Unterrichtsmaterialien → Physik Sekundarstufen

Tipp der Redaktion

Optik

In dieser Materialsammlung haben wir Informationen und Anregungen zum Thema "Optik" für den Astronomie- und Physik-Unterricht für Sie zusammengestellt.

Tipp der Redaktion

Elektrizität im Haushalt

Die Unterrichtseinheit behandelt die elektrische Stromversorgung im Haushalt und das Drehstrom-System.

  • Schulstufe 2
    zurücksetzen
  • Klassenstufe
  • Schulform
  • Materialtyp 11
    zurücksetzen
  • Quelle 4
    zurücksetzen
  • Thema
Sortierung nach Datum / Relevanz
Kacheln     Liste

Rund um den Wasserstoff

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Funktionsweise einer Brennstoffzelle kennen, wobei auf die verschiedenen Herstellungsverfahren des Wasserstoffs in Bezug auf die Nachhaltigkeit eingegangen wird. Außerdem wird Wasserstoff hinsichtlich einer möglichen zukünftigen Antriebstechnologie beleuchtet.Diese Unterrichtseinheit kann in den Rahmenlehrplan der Sekundarstufe II eingeordnet werden. Thematisch orientiert sie sich dabei an den aktuell auch politisch stark diskutierten Themen der Nachhaltigkeit und der Sicherung der Energieversorgung. Im Detail wird hier auf elektrochemische Prozesse im Alltag und Energiewandlungssysteme eingegangen. Besonderes Augenmerk wird dabei auf die Funktionsweise der Wasserstoffbrennstoffzelle für Personenkraftwagen gelegt. Die schon lange bekannte Elektrolyse von Wasser, als ein zukünftig wichtiges Herstellungsverfahren des Wasserstoffs, wird in diesem Zusammenhang ebenfalls betrachtet. Die Aspekte der Nachhaltigkeit werden in weiterführenden Aufgabenstellungen diskutiert. Hierbei lernen die Schülerinnen und Schüler verschiedene Herstellungsverfahren in Hinblick auf die Umweltverträglichkeit zu bewerten. In einigen Aufgabenstellungen wird dabei die eigene Recherchefähigkeit entwickelt und verbessert. Energieträger der Zukunft Vor allem hinsichtlich des stetig steigenden Bedarfs an Energie und der Aktualität in der Gesellschaft gewinnt Wasserstoff als möglicher Energieträger der Zukunft an Relevanz. Die fossilen Brennstoffe stehen zunehmend in der Kritik, weswegen eine frühzeitige Sensibilisierung der Schülerinnen und Schüler für dieses Thema wichtig ist. Hinsichtlich der Dringlichkeit der Energiewende und dem damit verbundenen Vorsatz der deutschen Bundesregierung, die Kohlenstoffdioxidemissionen zu reduzieren, sollte diese Thematik ebenfalls in den Schulunterricht eingebunden werden. Curriculum und Vorwissen Die Unterrichtseinheit ist ideal für den Chemieunterricht der Sekundarstufe II geeignet. Sie kann für den Kontext "Energie und chemische Reaktionen" genutzt werden und bezieht sich dabei vor allem auf die Rahmenlehrpläne der Länder Berlin, Brandenburg und Nordrhein-Westfalen. Die Einheit kann aber ebenso fächerübergreifend als Exkurs im Fach Physik eingesetzt werden. Für die Bearbeitung der Aufgaben sollte ein gewisses chemisches Grundlagen-Wissen, wie beispielsweise das Aufstellen von Reaktionsgleichungen sowie eine grundlegende textsortenspezifische Lesekompetenz von Fachtexten, vorhanden sein. Weiterhin sind keine Vorkenntnisse notwendig, da die Arbeitsblätter relevante Informationen zur Bearbeitung der Aufgaben liefern. Unterrichtsablauf und Lehrinhalte In der ersten Doppelstunde wird zunächst in das Thema Wasserstoff eingeleitet, wobei in erster Linie auf die Darstellung im Labor sowie die Herstellung durch Elektrolyse von Wasser eingegangen wird. Wahlweise kann hier auch der Hofmannsche Zersetzungsapparat besprochen werden. Im weiteren Verlauf werden verschiedene großtechnische Herstellungsmethoden in Hinblick auf den Umwelteinfluss besprochen. Insbesondere sollte dabei die kritische Betrachtung der Nutzung von Energie behandelt werden. Im Anschluss erarbeiten sich die Schülerinnen und Schüler allgemeine Informationen über die Wasserstoff-Brennstoffzelle in Still- oder Paararbeit. An dieser Stelle kann die Funktionsweise anhand eines veranschaulichenden Videos thematisiert werden. Schüleraktivierung und Binnendifferenzierung Die Unterrichtseinheit bietet ausreichend Möglichkeiten, darbietenden Unterricht und aktive Mitgestaltung durch Schülerinnen und Schüler zu variieren. Sie ist realitätsnah gestaltet und bietet außerdem höchste Aktualität. Mögliche Differenzierung: Mit den Arbeitsaufträgen kann flexibel umgegangen werden. Es besteht die Möglichkeit, aus verschiedenen Schwierigkeitsstufen zu wählen und einzelne Aufgaben herauszunehmen oder als Hausaufgabe zu vergeben. Die Bewertungsaufgabe (Arbeitsblatt 2, Aufgabe 5) kann als Grundlage für eine methodische Diskussion herangezogen werden. Weiterführend zu dieser Unterrichtseinheit können Lithium-Ionen-Batterien als Pendant zur Brennstoffzelle oder weitere Energiespeicherformen thematisiert und ergänzt werden. Fachkompetenz Die Schülerinnen und Schüler beschreiben die Vorgänge bei der Wasserelektrolyse. lernen die komplexe Funktionsweise einer Brennstoffzelle kennen. bewerten die Relevanz der angewandten Chemie hinsichtlich der Energieversorgung. können Phänomene der Stoff- und Energieumwandlung bei chemischen Reaktionen erklären. Medienkompetenz Die Schülerinnen und Schüler stärken ihre Fähigkeit, den Computer für die Recherche zu nutzen. Sozialkompetenz Die Schülerinnen und Schüler können kritisch hinterfragen. können in einer Diskussion das Für und Wider betrachten. können ihr Wissen auf fächerübergreifende Problemstellungen anwenden.

  • Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe II

Wie funktioniert eine Wärmepumpe?

