerinnen und Schüler üben sich im Umgang mit interaktiven Lerninhalten. trainieren die Ausführung unterschiedlicher Computerfunktionen wie beispielsweise Drag-and-drop. gewinnen Sicherheit in der Verwendung von Maus und Tastatur. Sozialkompetenz Die Schülerinnen und Schüler können komplexere Aufgaben wie beispielsweise Textaufgaben gemeinsam lösen und üben so die Zusammenarbeit mit Lernpartnern. motivieren sich gegenseitig zu besseren Leistungen beim Vergleich der Zeiten, die sie für die Lösung der Aufgaben benötigen. tauschen sich abschließend über ihre Erfahrungen bei der Bearbeitung der interaktiven Übungen aus. In dieser Übung rechnen die Schülerinnen und Schüler verschiedene Additionsaufgaben. Das Ergebnis ziehen Sie mithilfe der Drag-and-drop-Funktion zur passenden Aufgabe. Mithilfe dieser Übung trainieren die Schülerinnen und Schüler sowohl die Addition als auch ihre visuelle Wahrnehmung. Hierzu ziehen sie Additionsaufgaben auf die passenden Bilder. In dieser Übung lösen die Schülerinnen und Schüler Additionsaufgaben in Form eines Quiz. Mögliche Lösungen sind als Multiple-Choice-Auswahl vorgegeben, die richtige Lösung muss angeklickt werden. In dieser Übung rechnen die Schülerinnen und Schüler verschiedene Subtraktionsaufgaben. Das Ergebnis ziehen Sie mithilfe der Drag-and-drop-Funktion zur passenden Aufgabe. Mithilfe dieser Übung trainieren die Schülerinnen und Schüler sowohl die Subtraktion als auch ihre visuelle Wahrnehmung. Hierzu ziehen sie Subtraktionsaufgaben auf die passenden Bilder. In dieser Übung lösen die Schülerinnen und Schüler Subtraktionsaufgaben in Form eines Quiz. Mögliche Lösungen sind als Multiple-Choice-Auswahl vorgegeben, die richtige Lösung muss angeklickt werden. In dieser Übung sind die Schülerinnen und Schüler aufgefordert, die richtigen Lösungen für Multiplikationsaufgaben mithilfe der Tastatur einzugeben. In dieser Übung sind die Schülerinnen und Schüler aufgefordert, die richtigen Lösungen für Divisionsaufgaben mithilfe der Tastatur einzugeben. Mithilfe dieser Übung trainieren die Schülerinnen und Schüler die Division sowie ihre visuelle Wahrnehmung. Hierzu klicken Sie Bilder an, deren Bausteinzahl sich durch 4 teilen lässt. Diese Übungen fördern die Bewältigung von Textaufgaben zur Division. Die Schülerinnen und Schüler lesen jeweils eine Situationsbeschreibung und entscheiden, ob die dazu getätigte Aussage richtig oder falsch ist. In dieser Übung sind die Schülerinnen und Schüler aufgefordert, die richtigen Lösungen für gemischte Additions-, Subtraktions-, Multiplikations- und Divisionsaufgaben mithilfe der Tastatur einzugeben.

