Unterrichtsmaterialien zum Thema "Algebra"

  • Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 4
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die Exponentialfunktion und die "Unendlichkeitsmaschine"

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Exponentialfunktion wird das virtuelle 3D-Modell einer von Leonardo da Vinci (1452-1519) entworfenen Unendlichkeitsmaschine vorgestellt, die die Motivation der Lernenden steigern soll, sich mit der Exponentialfunktion auseinanderzusetzen.Kennen Sie die Unendlichkeitsmaschine von Leonardo da Vinci? Das Genie hat die Getriebekonstruktion mit zahlreichen ineinander greifenden Zahnrädern als Symbol der Ewigkeit entworfen. Wenn sich das erste Zahnrad des Getriebeeingangs einmal pro Sekunde dreht, würde das letzte Zahnrad am Getriebeausgang etwa eine Billion Jahre für eine Umdrehung benötigen. In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler den Zusammenhang zwischen der Unendlichkeitsmaschine und der Exponentialfunktion kennen. Mithilfe einer Exceldatei werden verschiedene Unendlichkeitsmaschinen analysiert, um danach interaktive Übungen durchzuführen.In der Unterrichtseinheit kommt eine interaktive Lernumgebung zum Einsatz. Wenn die Schülerinnen und Schüler die Arbeit mit dynamischen Arbeitsblättern nicht gewohnt sind, hat sich eine Einführung der Materialien per Beamer bewährt. Auch der Umgang mit einem VRML-Plugin sollte über den Beamer demonstriert werden. Hinweise zur Technik und zum Unterrichtsverlauf Das 3D-Modell der Unendlichkeitsmaschine soll die Motivation der Lernenden steigern, sich mit der Exponentialfunktion auseinanderzusetzen. Realschule Die Schülerinnen und Schüler lernen im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a* x n kennen. lernen Exponentialfunktionen mit der Gleichung y = c* a x kennen. üben die Nutzung von Funktionsplottern. Gymnasium Die Schülerinnen und Schüler gewinnen im Lernbereich "Wachstumsvorgänge und periodische Vorgänge" Einblick in verschiedene Wachstums- und Zerfallsprozesse. verstehen die Begriffe unbeschränktes Wachstum (zum Beispiel linear und exponentiell) und beschränktes Wachstum (zum Beispiel logistisch). übertragen ihre Kenntnisse auf Exponentialfunktionen und auf Wachstumsvorgänge. nutzen die exponentielle Regression unter Verwendung von Hilfsmitteln. lernen im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a* x n und Exponentialfunktionen mit der Gleichung y = c* a x kennen. Die Lernumgebung ist als interaktive Webseite angelegt und wird nach dem Download mit der Datei "index.htm" gestartet. Die dreidimensionale Darstellung der Unendlichkeitsmaschine wurde durch die objektorientierte Programmiersprache VRML (Virtual Reality Modeling Language) umgesetzt. Das zur Nutzung der 3D-Darstellung erforderliche Plugin blaxxun Contact kann kostenlos aus dem Internet heruntergeladen werden. Nach dem Installieren des Plugins können die World-Dateien (WRL), die die VRML-Inhalte enthalten, im Browser angezeigt werden. Mit einem Rechtsklick in die 3D-Darstellung öffnet sich ein Kontextmenü, über das man verschiedene Funktionen aufrufen kann (Abb. 1, zur Vergrößerung bitte anklicken). Motivation und Einstieg Ein digitales 3D-Modell der Unendlichkeitsmaschine, das aus unterschiedlichen Blickwinkeln betrachtet werden kann, soll die Schülerinnen und Schüler motivieren, sich mit der Exponentialfunktion zu beschäftigen. Zum besseren Verständnis erfolgt die Analyse der ersten Unendlichkeitsmaschine mithilfe eines vorbereiteten Excel-Arbeitsblatts ("unendlichkeitsmaschine.xls"; Bestandteil des Downloadpakets "unendlichkeitsmaschine.zip"). Dies sorgt für die Offenlegung des Zusammenhangs zwischen der Unendlichkeitsmaschine und der Exponentialfunktion y = a* n x - inklusive der Möglichkeiten der Veränderung des Funktionsverlaufes über die Einflussfaktoren Umlaufdauer (a) und Zahnraduntersetzung (n). Dynamische Arbeitsblätter Nach der einleitenden Funktionsanalyse - die Einführung der Unendlichkeitsbedingung soll den Schülerinnen und Schülern den Modellbildungscharakter der Übung näher bringen - beginnt die eigentliche Aufgabe: die Bearbeitung von dynamischen Arbeitsblättern mit interaktiven Übungen. Eingegebene Antworten werden auf Richtigkeit überprüft, so dass die Lernenden stets ein Feedback über den Erfolg ihrer Bemühungen erhalten. Differenzierung Der letzte Aufgabenteil der Lernumgebung soll der Binnendifferenzierung während der Bearbeitung der Aufträge dienen. Schülerinnen und Schüler, die mit der Bearbeitung der vorgegebenen Aufgaben fertig sind, können anschließend selbstständig im Netz auf die Suche nach weiteren Unendlichkeitsmaschinen gehen, von diesen die Übersetzung (Zähne der Zahnräder zählen) ermitteln und die Erfüllung der Unendlichkeitsbedingung (Stufen der Unendlichkeitsmaschinen) bestimmen.