Unterrichtseinheit

Die Unterrichtseinheit führt in den Aufbau und die Funktionsweise von Wärmepumpen und dabei auch auf ihre verschiedenen Arten (Sole-Wasser-, Wasser-Wasser- und Luft-Wasser-Wärmepumpe) in drei Teilen ein. Kreativ festigen die Schülerinnen und Schüler das Erlernte durch Neu-Vertonung eines Erklärfilms. Lehrkräften stehen hierzu drei Arbeitsblätter mit Lösungen zur Verfügung. Erneuerbare Energien Die Begriffe " Erneuerbare Energien ", "Fossile Energien" und "Energie" kennen die Schülerinnen und Schüler bereits aus dem Alltag und eventuell anderen Schulfächern. Deswegen wird vorab das Grundwissen zum Thema "Erneuerbare Energien" abgefragt. Das kann im Plenum erfolgen. Anschließend werden die Begriffe sortiert und in eine Reihenfolge gebracht (zum Beispiel: Welche erneuerbare Energie wird am meisten genutzt, welche weniger?). Wärmepumpen und Klimaschutz Im nächsten Teil der Unterrichtseinheit erwerben die Schülerinnen und Schüler ein erweitertes Verständnis über die Funktion und den Aufbau einer Wärmepumpe und was eine Wärmepumpe mit nachhaltiger Energie zu tun hat. Als Einstieg kann die Aussage des Bundesverbandes Wärmepumpe e. V. genutzt werden: "Mit der Wärmepumpe heizen Sie klimafreundlich und zukunftssicher". Hier bietet sich die Think-Pair-Share-Methode an. Die Gruppenmitglieder diskutieren abschließend ihre Aussagen und Ergebnisse. Die Aussage zum Schluss soll zum Ende der Unterrichtseinheit nochmal verglichen werden. Im nächsten Teil des Unterrichtsverlaufes erhalten die Schülerinnen und Schüler die bereitgestellten Arbeitsblätter und erarbeiten sich das Thema Wärmepumpe mit den Aufgabenblättern und den darin enthaltenen Film-Tipps. In dieser Phase erwerben die Schülerinnen und Schüler Wissen über den Aufbau und die Wirkungsweise einer Wärmepumpe. Sie erfahren, dass zur Wirkungsweise ein geschlossener Kreislauf aus einem Verdichter, einem Verdampfer, einem Verflüssiger und einem Expansionsventil gehören. Den Lernenden wird bewusst, dass diese Technik auch bei einem Kühlschrank angewendet wird, nur andersherum. Hintergrundinformation Das Grundprinzip, der Joule-Thomson-Effekt, wurde bereits im 19. Jahrhundert von dem Physiker William Thomson, dem späteren Lord Kelvin gefunden. Der Joule-Thomson-Effekt bewirkt die Abnahme der Temperatur bei realen Gasen, wenn diese gegen einen geringeren Druck ausdehnen. Vorab wird das gasförmige Arbeitsmittel im Verdampfer durch eine Pumpe verdichtet, dadurch wird die Temperatur erhöht. Diese Wärme wird in einem Wärmekreislauf abgegeben, um damit ein Gebäude zu heizen. Anschließend strömt das Gas zu einem Expansionsventil, der Druck wird verringert und die Siedetemperatur sinkt. Temperatur ist also nichts anderes als Bewegungsenergie, sie nimmt zu, je wärmer es wird, da sich die Teilchen schneller bewegen müssen. Sie nimmt ab, wenn das Volumen sich vergrößert und somit die Abstände der Gasteilchen zunehmen. Film ab! Wärmepumpe neu vertont Im weiteren Verlauf der Unterrichtseinheit wird ein Film zur Wärmepumpe mit eigenen Worten neu vertont – per App und Schnittprogramm oder aber, indem parallel zum stummgeschalteten Film der eigens erstellte Text vorgetragen wird. Alternativ kann ein Erklärfilm (im Rahmen einer Projektarbeit oder -woche) selbst (im schulischen Computerraum) erstellt und präsentiert. Weiterhin ist auch das Produzieren eines Podcast möglich. Zur Hilfe kann dabei auf dem zweiten Arbeitsblatt der Text zur Funktionsweise einer Wärmepumpe genommen werden, der die wichtigsten Abläufe Verdampfen, Verdichten, Verflüssigen und Entspannen des Kältemittels kurz erklärt. Abschließend werden die Aussagen der Gruppenmitglieder, die am Anfang der Unterrichtseinheit festgehalten worden sind, noch einmal verglichen oder revidiert.Ein Drittel der Energie verbraucht Deutschland für das Heizen und die Warmwasserbereitung. Aktuell herrschen Öl- und Gasheizungen vor. Diese gehören noch zu den fossilen Energieträgern. Gerade jetzt, in der aktuellen Energiekrise, stellt man fest, wie abhängig Deutschland von den fossilen Energien ist. Eine Klimawende kann aber nur mit umweltschonender Heizung gelingen. Deswegen plant die Bundesregierung die Installation von Wärmepumpen zu fördern. Hierzu werden Anlagemechaniker/-innen für Sanitär-, Heizungs- und Klimatechnik benötigt, die die Heizungstechnik auf den neuesten Stand bringen müssen, auch bei der Planung und dem Einbau von Wärmepumpen. Im Rahmen dieser Unterrichtsreihe soll das Heizen mit der Wärmepumpe besprochen und vertieft werden. Deswegen ist es wichtig, dass die Schülerinnen und Schüler wissen, welche Aggregatzustände es gibt. Außerdem sollte bekannt sein, dass es unterschiedliche Energien gibt und wie diese auf vielfältige Weise gespeichert werden können. Energieumwandlungen treten bei allen Vorgängen in der Natur sowie in der Technik auf und tragen dadurch entscheidend zu Alltag und Umwelt bei. In dieser Unterrichtsreihe sollen die Merkmale des guten Unterrichts umgesetzt werden. Das setzt unter anderem eine Regulierung des Lerntempos und der Methodenvielfalt voraus. Dazu gehört die Arbeit im Plenum, kooperatives Lernen wie Think-Pare-Share und Kreativitätsmethoden wie das Erstellen von Texten, Videos oder Podcasts. Fachkompetenz Die Schülerinnen und Schüler beschreiben regenerative Wärmequellen und wie diese genutzt werden. können erklären, wie eine Wärmepumpe funktioniert. übertragen ihr Wissen auf nachhaltiges Handeln in der Industrie und im Haushalt. Medienkompetenz Die Schülerinnen und Schüler lernen verschiedene digitale Werkzeuge und deren Funktionsumfang kennen und können diese kreativ und reflektiert einsetzen. können Informationsrecherchen zielgerichtet durchführen und dabei Suchstrategien anwenden. Sozialkompetenz Die Schülerinnen und Schüler arbeiten kooperativ im Plenum und in Gruppenarbeiten.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Ohne Motor läuft nichts: Motortyp Elektromotor

