• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Kreative Mathematik: Viele Kreise durch einen Punkt

Unterrichtseinheit

In dieser Unterrichtseinheit entdecken die Schülerinnen und Schüler die Ästhetik der Mathematik, indem sie künstlerische Bilder durch zur leicht verständlichen Aufgabenstellung "Zeichne sehr viele Kreise durch einen Punkt" herstellen. Sie vermittelt viel Mathematik und bereitet Lernenden erfahrungsgemäß viel Freude, weil man sehr schön experimentell arbeiten kann.Die Aufgabe "Zeichne sehr viele Kreise durch einen Punkt" gelingt den Schülerinnen und Schülern auf verschiedenste Weise: per Hand und mit dem Computer, zum Beispiel mithilfe dynamischer Geometriesoftware, mit Computeralgebrasystemen oder Animationssoftware. Die Bearbeitung des Themas bietet vielfältige Variationsmöglichkeiten: Man kann zum Beispiel dazu übergehen, sehr viele Kreise durch mehrere Punkte zu zeichnen. Dabei wird insbesondere der Moiré-Effekt wirksam. Wenn man statt Kreisen andere geometrische Formen als Grundfiguren nutzt (zum Beispiel Strecken, Vierecke, Funktionsgraphen) lassen sich mathematische Kunstwerke produzieren, die ästhetische Aspekte der Mathematik erfahrbar machen.Die Problemstellung und ihre Fortführungen sind in unterschiedlichen Ausprägungen von Klasse 7 bis hin zum Abitur interessant und herausfordernd. Das Thema kann in den normalen Unterricht an verschiedenen Stellen eingebettet werden (zum Beispiel beim Lehrplaninhalt "Kreise" oder in der Analytischen Geometrie). Als Arbeitsform hat sich die Einzel- oder Partnerarbeit bewährt. Eine besondere Relevanz gewinnt die Problematik durch die experimentellen Arbeitsmöglichkeiten mit unterschiedlichen Relationstypen, auch mit unterschiedlicher Software. Dazu kommen die sich anbietenden Aufgabenvariationen, die dann ein weites Feld von Mathematik eröffnen können. Auch algebraische und analytische Kenntnisse und Fähigkeiten kommen dabei immer wieder zum Tragen, etwa bei der Berechnung von Abbildungen wie Drehungen, zum Beispiel mit Matrizen. Abb. 1 liefert eine Übersicht der didaktischen Aspekte der Unterrichtseinheit.Die Schülerinnen und Schüler entwickeln Kompetenzen zum Umgang mit digitalen Werkzeugen. schulen ihre Kreativität und die Fähigkeit zur Aufgabenvariation. erleben ästhetische Aspekte der Mathematik. erkennen Verknüpfungen zu Moiré-Bildern. entwickeln Animationsstrategien. nutzen die Konzepte "Mehrfachanwendung" und "Arbeiten mit Modulen". arbeiten weitgehend eigenverantwortlich und kooperativ. Lehmann, Eberhard Nachhaltige CAS-Konzepte für den Unterricht, Didaktik und Methodik des Mathematikunterrichts mit Computeralgebra, Berlin 2007 ( Infos im Netz ) Lehmann, Hergen; Lehmann, Eberhard Programmsystem Animato, Animationsprogramm, Anwendungen, Berlin 2007 ( Infos zur Software )

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Marsschleifen – die Entdeckung der Himmelsmechanik

Unterrichtseinheit

Das Computeralgebrasystem MuPAD dient im Rahmen einer fächerübergreifenden Projektarbeit als Werkzeug zur Veranschaulichung der Entstehung von Marsschleifen. Kenntnisse über den Aufbau des Sonnensystems gehören zum Allgemeinwissen. Jedoch: "Das Bekannte überhaupt ist darum, weil es be kannt ist, nicht er kannt" (G.W.F. Hegel). Mit dem Wissen über den Aufbau des Sonnensystems sollte auch ein Einblick in die Geschichte der Erkenntnis seines Aufbaus verbunden sein und der Weg zu dieser Erkenntnis nachvollzogen werden. Die hier angebotenen Unterrichtsmaterialien sind als mögliche Zusammenfassung der Ergebnisse eines entsprechenden fächerverbindenden Projekts (Mathematik, Astronomie, Geschichte) zu betrachten. Vorbemerkungen zum Thema In der Entdeckungsgeschichte des Aufbaus unseres Sonnensystems mussten die Fakten der Beobachtung astronomischer Abläufe verbunden werden mit der Beurteilung der Bedingtheiten der Beobachtung. Das heißt, mit der Beobachtung selbst musste der Beobachter in den Blick genommen werden. In den Worten des Nikolaus Kopernikus: "Alles, was am Fixsternhimmel an Bewegung erscheint, geht nicht von diesem selber, sondern von der Erde aus". Die Beobachtungsdaten der Planeten sind verwirrend: Mal bewegen sie sich auf Kreisbögen, mal wird ihre Bewegung langsamer oder schneller, mal kommen sie für kurze Zeit scheinbar ganz zum Stillstand, mal erscheinen sie weniger lichtstark, mal mehr - was auf starke Unterschiede in der Entfernung von der Erde hindeutet. Vor allem beim Mars, dem Nachbarplaneten der Erde, beschreiben die beobachteten Positionen einen deutlichen "Looping" (Marsschleife) am Firmament. Fächerübergreifende Aspekte Die Thematik verknüpft Bereiche aus den Fächern Mathematik, Physik und Geschichte. Sie hat darüber hinaus auch philosophische Bezüge und bietet sich daher für ein fächerübergreifendes projektorientiertes Vorgehen an. Allein aus den unterschiedlichen mit der Entwicklung des astronomischen Weltbilds verbundenen Biografien und modellhaften Vorstellungen ergibt sich eine Vielzahl von Referats- oder Facharbeitsthemen. Die Möglichkeiten eines vertieften Eindringens in die Thematik sind enorm - deswegen sind auch die Angaben zum Zeitbedarf der Unterrichtseinheit lediglich als vage Vorgabe zu verstehen. Voraussetzungen und Hinweise zum Einsatz der Materialien Informationen zu den Materialien zum Thema Planetenschleifen Die Schülerinnen und Schüler sollen Epizykloiden als Verkettung zweier Drehungen beschreiben und zur Simulation des Planetenmodells von Tycho Brahe einsetzen können (Mathematik). die Peilung des Mars von der Erde aus betrachtet mathematisch als Gleichung einer Gerade im Raum beschreiben können (Mathematik). die Kräfte erkennen, die die Bewegung der Planeten beeinflussen und die Auswirkung des Fehlens dieser Erkenntnis auf die astronomischen Vorstellungen vor Kepler und Newton beurteilen können (Physik). wesentliche Entwicklungen in der Ausformung unseres astronomischen Weltbilds kennen und zusammenfassend beschreiben können (Geschichte). Thema Marsschleifen - die Entdeckung der Himmelsmechanik Autor Rolf Monnerjahn Fächer Mathematik, Astronomie, Geschichte Zielgruppe je nach mathematischem "Tiefgang" Klasse 10 oder Jahrgangsstufe 11/12 Zeitraum etwa 6 Stunden, fächerübergreifende Projektarbeit Technische Voraussetzung Verfügbarkeit von MuPAD/MathWorks Zur vertiefenden Beschäftigung mit der Thematik sei vor allem verwiesen auf: David L. Goodstein, Judith R. Goodstein, "Feynmans verschollene Vorlesung, Die Bewegung der Planeten um die Sonne", München 1998 Jürgen Teichmann, "Wandel des Weltbildes", München 1983 Für die Durchführung der hier angeregten Projektarbeit müssen für den mathematischen Teil Grundkenntnisse im Umgang mit MuPAD vorhanden sein (Prozeduren, Vektoren, Sequenzgenerator beziehungsweise Zählschleife). Tipps und Anregungen zum Einsatz des CAS bietet das vom Autor dieser Unterrichtseinheit verfasste Buch "MuPAD im Mathematikunterricht" (Cornelsen, ISBN: 978-3-06-000089-0). Die drei in dem MuPAD-Notebook "marsschleifen.mn" aufgelisteten Programme/Befehlsabschnitte stellen für die wichtigsten Modelle der Astronomiegeschichte Simulationen zur Verfügung, die je nach unterrichtlichem Einsatz passiv aufgenommen oder (zum Beispiel in einem Mathematik-Leistungskurs im Rahmen der Analytischen Geometrie) von den Schülerinnen und Schülern selbst gestaltet werden können. Bei einer Durchführung der Unterrichtseinheit in Klasse 10 kann nicht auf den mathematischen Hintergrund der zweiten Simulation eingegangen werden, da für diese Methoden aus der Analytischen Geometrie benötigt werden. In jedem Fall leisten die Visualisierungen einen erheblichen Beitrag zur Steigerung des Vorstellungsvermögens. Sie zeigen, wie sich die Aufbereitung von Daten zur Grafik schrittweise aufbaut. wie astronomische Beobachtungen in der räumlichen Situation zu interpretieren sind. wie die Ableitung mathematisch unterschiedlicher Modelle aus Beobachtungsdaten in der grafischen Darstellung auf kleinem Maßstab zu kaum wahrnehmbaren Unterschieden führt, im astronomischen Maßstab aber überaus relevante Konsequenzen hat. Der in dem MuPAD-Notebook "marsschleifen.mn" dargestellte sachlogische und historische Abriss ist auf die elementaren Fakten reduziert - zum Beispiel wurde auf die Erwähnung des dritten Keplerschen Gesetzes völlig verzichtet. Damit wird der Priorität der Erkenntnis vor dem bloßen Kennen, der Priorität prozeduralen Wissens vor dem Faktenwissen Rechnung getragen. Die mathematischen Grundlagen und die Umsetzung mathematischer Beschreibungen in MuPAD-Kommandostrukturen werden in dem separaten Dokument "marsschleifen_mupad_befehle.pdf" dargestellt. Die Animation "animation_marszykloide.avi" veranschaulicht die Entstehung von Zykloiden des Mars nach dem Planetenmodell Tycho-Brahes. Für das Verständnis der Simulation sei verwiesen auf die Lehrer-Online-Unterrichtseinheit Bewegte Drehungen ? Zykloiden . Mehr als zwei Jahrtausende lang wurde versucht, die gelegentliche Schleifenform der Marsbahn durch ein Modell zu deuten, das auch in der Aufsicht - also nicht nur in der Bahnebene - die Schleife als Bewegungsspur direkt erklärt: als Zykloide, also als Spur der Verkettung zweier Rotationen (siehe Unterrichtseinheit Bewegte Drehungen ? Zykloiden ). Erst die Verwendung hochexakt vermessener Bahndaten und die Frage nach den die Planeten bewegenden Kräfte brachten den Durchbruch zu heutigen Modell unseres Sonnensystems.