  • Mathematik
  • Sekundarstufe I

Diophantische Gleichungen mit Stammbrüchen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Stammbrüche suchen die Schülerinnen und Schüler ausgehend einer bekannten mathematischen Erzählung über den arabischen Kaufmann und sein Erbe Stammbrüche, deren Summe den Wert Eins ergibt.Bei der Suche nach den Stammbrüchen werden einfache Zahlenzusammenhänge erarbeitet. Auch der Spaß an Zahlen steht beim spielerischen Finden von Lösungen im Vordergrund. Ausblicke erfolgen so, dass neue Schreibweisen und Methoden der Mathematik vorgestellt werden. Die Arbeitseinheit lässt sich in Arbeitsgruppen oder -kreisen außerhalb des Unterrichts realisieren. Die Arbeitsblätter sind Grundlage für ein selbstgesteuertes Lernen, bei dem die Schülerinnen und Schüler Schritt für Schritt Hilfestellungen erhalten, um die Problemlösungen selbst zu erarbeiten. Die Arbeitsblätter mit Aufgaben und Lösungen werden den Lernenden sukzessive ausgehändigt. Sie können auch zur Gestaltung eines Schul- oder Regionalwettbewerbs genutzt werden. Empfehlenswert sind dabei Rücksprachemöglichkeiten, um den Schülerinnen und Schülern Hilfen und Rückmeldemöglichkeiten geben zu können.Die Schülerinnen und Schüler sollen in dieser Unterrichtseinheit ein Programm schreiben, das nach einer vorgegebenen Zahl von Stammbrüchen sucht, deren Summe den Wert Eins ergibt. Dabei soll die Anzahl von Stammbrüchen veränderlich sein beziehungsweise für verschiedene Anzahlen verschiede Programmroutinen erarbeitet werden. Die Lernenden bemerken dabei, dass moderne Rechner trotz ihrer enormen Geschwindigkeit noch lange Rechenzeiten für die Bewältigung dieser Aufgaben benötigen. Das macht ihnen die Notwendigkeit optimaler Algorithmen bewusst. Einstieg Sensibilisierung für das mathematische Problem Diese Geschichte kann der Gruppe vorgestellt und danach mit den Schülerinnen und Schülern erörtert werden. Alternativ kann den Lernenden die Geschichte auch mit dem Arbeitsblatt 01 ausgehändigt werden. Über das Gespräch, ob nicht auch andere Testamente mit anderen Zahlen von zu vererbenden Kamelen und auch anderen Anzahlen von Söhnen möglich sind, sollen die Schülerinnen und Schüler für das mathematische Problem sensibilisiert werden. So soll der Kern der Geschichte aus mathematischer Sicht aufgearbeitet werden. Vom Kaufmann, seinen Söhnen und seinen Kamelen "Es lebte in Arabien ein alter Vater, der drei Söhne und 17 Kamele hatte. Als der Greis sein Ende nahen fühlte, versammelte er die Söhne um sich und sprach zu ihnen: "Alles, was ich euch hinterlasse, sind meine Kamele. Teilt sie so, dass der Älteste die Hälfte, der Mittlere ein Drittel und der Jüngste ein Neuntel erhält." Kaum war dies verkündet, da schloss er die Augen, und die Söhne konnten ihn nicht mehr darauf aufmerksam machen, dass sein letzter Wille offenbar unvollstreckbar sei. Siebzehn ist doch eine störrische Zahl und lässt sich weder durch zwei noch durch drei und schon gar nicht durch neun teilen! Doch der letzte Wille des Vaters ist jedem braven Araber heilig. Da kam zum Glück ein weiser Pilger auf seinem Kamel daher geritten, der sah die Ratlosigkeit der drei Erben und bot ihnen seine Hilfe an. Sie trugen ihm den verzwickten Fall vor, und der Weise riet lächelnd, sein eigenes Kamel zu den hinterlassenen zu stellen und die gesamte Herde nach dem letzten Willen des Vaters zu teilen, und siehe da - der Älteste bekam neun der Tiere, der Mittlere sechs, der Jüngste zwei, das waren eben die Hälfte, ein Drittel und ein Neuntel, und auf dem Kamel, das übrig blieb, ritt der Weise - denn es war das seine - lächelnd davon." (Quelle: Manfred Börgens, Mathematische Probleme, FH Gießen-Friedberg) Die Aufgabe Nachdem die Idee der Geschichte gefunden und das mathematische Problem fixiert ist, sollen die Schülerinnen und Schüler selbstständig Lösungen für andere Anzahlen von Söhnen (und Kamelen) finden. Das Finden sämtlicher Lösungen kann für ein, zwei oder drei Söhne noch von Hand erfolgen. Danach soll mit dem Computer simuliert werden - die Anzahl von Möglichkeiten "explodiert" mit der Zahl der Erben! Bei sieben Söhnen ist es kaum noch möglich mit einer einfachen Simulationen die Anzahl verschiedener Möglichkeiten zu bestimmen.Die Schülerinnen und Schülern beweisen einfache Gleichungen. arbeiten selbstorganisiert. setzen Algorithmen in einfache Programmroutinen um. lernen ein einfach klingendes und somit leicht verständliches mathematisches Problem kennen, dessen gesamte Lösung aber noch aussteht. gewinnen in diesem Zusammenhang Einblick in Abschätzungen. Sensibilisierung für das mathematische Problem Diese Geschichte kann der Gruppe vorgestellt und danach mit den Schülerinnen und Schülern erörtert werden. (Alternativ kann den Lernenden die Geschichte auch mit dem Arbeitsblatt "stammbrueche_ab_1.rtf" ausgehändigt werden.) Über das Gespräch, ob nicht auch andere Testamente mit anderen Zahlen von zu vererbenden Kamelen und auch anderen Anzahlen von Söhnen möglich sind, sollen die Schülerinnen und Schüler für das mathematische Problem sensibilisiert werden. So soll der Kern der Geschichte aus mathematischer Sicht aufgearbeitet werden. Vom Kaufmann, seinen Söhnen und seinen Kamelen "Es lebte in Arabien ein alter Vater, der drei Söhne und 17 Kamele hatte. Als der Greis sein Ende nahen fühlte, versammelte er die Söhne um sich und sprach zu ihnen: "Alles, was ich euch hinterlasse, sind meine Kamele. Teilt sie so, dass der Älteste die Hälfte, der Mittlere ein Drittel und der Jüngste ein Neuntel erhält." Kaum war dies verkündet, da schloss er die Augen, und die Söhne konnten ihn nicht mehr darauf aufmerksam machen, dass sein letzter Wille offenbar unvollstreckbar sei. Siebzehn ist doch eine störrische Zahl und lässt sich weder durch zwei noch durch drei und schon gar nicht durch neun teilen! Doch der letzte Wille des Vaters ist jedem braven Araber heilig. Da kam zum Glück ein weiser Pilger auf seinem Kamel daher geritten, der sah die Ratlosigkeit der drei Erben und bot ihnen seine Hilfe an. Sie trugen ihm den verzwickten Fall vor, und der Weise riet lächelnd, sein eigenes Kamel zu den hinterlassenen zu stellen und die gesamte Herde nach dem letzten Willen des Vaters zu teilen, und siehe da - der Älteste bekam neun der Tiere, der Mittlere sechs, der Jüngste zwei, das waren eben die Hälfte, ein Drittel und ein Neuntel, und auf dem Kamel, das übrig blieb, ritt der Weise - denn es war das seine - lächelnd davon." (Quelle: Manfred Börgens, Mathematische Probleme , FH Gießen-Friedberg) Nachdem die Idee der Geschichte gefunden und das mathematische Problem fixiert ist, sollen die Schülerinnen und Schüler selbstständig Lösungen für andere Anzahlen von Söhnen (und Kamelen) finden. Das Finden sämtlicher Lösungen kann für ein, zwei oder drei Söhne noch von Hand erfolgen. Danach soll mit dem Computer simuliert werden - die Anzahl von Möglichkeiten "explodiert" mit der Zahl der Erben! Bei sieben Söhnen ist es kaum noch möglich mit einer einfachen Simulationen die Anzahl verschiedener Möglichkeiten zu bestimmen. Falls Sie Probleme mit den RTF-Dateien haben sollten: das Download-Paket auf der Startseite des Artikels enthält alle Arbeitsblätter auch im PDF-Format.