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler den Elektromotor und dessen Bedeutung für den Fortschritt im Automobilbau kennen. Durch Aufgaben und Versuche wird die Funktionsweise verschiedener E-Motorenarten erklärt und veranschaulicht.Die Unterrichtseinheit "Ohne Motor läuft nichts: Motortyp Elektromotor" führt die Schülerinnen und Schüler mittels drei aufeinander aufbauender Arbeitsblätter in das Themenfeld Elektromotoren ein. Zum Einstieg werden die Schülerinnen und Schüler in der ersten konzipierten Stunde mit dem Thema Magnetismus in ihrer Lebenswelt abgeholt. Dabei arbeiten sie sowohl einzeln als auch in Zweier-Konstellationen sowie in Kleingruppen. Es bleibt demnach viel Raum zum Durchführen eigener Versuche und zum Herleiten eigener Erkenntnisse. Das Thema Magnetismus wird anschließend vertieft und leitet in der zweiten Stunde zum Elektromagnetismus über. Hier findet unter anderem auch eine intensive Einbindung der Frage statt: Welche Bedeutung haben Elektromotoren in unserem und für unseren Alltag? Beide Stunden aktivieren die Schülerinnen und Schüler durch mehrere Versuche und nehmen so eventuelle Berührungsängste mit dem Thema Elektrik. Die dritte konzipierte Stunde schließlich eignet sich vor allem für Schülerinnen und Schüler, die bereits ein vertieftes Interesse an der Materie zeigen oder sich durch besondere Vorkenntnisse auszeichnen. Hier wird eine spezielle Art von Elektromotoren, nämlich der Drehfeld-Elektromotor, vertieft. Auch ist hier das verwendete Vokabular bereits deutlich spezialisierter.Um sich dem für Schülerinnen und Schüler doch recht komplexen Thema Elektromotor langsam anzunähern, beginnt die Unterrichtseinheit mit dem Thema Magnetismus. Dieses ist den Schülerinnen und Schülern aus der eigenen Lebenswelt bekannt und mit dem vorhandenen Wissenshorizont gut erfassbar. Weiterhin liefert es Möglichkeiten für anschauliche Experimente. So werden mittels eines Versuchs Magnetfeldlinien sichtbar gemacht – ein leicht durchzuführendes Experiment, das sehr gut visualisiert und an das sich weiterführende Versuche anschließen lassen. Es erfolgt im Anschluss der Transfer vom Permanent- zum Elektromagneten. Dies geschieht mit einem weiteren Experiment, das dazu geeignet ist, eventuelle Berührungsängste mit dem Thema Elektrizität abzubauen. Als Arbeitsformen schlägt die Unterrichtseinheit sowohl Paar- als auch Kleingruppenarbeit vor. Die Lehrkraft übernimmt Einleitung, Abschluss und eventuell eine Hinführung zur Thematik, nimmt sich dann aber weitestgehend zurück. In einem nächsten Schritt wird anschließend der Elektromotor – eine Kombination aus Permanent- und Elektromagneten – beschrieben. Für den Einstieg werden die Lernenden erneut in ihrer eigenen Lebenswelt abgeholt, indem sie benennen, an welchen Stellen sich in einem Kraftfahrzeug Elektromotoren befinden. Anschließend erfolgt die Einbindung eines Films. Die Schülerinnen und Schüler erhalten dann die Aufgabe, wesentliche Informationen aus dem Film herauszuarbeiten. Hier wird von ihnen ein Transfer vom Magnetismus hin zum Elektromagnetismus verlangt. Arbeitsblatt 3 schlägt thematisch einen Bogen hin zu einem speziellen Typus von Elektromotoren, nämlich dem Drehfeld-Elektromotor. Es richtet sich damit gezielt an Schülerinnen und Schüler, die entweder bereits über Vorkenntnisse verfügen, oder die sich durch eine besonders hohe Auffassungsgabe hervortun. Es ist somit für eine mögliche Differenzierung bestens geeignet. Fachkompetenz Die Schülerinnen und Schüler festigen die Kenntnisse der Grundgesetze des Magnetismus. lernen Aufbau und Funktionsweise eines Elektromotors kennen. vertiefen ihre Kenntnisse über Elektromotoren anhand der detaillierten Beschäftigung mit dem Drehfeld-Elektromotor. erleben die wichtige Rolle von Sorgfalt, Präzision und Beobachtungsgabe bei der Durchführung von Versuchen. Medienkompetenz Die Schülerinnen und Schüler trainieren die Recherche in und mit Online-Medien. üben sich darin, relevante Informationen aus Medien herauszufiltern und zu verwerten. leiten aus Medienquellen Informationen ab und kombinieren sie mit bereits vorhandenem Wissen zu Wissenstransfers. Sozialkompetenz Die Schülerinnen und Schüler trainieren das Arbeiten in Zweierteams beziehungsweise in Gruppenkonstellationen. erfahren, wie man sich im Team komplexen Aufgabenstellungen nähern kann.

  • Physik / Astronomie / Technik / Sache & Technik / Elektrotechnik
  • Sekundarstufe I