  • Mathematik / Rechnen & Logik / Physik / Astronomie / Geschichte / Früher & Heute
  • Sekundarstufe I, Sekundarstufe II

Ein(-)Blick ins Chaos – nichtlineare dynamische Systeme

Unterrichtseinheit

Warum kann man eine Sonnenfinsternis vorausberechnen, die Lottozahlen aber nicht? Gibt es den Wetterbericht für nächstes Jahr? Wann kommt die nächste Heuschreckenplage? Ist alles schon vorausbestimmt? Gibt es eine Ordnung im Chaos? Was hat das alles mit dem "Apfelmännchen" zu tun? Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Hinweise zu den Voraussetzungen und Materialien Das Skript zu dem Kurs soll als Leitfaden dienen. Den Quellcode der im Kurs verwendeten Programme finden Sie hier in Turbo Pascal. Die meisten Programme lassen sich auch per Tabellenkalkulation umsetzen. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Erforderlich beziehungsweise hilfreich für die Durchführung dieses Kurses sind folgende Vorkenntnisse: quadratische Funktionen Differentialrechnung, insbesondere Ableitung als Steigung des Funktionsgraphen Grundkenntnisse und Fertigkeiten in Bedienung und Programmierung von Computern (Tabellenkalkulation, Basic, Pascal oder Java) für eine Weiterführung des Unterrichtsprojekts mit fraktaler Geometrie: komplexe Zahlen "Pluskurse" und vergleichbare Rahmen bieten im Vergleich zum Pflichtunterricht viele Vorteile, welche erfahrungsgemäß die Unterrichtsgestaltung wesentlich vereinfachen und die Lerneffizienz steigern: kleine Kursstärken homogene Lerngruppen spontanes und flexibles Agieren und Reagieren aufgrund fehlender Lehrplananbindung motivierte, leistungsbereite Schülerinnen und Schüler Wegfall von zeitaufwändigen Leistungserhebungen Die genannten Gelegenheiten gestatten der unterrichtenden Lehrperson und ihren Schülerinnen und Schülern erheblich mehr individuellen Freiraum zum experimentellen, entdeckenden Lernen und für fächerübergreifende Betrachtungen. Leitfaden statt exakte Unterrichtsplanung Der Natur der "Pluskurse & Co." entsprechend ist der Aufbau des Skripts zu dem Kurs (einblick_ins_chaos.pdf) gestaltet: Es ist als Leitfaden zu verstehen, von dem bei Bedarf abgewichen werden kann. Der Stoff wird in mehreren Kapiteln schülergerecht aufbereitet dargeboten, jeweils gefolgt von didaktischen Hinweisen, ergänzenden Vertiefungen oder Aufgabenvorschlägen. Eine exakte Unterrichtsplanung entfällt. Software zur Darstellung fraktaler Mengen Das Skript enthält eine Liste begleitender und weiterführender Literatur. Von den zahlreichen zum Thema (meist frei) erhältlichen Programmen sei der Real-Time Fractal-Zoomer "XaoS" erwähnt, der mit seinen ästhetischen Bildern fraktaler Mengen auch den affektiven Lernbereich zur Geltung bringt. Hinweise zu den Materialien Im Download-Material zu diesem Beitrag finden Sie die im Kurs verwendeten Programme samt Quellcode in Turbo Pascal, das aufgrund seiner streng strukturierten Syntax immer noch gut zum Erlernen der Grundkenntnisse des Programmierens eingesetzt werden kann. Die Programmstrukturierung mittels Prozeduren erlaubt aber auch eine Portierung in andere Programmiersprachen (zum Beispiel das frei erhältliche QBasic, das sich bei der Grafikprogrammierung sehr unkompliziert zeigt). Die meisten Programme lassen sich alternativ gut in einem Tabellenkalkulationssystem umsetzen (das Endzustandsdiagramm "Feigenbaum" nur mit Einschränkungen).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II, Sekundarstufe I