  • Informatik / Mathematik
  • Sekundarstufe I, Sekundarstufe II

Lineare Funktionen interaktiv erkunden

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Lineare Funktionen werden durch den Einsatz interaktiver Webseiten die mathematischen Fähigkeiten ausgebildet, Sachverhalte grafisch darzustellen sowie Sachverhalte aus Graphen abzulesen und zu interpretieren. Auf diese Grundfertigkeit wird in unserer modernen Lebenswelt zurückgegriffen und sollte daher auch in einen zeitgemäßen Mathematikunterricht eingehen.In der Verbindung von Alltagssituationen mit dem Thema Lineare Funktionen soll den Schülerinnen und Schülern in dieser Unterrichtseinheit durch den Einsatz von interaktiven Webseiten ein eigenständiger Wissenserwerb ermöglicht werden. Die Unterrichtseinheit entstand im Rahmen der Mitarbeit des Autors am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung von webbasierten Arbeitsblättern umgesetzt werden können.Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die Interaktivität möglich wird, muss jedoch Javascript im Browser aktiviert sein. Die Inhalte der Webseiten sind so konzipiert, dass eine Behandlung der Linearen Funktionen als Voraussetzung zur Bearbeitung der Aufgaben nicht zwingend notwendig ist. Die Aufgaben können sogar als Baustein für den Einstieg in die Thematik Lineare Funktion verwendet werden. Interaktive Arbeitsblätter Die grafische Darstellung der bei Regen steigenden Wasserhöhe in einer Regentonne in Abhängigkeit von der Zeit ist das Thema des ersten interaktiven Arbeitsblattes, das in dieser Unterrichtseinheit zum Einsatz kommt. Wird das Arbeitsblatt für den Einstieg in das Themengebiet "Lineare Funktionen" verwendet, kann hier propädeutisch der Begriff der Steigung erarbeitet werden. Kommt das Online-Arbeitsblatt erst im Verlauf des Themas zum Einsatz, so kann der mathematisch erarbeitete Begriff der Steigung mit neuer anschaulicher Bedeutung gefüllt werden. In dem darauf folgenden zweiten interaktiven Arbeitsblatt sind unterschiedliche Preisangebote eines Kartbahnbetreibers grafisch dargestellt. Es ermöglicht den Schülerinnen und Schülern, die eben erworbenen Kenntnisse in einem neuen Aufgabenumfeld anzuwenden und sich in einem Wettbewerb mit den Mitschülern zu messen. Das "ICH-DU-WIR"-Prinzip Das methodische Konzept der Schweizer Didaktiker Peter Gallin und Urs Ruf zeigt einen Weg zur nachhaltigen Anregung individueller Lernprozesse auf. Unterrichtsverlauf Hinweise zum Verlauf des Unterrichts und zum Einsatz der Arbeitsmaterialien (Arbeits- und Hausaufgabenblatt, Online-Arbeitsblätter) Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Fachkompetenz Die Schülerinnen und Schüler ordnen Texte grafischen Darstellungen zu. entnehmen und interpretieren Informationen aus grafischen Darstellungen. erstellen selbstständig Texte zu grafischen Darstellungen. entwerfen eigene grafische Darstellungen zu Sachverhalten. Medienkompetenz Die Schülerinnen und Schüler lösen Aufgaben auf interaktiven Arbeitsblättern am Computer. Sozialkompetenz Die Schülerinnen und Schüler arbeiten mit einem Partner oder einer Partnerin zusammen. Die Bearbeitung der Regentonnen-Aufgabe ist nach dem Dreischritt "ICH-DU-WIR" aufgebaut. Dies ist ein methodisches Konzept, das auf die beiden Schweizer Didaktiker Peter Gallin und Urs Ruf zurückgeht. Es zeigt einen Weg auf, wie das Lernen in der Schule organisiert und strukturiert werden kann, um individuelle Lernprozesse nachhaltig anzuregen. Dabei sind die einzelnen Elemente ICH, DU und WIR wie folgt zu verstehen: ICH bedeutet individuelles Arbeiten Die Schülerinnen und Schüler machen sich in dieser Phase eigenständig mit der Problemstellung der Regentonnen-Aufgabe vertraut, stellen Bezüge zum individuellen Vorwissen her und versuchen selbstständig, Zusammenhänge zu erkennen und Lösungen zu finden. Dabei ist darauf zu achten, dass keine Kommunikation unter den Schülerinnen und Schülern erfolgt. DU bedeutet Lernen mit dem Partner Nach der Bearbeitung der Aufgaben in Einzelarbeit tauschen sich die Schülerinnen und Schüler mit ihrer Partnerin oder ihrem Partner aus. Sie erklären sich abwechselnd ihre Ideen und Lösungsvorschläge, vergleichen diese miteinander oder vollziehen die Gedanken des anderen nach. So kann das eigene Wissen vertieft werden. In Partnerarbeit wird weiter an der vollständigen Lösung gearbeitet. WIR bedeutet Kommunikation im Klassenverband Im Rahmen dieser Phase können die Schülerinnen und Schüler ihre Lösungen im Klassenplenum präsentieren. Sollten noch Unklarheiten hinsichtlich der Aufgabenlösung bestehen, werden diese hier diskutiert. Die Lehrkraft präsentiert den Sachverhalt mithilfe des Online-Arbeitsblattes per Beamer (siehe Abb. 1, Platzhalter bitte anklicken) und gibt das Arbeitsblatt (arbeitsblatt_regentonne.pdf) an die Schülerinnen und Schüler aus. Diese sollen dann die zehn darauf formulierten Aufgaben ohne Verwendung des Computers in Einzelarbeit bearbeiten. Im Anschluss daran vergleichen sie mit ihrer Partnerin oder ihrem jeweiligen Partner die gefundenen Ergebnisse, stellen Gemeinsamkeiten fest oder diskutieren unterschiedliche Standpunkte. Die individuelle Korrektur der Aufgaben erfolgt dann nicht durch die Lehrkraft, sondern durch den Einsatz von Online-Arbeitsblatt 1. Die Schülerinnen und Schüler rufen erst jetzt die entsprechende Webseite auf, bearbeiten die einzelnen Aufgaben und überprüfen so ihre bisherigen Ergebnisse. Dabei kann es durchaus sein, dass sie ihre Lösungen neu überdenken müssen. Der Computer dient hier als Kontrollinstrument, das zu weiterer Diskussion des Sachverhalts anregen kann. In dieser Phase des Unterrichts