  • Mathematik / Rechnen & Logik
  • Primarstufe

Ganze Zahlen - Grundrechenarten verbinden und anwenden

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Ganze Zahlen" werden die Grundrechenarten mit ganzen Zahlen durch interaktive Arbeitsmaterialien eingeübt, indem die Addition, Subtraktion, Multiplikation und Division miteinander verbunden werden.Nach einer Unterrichtsphase, in der die Grundrechenarten Addition, Subtraktion, Multiplikation und Division mit ganzen Zahlen getrennt betrachtet wurden, um die einzelnen Rechenregeln zu stabilisieren, ist es notwendig, die Grundrechenarten miteinander zu verbinden. Dabei sollten die bisher erworbenen Kenntnisse vertieft und auf Aufgaben in neuem Kontext angewandt werden. In dieser Unterrichtseinheit werden drei unterschiedliche Übungsmöglichkeiten vorgestellt, mithilfe derer das Rechnen mit ganzen Zahlen vertieft werden kann. Anhand von zwei Übungen soll dabei zuerst das Ausgangsniveau gesichert werden. Darin werden noch einmal die Kenntnisse zur Addition und Multiplikation von ganzen Zahlen auf einen aktuellen Stand gebracht. Durch die Verwendung von variablen Rechenbäumen werden in einem zweiten Schritt die Rechenarten miteinander verbunden. Abschließend wird das bereits im Bereich der Dezimalzahlen behandelte arithmetische Mittel in Verbindung mit dem Rechnen mit ganzen Zahlen aufgefrischt und in einen Anwendungskontext, der Ermittlung von Durchschnittstemperaturen, gestellt.Interaktive dynamische Arbeitsblätter können durch die automatische Kontrolle der Ergebnisse und Rückmeldungen, die den Schülerinnen und Schülern eine eigenständige Fehleranalyse ermöglichen, einen wertvollen Beitrag zur Vertiefung der erworbenen Kenntnisse leisten. Hinweise zum Einsatz im Unterricht Aufbau und Funktionsweise der interaktiven Arbeitsblätter werden erläutert. Die Lernenden können eigenständig mit ihnen arbeiten. Erste Unterrichtsstunde In der einführenden Stunde lösen die Lernenden Aufgaben zur Multiplikation und Addition positiver und negativer ganzer Zahlen. Zweite Unterrichtsstunde Anhand von variablen Rechenbäumen sollen die Schülerinnen und Schüler drei fehlende ganze Zahlen ermitteln. Dritte Unterrichtsstunde Das Rechnen mit positiven und negativen ganzen Zahlen wird in einen Anwendungskontext zur Ermittlung von Durchschnittstemperaturen gestellt. Die Schülerinnen und Schüler vertiefen ihre Kenntnisse im Bereich der Addition und Multiplikation ganzer Zahlen. erlangen durch die Kombination von Grundrechenarten im Bereich der ganzen Zahlen Sicherheit im Rechnen. können das arithmetische Mittel auf ganze Zahlen anwenden. können mithilfe des arithmetischen Mittels auf Ausgangswerte schließen. Das hier vorgestellte Übungskonzept setzt voraus, dass die Schülerinnen und Schüler die Grundrechenarten in Bezug auf die ganzen Zahlen und das arithmetische Mittel bereits kennen. Die Unterrichtseinheit selbst beinhaltet insgesamt bis zu acht HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Aufgabenstellungen bei den Übungen mit den Rechenbäumen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Beschreibung des Aufbaus der Arbeitsblätter Der Aufbau der Web-Arbeitsblätter folgt einer einheitlichen Grundstruktur. Alle Arbeitsblätter sind in zwei Spalten unterteilt (Abb. 1, zur Vergrößerung bitte anklicken). In der linken Spalte finden sich Hinweise auf die Bedienung, wie etwa eingegebene Ergebnisse überprüft beziehungsweise neue Aufgaben erzeugt werden können. Die eigentliche Aufgabestellung findet sich immer in