Raketenphysik: Beispiele zur Raketengrundgleichung

Unterrichtseinheit

In dieser Unterrichtseinheit wird anhand verschiedener Beispiele zu ein- und mehrstufigen Raketen aufgezeigt, wie es zum einen möglich wird, Satelliten in eine erdnahe Umlaufbahn zu bringen und zum anderen, welche Voraussetzungen gegeben sein müssen, um den Anziehungsbereich der Erde – beispielsweise für Flüge zum Mond – zu verlassen. Dazu werden die kosmischen Geschwindigkeiten herangezogen, wobei die 3. kosmische Geschwindigkeit es auch ermöglicht, die Anziehungsbereiche von Erde und Sonne zu verlassen.Dieses Material ist eine direkte Anknüpfung an die Unterrichtseinheit "Raketenphysik: Herleitung der Raketengrundgleichung" . An verschiedenen Beispielen mit ein- bis dreistufigen Raketen wird den Lernenden gezeigt, wie man die Raketengrundgleichung für die verschiedenen Aufgabenstellungen anwenden kann. Dabei lernen die Schülerinnen und Schüler neben machbaren und bereits vielfältig durchgeführten Missionen mit Raketen zum Mond und auch zum Mars die Grenzen der Raumfahrt kennen. So erfahren sie, dass interstellare Missionen mit Raketen in die tiefen und extrem weit entfernten Bereiche des Weltalls auch in Zukunft – trotz ständig sich verbessernder technischen Möglichkeiten – aufgrund physikalischer Gegebenheiten wohl nicht möglich sein werden. Raketenphysik: Bedeutung für den Unterricht Die große Bedeutung von Impuls und Impulserhaltungssatz kommt gerade beim Raketenflug im Weltraum voll zum Tragen. So kann gezeigt werden, dass Bewegungen im luftleeren Weltraum allein durch die im Impulserhaltungssatz enthaltenen Gesetzmäßigkeiten ablaufen – auch ohne die uns vertrauten irdischen Kräfte, wie zum Beispiel die Reibungskraft, die für eine Fortbewegung beim Gehen oder Fahren unbedingt nötig sind. Vorkenntnisse Vorkenntnisse von Lernenden können insofern vorausgesetzt werden, dass die Nutzung des Weltraums durch stationäre und uns permanent umkreisende Satelliten ebenso bekannt sein sollte – zum Beispiel die internationale Raumstation ISS , die unsere Erde in einem 90-minütigen Turnus umkreist. Didaktische Analyse Die Möglichkeit der Fortbewegung im luftleeren Raum durch Raketen bildet die Basis für prinzipielle Möglichkeiten zu Raketenflügen über große Distanzen. Allerdings dürfen die physikalischen Grenzen und damit verbundenen technischen Möglichkeiten beim Verlassen – etwa des Sonnensystems – nicht übersehen werden. Methodische Analyse Flüge zum Mond wurden nur möglich durch den Bau mehrstufiger Raketen wie der über 100 m hohen Saturn V Rakete der amerikanischen NASA – mit einstufigen Raketen wäre der Mond nicht zu erreichen gewesen. Diese physikalischen Notwendigkeiten genau zu erläutern, ist von entscheidender Bedeutung für das Verständnis der physikalischen Gegebenheiten und Unterschiede zwischen dem Aussetzen von erdnahen Satelliten und Flügen, mit denen man die Anziehungskraft der Erde und eventuell auch der Sonne überwinden muss. Fachkompetenz Die Schülerinnen und Schüler kennen die Abläufe und Unterschiede bei Raketenflügen in die verschiedenen Regionen des Weltalls. können die unterschiedlichen Fragestellungen mit mathematisch präzisen Formeln unterlegen. wissen um die Bedeutung von Differential- und Integralrechnung für die Raketenphysik. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben fachliches Wissen, um mit anderen Lernenden, Eltern und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe II

MINT-Offensive bei Conrad

Fachartikel

Impulse für den Unterricht von morgen: Tools, Equipment und Know-how auf der Conrad Sourcing Plattform

  • Mathematik / Rechnen & Logik / Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Physik / Astronomie / Technik / Sache & Technik / Chemie / Natur & Umwelt
  • Fort- und Weiterbildung, Sekundarstufe II, Sekundarstufe I, Berufliche Bildung

"Energie macht Schule": Energiewissen gebündelt

Fachartikel

Was versteht man unter Sektorkopplung? Wie funktioniert eine Solarzelle oder ein Elektroauto? Wie nachhaltig ist ein Pumpspeicherkraftwerk? Welche Potenziale bietet Wasserstoff als Energielieferant? Antworten auf diese und weitere Fragen liefert seit 2013 "Energie macht Schule". Dafür stellt es über 600 Informations- und Unterrichtsmaterialien zur Verfügung. Mit seiner Überarbeitung im Frühjahr 2022 stehen stärker aktuelle Energiethemen wie Nachhaltigkeit, Energiewende oder Versorgungssicherheit im Mittelpunkt.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Woraus bestehen Autos?

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler am Beispiel Autobau verschiedene chemische und physikalisch-technische Zusammenhänge hinsichtlich der Werkstoffzusammensetzung von Autos und deren Recycling-Möglichkeiten kennen. Darüber hinaus werden Bezüge zu Wirtschaft, Nachhaltigkeit und Ökologie hergestellt.Die Unterrichtseinheit lehnt sich an die Vorgaben des Lehrplans für die Sekundarstufe I für die Fächer Physik und Chemie an. Sie hat (lehrplangemäß) eine naturwissenschaftliche Grundbildung zum Ziel, die darin schult, naturwissenschaftliche Beobachtungen auf verschiedene Fächer und Sachbereiche zu übertragen und Zusammenhänge herzustellen. Zudem trägt sie einen Teil dazu bei, die Schülerinnen und Schüler für Herausforderungen und Chancen einer sich stetig verändernden Welt vorzubereiten. Thematischer Anker der Unterrichtseinheit ist der Autobau als einem der wichtigsten Wirtschaftszweige unseres Landes. Die Unterrichtseinheit verdeutlicht, dass die Branche großen Veränderungen unterliegt. Es gilt, Nachhaltigkeit , Wirtschaftlichkeit, bewussten Umgang mit Ressourcen und technische Anforderungen unter einen Hut zu bringen, bei gleichzeitiger Erhaltung der Wettbewerbsfähigkeit der Branche. Die Unterrichtseinheit greift diese komplexen Zusammenhänge auf, indem einzelne Aufgaben auch die Aspekte Nachhaltigkeit, Wirtschaftlichkeit, Ökologie und Forschung thematisieren. Die Unterrichtseinheit ist konzipiert nach dem Prinzip des handlungsorientierten Lernens. Sie verknüpft Alltagswissen mit Beobachtungen sowie aus Sachtexten gewonnenen Informationen. Auch dem Experimentieren räumt sie Raum ein. Sie entspricht so den im Lehrplan festgeschriebenen prozessbezogenen Kompetenzbereichen der Erkenntnisgewinnung, Bewertung und Kommunikation. Ein Schwerpunkt der Unterrichtseinheit liegt auf dem Erarbeiten der im Auto verbauten Roh- und Werkstoffe. Die neuesten Entwicklungen in der Materialforschung sowie in der Automobiltechnik können die Schülerinnen und Schüler sowohl durch eigene Recherche als auch durch die Auswertung vorgegebener Sachtexte herausarbeiten.Das Thema Autobau und die Bedeutung des Autos in einer sich verändernden Welt liefert eine gute Basis für die Behandlung sowohl in den Naturwissenschaften als auch in den Fächern Sozialkunde, Geografie, Wirtschaft und/oder Ethik. Die Unterrichtseinheit geht damit auch auf die im Lehrplan geforderte naturwissenschaftliche Grundbildung ein, nach der Erkenntnisse im Wechselspiel der Fächer Chemie und Physik/Technik (ferner: Biologie) betrachtet werden sollen. Gleichzeitig regt die Unterrichtseinheit die Schülerinnen und Schüler zur Verknüpfung mit Alltagsbeobachtungen und Phänomenen aus der eigenen Lebenswelt an. In den Fächern Sozialkunde, Wirtschaft und/oder Ethik kann sich die Unterrichtsgestaltung um die Themen Nachhaltigkeit, Recycling, Ressourcenschonung und Ökologie drehen. Durch entsprechende Gewichtung der Aufgaben können hier im Unterrichtsverlauf nochmals eigene Schwerpunkte gesetzt werden. Die Differenzierung der Fragen in den Arbeitsblättern ermöglicht das Arbeiten sowohl mit Schülerinnen und Schülern ohne Vorkenntnisse als auch mit jenen, die schon auf einschlägige Vorkenntnisse zurückgreifen können. Didaktisch-methodisch wird ein Wechsel aus Lehrenden-zentriertem Unterricht und Paar- beziehungsweise Gruppenarbeit angestrebt. Zu betonen sei jedoch, dass auch die Lehrenden-zentrierten Phasen eine Aktivierung der Schülerinnen und Schüler beinhalten, beispielsweise durch die Methoden Brainstorming oder Assoziieren. Ein Fokus liegt überdies bei der Medienrecherche (online) sowie beim Herausfiltern von Informationen aus vorgegebenen Texten und der Wiedergabe herausgefilterter Erkenntnisse mit eigenen Worten. Fachkompetenz Die Schülerinnen und Schüler lernen grundlegende chemische, physikalische Zusammenhänge kennen. verknüpfen Unterrichtsinhalte mit Alltagsbeobachtungen. stellen eine Verbindung zu den Fächern Wirtschaft, Sozialkunde, Ethik her. Medienkompetenz Die Schülerinnen und Schüler erlangen Geläufigkeit beim Ausformulieren und Präsentieren von Informationen. trainieren das Herausfiltern von relevanten Informationen aus Sachtexten. stärken ihre Fähigkeit, den Computer für die Recherche zu nutzen. Sozialkompetenz Die Schülerinnen und Schüler erlangen Routine in Paar- und Gruppenarbeit. entwickeln ihre Fähigkeit, Arbeitsergebnisse zu präsentieren und zu kommunizieren.