sollte es die Lehrkraft vermeiden, sich in die Diskussion der Schülerinnen und Schüler einzuschalten. Ihre Aufgabe besteht ausschließlich im Beobachten, nicht im Bewerten. Die Lehrkraft projiziert die einzelnen Aufgaben des interaktiven Web-Arbeitsblattes zur Regentonne per Beamer. Dazu erläutert jeweils eine Schülerin oder ein Schüler ihre beziehungsweise seine gefundenen Lösungen vor der Klasse. Nun sind die Schülerinnen und Schüler selbst aufgefordert, in Partnerarbeit Texte zu bestehenden Graphen sowie eigene Graphen und dazugehörige Texte zu verfassen. Um eine sich anschließende Diskussion im Klassenverband anschaulich zu gestalten, sollte die Lehrkraft Folien mit den Aufgaben an die einzelnen Teams ausgeben. Anhand dieser Folien kann eine fundierte Bewertung der Ergebnisse erfolgen. Bei der Bearbeitung des interaktiven Arbeitsblattes zur Kartbahn (siehe Abb. 2, Platzhalter bitte anklicken) sollen die Schülerinnen und Schüler unterschiedliche Preisangebote drei farbigen Graphen zuordnen und anschließend unterschiedliche Aufgaben bearbeiten. Mithilfe des Buttons "Wertung" wird die Eingabe geprüft und Punkte werden vergeben. Mit "Neu fragen" werden neue Aufgaben gestellt. Als besonderer Anreiz besteht dabei die Möglichkeit, die erreichten Punkte in eine Highscore-Liste eintragen zu lassen. Die Unterrichtsstunde beendet die Hausaufgabenstellung (kartbahn_hausaufgabe.pdf), die sich an den zuletzt gestellten Aufgaben des Web-Arbeitsblattes 2 orientiert. Darüber hinaus sollen die Zusammenhänge der Aufgabenstellung, die dem Web-Arbeitsblatt 2 zugrunde liegt, verbalisiert werden. Einsatz motivierender Medien Aufgaben spielen für die Motivierung des Lernens und für ein verständnisvolles Erschließen, Üben und Vertiefen von Wissen eine zentrale Rolle im Mathematikunterricht. Deshalb besteht gerade in der Weiterentwicklung von Aufgabenstellungen und der Form ihrer Bearbeitung ein beträchtliches Potenzial zur weiteren Optimierung des Mathematikunterrichts. Im Rahmen dieser Weiterentwicklung von Aufgaben und Aufgabenumfeldern sollte auch der Einsatz moderner, die Schülerinnen und Schüler motivierender Medien berücksichtigt werden. Spannungsfeld zwischen freiem Arbeiten und Orientierung des Unterrichts Interaktive Arbeitsblätter können durch die Variation von Aufgabenstellungen Lernräume für selbstständiges, eigenverantwortliches und kooperatives Lernen schaffen. Dabei ist jedoch stets das Spannungsfeld zwischen freiem, unabhängigem Arbeiten und der gezielten Orientierung des Unterrichts zu beachten. Einerseits sollten die Schülerinnen ein Aufgabenfeld selbstständig erkunden und so ihr eigenes Wissen und dessen Grenzen ausloten können, andererseits aber auch Rückhalt und Orientierung auf ihrem Lernweg finden. Bei der Erstellung von interaktiven webbasierten Arbeitsblättern gilt es, beides zu berücksichtigen. Weiterentwicklung der Aufgabenkultur Weitere Informationen zu Modul 1 auf der SINUS-Transfer-Website Unterricht als aktives Geschehen Lehrerzentriertes Unterrichten, das die Schülerinnen und Schüler in einer passiven Rolle des Wissensempfängers belässt, kann sehr leicht zu nachlassendem Interesse am Lerngegenstand führen. Kooperative Arbeitsformen hingegen veranlassen die Schülerinnen und Schüler, zu argumentieren, Gedachtes sprachlich verständlich zu fassen und die Perspektive des jeweils Anderen einzunehmen. Damit wird Unterricht zu einem aktiven Geschehen, das Raum für Entdeckungen aber auch Fragen lässt. Darüber hinaus kann kooperatives Lernen nach dem "ICH-DU-WIR"-Prinzip die Schülerinnen und Schüler beim Aufbau sozialer Kompetenzen unterstützen. Diskutieren, Unterstützen, Präsentieren Der Einsatz von interaktiven webbasierten Arbeitsblättern kann dazu beitragen, ein produktives, motivierendes Arbeitsklima zu schaffen. Der Unterricht erhält zudem ein neues Gestaltungselement und kann somit abwechslungsreicher organisiert werden. Aufgabe der Lehrkraft bleibt es, dafür Sorge zu tragen, dass die Schülerinnen und Schüler nicht allein vor dem Computer bleiben, sondern ihre Beobachtungen und Lösungsideen gemeinsam diskutieren, sich wechselseitig unterstützen und ihre Ergebnisse im Klassenverband präsentieren und diskutieren können. Der vorgelegte Unterrichtsentwurf soll hier eine Anregung bieten. Aufgaben für kooperatives Arbeiten Weitere Informationen zu Modul 8 auf der SINUS-Transfer-Website Üben muss mehr sein als die Anwendung von Routinen Im Mathematikunterricht werden die Schülerinnen und Schüler häufig mit anspruchsvollen Inhalten und komplexen Problemstellungen konfrontiert. Erkenntnis- und Lernfortschritte werden sie nur dann erzielen, wenn sie systematisch und konzentriert vorgehen. Um die notwendige Sicherheit zu gewinnen, muss das neu erworbene Wissen ständig wiederholt und auf unterschiedliche Aufgabenstellungen angewandt und somit geübt werden. Effektives Üben muss dabei über ein bloßes Anwenden von Routinen hinausgehen. Mehr Freiheit durch digitale Medien Der Einsatz von interaktiven Arbeitsblättern zum Interpretieren von unterschiedlichen Graphen kann Möglichkeiten für ein solches Üben bieten. Selbstständiges, nicht ständig durch die Lehrkraft kontrolliertes Bearbeiten von Aufgaben, bei dem der Hinweis auf fehlerhafte Lösungen nicht "öffentlich" wird, stärkt die Schülerinnen und Schüler im Hinblick auf ihr eigenes, selbstverantwortetes Lernen. Ein solches Arbeiten gibt den Schülerinnen und Schülern eine größere Freiheit beim Wissenserwerb, aber auch mehr Verantwortung für das eigene Lernen. Verantwortung für das eigene Lernen stärken Weitere Informationen zu Modul 9 auf der SINUS-Transfer-Website