der rechten Spalte des Arbeitsblatts. Diese beinhaltet die interaktiven Elemente sowie das Rückmeldefenster und den aktuellen Punktestand. Rückmeldungen als Ausgangspunkt für eine eigenständige Fehleranalyse Eines der zentralen Elemente interaktiver dynamischer Arbeitsblätter ist die Rückmeldung auf eine Schüleraktivität. Ist eine Aufgabe richtig gelöst, so beinhaltet diese eine positive Verstärkung, wie zum Beispiel "Ausgezeichnet!" oder "Das hast du sehr gut gemacht!". Wurde hingegen die Aufgabe fehlerhaft bearbeitet, so gibt es je nach Aufgabenstellungen unterschiedliche Rückmeldungen. Dies kann einerseits die Ausgabe der richtigen Lösung sein, die die Schülerinnen und Schüler in die Lage versetzt, ihre Eingabe mit der korrekten Lösung zu vergleichen und so den gemachten Fehler einzuordnen. Ferner kann bei komplexeren Aufgaben die Rückmeldung neben der korrekten Lösung auch einen möglichen Rechenweg beinhalten. So kommt gerade den Rückmeldungen im Hinblick auf den Umgang mit Fehlern eine zentrale Bedeutung zu. Eigene Fehler selbstständig zu analysieren und deren Ursachen zu erkennen, ermöglicht den Schülerinnen und Schülern auf diese Weise ein eigenständiges und eigenverantwortliches Lernen. "Fehler machen" wird in diesem Zusammenhang nicht als Versagen, sondern als Lernchance verstanden. Flexibilität interaktiver dynamischer Arbeitsblätter Bei der Konzeption der Arbeitsblätter ist als zweites wesentliches Element die flexible Verwendung der Arbeitsblätter von großer Bedeutung. Flexibel bedeutet hier einerseits, dass die Materialien wie in diesem Unterrichtsverlauf beschrieben verwendet werden können. Es ist aber auch möglich, nur einen Teil dieser Arbeitsblätter zu verwenden, da die einzelnen Übungen voneinander unabhängig sind. Flexibel bedeutet ferner, dass sich weder Lehrkräfte noch Schülerinnen und Schüler in die Handhabung einarbeiten müssen, sondern sie die Arbeitsblätter ohne jegliche zusätzliche Werkzeugkompetenz an beliebiger Stelle im Unterricht verwenden können. Nach einer kurzen Einführung durch die Lehrkraft in die Funktionsweise des Online-Arbeitsblatts sollen die Schülerinnen und Schüler aus sechs vorgegebenen ganzen Zahlen jeweils zwei auswählen, deren Produktwert maximal beziehungsweise minimal ist. Die Rückmeldung gibt auf falsche Eingaben zum einen die Produktwerte aus, die sich auf Grund der Schülereingaben ergeben, zum anderen auch die korrekten maximalen und minimalen Produktwerte. Auf eine Angabe der richtigen beiden Zahlen wird bewusst verzichtet. So müssen sich die Schülerinnen und Schüler mit den Rückmeldungen auseinandersetzen und die Ursachen ihres Fehlers selbst erforschen. Im Anschluss an die Bearbeitung der Aufgaben am Computer können die Lernenden die Aufgaben des zugehörigen PDF-Arbeitsblatts (grundrechenarten_verbinden_ab_1.pdf, Aufgaben 1 bis 5) lösen und die Ergebnisse und ihre zugehörigen Überlegungen im Klassenplenum vorstellen. Dabei können auch gemachte Fehler während der Arbeit am Computer thematisiert werden. Nach einer kurzen Erläuterung der Funktionsweise des dynamischen Arbeitsblatts durch die Lehrkraft sollen die Schülerinnen und Schüler zwei ganze Zahlen finden, die durch ihren Summen- und Produktwert beschrieben sind. Die Rückmeldung gibt auf falsche Eingaben zum einen die beiden richtigen Zahlen aus. Daneben wird aber auch der Produkt- und Summenwert ausgegeben, der sich aus den Zahlen ergibt, die die Schülerin oder der Schüler eingegeben hat. Diese zusätzliche Angabe kann wieder der Ausgangspunkt