  • Chemie / Natur & Umwelt / Geographie / Jahreszeiten / Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Ein Nobelpreis für das Klima

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema "Ein Nobelpreis für das Klima" greift die Forschungsergebnisse der im Jahr 2021 mit dem Nobelpreis für Physik ausgezeichneten Wissenschaftler Syukuro Manabe, Klaus Hasselmann und Giorgio Parisi auf und thematisiert komplexe Klimamodelle, die eine Prognose der zukünftigen Entwicklung des Erdklimas ermöglichen. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Es gibt inzwischen kaum noch jemanden, der die sich immer stärker beschleunigende Klimaerwärmung und die wesentliche Verantwortung des Menschen daran leugnet. Gelingt es nicht, den weiteren Temperaturanstieg abzubremsen, wird dies zu unabsehbaren ökologischen, wirtschaftlichen und gesellschaftlichen Folgen führen, die letztlich das Überleben der menschlichen Rasse auf dem Planeten Erde infrage stellen werden. Eine Bekämpfung des Klimawandels aber setzt ein Verständnis von Klima voraus. Wodurch wird der Temperaturanstieg verursacht? Wie wirken sich CO2 und sonstige Emissionen in der Atmosphäre aus? Welche Auswirkungen haben die weltweiten Meeresströmungen, Winde, Vulkanausstöße, Niederschläge, abschmelzende Gletscher und Eismassen? Wie funktioniert das äußerst komplexe Weltklima und wodurch wird es beeinflusst? Welche menschlichen Tätigkeiten wirken sich wie aus? Welche Emissionen sind am schädlichsten? Die Schülerinnen und Schüler erarbeiten sich in vier Abschnitten und zahlreichen inhaltlich und methodisch variierenden Lernrunden einen Einblick in die Modellierung komplexer Wirkungszusammenhänge wie des Weltklimas und entwickeln daraus eigene Schlussfolgerungen und Vorschläge zur Bewältigung der aktuellen Klimakrise. Basis hierfür sind vier Arbeitsblätter sowie das digitale Plakat "Physik für das Klima und andere komplexe Systeme" und das Video zur Lindauer Online-Matinee 2022. Das Lernkonzept kann wahlweise im Präsenz- oder Fernunterricht verwendet werden. Die Schüler arbeiten überwiegend kollaborativ und digital. Die Unterrichtsmaterialien beinhalten zwar einen aufeinander aufbauenden Gesamtkontext, sie sind aber auch in Teilen gut verwendbar. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier Die Forschung der Nobelpreisträger im Unterricht . Das Thema "Ein Nobelpreis für das Klima" im Unterricht Was sind die Elemente und Kennzeichen komplexer Systeme wie des Erdklimas, des Straßenverkehrs oder der Wirtschaft? Wie kann man sie strukturieren und modellhaft abbilden? Die heutige Realität einer vernetzten globalen Welt wird immer undurchschaubarer und erscheint immer unbeherrschbarer. Nur wenn es gelingt, komplexe Prozesse zu analysieren, zu beschreiben, nachzubauen und zu simulieren, ist eine Beherrschung, Steuerung und Beeinflussung dieser Prozesse durch den Menschen möglich. Die Unterrichtseinheit konfrontiert die Schülerinnen und Schüler mit dieser notwendig abstrakten Durchdringung und Abbildung der Realität in zahlreichen lebensnahen Beispielen, vor allem aber im Hinblick auf das allgegenwärtige Thema Klima und Nachhaltigkeit. Die Herausforderungen für die Schülerinnen und Schüler reichen von einfachen Erklärungen von klimatischen Wirkungszusammenhängen über das Begreifen und argumentative Verteidigen wissenschaftlicher Erkenntnisse der Klimaforschung bis hin zur Entwicklung eigener Nachhaltigkeitskonzepte. Die Unterrichtseinheit ermöglicht damit nicht nur einen Einblick in die wissenschaftliche Klimaforschung, sondern auch eine Meinungsbildung zum Klimawandel und zu seiner Bekämpfung. Vorkenntnisse Digitale Grundkenntnisse von Schülerinnen und Schülern und Lehrkräften wären hilfreich, sind aber nicht zwingend erforderlich. Auch naturwissenschaftliche Vorkenntnisse sind nicht erforderlich. Didaktische Analyse Je vernetzter und undurchsichtiger unsere globale Welt wird, umso wichtiger ist ein Verständnis für komplexe Wirkungszusammenhänge und Interdependenzen. Dies gilt inzwischen für nahezu alle Lebensbereiche. Corona, Kriege und immer schnellere Klimaveränderungen haben dies schonungslos offen gelegt. Schon geringste Störungen der industriellen Lieferketten schaffen Versorgungsprobleme rund um die Welt. Klimaveränderungen werden global verursacht und können nur global bekämpft werden. Der immer schnellere Raubbau an der Natur entzieht der Menschheit in zahlreichen Dimensionen zunehmend die Lebensgrundlage (Nahrung, Trinkwasser, und so weiter). Die Hybris des Menschen setzt auf Geld und weitere technologische Innovationen, führt aber dazu, dass man in der Regel erst handelt, wenn es fast schon zu spät ist. Die aktuellen Klimamaßnahmen sind ein gutes Beispiel hierfür. Die Schülerinnen und Schüler sollen erkennen, dass die sich anbahnende Klimakatastrophe zu großen Teilen vom Menschen selbst verursacht wird. Dies erfolgt jedoch über ein äußerst komplexes wirtschaftliches, soziales und politisches Wirkungsgefüge, das kaum zu überblicken und noch schwerer zu verändern und zu steuern ist. Nur mit einem kybernetischen Verständnis von komplexen Wirkungszusammenhängen wird man dieser Herausforderung begegnen können. Die drei Nobelpreisträger haben mit ihren Forschungen zu dieser Einsicht einen erheblichen Beitrag geleistet. Methodische Analyse Die Unterrichtseinheit kombiniert in einem hybriden Lernarrangement Präsenz- und Onlineelemente. Dabei steht die Selbstaktivität der Schülerinnen und Schüler und die Handlungsorientierung im Vordergrund. Alle Lernschritte müssen von den Schülerinnen und Schülern allein, in Partner- oder Gruppenarbeit bewältigt werden. Die erarbeiteten Lösungen werden dann der Klassengemeinschaft präsentiert. Einige Aufgabenstellungen erfordern auch eine digitale Zusammenarbeit der Schülerinnen und Schüler, zum Beispiel wenn sie gemeinsam eine digitale Pinwand vervollständigen. Eine solche digitale Kollaboration und Problemlösung ist motivierender, aber auch anspruchsvoller als eine reine Internetrecherche. Fachkompetenz Die Schülerinnen und Schüler verstehen das Wesen komplexer Systeme und können es beispielhaft erklären. verstehen und erklären Klimamodelle und klimatische Wirkungszusammenhänge. können den menschlichen Einfluss auf die Klimaerwärmung belegen. Medienkompetenz Die Schülerinnen und Schüler recherchieren und analysieren Informationen im Internet. kooperieren online auf digitalen Pinnwänden. erstellen Präsentationsfolien und Videopräsentationen. Sozialkompetenz Die Schülerinnen und Schüler recherchieren, entscheiden und präsentieren im Team. verständigen sich auf eine gemeinsame Modellbildungen zur Erklärung von komplexen Wirkungszusammenhängen. entwickeln Nachhaltigkeitskonzepte zur Bekämpfung der Klimakatastrophe.