  • Mathematik
  • Sekundarstufe I

Subtraktion ganzer Zahlen mit GeoGebra

Unterrichtseinheit

In dieser Unterrichtseinheit zur Subtraktion ganzer Zahlen wird durch interaktive dynamische Arbeitsblätter eine Veranschaulichung der Subtraktion vermittelt. Die Mathematiksoftware GeoGebra kommt dabei zum Einsatz.Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Einführung der Subtraktion ganzer Zahlen Hier finden Sie Hinweise zur Funktionsweise und zum Einsatz des dynamischen Arbeitsblattes zur Subtraktion ganzer Zahlen. Vertiefung, Individualisierung und Wettbewerb In der Phase der Anwendung und Vertiefung erfolgt eine Variation der Aufgabenstellungen mithilfe eines interaktiven Arbeitsblattes. Die Schülerinnen und Schüler erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. können die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden. Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die dynamische Veranschaulichung realisiert werden kann, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die folgenden Webseiten können in den Stunden vor der hier vorgestellten Unterrichtseinheit verwendet werden: realmath.de: Das Zahlenpfeilmodell der Subtraktion Die Lernenden sollen die Darstellung ganzer Zahlen mit Zahlenpfeilen und die Subtraktion von natürlichen Zahlen mithilfe des Zahlenpfeilmodells kennen. realmath.de: Der Begriff der Gegenzahl Der Begriff der Gegenzahl einer ganzen Zahl sollte vorbesprochen sein. Hier finden sich Aufgaben für die Einführung und die Grundlegung dieses Begriffs. realmath.de: Welche Zahl muss man zu ... addieren, um ... zu erhalten? Zur Hinführung auf die Subtraktion ganzer Zahlen sollte auf Additionsaufgaben dieser Art nicht verzichtet werden. Das erste Online-Arbeitsblatt dient zur Erarbeitung der Regel für die Subtraktion ganzer Zahlen. Mit dem Button "Aufgabe neu" wird eine entsprechende Aufgabe erzeugt. Die Aufgabe kann anschließend im dynamischen Arbeitsblatt mit den Elementen "Minuend" und "Subtrahend" eingestellt werden. Zeitgleich wird die entsprechende Subtraktion im Zahlenpfeilmodell erzeugt, und das Ergebnis kann abgelesen werden. Dieses wird in das vorgesehene Feld eingetragen. Der Button "Auswertung" dient zur Kontrolle des Ergebnisses. Ist das Ergebnis richtig, so wird die zu dieser Subtraktion gehörige Additionsaufgabe erzeugt. Dabei wird der Minuend zum ersten Summanden, das Ergebnis bleibt erhalten. Nun soll der fehlende zweite Summand in das freie Feld eingetragen werden. Damit wird die Subtraktion durch die Addition der Gegenzahl ersetzt. Mit dem Button "Kontrolle " wird die Eingabe überprüft. Erarbeitungsphase Die Schülerinnen und Schüler probieren, beobachten, ordnen, vermuten und sollen so Schritt für Schritt den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen erkennen. Dazu bearbeiten sie Aufgaben auf die oben angesprochene Weise und halten die Ergebnisse auf dem von der Lehrkraft bereitgestellten Notizblatt fest. Sie sind beim Lösen der Aufgaben durch die dynamische Veranschaulichung ferner aufgefordert, herauszufinden, wie die Subtraktion ganzer Zahlen durch eine zugehörige Addition ersetzt werden kann. Ihre Vermutung können sie dadurch verifizieren, dass sie Aufgaben lösen, ohne dabei die Veranschaulichung zu benutzen. Haben die Schülerinnen und Schüler eine Regel gefunden, so sollen sie diese schriftlich auf dem Notizblatt festhalten. Zusammenfassung Im nächsten Unterrichtsschritt stellen die Lernenden ihre Ideen für den gesuchten Zusammenhang vor. Zusammen mit den Wertungen und Kommentaren der Lehrkraft ergibt sich so das Arbeitsergebnis, das die Lehrkraft als Zusammenfassung auf einer Folie, die dem Arbeitsblatt der Schülerinnen und Schüler entspricht, festhält. Die Einträge werden von den Schülerinnen und Schülern in ihr Arbeitsblatt übernommen. Durch die zusätzlich auf dem Arbeitsblatt eingefügten Zahlenpfeildarstellungen wird noch einmal Schritt für Schritt der Prozess der Regelfindung für alle Schülerinnen und Schüler nachvollziehbar festgehalten. Anwendung Auf dem Schülerarbeitsblatt finden sich zusätzlich einige Aufgaben zur Subtraktion ganzer Zahlen. Diese können anschließend in Auswahl in Partner- oder Einzelarbeit bearbeitet und anschließend besprochen werden. Nicht bearbeitete Aufgabe können als Hausaufgabe verwendet werden. Anwendung mit Wettbewerb Nun folgt eine Phase der Anwendung und Vertiefung durch erste Übungsaufgaben. Die Schülerinnen und Schüler sollen dabei die Aufgaben des zweiten interaktiven Arbeitsblattes bearbeiten. Online-Arbeitsblatt 2: Übung zur Subtraktion ganzer Zahlen Interaktives Arbeitsblatt mit Variationen der Aufgabenstellungen auf realmath.de, der Website des Autors. Einfacher Aufbau des Arbeitsblattes Der Aufbau des interaktiven Arbeitsblattes ist gemäß der Altersstufe der Schülerinnen und Schüler einfach gehalten. Sie sind hier aufgefordert, das Ergebnis einer Subtraktion aus vier vorgegebenen Antworten auszuwählen. Ist das Ergebnis angeklickt, so kann durch Betätigung des Buttons "Auswertung" die Eingabe überprüft werden. Mit "Neu erstellen" wird per Zufallsgenerator eine neue Subtraktionsaufgabe erstellt. Individuelle Betreuung Im Rahmen der Individualisierung des Unterrichts, indem nun jeweils zwei Schülerinnen und Schüler Aufgaben in Partnerarbeit bearbeiten, kann die Lehrkraft die Arbeitsweise der Schülerinnen und Schüler gezielt beobachten. Die fortwährende Anzeige des erreichten Punktestandes und die Anzahl der bearbeiteten Aufgaben im interaktiven Arbeitsblatt ermöglicht der Lehrkraft, jederzeit zu erkennen, bei welchem Schülerpaar noch Schwierigkeiten bestehen. Hier kann sie gezielt helfen. Schülerinnen und Schüler, die mit den Aufgaben gut zurecht kommen, kann sie durch Lob und Anerkennung ermuntern, weitere Aufgaben zu bearbeiten und ihre Kenntnisse weiter zu vertiefen. Das interaktive Arbeitsblatt bietet zudem einen Wettbewerb, bei dem derjenige gewinnt, der am Ende die meisten Punkte erreicht. Da die Punkte in einer Bestenliste gespeichert werden, kann dies für Schülerinnen und Schüler eine besondere Motivation darstellen. Aufgaben zur Nachbereitung finden sich in allen zugelassenen Schulbüchern. Sollten die im verwendeten PDF-Arbeitsblatt enthaltenen Aufgaben nicht alle gelöst worden sein, so können auch diese als Hausaufgabe verwendet werden. Auf der Webseite des Autors finden sich für die nachfolgenden Unterrichtsstunden sechs weitere interaktive Übungen zur Subtraktion ganzer Zahlen. In der sich im Unterricht anschließenden Übungsphase kann hier die eine oder andere Aufgabe ausgewählt werden, um so die folgenden Unterrichtsstunden abwechslungsreich zu gestalten. realmath.de: Weitere Interaktive Übungen Für die Nutzung muss Javascript aktiviert sein.