einer Diskussion über vorgekommene Fehler sein. Die Unterrichtsstunde endet mit der Besprechung der Aufgaben des PDF-Arbeitsblatts (grundrechenarten_verbinden_ab_1.pdf, Aufgaben 6 bis 10), die als Hausaufgabe gegeben werden können. Eine interessante Hausaufgabenstellung in diesem Zusammenhang ergibt sich dann, wenn die Lernenden beschreiben sollen, welche Fehler bei der Bearbeitung der beiden Web-Arbeitsblätter (Online-Arbeitsblatt 1 und 2) auftreten können. So reflektieren sie noch einmal die Unterrichtsstunde und deren Inhalte. Nach der Lehrereinführung in die Funktionsweise des interaktiven Arbeitsblatts sollen die Schülerinnen und Schüler drei fehlende Ergebnisse in Rechenbäumen ermitteln. Die Übung beinhaltet variabel gestellte Aufgaben zu den Grundrechenarten. Die Rückmeldung gibt auf falsche Eingaben jeweils nur die richtigen Zahlenwerte aus. Dieser Aufgabentyp ist für leistungsschwächere Lernende gut geeignet, um Sicherheit im Umgang mit den Grundrechenarten in Bezug auf die ganzen Zahlen zu gewinnen. Das Erzielen von Punkten kann die Motivation für diese Schülergruppe noch zusätzlich hoch halten. Begabtere Schülerinnen und Schüler hingegen werden diese Übung rasch als langweilig empfinden. Für diese Gruppe gilt es, einen zusätzlichen Anreiz zu schaffen. Dynamische Arbeitsblätter bieten hier eine gute Möglichkeit, Unterricht zu differenzieren. Dies soll mit dem folgenden Beispiel verdeutlicht werden. Da die Bedienung des Arbeitsblatts identisch zum vorhergehenden ist, kann für die Gruppe der leistungsstärkeren Schülerinnen und Schüler auf eine Einführung verzichtet werden. Die Besonderheit der neuen Aufgabestellung ist darin zu sehen, dass nun nicht mehr Summen-, Differenz-, Produkt- oder Quotientenwerte ermittelt werden sollen, sondern je nach Aufgabestellung unterschiedliche Elemente aus Summen, Produkten, Differenzen oder Quotienten zu bestimmen sind. Die Rückmeldung gibt auf falsche Eingaben wieder jeweils nur die richtigen Zahlenwerte aus. Zusätzliche Motivation kann sich daraus ergeben, dass die Schülerinnen und Schüler dieser Gruppe abschließend aufgefordert werden, ihre Lösungsstrategie anhand einer Aufgabe auf dem zugehörigen PDF-Arbeitsblatt (grundrechenarten_verbinden_ab_2.pdf) der Klasse vorzustellen. Als Hausaufgabe können die im Unterricht nicht bearbeiteten Aufgaben des PDF-Arbeitsblatts gestellt werden. Grundaufgabe Mit der Übung in einer dritten Unterrichtsstunde können die Schülerinnen und Schüler ihre Kenntnisse bezüglich der Grundrechenarten mit ganzen Zahlen weiter vertiefen und auf eine Aufgabenstellung anwenden, die sie bereits in anderen Zahlbereichen bearbeitet haben. Anhand von vier vorgegebenen Temperaturen soll die Durchschnittstemperatur ermittelt werden. Die Lehrkraft kann anhand eines Beispiels des zugehörigen PDF-Arbeitsblatts (grundrechenarten_verbinden_ab_3.pdf) beispielhaft eine Aufgabe ansprechen und den Begriff des arithmetischen Mittels wiederholen. In der folgenden Übungsphase arbeiten die Lernenden weitgehend selbstständig. Die Rückmeldung gibt auf falsche Eingaben den zugehörigen Berechnungsweg und die richtige Lösung aus. Wie in der Unterrichtsstunde vorher, gibt es auch hier die Möglichkeit einer unterrichtlichen Differenzierung durch die Variation der Aufgabenstellung. Aufgabenvariationen Bei der zweiten Übung in diesem Zusammenhang sind die Durchschnittstemperatur und drei Messwerte gegeben. Die Schülerinnen und Schüler sollen den fehlenden vierten Messwert ermitteln. Inwieweit die Lehrkraft