  • Physik / Astronomie / Geographie / Jahreszeiten / Wirtschaft / Politik / WiSo / SoWi / Fächerübergreifend
  • Sekundarstufe II, Sekundarstufe I

Raketenphysik: Herleitung der Raketengrundgleichung

Unterrichtseinheit

Mit der Unterrichtseinheit wird ein mathematisches Verfahren vorgestellt, mit dem Näherungslösungen bei Antrieb und Flug von Raketen zu exakten Lösungen werden. Wegen des dafür nötigen Wissens zur Differential- und Integralrechnung werden nur interessierte Schülerinnen und Schüler mit den entsprechenden Kenntnissen angesprochen. Ziel der Unterrichtseinheit ist die Anwendung der Raketengrundgleichung, die vom russischen Mathematiker und Raumfahrttheoretiker Konstantin Ziolkowski erstmals im Jahr 1903 aufgestellt wurde.Ausgehend von den Vorkenntnissen ( Grundlagen der Raketenphysik ) werden die Schülerinnen und Schüler mit den Gesetzmäßigkeiten zur Differential- und Integralrechnung Schritt für Schritt an die exakte Berechnung von Raketenbewegungen herangeführt. Nach der Herleitung der Raketengrundgleichung und der daraus resultierenden Raketengeschwindigkeit in Abhängigkeit von der Flugzeit sind die Lernenden in der Lage, nach weiteren Herleitungen die Höhe des Raketenfluges in Abhängigkeit der Zeit sowie die maximal erreichbare Höhe nach Ablauf der Brenndauer des Raketenantriebes abzuleiten. Raketenphysik für Interessierte Die große Bedeutung von Impuls und Impulserhaltungssatz kommt gerade beim Raketenflug im Weltraum voll zum Tragen. So kann gezeigt werden, dass Bewegungen im luftleeren Weltraum allein durch die im Impulserhaltungssatz enthaltenen Gesetzmäßigkeiten ablaufen – auch ohne die uns so vertrauten irdischen Kräfte wie etwa der Reibungskraft, die für eine Fortbewegung beim Gehen oder Fahren unbedingt nötig sind. Lehrkräfte sollten gut vorbereitet sein, um auf daraus resultierende Fragen sachkompetent eingehen und antworten zu können. Vorkenntnisse Physikalische Vorkenntnisse von Lernenden können dahingehend vorausgesetzt werden, dass Impuls und Impulserhaltungssatz im Unterricht in der Regel im Unterricht bereits ausführlich behandelt wurden. Die Anwendung der Gesetze im Weltraum stellt eine interessante Ergänzung dar. Didaktische Analyse Das Rückstoßprinzip für den Antrieb von Raketen – in ähnlicher, aber nicht gleicher Weise den meisten beim Vortrieb von Flugzeugen bekannt – zeigt sehr schön die Möglichkeiten der Fortbewegung im luftleeren Raum auf. Sie bildet die Grundlage für prinzipielle Möglichkeiten zu Raketenflügen über große Distanzen, wobei allerdings die Grenzen der technischen Möglichkeiten beim Verlassen – etwa des Sonnensystems – nicht übersehen werden dürfen. Methodische Analyse Die Annäherung an die exakten Vorgänge beim Antrieb von Raketen mithilfe des an Näherungslösungen angelegten Iterationsverfahrens ist eine ideale Möglichkeit dar, auf relativ einfache Art den Lernenden das Rückstoßprinzip nahezubringen. Mit den deutlich schwierigeren Gesetzmäßigkeiten bei der mathematisch exakten Beschreibung wird es schließlich möglich, Bewegungsgleichungen für exakte Lösungen herzuleiten. Fachkompetenz Die Schülerinnen und Schüler kennen die exakten Abläufe bei Raketenflügen in das Weltall. können die unterschiedliche Fragestellungen mit mathematisch präzisen Formeln unterlegen. wissen um die Bedeutung von Differential- und Integralrechnung für die Raketenphysik. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen anderer Gruppen auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe II