  • Mathematik
  • Sekundarstufe I

Exponentialfunktionen und die eulersche Zahl e

Unterrichtseinheit

Die Schülerinnen und Schüler entdecken interaktiv die analytischen Eigenschaften der Exponentialfunktionen.Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren.Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Lest M 1 und unterstreicht im Text die Anweisungen an Leser, die in Deutschland arbeiten wollten. Warum wurden diese Anweisungen gegeben? Lest M 2 genau durch und spielt die Situation nach. Überlegt, wer welche Rolle übernimmt, welche "Vorgaben" der Text macht. Ihr könnt eigene Ideen einbringen, aber sollt berücksichtigen, was ihr aus M 1 und M 2 wisst. Lest den Text M 4 und überlegt, warum sich die junge Türkin vor dem weihnachtlichen Schaufenster hat fotografieren lassen (siehe M 3). Welche Gründe, vermutet ihr, hat Birsen dafür, ihr Geld für die Familie in der Türkei auszugeben? Welche Geschenke würdet ihr an ihrer Stelle eurer Familie machen? Warum?

  • Mathematik
  • Sekundarstufe II

Magisches Quadrat digital

Unterrichtseinheit

Dieses magische Quadrat des Künstlers Eugen Jost hat es in sich: die Zahlen 1 bis 49 sind teilweise etwas verschlüsselt und symbolhaft dargestellt. Mit dem beigefügten kleinen Programm wird daraus eine nette Knobelei, die man auf Zeit spielt.Das Magische Quadrat ist Teil des Kalenders des Künstlers Eugen Jost, der zum Jahr der Mathematik erschienen ist und ein Dutzend bedeutsamer Themen der Mathematik aufgreift. In ästhetisch ansprechender Form wird hier die Kunst mit der Mathematik verbunden. Das hier dargestellte Dezember-Blatt ist als kleines elektronisches Ratespiel für den PC aufbereitet. Hierzu müssen die natürlichen Zahlen erraten werden, die hinter den Symbolen jeder Einzelzelle verborgen sind. Dazu tippt man die Lösungen in ein Eingabefeld. Ob die Eingabe richtig oder falsch ist, erfahren die Schülerinnen und Schüler auch durch akustische Signale. Für zusätzliche Spannung sorgt eine eingeblendete Stoppuhr. Auf die Plätze, fertig, los - die Zeit läuft!Das Programm ist im Grunde altersstufenunabhängig. Es ist ab der Klasse 5 einsetzbar, kann aber ebensogut auch bei älteren Schülerinnen und Schülen genutzt werden. Nutzung und Anpassung des magischen Quadrates Hier finden Sie Erläuterungen zur Funktionsweise des Programms sowie zur Möglichkeit der Darstellung eigener magischer Quadrate. Die Schülerinnen und Schüler sollen sich magischen Quadraten auf spielerische Weise nähern. die grundsätzlichen Eigenschaften magischer Quadrate kennen lernen. Thema Magisches Quadrat digital Autoren Elfi Petterich Fach Mathematik, auch für Vertretungsstunden geeignet Zielgruppe ab Klasse 5 (für alle Klassenstufen als spielerische Ergänzung zu magischen Quadraten) Zeitraum weniger als 1 Stunde Technik Computerarbeitsplätze zur Nutzung des Computermoduls, Lautsprecher müssen aktiviert sein. Ein magisches Quadrat wird durch die folgenden Eigenschaften charakterisiert: Die Summen der Elemente aus jeder Zeile sind gleich. Die Summen der Elemente aus jeder Spalte ergeben dieselbe Zahl. Die Summen in jeder der beiden Diagonalen ergeben ebenfalls diese Zahl. Nutzung des Programms Mit dem ausführenden Programm "Kalender.exe" öffnet sich das magische Quadrat von Eugen Jost. Die einzelnen Zellen können mit der Maus angeklickt werden, so dass sich ein Eingabefeld öffnet, in das ein Codewort eingetippt werden kann. Ziel ist es, herauszufinden, welche Zahl hinter den Zeichen und Symbolen jeder Zelle steckt. Bei richtiger Eingabe erscheint ein Bild mit der entsprechenden natürlichen Zahl, und es ertönt ein bestätigendes Signal. Bei falscher Eingabe bleibt das ursprüngliche Bild bestehen und es erfolgt eine entsprechende Tonsequenz. Eine Stoppuhr beginnt beim ersten Klick zu laufen und endet mit der letzten richtigen Eingabe. Außerdem wird die Anzahl der richtigen sowie falschen Eingaben angezeigt. Im Bedienfeld auf der linken Seite stehen die drei Buttons der Reihe nach für: Das Laden einer anderen Datei ("Laden") Startzustand wieder herstellen ("Neu") Adjustieren der Fenstergröße ("Größe", falls sie versehentlich verändert wurde) Mit dem Programm kann nicht nur Eugen Josts Quadrat angezeigt werden. Auch selbst erzeugte magische Quadrate lassen sich so visualisieren. Sie können unterschiedlich große Rechtecke und Quadrate mit verschiedenen Bildern erzeugen. Um das magische Quadrat zu modifizieren, muss man die Datei "default.cal" mithilfe eines Texteditors (zum Beispiel Notepad) umschreiben und unter neuem Namen speichern. Die "default.cal" Datei ist folgendermaßen aufgebaut: Die erste Zeile besteht aus Zeilenzahl und Spaltenzahl des Quadrats (in diesem Beispiel 7,7). Jede weitere Zeile beschreibt eine einzelne Zelle und ist nach folgendem Schema aufgebaut: bild1, bild2, sound1, sound2, lösung. "bild1" entspricht dem Pfad zur Bilddatei1 (wird zu Beginn angezeigt) "bild2" entspricht dem Pfad zur Bilddatei2 (erscheint nach richtiger Antwort) "sound1" ertönt, wenn die Antwort richtig ist "sound2" ertönt, wenn die Antwort falsch ist "lösung" gibt den Text (oder die Zahl) an, die die Benutzerin oder der Benutzer für die richtige Antwort eintippen muss. Das Programmm wurde in C++ mit Hilfe der Open Source Bibliothek QT erstellt. Zu beachten ist, dass JPEG-Dateien (.jpg) nicht richtig geladen werden können. Bitmap-Dateien (.bmp) oder PNG-Dateinen (.png) sind mit dem Programm kompatibel. Für die Sounds müssen WAVE-Dateien (.wav) verwendet werden.