Hilfestellungen oder Anleitungen geben möchte, kann sie hier selbst entscheiden. Das zugehörige PDF-Arbeitsblatt stellt Aufgaben zur Verfügung, die beispielhaft bearbeitet werden können. Viel interessanter ist es meines Erachtens jedoch, die Lernenden selbstständig Lösungsstrategien für diesen Aufgabentyp finden zu lassen. Da die Rückmeldung neben der Bewertung der Schülerlösung zusätzlich Auskunft darüber gibt, wie viele Punkte die Schülerin oder der Schüler erreicht hat, kann sich die die Übung beobachtende Lehrkraft rasch einen Überblick über die Leistungsfähigkeit ihrer Schülerinnen und Schüler verschaffen. Für den weiteren Unterrichtsverlauf stehen bei Bedarf weitere Aufgabentypen zur Verfügung, bei denen zwei oder alle Messwerte bei vorgegebener Durchschnittstemperatur fehlen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Wasser auf dem Mond: Mond-Eisbohrkerne filtern, um Wasser zu gewinnen

Unterrichtseinheit

In dieser Unterrichtseinheit zu Wasser auf dem Mond lernen die Schülerinnen und Schüler verschiedene Eigenschaften des Mondes hinsichtlich seiner Beschaffenheit kennen, zum Beispiel durch abschätzen und berechnen. Außerdem wird wissenschaftliches Arbeiten angebahnt und anhand von Fallbeispielen nähergebracht. Die Unterrichtseinheit "Wasser auf dem Mond: Mond-Eisbohrkerne filtern, um Wasser zu gewinnen" soll eine Diskussion zum Wasser-Verbrauch und zur Aufbereitung von Wasser sowohl auf der Erde als auch im All anstoßen und die Lernenden zum Nachdenken anregen. Des Weiteren lernen die Schülerinnen und Schüler die Vorgehensweisen beim wissenschaftlichen Arbeiten und die jeweiligen Teilschritte kennen (Versuchsaufbau, systematisches Messen und Aufnahme von Daten sowie deren Auswertung). Probleme werden hierbei selbstständig durch die Anwendung der Mathematik, von Messungen und Maßeinheiten gelöst. Die Unterrichtseinheit wurde im Rahmen der Projekte ESERO Germany und "Columbus Eye - Live-Bilder von der ISS im Schulunterricht" an der Ruhr-Universität Bochum entwickelt. In dieser Unterrichtseinheit schreiben die Schülerinnen und Schüler einen Tag lang auf, wieviel Wasser sie ungefähr bei verschiedensten Aktivitäten in ihrem Alltag verbrauchen. Diese Aufzeichnungen werden dann für anschließende Berechnungen im Plenum weitergenutzt. Es wird die Beschaffenheit des Mondes erklärt und in welcher Form man auch auf dem Mond Wasser finden kann. Dem folgen experimentelle Aufgaben im Klassenzimmer, bei denen die Lernenden vorbereitete "Mond-Eisbohrkerne" benutzen und filtern, um Wasser zu erhalten. Die Wirkungsweise eines Filtersystems wird hierbei näher erläutert. Die Ergebnisse der ersten beiden Übungen werden dann benutzt, um zu berechnen, wieviel Mond-Eis die Schülerinnen und Schüler ausgraben müssten, um genug Wasser für einen kompletten Tag zu erhalten. Die Schülerinnen und Schüler berechnen den Wasserverbrauch einer Person an einem durchschnittlichen Tag. lernen, dass manche permanent im Schatten liegende Regionen des Mondes Wasser in Form von Eis enthalten. schätzen ab, wieviel Mondsand man benötigen würde, um genug Wasser für eine Person für einen durchschnittlichen Tag zu gewinnen. verstehen, dass ein Filtersystem genutzt werden kann, um Feststoffe und Flüssiges zu trennen. machen sich mit dem wissenschaftlichen Arbeiten, insbesondere dem Versuchsaufbau, systematischem Messen und der Aufnahme von Daten vertraut. lösen Problemstellungen mithilfe der Addition, Subtraktion, Multiplikation und Division sowie durch Messungen und Maßeinheiten.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Primarstufe