Hebelgesetz: Kraftwandler im Einsatz

Kopiervorlage

Dieses ergänzende Arbeitsblatt für den Physikunterricht der Sekundarstufen I und II bietet eine Einführung in den Themenkomplex der angewandten Mechanik. Der Schwerpunkt liegt auf der Berechnung und mathematischen Nutzung des Hebelgesetzes mit Bezug zum Gerüstbau, um die Anwendung anhand eines praxisnahen Beispiels zu verdeutlichen. Das ergänzende Arbeitsmaterial eignet sich für den Physikunterricht in der späten Sekundarstufe I und zur Vertiefung in der Sekundarstufe II. Anhand praktischer Beispiele wie dem Heben einer Schubkarre, Standsicherheit eines Gerüstes und der Funktionsweise einer Wippe, erarbeiten die Schülerinnen und Schüler grundlegende physikalische Grundbegriffe aus dem Bereich der Mechanik und lernen verschiedene Hebelarten kennen. Der Schwerpunkt liegt auf der mathematischen Anwendung des Hebelgesetzes, das durch Anwendungsaufgaben anschaulich vermittelt wird. Die erste Aufgabe widmet sich dem einseitigen Hebel am Beispiel einer beladenen Schubkarre. Zur Berechnung wird lediglich die Formel zum Hebelgesetz benötigt. Schwerpunkt der zweiten Aufgabe ist der "Zweiseitige Hebel", hierbei sollen insbesondere die Zusammenhänge zwischen Kraft- und Hebelarm am Beispiel einer Wippe erkannt und rechnerisch umgesetzt werden. In der abschließenden dritten Aufgabe, die das Thema Hebel anhand eines Praxisbeispiels aus dem Gerüstbau aufgreift, lernen die Schülerinnen und Schüler das Hebelgesetz beziehungsweise das Momentengleichgewicht als grundlegendes Gesetz der technischen Mechanik kennen. Begriffe wie "Verkehrslast" und "Windlast" werden eingeführt. Thematische Vertiefungs- und Anknüpfungspunkte können die Einführung von Schnittkräften beziehungsweise Schnittreaktionen oder mechanischen Spannungen sein. Die geometrischen Zusammenhänge können auch im Mathematikunterricht für den Themenkomplex analytische Geometrie interessant sein. Das Arbeitsblatt dient als Ergänzung zu der Unterrichtseinheit " Flächen- und Winkelberechnungen ". Es eignet sich sowohl zur Wiederholung als auch zur Erweiterung des bereits erworbenen Wissens im Bereich der Mechanik.

  • Physik
  • Sekundarstufe I, Sekundarstufe II

MELENCOLIA I - Dürers geometrische Offenbarung

Unterrichtseinheit

Diese fächerübergreifende Unterrichtseinheit zum Thema "Analytische Geometrie" nimmt Dürers Kupferstich MELENCOLIA I von 1514, das als "mathematischste" Arbeit des Renaissancekünstlers gilt, ins Visier. Vielfach wird in Besprechungen des Werks das darin enthaltene "Magische Quadrat" in den Vordergrund gestellt. Beeindruckender aber ist die bis ins Detail gehende geometrische Planung der Grafik im Dienst zunächst verborgener weltanschaulicher und autobiografischer Aussagen.Schon die Meraner Reformvorschläge (1905) nennen als anzustrebendes Ziel des Mathematikunterrichts "...endlich und vor allem die Einsicht in die Bedeutung der Mathematik für die moderne Kultur überhaupt." In den "Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss" ist zu lesen: "Mathematikunterricht ... ermöglicht ... folgende Grunderfahrungen: technische, natürliche, soziale und kulturelle Erscheinungen und Vorgänge mit Hilfe der Mathematik wahrnehmen, verstehen und unter Nutzung mathematischer Gesichtspunkte beurteilen". Die hier vorgeschlagene Unterrichtseinheit gibt Gelegenheit, eine solche Grunderfahrung am Beispiel eines Künstlers aufzunehmen, der sich selbst mindestens ebenso sehr als Mathematiker wie als Maler betrachtete. Von Dürer stammt übrigens auch das erste deutschsprachige Mathematikbuch. Voraussetzungen Eine erste Einführung in die Darstellungsmethode der Zentralperspektive sollte im Kunstunterricht vorausgegangen sein. Im Mathematikunterricht sollten im Rahmen der Themen "Zentrische Streckung" und "Ähnlichkeit" grundlegende Begriffe und Konstruktionsmethoden vermittelt sein. Vorgehen Die Unterrichtseinheit empfiehlt sich für eine fächerübergreifende Zusammenarbeit von Mathematik , Bildender Kunst und eventuell Religion mit projektorientierter Unterrichtsgestaltung. Schülerinnen und Schüler sollten angeleitet werden zu (beispielsweise) Recherchen zur Biografie Dürers, Grundeinstellungen des Humanismus, mathematischen Interessen und Aktivitäten Dürers, Ängsten und Konflikten im Zusammenhang mit historischen Ereignissen in Dürers Lebenszeit. Anschließend stellen sie die Ergebnisse ihrer Recherchen in Kurzreferaten oder in einer Wandzeitung vor. Ablauf Hinweise zum Unterrichtsverlauf "Dürers MELENCOLIA I" Hier sind unterrichtliche Voraussetzungen sowie Vorschläge zur Erarbeitung des Themas zusammengetragen. Fachkompetenz Die Schülerinnen und Schüler erkennen, wie Dürer mit geometrischen Methoden (Streckenhalbierung, Diagonalen, Goldenes Rechteck, Goldener Schnitt, Zentralperspektive) den Bildaufbau in MELENCOLIA I konzipiert hat. analysieren, wie er durch Anordnen bildwichtiger Elemente auf Geraden weltanschauliche und auf sich selbst bezogene Aussagen formuliert hat. ziehen geometrische Konstruktionsmethoden, die in MELENCOLIA I angewendet wurden, nach. Materialien und Werkzeuge Alle Schüler sollten eine einigermaßen deutliche Kopie des Kupferstichs MELENCOLIA I ausgehändigt bekommen, deren Ränder nicht beschnitten sind. Im Internet ist beispielsweise hier eine solche zu finden. Darüber hinaus sollte ein Kunstdruck in DIN-A2-Größe vorhanden sein. Der Kupferstich ist sehr detailreich, und die Einzelheiten erschließen sich erst bei einer sehr deutlichen Reproduktion. Zur Ausführung der geometrischen Konstruktionen empfiehlt sich eine dynamische Geometriesoftware, die es zulässt, eine Abbildung der MELENCOLIA I in den Hintergrund zu legen, so dass zum Beispiel der Goldene Schnitt darüber konstruiert werden kann. Fachliche Voraussetzungen Bei geometrischer Analyse entdeckt man in der Flächenaufteilung der MELENCOLIA I Beispiele für stetige Teilungen (Goldener Schnitt, Goldenes Rechteck). Diese sind der Ähnlichkeitslehre zuzuordnen, und diese steht in Klasse 9/10 der allgemeinbildenden Schulen auf dem Lehrplan. Der Bildaufbau von MELENCOLIA I ist nach den Grundsätzen der Zentralperspektive gestaltet - hier sollten die Schülerinnen und Schüler über Vorkenntnisse verfügen (Regeln der zentralperspektivischen Darstellung, aber auch: orthogonale Projektionen eines Körpers). Historische/Kunsthistorische Recherche als arbeitsteilige Gruppenarbeit Man kann zwar den Ansprüchen des wohl bekanntesten Dürer-Deuters, Erich Panofski, nicht genügen, und alle denkbaren Beziehungen zu nationalen, epochalen, philosophischen und religiösen Hintergründen herstellen, aber man kann näherungsweise versuchen, den Horizont von Dürers Lebenswelt abzustecken. Dazu sind beispielsweise folgende Rechercheaufträge in Gruppen-/Partnerarbeit zu erteilen/anzubieten: Dürers Biografie Die Lernenden tragen die Lebensdaten und Hauptereignisse in Dürers Werdegang als Renaissancekünstler zusammen. Dürers Religiosität Dürer war geprägt von tiefer Spiritualität. In seinem Werk hat er zahlreiche religiöse Darstellungen (beispielsweise 16 Holzschnitte nach der Geheimen Offenbarung des Johannes, Rosenkranzfest, Die vier Apostel) geschaffen. Der Arbeitsauftrag soll eine Verbindung zwischen in der MELENCOLIA I dargestellten Objekten und Bibelworten herstellen, zum Beispiel durch Stichwortsuche in der Internet-Ausgabe der Bibel zu: Maß, Zahl, Gewicht / Tag - Nacht / Bogen / Braut / Leiter / Kind / Mühlstein / Engel / Stein. Politische und religiöse Konflikte in Dürers Epoche Hier sollte vor allem herausgearbeitet werden, dass vielfach in Deutschland religiös motivierte Aufstände gegen kirchliche und weltliche Obrigkeit aufbrachen (Reformation, Wiedertäufer, Bauernkriege), in denen sich aber auch Weltuntergangsängste und Besorgnis um den "wahren" Glauben dokumentierten. Wandel des Weltbilds - Humanismus Der Humanismus ist verbunden mit der in der Renaissance stattfindenden Rückbesinnung auf die (wiederentdeckten) Werke der römisch-griechischen Antike. Die Humanisten sehen in der freien Entfaltung der Persönlichkeit des Menschen durch Bildung die vorrangige Aufgabe. Verbunden ist dies mit einer Zuwendung zur Welt und damit zu den Naturwissenschaften einerseits und einer Kritik an kirchlichen Praktiken andererseits. Gewissensfreiheit und Menschenwürde sind Werte, die ihre historischen Wurzeln im Humanismus haben. Dürer als Mathematiker Albrecht Dürer war mathematischer Autodidakt, vor allem durch Selbststudium einer der ersten gedruckten Ausgaben von Euklids "Elementen". Unter seinen nachgelassenen Werken finden sich drei mathematische: Unterweysung der Messung mit dem Zirkel und Richtscheyt in Linien, Ebenen und ganzen Körpern (1525), Unterricht zur Befestigung der Stett, Schloß und Flecken (1527), Vier Bücher von menschlicher Proportion (1528) Melancholie - Krankheit, Sünde oder Preis der Kreativität Die Symptome der Melancholie sind relativ klar zu beschreiben. In der Renaissance hat sich vor dem Hintergrund der Zuschreibung antiker Autoren der Melancholie als Eigenschaft kreativer Menschen ein Wandel in ihrer Bewertung vollzogen. Weitere Arbeitsaufträge Weitere Arbeitsaufträge sind möglich, beispielsweise Zahlensymbolik oder religiöse Symbolik überhaupt betreffend, die Rezeption von Dürers MELENCOLIA I bei anderen bildenden Künstlern oder in der Literatur zu untersuchen. Vortrag und Wandzeitung Auf der Grundlage der Recherchenresultate erarbeiten die Schülerinnen und Schüler Kurzvorträge, die die wichtigsten Informationen zu den jeweiligen Recherchethemen enthalten. Die Resultate sollen als Thesenpapier zusammengefasst und in einer Wandzeitung - zusammen mit illustrierenden Abbildungen - der Klasse präsentiert werden. Geometrische Aktivitäten Mit dynamischer Geometriesoftware werden die Konstruktionen von Goldenem Schnitt und Goldenem Rechteck erarbeitet und nach diesen Proportionen vollzogene Objektanordnungen in MELENCOLIA I aufgesucht. Im Bild sind zu bestimmen: Fluchtlinien und Fluchtpunkt der zentralperspektivischen Darstellung, die Mittelpunkte von Regenbogen und Kugelumriss, der Schnittpunkt der Seitenhalbierenden des Bodendreiecks von Dürers geheimnisvollem Polyeder. Von diesem sollte auch eine Skizzierung des Grundrisses versucht werden. Die Schülerinnen und Schüler können anschließend ein Kartonmodell des Polyeders anfertigen. Deas zugehörige Polyedernetz finden Sie im Arbeitsblatt melencolia_polyeder_netz.pdf. Kunsthistorische Analyse von Bildaussagen Mit dem Hinweis darauf, dass Dürer bildwichtige Elemente dadurch in Relation zueinander gesetzt hat, dass er sie oder ihre Mittelpunkte auf Geraden angeordnet hat, suchen Schülerinnen und Schüler nach solchen Geraden und versuchen sie als Aussagen zu interpretieren (im Sinn der Lernziele: bewusstes Wahrnehmen und Verwenden von Gestaltungsmitteln der Bildorganisation und deren Ausdrucksqualitäten sowie die Fähigkeit, Fachbegriffe der Werkbetrachtung in Bezug auf Absicht und Wirkung einsetzen zu können).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Materialsammlung Analysis