  • Mathematik
  • Sekundarstufe I, Sekundarstufe II

Magische Quadrate

Unterrichtseinheit

Magische Quadrate faszinieren die Menschen schon seit Tausenden von Jahren. Zur Untersuchung ihrer Eigenschaften werden Exceltabellenblätter genutzt. Die Materialien richten sich an begabte Schülerinnen und Schüler ab Klasse 5.Die frühesten magischen Quadrate werden dem chinesischen Gelehrten Fuh-Hi (2800 v. Chr.) zugeschrieben. Ihre wunderlichen Eigenschaften - gleiche Summen in den verschieden Reihen, Spalten, Diagonalen und noch an vielen anderen Stellen - zu untersuchen, macht Schülerinnen und Schülern von der Grundschule bis zur Oberstufe Spaß. Viele stellen sich dabei die Frage, wie man selbst solche magischen Quadrate erzeugen kann und wie viele es davon gibt. Um sich einen Überblick über die ?4 mal 4?-Quadrate zu verschaffen, werden Linearitätseigenschaften genutzt. Schließlich können über 1.000 (mit etwas mehr Mühe sogar über 3.000) magische Quadrate mit den Zahlen 1 bis 16 erzeugt werden.Die vorliegende Unterrichtseinheit beschäftigt sich mit magischen "4 mal 4"-Quadraten, wie sie von der Grundschule bis zur gymnasialen Oberstufe untersucht werden können. Schülerinnen und Schüler können sich oder Freunden ein magisches Geburtstagsquadrat errechnen, sobald ihnen negative Zahlen vertraut sind. Es sind auch schon gute Erfahrungen mit Lernenden in der Primarstufe gesammelt worden, die sich, so weit es bei ihren Daten nötig war, auch an negative Zahlen herangewagt haben. Für Schülerinnen und Schüler höherer Jahrgangsstufen gibt es weiterführende Aufgabenstellungen, die zum einen mit dem Lösen von Gleichungssystemen, zum anderen mit Matrizenaddition und skalarer Multiplikation zu tun haben. Oberstufenschülerinnen und -schüler können mit den Eigenschaften von Vektorräumen arbeiten. Auch in niedrigeren Jahrgangsstufen kann man sich mit manchen Vektorraumeigenschaften - ohne die zugehörigen Begrifflichkeiten - auseinandersetzen. Hinweise zum Unterrichtsverlauf und Materialien Neben der Addition der Linearkombinationen von Grundquadraten können magische Quadrate auch auf anderen Wegen gefunden werden. Die Schülerinnen und Schüler sollen magische Quadrate als solche erkennen können. magische "4 x 4"-Quadrate auf weitere Eigenschaften hin untersuchen können. aus bereits bekannten magischen Quadraten neue erstellen können. ein magisches Geburtstagsquadrat erstellen können. Hypothesen aufstellen und überprüfen. weitgehend eigenverantwortlich und kooperativ arbeiten. magische Quadrate mit den Zahlen 1 bis 16 erzeugen können (eine nicht ganz einfache Krönung der Arbeit). Thema Magische Quadrate Autorin Dr. Renate Motzer Fach Mathematik Zielgruppe begabte Schülerinnen und Schüler ab Klasse 5 Zeitraum 2-10 Stunden, je nachdem wie viele Fragestellungen bearbeitet werden Technische Voraussetzungen Computer mit Tabellenkalkulationssoftware (hier Microsoft Excel) Einsatz der Tabellenkalkulation Die Schülerinnen und Schüler sollen zunächst vorgegebene oder selbst erzeugte Quadrate darauf hin untersuchen, ob sie magisch sind. Um viel Rechenarbeit zu ersparen, können sie selbst eine Exceltabelle erstellen, wenn sie sich schon mit Tabellenkalkulation auskennen. Andernfalls kann ein vorgegebenes Tabellenblatt benutzt werden (magisch.xls). In diesem Fall sollte vorher diskutiert werden, was sinnvollerweise dort berechnet werden soll. (Wie die Operationen mit Excel umzusetzen sind, kann gegebenenfalls von der Lehrkraft erläutert werden.) Linearkombinationen von Grundquadraten Die Grundquadrate aus Nullen und Einsen sollen von den Kindern zunächst per Hand gefunden werden, die Addition von Linearkombinationen der Grundquadrate kann dann wieder von der Tabelle übernommen werden. Andere magische Quadrate Dass nicht alle magischen Quadrate Linearkombination von Grundquadraten sind, kann anhand eines von der Lehrperson vorgegebenen Quadrats (das auf andere Weise konstruierten wurde) entdeckt werden. Die Schülerinnen und Schüler sollen dazu versuchen dieses Quadrat aus den Grundquadraten zu erzeugen, was jedoch nicht gelingt. Sie können das Nichtgelingen auch dadurch begründen, dass dieses neue Quadrat eine Eigenschaft der Grundquadrate nicht hat, die auf Linearkombinationen übertragen wird. Wenn Sie das nicht sofort erkennen, werden sie von der Lehrperson durch bestimmte Fragen darauf hingeleitet. Quadrate mit den Zahlen 1 bis 16 Schließlich soll untersucht werden, ob man mit den Grundquadraten auch Quadrate erzeugen kann, die genau die Zahlen 1 bis 16 enthalten. Dazu muss manches einfach ausprobiert werden und nach möglichen Koeffizienten und ihrer Verteilung auf die Grundquadrate gesucht werden (man kann zum Beispiel diejenigen des Dürerquadrats nehmen). Die Kinder erleben hier, dass es nicht immer ein Lösungsschema geben muss, sondern dass manches durch systematisches Probieren erreicht werden kann.