Gleichungen und Ungleichungen im Zahlenraum bis 1000

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zum Thema "Gleichungen und Ungleichungen" stehen der verstehende Umgang mit Termen und deren Unterscheidung in Größenrelationen sowie das Anwenden und Festigen grundlegender Rechenverfahren im Zahlenraum bis 1000 im Fokus und werden durch Arbeitsblätter und ergänzende interaktive Übungen gefördert.Mit dieser Einheit lernen die Schülerinnen und Schüler Gleichungen und Ungleichungen sowie deren Zeichen ( \( <, >, = \) ) kennen. Daneben vertiefen die Lernenden ihr Wissen zu den Grundrechenarten, indem sie Terme berechnen und anschließend in Relation zueinander setzen. Die Arbeitsblätter wie auch die interaktiven Übungen fokussieren einen verstehenden Umgang mit Termen in Bezug auf Gleichungen und Ungleichungen. Zunächst geht es um die Unterscheidung von Gleichung und Ungleichung sowie dem Einsetzen der passenden Zeichen. Im weiteren Verlauf werden die Zusammenhänge komplexer und ergänzt durch das Anwenden und Festigen der Grundrechenarten. Additions-, Subtraktions-, Multiplikations- und Divisionsaufgaben im Zahlenraum bis 1000 dienen als Basis der Unterscheidung der Gleichungen und Ungleichungen. Außerdem kommen die Lernenden mit sogenannten Platzhalteraufgaben in Berührung und erfahren, dass \( x \) als Symbol für den Platzhalter stehen kann. Damit legen sie den Grundstein für das spätere Rechnen mit Variablen, bei denen häufig \( x \) als Variable in linearen Gleichungen verwendet wird. Als Ergänzung und Vertiefung zu der Unterrichtseinheit finden Sie hier interaktive Übungen .Voraussetzung für diese Unterrichtseinheit ist ein sicherer Umgang mit den Grundrechenarten. Für die interaktiven Übungen ist ein routinierter Umgang mit der Maus und der Tastatur sinnvoll, aber kein Muss, da viele Elemente selbsterklärend sind. Alternativ ist eine vorherige Einführung in das Programm möglich. Zudem ist der Zugang zu einem Computer pro Schülerin und Schüler beziehungsweise pro Partnerteam elementar. Kopfrechen, logisches Denken und Konzentrationsfähigkeit werden durch die Aufgabenformate geschult. Eigeninitiative, mathematisches konstruieren und Teamarbeit werden in unterschiedlichen Aufgaben gefördert. Die interaktiven Übungen sind eine spielerische Ergänzung und Wiederholung der in den Arbeitsblättern erlernter Fähigkeiten. Die Struktur der Aufgaben erlaubt eine direkte Überprüfung der Ergebnisse. So erhalten die Schülerinnen und Schüler ein direktes und individuelles Feedback ihrer Lösungen. Nebenbei werden die Kenntnisse und der Umgang mit PC geschult und ein sicherer Umgang gefördert. Fachkompetenz Die Schülerinnen und Schüler festigen und vertiefen den Umgang mit Größenrelationen im Zusammenhang mit Gleichungen und Ungleichungen. festigen und vertiefen arithmetische Grundoperationen – Addition, Subtraktion, Multiplikation, Division. vertiefen ihre Kopfrechenfähigkeiten und das mathematische Konstruieren. Medienkompetenz Die Schülerinnen und Schüler vertiefen den Umgang mit Computern und digitalen Medien. nutzen digitale Applikationen zum Üben und Vertiefen. erweitern und vertiefen ihr Fähigkeiten für die Benutzung interaktiver Medien. Sozialkompetenz Die Schülerinnen und Schüler fördern und fordern ihre Problemlösefähigkeiten. entwickeln ihre Teamfähigkeit weiter. lösen Konflikte zielorientiert in der Gruppe.

  • Mathematik / Rechnen & Logik
  • Primarstufe, Sekundarstufe I
ANZEIGE