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier. Die Schülerinnen und Schüler sollen den Eigenschaften ganzrationaler Funktionen einüben. Nullstellen, Extremwerte und Wendepunkte berechnen können. den Einfluss eines Parameters auf eine Kurvenschar erkennen können. die Herleitung von Ortskurven vertiefen. grundlegende Zusammenhänge kontinuierlich wiederholen. kooperieren und sozial interagieren können. Thema Kurvendiskussion ganzrationaler Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die ganzrationalen Funktionen bilden häufig den Einstieg in die Kurvendiskussion. Diese Unterrichtseinheit behandelt typische Standardaufgaben. Ihre Umsetzung in Form dynamischer Übungsblätter ermöglicht einen individualisierten, experimentellen und eigenaktiven Lösungsprozess. Technische Hinweise und Didaktik Tipps und Screenshots zur Nutzung der Bedienfelder und Informationen zum didaktischen Konzept der dynamischen Übungsblätter Die Schülerinnen und Schüler sollen ganz- und gebrochen-rationale Funktionen sicher ableiten können. Funktionswerte berechnen können. Funktionsterme in einen Computer (hier: Mobiltelefon) eingeben. Geradengleichungen bestimmen können. zu einem Punkt des Graphen einer Funktion die Tangente und die Normale bestimmen können. ihr Ergebnis anhand einer grafischen Darstellung selbst überprüfen. Thema Kurvendiskussionen, hier: Tangenten und Normalen mit Mobiltelefon-Unterstützung Autor Mirko König Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 2-3 Stunden Technische Voraussetzungen möglichst ein Java-Mobiltelefon pro Person (MIDP 2.0, CLDC 1.1) Software Analysis mobil (JavaME-Programm), möglichst auf jedem Mobiltelefon der Lernenden zu installieren (Shareware, 10 € pro Einzellizenz); Lehrpersonen, die mit ihrem Kurs gemeinsam das Programm nutzen möchten, können sich für eine kostenlose Klassen-Lizenz an den Autor wenden: mail-at-analysismobil.com). Bei den Kurvendiskussionen müssen die Schülerinnen und Schüler das in der Analysis Gelernte anwenden und in komplexer Form umsetzen. Dabei geht einigen schon einmal der Überblick verloren, und es entstehen Fragen wie: "Muss ich jetzt f, f' oder f'' verwenden?". Dies lässt sich durch übersichtliche Schrittfolgen vermeiden. Kommen aber Anwendungsaufgaben wie die zu Tangenten und Normalen hinzu, kann die als erreicht geglaubte Sicherheit wieder schwinden. Hier können Visualisierungen helfen, die Ergebnisse zu kontrollieren. Von den Lernenden mit Bleistift und Millimeterpapier erstellte Graphen reichen hier oft noch nicht aus, da der Erfahrungsschatz an bereits gesehenen Funktionen und deren Graphen noch zu klein ist. Überdies hängt die Richtigkeit des Graphen direkt von den Rechenfertigkeiten ab. Ein Computerprogramm mit einer Funktionseingabe und einer grafischen Funktionsanzeige (Funktionsplotter) kann hier die Anschauung gut unterstützen und eine unabhängige Kontrolle bieten. Der Computer ist in dem hier vorgestellten Fall ein Mobiltelefon, ein Gerät, das die Schülerinnen und Schüler in der Regel ständig parat haben. Allgemeine Hinweise und Materialien Ausgangssituation, Motivation und Zielstellung, allgemeine Anmerkungen zum Softwareeinsatz und Hinweise zum Einsatz der Materialien Die Schülerinnen und Schüler sollen erkennen, dass die Steigung der Tangente an eine Funktion sowohl negativ als auch positiv sein kann. wissen, dass am "tiefsten" und "höchsten Punkt" des Grafen die Steigung gleich Null ist. erkennen, dass die Steigung der Tangenten einer Parabel, als Funktion abgetragen, eine Gerade ergibt. erkennen, dass die Steigung der Tangenten eines Polynoms dritten Grades, als Funktion abgetragen, eine Parabel ergibt. den Zusammenhang zwischen Tangentensteigung und Ableitung einer Funktion erkennen. Thema Steigung und Ableitung einer Funktion Autor Markus Hohenwarter Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Schülerin/Schüler Software Java (Version 1.4 oder höher, kostenfrei); GeoGebra zum Erstellen eigener dynamischer Arbeitsblätter (kostenloser Download aus dem Internet) Die Schülerinnen und Schüler sollten bereits die erste Ableitung einfacher Polynome berechnen können. Die Lernumgebung dieser Unterrichtseinheit besteht aus HTML-Seiten, die mit jedem Internet Browser (zum Beispiel Internet Explorer, Netscape, Mozilla) betrachtet werden können. Damit auch die dynamischen Konstruktionen funktionieren, muss Java 1.4 (oder höher) installiert sein. Hinweise zum Einsatz der dynamischen Arbeitsblätter Falls Ihnen noch die erforderliche Java-Abspielumgebung fehlt, können Sie hier mithilfe von Screenshots einen ersten Eindruck von den Arbeitsblättern gewinnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die Schülerinnen und Schüler sollen die Begriffe der mittleren Steigung und der mittleren Änderungsrate kennen lernen. die Begriffe der momentanen Änderungsrate beziehungsweise des Differenzenquotienten erlernen. erkennen, dass der Differenzenquotient beziehungsweise die Ableitung die Steigung in einem Punkt angibt. verschiedene Ableitungsregeln kennen und anwenden können. die Begriffe Monotonie, Hoch-, Tief- und Wendepunkte kennen lernen. aus vorgegebenen Eigenschaften eine Funktion bestimmen können (Kurvendiskussion rückwärts). Die Schülerinnen und Schüler lernen mathematische Sachverhalte meist rein theoretisch kennen. In dieser Unterrichtsreihe wird der Versuch unternommen, unmittelbare Anschauung mit mathematischer Theorie zu verknüpfen. Den SchülerInnen wird veranschaulicht, was es bedeutet, wenn die erste Ableitung gleich Null ist und was passiert, wenn die zweite Ableitung ungleich Null ist. Die Schülerinnen und Schüler sollen die Sekantensteigung berechnen können. den Grenzübergang von der Sekantensteigung zur Tangentensteigung grafisch begründen können. erläutern können, warum die Differenz aus dem x-Wert des Punktes Q und dem x-Wert des Punktes P unendlich klein, aber niemals null wird. die Tangentensteigung als erste Ableitung der Funktion im Punkt P (1 / 1) erkennen und rechnerisch bestimmen können. den Differenzialquotienten als Grenzwert des Differenzenquotienten kennen und bestimmen können. Thema Vom Differenzen- zum Differenzialquotient Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Browser mit Java-Unterstützung, ein Rechner pro zwei Lernende, idealerweise Beamer; optional: grafikfähiger Taschenrechner TI-83, OHP-Projektion für Taschenrechner Die Schülerinnen und Schüler haben zu Beginn der Jahrgangsstufe 11 die Bestimmung der Steigung von Geraden geübt und damit die Sekantensteigung wiederholt. Parallel dazu haben sie den Differenzenquotienten als mittlere Änderungsrate kennen gelernt, um so den Weg für eine einfachere Behandlung der Differenzialrechnung in Anwendungszusammenhängen frei zu machen. Hinweise zum Einsatz der Arbeitsblätter und des Applets Das Verständnis der Thematik muss sukzessiv aufgebaut werden, um eine erfolgreiche Einführung in die Kurvendiskussion zu gewährleisten. Die Arbeitsblätter können Sie hier einzeln herunterladen. Die in dieser Unterrichtseinheit verwendete Lernumgebung nutzt diese Werkzeuge und bietet die Basis für einen aktiv-entdeckenden Zugang zur Ableitung der Sinus- und der Kosinusfunktion, bei dem die Schülerinnen und Schüler weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen dabei auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Ableitung der Sinus- und der Kosinusfunktion experimentell entdecken. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Ableitung der Sinus- und Kosinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 11. bis 12. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java2-Unterstützung, Java Runtime Environment Software GEONExT (kostenloser Download) Beim Aufbau der Differentialrechnung stehen in der Regel Potenz- und Polynomfunktionen am Anfang, die Schülerinnen und Schüler bestimmen Ableitungen, indem sie den Differenzialquotienten als Grenzwert explizit berechnen. Bei der Ableitung der trigonometrischen Funktionen ist dieser Weg relativ aufwändig. Er erfordert trigonometrische und algebraische Umformungen, die in der Regel von der Lehrkraft in wohl durchdachter Reihenfolge vorgeführt und von den Schülerinnen und Schülern bestenfalls nachvollzogen werden, die allerdings zum Verständnis für das Wesen der Ableitung wenig beitragen. Deshalb erscheint insbesondere bei den trigonometrischen Funktionen ein experimenteller und entdeckender Zugang zur Ableitung sinnvoll und für die Schülerinnen und Schüler besonders einprägsam. Unterrichtsverlauf und technische Hinweise Bei der Arbeit mit der Lernumgebung ist eigenständiges Arbeiten und Entdecken ebenso gefordert wie der Austausch mit den Mitschülern. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen gegebene Größen bestimmen. Zielfunktionen aus gegebenen Größen herleiten. Extremstellen der Zielfunktionen bestimmen und das Verfahren der Kurvendiskussion anwenden (notwendige Bedingung für Extremstellen). gewonnene Lösungen diskutieren und interpretieren. einfache Extremwertprobleme lösen. Titel Einfache Extremwertprobleme mit Derive 5.0 Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 6 Stunden Technische Voraussetzungen 1 Rechner für zwei Lernende, Beamer Software Derive 5.0 Schullizenz, siehe Zusatzinformationen Bei der Behandlung der Extremwertprobleme stellen sich für die Schülerinnen und Schüler häufig zwei Probleme: die Isolierung gegebener und gesuchter Größen aus der vorhandenen Textaufgabe und das Aufstellen der entsprechenden Zielfunktion. Eine gemeinsam erarbeitete Strategie zur Lösung dieser Probleme ist notwendig, um den Lernenden die nötige Sicherheit im Umgang mit diesem Bereich der Mathematik zu geben. Ein Grundproblem, das im Mathematikunterricht immer wieder auftaucht - und nicht nur im Rahmen dieser Unterrichtsreihe -, ist die "Versorgung" der Rechenschritte und Lösungen mit verständlichen nachvollziehbaren Kommentaren und Erläuterungen für die Lernenden. Das CAS Derive bietet die dazu nötigen Möglichkeiten. Die Aufgaben dieser Unterrichtseinheit konnten von allen Lernenden gut nachvollzogen werden. Erarbeitete Lösungen ließen sich sofort am Graphen der Zielfunktion, insbesondere in den Extrempunkten, überprüfen. Unterrichtsverlauf Beschreibung der einzelnen Unterrichtsphasen Aufgaben und Musterlösungen Derive-Dateien und Screenshots Die Schülerinnen und Schüler sollen anhand gegebener Informationen und Eigenschaften eine Funktionsgleichung bestimmen können. aus den gegebenen (notwendigen) Bedingungen der Funktion das Gleichungssystem aufstellen können. das aufgestellte Gleichungssystem mithilfe des TI-83, mithilfe von Derive beziehungsweise durch Additions-, Subtraktions- und Einsetzungsverfahren lösen können. Thema Steckbriefaufgaben (Kurvendiskussion rückwärts) Fach Mathematik Autorin Sandra Schmidtpott Zielgruppe Jahrgangsstufe 12 (Grundkurs) Zeitraum 4-6 Unterrichtsstunden grafikfähiger Taschenrechner (optional) TI-83, OHP-Projektion Derive (optional) ein Rechner pro zwei Lernende, idealerweise Beamer virtueller Klassenraum Einrichtung eines virtuellen Klassenraums durch die Lehrkraft bei lo-net (siehe Internetadresse), Zugriff der Lernenden außerhalb des Unterrichts auf Rechner mit Internetanschluss Die Lernenden arbeiteten während der Unterrichtseinheit motiviert und konzentriert. Als großes Plus hat sich die Arbeit am heimischen Rechner mit dem virtuellen Klassenraum von lo-net erwiesen. Dies hat nicht nur das Klima im Kurs nachhaltig positiv beeinflusst, sondern auch eine neue, "coole" Art des Unterrichts mit sich gebracht. Denn wo trifft man schon mal eine Lehrkraft im Chat oder wird von der Lehrerin dazu aufgefordert, Ergebnisse vor dem Unterricht den anderen zugänglich zu machen? Erfahrungen mit dem virtuellen Klassenraum Der Austausch von Hilfestellungen, Materialien Ergebnissen und Meinungen im virtuellen Klassenraum fördert die Selbstständigkeit der Schülerinnen und Schüler. Rechen- und Datenverarbeitungswerkzeuge, Arbeitsblätter Zur Bearbeitung der Steckbriefaufgaben konnten das CAS Derive sowie grafikfähige Taschenrechner (TI-83) verwendet werden. Die Schülerinnen und Schüler sollen für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen können. den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern können. analytisch und geometrisch begründen können, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. eine geeignete Basis a bestimmen können, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion kennen. Thema Einführung der Eulerschen Zahl Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen 1 Rechner mit Internetanschluss für je 1-2 Lernende, Java Runtime Environment ; idealerweise Beamer, grafikfähiger Taschenrechner, OHP-Projektion für Taschenrechner, CAS Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". ?Geh weg oder ich differenzier dich!? Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler sollen den Begriff der Ober- und Untersumme kennen und anwenden. erkennen, dass bei einer sehr feinen Unterteilung der Intervalle Ober- und Untersumme gegeneinander konvergieren. erkennen, dass der Unterschied zwischen beiden beliebig klein wird (Grenzwertbegriff) und dass der Grenzwert der Ober- und Untersumme der Fläche unter dem Graphen entspricht. den Unterschied zwischen Integral und Fläche erklären. Integrale und Flächen berechnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen. Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Thema "Ein(-)Blick ins Chaos" - nichtlineare dynamische Systeme Autor Claus Wolfseher Fach Mathematik Zielgruppe ab Klasse 10, hochbegabte Schülergruppen (Mathematik-AG, Projektarbeit) Zeitraum abhängig von Behandlungstiefe 10 oder mehr Doppelstunden Technische Voraussetzungen Computer mit einfacher Programmierumgebung (zum Beispiel Basic, Pascal oder Java) und Tabellenkalkulationssystem (zum Beispiel "Calc" - siehe OpenOffice.org - oder Excel) Im ersten Teil der Unterrichtseinheit werden die Lernenden ausgehend von einer Reihe realer Papierkegel mit unterschiedlichen Öffnungswinkeln auf den nichtlinearen Zusammenhang zwischen dem Volumen eines Kegels und seinem Öffnungswinkel hingeführt. Nachdem dies rein intuitiv festgestellt wird, taucht dieser Aspekt in der algebraischen Herleitung der entsprechenden Formel wieder auf. Diese wird einer regulären Kurvendiskussion unterzogen, wobei sich bereits hier interessante Ergebnisse zeigen. Im zweiten Teil werden die Pfade des Lehrplans vorübergehend verlassen. Durch Spiegelung das Graphen der Volumenfunktion an den Koordinatenachsen entsteht eine Kurve, die im Weiteren vorbei an der Lemniskate von Jakob Bernoulli hin zur Tschirnhaus-Kubik führt. Die Kurven sollen dabei mit einem CAS erzeugt werden. Die Eigenschaft der Tschirnhaus-Kubik als Katakaustik der Parabel lässt sich dabei sehr einfach und schön mit einer dynamischen Geometriesoftware darstellen. Über die Kegelschnitte kommen die Lernenden von der Parabel zurück zum Ausgangskörper - dem Kegel. Dieser Zirkel zeigt einen großen Zusammenhang im Gebäude der Mathematik auf und soll dazu ermuntern, selbstständig auf weitere Entdeckungsreisen zu gehen. Die Schülerinnen und Schüler sollen Hypothesen über mathematische Zusammenhänge aus der Anschauung heraus formulieren können. einen nichtlinearen Zusammenhang erkennen und herleiten können. ein CAS zur grafischen Erzeugung von numerischen Näherungslösungen und höheren algebraischen Kurven bedienen können. selbstständig nach mathematik-historischen Zusammenhängen im Internet und einschlägiger Literatur recherchieren. in der Lemniskate von Bernoulli und der Tschirnhaus-Kubik exemplarische Vertreter höherer algebraischer Kurven kennen lernen. weitgehend eigenverantwortlich und kooperativ arbeiten. Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler der Jahrgangsstufe 11 konzipiert, die bereit sind, sich intensiver mit einem Thema zu befassen. Sie bietet sich daher beispielsweise im Rahmen eines "Pluskurses", einer Projektarbeit oder einer AG an. Die abschießende Aufgabe (siehe "arbeitsblatt_kegel_algebraische_kurven"), in der die Lernenden selbstständig recherchieren sollen, welche tiefgreifende Verbindung es zwischen einer Parabel und einem Kegel gibt, ist bewusst offen gehalten. Sie soll die Schülerinnen und Schüler anregen, weitere Aspekte des Themas zu erkunden und forschend tätig zu werden. Eine Präsentation der eigenen Ergebnisse kann schließlich die Beschäftigung mit diesem Thema abrunden und sich - je nach Zusammensetzung und Bedürfnissen der Lerngruppe - auf die gesamte Thematik, einzelne Aufgaben oder den Ausblick beziehen. Materialien und Literatur Hier können Sie die Materialien zum Beitrag einzeln herunterladen: Aufgaben, Geogebra-Applet, Beispiel-Code für das CAS Maple; außerdem finden Sie hier Literaturtipps. Ausgehend von einer elementaren Konstruktion einer Mittelsenkrechten erzeugen die Schülerinnen und Schüler mithilfe von GeoGebra Geradenscharen, deren Hüllkurve eine Parabel zu sein scheint. Die Lernenden erarbeiten Schritt für Schritt den Beweis dieser Vermutung. Ihr Ergebnis können sie wiederum an der GeoGebra-Konstruktion überprüfen. Indem sie anschließend die allgemeine Gleichung einer Parabeltangente aufstellen, erkennen sie, dass die anfangs konstruierten Mittelsenkrechten gerade die Parabeltangenten sind. Mithilfe dieser Erkenntnisse lässt sich nun ein einfaches Verfahren zur Konstruktion von Parabeltangenten finden. Die Schülerinnen und Schüler sollen Geradenscharen und deren Hüllkurve mithilfe eines dynamischen Arbeitsblattes erzeugen können. die Parabel als Ortskurve der konstruierten Mittelsenkrechten kennen lernen und die zugehörige Parabelgleichung aus den Konstruktionseigenschaften herleiten können. einen Zusammenhang mit den ihnen bekannten Parabeltangenten herstellen können. aus den gewonnen Erkenntnissen eine einfache Vorschrift zur Konstruktion einer Parabeltangente in einem vorgegebenen Punkt herleiten können. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Geradenscharen und Parabeln Autor Birgit Siebe Fach Mathematik Zielgruppe ab Jahrgangsstufe 11, begabte Schülerinnen und Schüler, Mathematik AG Zeitraum 3-8 Stunden Technische Voraussetzungen möglichst ein Computer pro Person Software Java-Plugin (Version 1.4 oder höher, kostenloser Download), GeoGebra (kostenloser Download) Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Ergänzend kann das Material auch auf eine Lernplattform wie lo-net² gestellt und zu Hause (weiter-)bearbeitet werden. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren. Die Schülerinnen und Schüler sollen die Kurvendiskussion von Polynomen durchführen können. mit trigonometrischen Funktionen rechnen können. Linearkombinationen erstellen können. Interpolation durchführen können. algorithmisches Verständnis erwerben. Die Schülerinnen und Schüler sollen den Umgang mit GeoGebra lernen. den Umgang mit wxMaxima lernen. kleine Programmroutinen selbst erstellen können. Thema Tschebyscheff-Polynome Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 4 Stunden Technische Voraussetzungen ein Rechner pro Schülerin oder Schüler Software GeoGebra , wxMaxima (kostenloser Download) Voraussetzung für diese Unterrichtseinheit ist, dass die Schülerinnen und Schüler Polynome und die Grundlagen der Differenzial- und Integralrechnung kennen. Sie sollten über den Hauptsatz der Algebra und die Zerlegbarkeit von Polynomen laut Vieta Bescheid wissen. Grundlegendes Vorwissen über Matrizen und Determinanten wird benötigt und die Nutzung von GeoGebra und wxMaxima sollte keine Probleme bereiten. Hinweise zur Durchführung im Unterricht Hier finden Sie verschiedene Zugänge und Aufgabenstellungen zu Tschebyscheff-Polynomen. Anregung und Erweiterung Eine Anregung zur Erweiterung des Themas bietet die Gauss-Tschebyscheff-Quadratur.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Einführung des Vektorbegriffs – interaktives Unterrichtsmaterial