  • Mathematik
  • Sekundarstufe I, Sekundarstufe II

Parameter linearer Funktionen mit GEONExT

Unterrichtseinheit

Eine mithilfe der kostenfreien Mathematiksoftware GEONExT erstellte Lernumgebung ermöglicht die dynamische Erarbeitung der Bedeutung der Parameter linearer Funktionen.Die hier vorgestellten Materialien ermöglichen es, den Einfluss der Parameter m und t auf die Lage der Geraden mit der Gleichung y = mx + t experimentell zu entdecken. Hierbei verstärkt die Dynamik die Anschaulichkeit entscheidend und trägt so zu einem erleichterten und vertieften Verständnis dieses Funktionstyps bei. Die Schülerinnen und Schüler erarbeiten sich mithilfe eines dynamischen Arbeitsblatts den Stoff weitgehend selbstständig oder kooperativ (Einzel- oder Partnerarbeit). Die Lehrerin oder der Lehrer tritt dabei in den Hintergrund und greift nur unterstützend beziehungsweise Impuls gebend ein. Die in den Aufgaben immer wieder verlangte Dokumentation von Erkenntnissen und Ergebnissen trainiert das Verbalisieren und Fixieren mathematischer Kontexte. Hinweise zum Unterrichtsverlauf Der Einsatz dynamischer Mathematik fördert selbstständiges oder kooperatives Arbeiten sowie die Individualisierung des Unterrichts. Die Schülerinnen und Schüler sollen den Einfluss des Parameters t auf die Lage der Geraden erarbeiten. den Schnittpunkt einer Geraden mit der y-Achse bestimmen. erkennen, dass der Parameter m die Steigung der Geraden bestimmt. einüben, rechnerisch zu überprüfen, ob ein Punkt auf einer Geraden liegt. mathematische Zusammenhänge eigenständig und kooperativ erarbeiten und dokumentieren. Thema Parameter linearer Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 8 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Ideale Veranschaulichung Wird der Einfluss der Parameter m und t auf die Lage von Graphen linearer Funktionen an der Tafel oder auf Folie entwickelt, so werden meist mehrere Graphen mit unterschiedlichen Parameterwerten in ein Koordinatensystem eingetragen. Dabei ergibt sich immer das Problem, dass zu viele Graphen die Darstellung unübersichtlich erscheinen lassen. Sind jedoch wenig Graphen eingezeichnet, so ist der Einfluss des jeweiligen Parameters nur noch schwer erfassbar. Dieses Dilemma wird durch die dynamische Darstellung aufgelöst und es entsteht eine ideale Veranschaulichung linearer Funktionen und ihrer Parameter (siehe Abb. 1 bis 3 unten). Selbstständiges oder kooperatives Arbeiten Die Schülerinnen und Schüler erarbeiten sich mithilfe eines dynamischen Arbeitsblatts den Stoff weitgehend selbstständig oder kooperativ (Einzel- oder Partnerarbeit). Die Lehrerin oder der Lehrer tritt dabei in den Hintergrund und greift nur unterstützend beziehungsweise Impuls gebend ein. Die in den Aufgaben immer wieder verlangte Dokumentation von Erkenntnissen und Ergebnissen trainiert das Verbalisieren und Fixieren mathematischer Kontexte. Individualisierung des Unterrichts Durch den bewusst offen gehaltenen Umfang der Übung am Ende des dynamischen Arbeitsblatts wird das jeweilige Lerntempo der Schülerinnen und Schüler berücksichtigt. Daraus resultiert eine Individualisierung des Unterrichts. Der Parameter t Zunächst verändern die Schülerinnen und Schüler den Parameter t und stellen fest, dass damit eine Parallelverschiebung des Graphen einher geht (Abb. 1, Platzhalter bitte anklicken). Durch die Bestimmung mehrerer Schnittpunkte von Graphen mit der y-Achse und dem Vergleich mit der zugehörigen Geradengleichung erkennen die Lernenden, dass die allgemeinen Koordinaten dieses Schnittpunkts (0/t) lauten. Der Parameter m Anschließend wird der Parameter m untersucht. Dabei wird deutlich, dass damit die Steigung des Graphen festgelegt wird. Viele Schülerinnen und Schüler entdecken auch, dass der Neigungswinkel der Geraden von m abhängt. Durch den Spurmodus des Java-Applets wird veranschaulicht (Abb. 2), dass die Gerade - bei einer Veränderung von m - um den Schnittpunkt mit der y-Achse gedreht wird beziehungsweise dass dieser Schnittpunkt von m unabhängig ist. Anwendung des Gelernten Abschießend folgen Übungen, in denen die Schülerinnen und Schüler das neu erworbene Wissen anwenden müssen. Da die Punkte B und C dieselbe x-Koordinate haben (Abb. 3), kann kein Graph gefunden werden, der durch sie verläuft. Dadurch wird die Definition von Funktionen als eindeutige Zuordnung wiederholt. Der Umfang dieser Übungen ist nicht begrenzt, so dass auch leistungsstarke Schülerinnen und Schüler ausreichend Möglichkeiten haben, Aufgaben zu bearbeiten.

  • Mathematik
  • Sekundarstufe I