Grundlagen der Raketenphysik

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Grundlagen der Raketenphysik" wird die Fortbewegung von Raketen im Weltraum thematisiert. Diese Art der Fortbewegung ist deshalb besonders, weil im Gegensatz zu den uns auf der Erde bekannten Fortbewegungsmöglichkeiten wie etwa dem Gehen, Fahren oder auch Fliegen im Weltraum außerhalb der Lufthülle der Erde das Medium zum Abstoßen (Boden oder Luft) fehlt. Dass der Flug von Raketen trotzdem möglich ist, liegt an der Art des Antriebes von Raketen – der von der Rakete ausgestoßene verbrannte Treibstoff sorgt aufgrund des Rückstoßprinzips für die Vorwärtsbewegung der Rakete.Anhand eines einfachen Beispiels in Form eines Raketenwagens wird den Schülerinnen und Schülern das auf der Impulserhaltung basierende Rückstoßprinzip vorgestellt und Schritt für Schritt erläutert. Dabei reicht es zum Verstehen für die Lernenden zunächst völlig aus, den Ausstoß der "Treibstoffmasse" in kleinen Einzelportionen zu simulieren und die Ergebnisse für Berechnungen wie etwa die Geschwindigkeit des Raketenwagens mittels der Gesetze zur Impulserhaltung zu verwenden. Dieses sogenannte "Iterationsverfahren" macht es durch Verkleinerung entsprechender Parameter wie Masse oder Zeit möglich, Näherungslösungen zu finden, die der tatsächlichen Geschwindigkeit immer näherkommt. Für eine exakte Bestimmung der Geschwindigkeit benötigt man im weiteren Verlauf des Unterrichts dann die Gesetzmäßigkeiten der Differential- und Integralrechnung. Grundlagen der Raketenphysik: auf dem Weg in den Weltraum Die seit Jahren verstärkt zunehmenden Aktivitäten – auch von finanzstarken Privatunternehmen – zeigen deutlich, welche Rolle Raketen für den Transport einer Vielzahl von Satelliten in erdnahe Umlaufbahnen oder auch zur Erforschung weit entfernter Himmelsobjekte (Stichwort: Marsmission ) haben. Die dafür notwendige Technik und damit auch die dahinterstehende Physik ist zwar – im Detail betrachtet – äußerst kompliziert und aufwendig, kann aber im Rahmen der speziellen Möglichkeiten der Oberstufenphysik des Gymnasiums gut besprochen werden. Vorkenntnisse Vorkenntnisse von Lernenden können nur in der Weise vorausgesetzt werden, dass unter anderem die von jedem Jugendlichen benutzten Smartphones sehr von stationären Satelliten abhängen und mithilfe von Raketen in ihre Umlaufbahn gebracht werden müssen. Weitere Kenntnisse über Bau und Funktion von Raketen sollten eher die Ausnahme sein. Didaktische Analyse Bei der Behandlung dieses Themas kann man davon ausgehen, dass das Rückstoßprinzip, das bei Raketen, aber auch bei Flugzeugen in ähnlicher Weise den Vortrieb ermöglicht, von den meisten Lernenden, die Physik in der Oberstufe gewählt haben, problemlos verstanden werden kann. Methodische Analyse Die Annäherung an die exakten Vorgänge beim Antrieb von Raketen mithilfe des an Näherungslösungen angelegten Iterationsverfahrens stellt eine gute Möglichkeit dar, auf relativ einfache Art den Lernenden das Rückstoßprinzip nahezubringen. Damit können die Voraussetzungen für die besonders interessierten Schülerinnen und Schüler geschaffen werden, auch die deutlich schwierigeren Gesetzmäßigkeiten bei der mathematisch exakten Beschreibung zu verstehen. Fachkompetenz Die Schülerinnen und Schüler können die Abläufe bei Raketenflügen beschreiben und erläutern. kennen die physikalischen Gesetzmäßigkeiten, mit denen Raketenflüge möglich werden. wissen um die Bedeutung des Iterationsverfahrens für das grundlegende Verständnis für die näherungsweise Berechnung der Raketengeschwindigkeit. verwenden den Impulserhaltungssatz, um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen.

  • Physik / Astronomie
  • Sekundarstufe II

Geschichte des Universums: Erstellen von Zeitachsen

Kopiervorlage

In diesem Arbeitsmaterial von ESERO Germany setzen sich die Lernenden mit der Geschichte des Universums auseinander. Dies geschieht mittels der Erstellung von Zeitstrahlen.Die Weiten des Universums sind unendlich und teils unergründlich. Die Zahlen, mit denen bei der Erforschung des Universums gerechnet wird, sind oftmals so groß, dass sie unser Vorstellungsvermögen sprengen. Gerade für junge Lernende ist das hohe Alter des Universums möglicherweise nur schwer zu verstehen und in die richtige Perspektive zu rücken. Mit dieser kreativen und mathematischen Forschungsaufgabe können Schülerinnen und Schüler einen Einblick in die Hauptereignisse der Geschichte des Universums gewinnen und sie auf den leicht verständlichen Zeitmaßstab eines Jahres übertragen. Das Arbeitsmaterial umfasst Hintergrundinformationen zu folgenden Thematiken: Eine kurze Geschichte des Universums Asteroiden Kometen Millionen, Milliarden und Zehnerpotenzen Darüber hinaus gibt es für die Lernenden einen Aufgabenblock mit Arbeitsblättern, welcher sich der Erstellung einer persönlichen Zeitachse sowie einer Zeitachse für das Universum widmet. Dazu gibt es Informationen zur Berechnung von Zeitmaßstäben sowie zu Schlüsselereignissen in der Geschichte des Universums. Eine Lehranleitung sowie Lösungen der Arbeitsblätter für die Lehrkraft sind ebenfalls im Material enthalten.Bei den Aufgaben in diesem Arbeitsmaterial arbeiten die Schülerinnen und Schüler gruppenweise, um Zeitachsen zu erstellen: zunächst eine für ihr eigenes Leben und dann eine für die Hauptereignisse in der Geschichte des Universums. Anschließend rechnen sie die Ereignisse in der Geschichte des Universums auf den Maßstab eines Jahres um, um ein besseres Gefühl für die Verhältnisse der zeitlichen Abläufe zu gewinnen. Ferner untersuchen die Lernenden die Ereignisse und erstellen Werkstücke als Begleitinformation, um sie schließlich vor der Klasse zu präsentieren. Fachkompetenz Die Schülerinnen und Schüler lernen, dass das Universum sehr alt ist. lernen, dass die Erde erst vor relativ kurzer Zeit entstand. lernen, dass die Menschen erst seit relativ kurzer Zeit auf der Erde leben. lernen die Erstellung einer Zeitachse von Ereignissen ab dem Beginn des Universums bis heute. lernen den Einfluss von Einschlägen auf die Entwicklung der Erde. Sozialkompetenz Die Schülerinnen und Schüler arbeiten in Gruppen an ihren Zeitachsen. präsentieren ihre Forschungsergebnisse im Plenum.