Unterrichtseinheit
14,99 €

Die Einführung des Vektorbegriffs und damit die Vektorrechnung wird in dieser Unterrichtseinheit durch dreidimensionale Animationen mit GeoGebra unterstützt und somit die Anschaulichkeit erhöht.Die hier vorgestellte Lernumgebung hilft den Schülerinnen und Schülern der Oberstufe, die komplexe Problematik der Vektorrechnung schrittweise und weitgehend selbstständig zu erarbeiten. Die Lernenden erkennen dabei den Umgang mit Vektoren als wichtiges Mittel zur Darstellung geometrischer (insbesondere linearer) Gebilde und zur Lösung geometrischer Aufgaben. Die Unterrichtseinheit steht als interaktives Arbeitsblatt mit sechs Übungen zur Verfügung und kann unter diesem Link bearbeitet werden. Die im Material integrierten GeoGebra-Dateien stehen für Sie als Lehrkraft zusätzlich als Download zur Verfügung. So können die Dateien auch über die interaktiven Arbeitsblätter hinaus verwendet werden. Passend zu dieser Einheit gibt es vom Autor weitere interaktive Arbeitsmaterialien zu den folgenden Themen: Addition und Subtraktion von Vektoren Multiplikation von Vektoren und das Skalarprodukt Kreuzprodukt von Vektoren Spatprodukt von Vektoren Anwendung der Vektorrechnung Der hier vorgestellte interaktive Vektorkurs soll die Grundlage für die Arbeit mit Vektoren in der Oberstufe legen. Der Kurs führt die Schülerinnen und Schüler über einzelne Kapitel und interaktive Übungen zum sicheren Umgang mit der Vektorrechnung. Zunächst wird der Vektorbegriff erläutert und anschließend die Definition eines Vektors beschrieben. Dieser wird dann zwei- und dreidimensional anhand verschiedener Beispiele und Veranschaulichungen erläutert und vertieft. Mithilfe von vier Übungen werden die Inhalte gefestigt. Zu den Übungen stehen jeweils Lösungen für die Lernenden bereit. Im Anschluss erarbeiten sich die Schülerinnen und Schüler noch die Ortsvektoren und Repräsentanten. Hier geht es um die Vermittlung der Einsicht, dass alle Ortsvektoren durch unendlich viele Repräsentanten im Raum dargestellt werden können. Die Ermittlung von Repräsentanten mittels vorgegebener Anfangs- beziehungsweise Endpunkte ist der Schwerpunkt der dazugehörigen interaktiven Übungen. Für diesen Themenabschnitt stehen zwei Übungen bereit. Die Lernenden können die Arbeitsblätter in Einzel- oder Paararbeit nutzen. Vorwissen und technische Voraussetzungen Bei der Einführung des interaktiven Arbeitsblattes sollte der Umgang mit GeoGebra erläutert werden, falls die Software den Lernenden nicht bekannt ist. Diese kann zum Beispiel mithilfe eines Beamers durchgeführt werden. Für die Nutzung der Übungen zur Einführung der Vektorrechung bedarf es Tablets oder Computer mit einer Internetverbindung, da die Informationstexte, Grafiken, Videos, Applets und 3D-Animationen in einer HTML-Seite eingebunden sind. Alle 3D-Konstruktionen (die mit dem 3D Rechner von GeoGebra erstellt worden sind) können mit der GeoGebra-App auch in Augmented Reality betrachtet werden. So kann man diese Konstruktionen direkt in den Klassenraum holen. Fachbezogene Kompetenzen für den Grundkurs Die Schülerinnen und Schüler lernen die Begriffe Koordinatensystem, Vektor und Betrag eines Vektors kennen. lernen die Begriffe Ortsvektor und Repräsentant eines Vektors kennen. berechnen den Betrag eines Vektors und bestimmen Ortsvektoren und Repräsentanten. Erweiterte Lernziele für den Leistungskurs Die Schülerinnen und Schüler wiederholen eigenverantwortlich Grundkenntnisse zu Vektoren. interpretieren mithilfe des Computers räumliche Darstellungen. Medienkompetenz Die Schülerinnen und Schüler untersuchen Vektordarstellungen mithilfe des Computers oder Tablets. verwenden dynamische Geometriesoftware. Sozialkompetenz Die Schülerinnen und Schüler üben Teamfähigkeit und unterstützen sich gegenseitig. erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Vektorrechnung – Spatprodukt