  • Physik / Astronomie / Mathematik / Rechnen & Logik
  • Sekundarstufe I

All.täglich: Erfindungen der Raumfahrt

Kopiervorlage

Dieses Arbeitsmaterial von ESERO Germany regt die Lernenden dazu an, sich auf alltagsbezogene Art und Weise mit Erfindungen aus der Raumfahrt auseinanderzusetzen. Dazu arbeiten sie in Gruppen und erstellen Präsentationen zu unterschiedlichen Themen.Die Erforschung des Weltraums und die Forschung unter Weltraumbedingungen liefert seit Jahrzehnten Wissen und Innovationen für die gesamte Menschheit. Viele dieser neuen Technologien haben allerdings nicht nur für die Raumfahrt einen Nutzen. So trägt die Weltraumforschung oft ganz gezielt, manchmal aber auch auf ungeahnte Weise, zu einer Verbesserung unserer Lebensweise bei. Einige Beispiele solcher Erfindungen hat das Deutsche Zentrum für Luft und Raumfahrt e.V. in einer Ausstellung zusammengetragen. Die "All.täglich INNOSpace Expo" präsentiert in sechs verschiedenen Kategorien 29 unterschiedliche Forschungen und Erfindungen, die unser Leben in Zukunft verändern könnten . Das Arbeitsmaterial enthält Informationstexte für Schülerinnen und Schüler zu den folgenden Themen, die als Grundlage für die Präsentationen dienen können: Brennstoffzellen ISS Solarenergie Wettervorhersage aus dem All Augenlasern Gleitsichtgläser Mit diesen Arbeitsblättern erhalten die Schülerinnen und Schüler die Chance, sechs unterschiedliche physikalische Erfindungen kennenzulernen, diese selbst aufzuarbeiten und anschließend zu präsentieren. So entsteht eine eigene kleine Weltraumausstellung im Klassenraum, mit der die Lernenden das Thema Weltraumforschung auf eine alltagsnahe und handlungsbezogene Art erfahren . Fachkompetenz Die Schülerinnen und Schüler entdecken eine physikalische Erfindung oder Innovation der Raumfahrt. arbeiten diese Erfindung binnendifferenziert aus und präsentieren ihre Arbeitsergebnisse anschaulich. erkunden weitere Erfindungen und Innovationen in individueller Geschwindigkeit. Medienkompetenz Die Schülerinnen und Schüler erstellen Präsentationen zu ihren Arbeitsergebnissen gegebenenfalls mit PowerPoint. Sozialkompetenz Die Schülerinnen und Schüler arbeiten kooperativ in Gruppen. präsentieren ihre Ergebnisse im Plenum.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Aus unserem Lehrer-Online-Shop

Roboter - Helfer des Menschen: DVD mit ...

Sie verrichten Schwerstarbeit, sind unermüdlich und exakt in Ihren Ausführungen. Sie erkunden ...

79,00 €

Licht - Eigenschaften und Experimente: DVD mit ...

Licht ist der sichtbare Teil der elektromagnetischen Strahlung und besteht aus winzigen ...

79,00 €

Smart Grid - Intelligente Stromnetze: DVD mit ...

Früher wurde Strom in Kraftwerken durch die Verbrennung von fossilen Rohstoffen erzeugt und ...

79,00 €

Sekundarstufenpakete fächerbezogen zu top Preisen

Wählen Sie ein Didacta Paket aus den naturwissenschaftlichen Fächern aus! Für das Fach Chemie ...

14,30 €

Makrokosmos - Unvorstellbar groß: DVD mit ...

MAKROKOSMOS - UNVORSTELLBAR GROß Makrokosmos - Was ist das? Der Film beschäftigt sich ...

79,00 €

Röntgenstrahlung - Entdeckung, Eigenschaften und ...

Sie sind enorm energiereich, durchdringen unseren Körper problemlos und trotzdem können wir ...

79,00 €

MasterTool - Physik - Teil 1 (TP 52)

66 interaktive Aufgaben und Übungen für das Fach Physik – Teil 1.

18,88 €

Optik - Eigenschaften des Lichtes: DVD mit ...

Optik - Eigenschaften des Lichtes Der Film Optik - Eigenschaften des Lichtes schlägt eine ...

79,00 €

Licht und Farbe - Lebenselexiere der Erde: DVD ...

Ohne Licht würde auf unserer Erde kaum Leben existieren. Pflanzen brauchen diese ...

79,00 €

Ottomotor - Im Wandel der Zeit: DVD mit ...

OTTOMOTOR - IM WANDEL DER ZEIT Die DVD gibt einen Einblick in die historischen Anfänge des ...

79,00 €

Aktuelle News für das Fach Physik

  • Zwei Unterrichtseinheiten mit erneuerbaren Energien im Fokus

    Wie wird Energie gewonnen? Welche Rolle spielen dabei die Themen Energiewende und Nachhaltigkeit? Wie kann man den eigenen Energieverbrauch im Blick behalten? Diese und weitere Fragestellungen stehen im Mittelpunkt von zwei Unterrichtseinheiten zu den Themen Energie und Nachhaltigkeit aus dem Dossier "An den Schaltstellen der Zukunft".

  • Raus mit der Sprache – auch im Handwerk

    Neues Material für den Unterricht und ein zusätzlicher Themenkreis rund um Kfz und Mobilität lassen das Lehr- und Lernportal "Handwerk macht Schule" weiterwachsen. Seit Mai 2022 bietet es kostenfreie Unterrichtsmaterialien an. Diese sind an den zentralen Inhalten der Lehr- und Bildungspläne sowie an den Themen des Handwerks ausgerichtet und zielen auf den Fachunterricht an allgemeinbildenden Schulen ab. So geht es in ausgewählten neuen Materialien unter anderem um Leseverstehen oder Karikaturanalyse und können damit auch im Fach Deutsch eingesetzt werden.

  • Neues Dossier "Versorgungssicherheit"

    Das neue Dossier auf Energie macht Schule bündelt für alle Schulstufen verschiedene Medien und Materialien rund um das Thema Versorgungssicherheit. Dabei geht es auch um das Thema Energie sparen und um alternative Möglichkeiten der Energiegewinnung.

Unterrichtsmaterial und Arbeitsblätter Physik

In dieser Übersicht finden Lehrkräfte Unterrichtsmaterialien und Unterrichtsideen für das Fach Physik, zum Beispiel zu Themen wie Optik, Akustik, Elektrizitätslehre, Mechanik, Atomphysik oder Quantenphysik. Die Unterrichtsentwürfe haben im Wesentlichen den Anspruch, die Brücke zwischen digitalen Medien und Naturwissenschaften zu schlagen.

Nutzen Sie unsere Suche mit ihren zahlreichen Filterfunktionen, um einfach und schnell lehrplanrelevante Arbeitsmaterialien für Ihren Unterricht zu finden.