Kopiervorlage / Interaktives

Die Einführung des Spatproduktes von Vektoren wird in diesem Arbeitsmaterial durch GeoGebra 3D-Animationen unterstützt und damit die Anschaulichkeit erhöht.In diesem Arbeitsmaterial geht es um das Spatprodukt von Vektoren. Der Begriff des Spates (Parallelepiped) wird erklärt und der Zusammenhang zwischen Spatprodukt und dem Volumen des Parallelepipedes erläutert. Anhand einer Beispielrechnung wird die Bildung des Spatproduktes ausführlich dargestellt. In der GeoGebra 3D-Animation der Einführungsseite wird ein Parallelepiped visualisiert und zu den gegebenen Vektoren der Spat angezeigt. Durch die Betrachtungsmöglichkeit aus unterschiedlichen Perspektiven wird der Zusammenhang zwischen den Ausgangsvektoren und dem Spat sehr deutlich. Die Lernenden können die Arbeitsblätter in Einzel- oder Paararbeit nutzen. Die im Material integrierten GeoGebra-Dateien stehen für Sie als Lehrkraft zusätzlich als Download zur Verfügung. So können die Dateien auch über die interaktiven Arbeitsblätter hinaus verwendet werden. Weitere Materialien des Autors zum Themenbereich Vektorrechnung finden Sie hier: Einführung des Vektorbegriffs Addition und Subtraktion von Vektoren Multiplikation von Vektoren und das Skalarprodukt Kreuzprodukt von Vektoren Anwendung der Vektorrechnung Vorwissen und technische Voraussetzungen Bei der Einführung des interaktiven Arbeitsblattes sollte der Umgang mit GeoGebra erläutert werden, falls die Software den Lernenden nicht bekannt ist. Diese kann zum Beispiel mithilfe eines Beamers durchgeführt werden. Für die Nutzung der Übungen zur Einführung der Vektorrechung bedarf es Tablets oder Computer mit einer Internetverbindung, da die Informationstexte, Grafiken, Videos, Applets und 3D-Animationen in einer HTML-Seite eingebunden sind. Alle 3D-Konstruktionen (die mit dem 3D Rechner von GeoGebra erstellt worden sind) können mit der GeoGebra-App auch in Augmented Reality betrachtet werden. So kann man diese Konstruktionen direkt in den Klassenraum holen. Fachkompetenz Die Schülerinnen und Schüler beherrschen das Spatprodukt. berechnen das Volumen eines Parallelepipeds. Medienkompetenz Die Schülerinnen und Schüler untersuchen Vektordarstellungen mithilfe des Computers oder Tablets. verwenden dynamische Geometriesoftware. Sozialkompetenz Die Schülerinnen und Schüler üben Teamfähigkeit und unterstützen sich gegenseitig. erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Vektorrechnung – Addition und Subtraktion

Interaktives

In diesem interaktiven Arbeitsmaterial dreht sich alles um die Addition und Subtraktion von Vektoren. Die Schülerinnen und Schüler bearbeiten dazu digitale Arbeitsblätter mit Visualisierungen durch GeoGebra sowie Übungen als Lernkontrolle.In diesem interaktiven Arbeitsmaterial geht es um die ersten Rechenoperationen mit Vektoren. Dazu wird zuerst das Prinzip der koordinatenweisen Addition der Vektoren erläutert. Die entsprechende geometrische Interpretation wird über eine 3D-GeoGebra-Datei veranschaulicht. Der zweite Schwerpunkt ist die Vektorsubtraktion. Diese basiert im Wesentlichen auf der Vektoraddition. Statt einen Vektor von einem anderen Vektor zu subtrahieren, wird nun der entgegengesetzte Vektor gebildet und dieser zum anderen Vektor addiert. Die hinterlegte GeoGebra-Datei zeigt analog zur Vektoraddition die geometrische Interpretation der Vektorsubtraktion. Die Lernenden können die Arbeitsblätter in Einzel- oder Paararbeit nutzen. Die im Material integrierten GeoGebra-Dateien stehen für Sie als Lehrkraft zusätzlich als Download zur Verfügung. So können die Dateien auch über die interaktiven Arbeitsblätter hinaus verwendet werden. Weitere Materialien des Autors zum Themenbereich Vektorrechnung finden Sie hier: Einführung des Vektorbegriffs Multiplikation von Vektoren und das Skalarprodukt Kreuzprodukt von Vektoren Spatprodukt von Vektoren Anwendung der Vektorrechnung Vorwissen und technische Voraussetzungen Bei der Einführung des interaktiven Arbeitsblattes sollte der Umgang mit GeoGebra erläutert werden, falls die Software den Lernenden nicht bekannt ist. Diese kann zum Beispiel mithilfe eines Beamers durchgeführt werden. Für die Nutzung der Übungen zur Einführung der Vektorrechung bedarf es Tablets oder Computer mit einer Internetverbindung, da die Informationstexte, Grafiken, Videos, Applets und 3D-Animationen in einer HTML-Seite eingebunden sind. Alle 3D-Konstruktionen (die mit dem 3D Rechner von GeoGebra erstellt worden sind) können mit der GeoGebra-App auch in Augmented Reality betrachtet werden. So kann man diese Konstruktionen direkt in den Klassenraum holen. Fachkompetenz Die Schülerinnen und Schüler beherrschen die Addition von Vektoren. beherrschen die Subtraktion von Vektoren. Medienkompetenz Die Schülerinnen und Schüler untersuchen Vektordarstellungen mithilfe des Computers oder Tablets. verwenden dynamische Geometriesoftware. Sozialkompetenz Die Schülerinnen und Schüler üben Teamfähigkeit und unterstützen sich gegenseitig. erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Vektorrechnung – Anwendung

Interaktives

Dieses Arbeitsmaterial zur Vektorrechnung thematisiert die Anwendungen in der räumlichen Geometrie.Das Arbeitsmaterial "Anwendung" beinhaltet die interaktive Lösung eines Problems, das in der Praxis häufig vorkommt: die Berechnung des Flächeninhalts eine Dreiecks im Raum. Die Schülerinnen und Schüler werden schrittweise zur Lösung der Aufgabe geführt: Von der Erstellung der Ortsvektoren sowie der Richtungsvektoren des Dreieckes über die Berechnung des Kreuzproduktes bis hin zur Berechnung des Flächeninhaltes sind die Lernenden angehalten, die Aufgabe in kleineren Teilschritten selbstständig zu lösen. Die GeoGebra 3D-Animation zeigt auch hier wieder deutlich den Zusammenhang zwischen den Punktkoordinaten und dem Flächeninhalt des aufgespannten Dreiecks. Durch die Veränderung der Lage der Punkte wird simultan der entsprechende Flächeninhalt berechnet und angezeigt. Durch die freie Wahl der Lage der Dreiecksebene wird klar, dass diese Zusammenhänge wirklich für jedes räumliche Dreieck gelten müssen. Die Lernenden können die Arbeitsblätter in Einzel- oder Partnerarbeit nutzen. Die im Material integrierten GeoGebra-Dateien stehen für Sie als Lehrkraft zusätzlich als Download zur Verfügung. So können die Dateien auch über die interaktiven Arbeitsblätter hinaus verwendet werden. Weitere Materialien des Autors zum Themenbereich Vektorrechnung finden Sie hier: Einführung des Vektorbegriffs Addition und Subtraktion von Vektoren Multiplikation von Vektoren und das Skalarprodukt Kreuzprodukt von Vektoren Spatprodukt von Vektoren Vorwissen und technische Voraussetzungen Bei der Einführung des interaktiven Arbeitsblattes sollte der Umgang mit GeoGebra erläutert werden, falls die Software den Lernenden nicht bekannt ist. Diese kann zum Beispiel mithilfe eines Beamers durchgeführt werden. Für die Nutzung der Übungen zur Einführung der Vektorrechung bedarf es Tablets oder Computer mit einer Internetverbindung, da die Informationstexte, Grafiken, Videos, Applets und 3D-Animationen in einer HTML-Seite eingebunden sind. Alle 3D-Konstruktionen (die mit dem 3D Rechner von GeoGebra erstellt worden sind) können mit der GeoGebra-App auch in Augmented Reality betrachtet werden. So kann man diese Konstruktionen direkt in den Klassenraum holen. Fachkompetenz Die Schülerinnen und Schüler beherrschen die Addition von Vektoren. beherrschen die Subtraktion von Vektoren. Medienkompetenz Die Schülerinnen und Schüler interpretieren mithilfe des Computers räumliche Darstellungen mittels Vektorrechnung. führen mithilfe des Computers Körperberechnungen mittels Vektorrechnung durch. Sozialkompetenz Die Schülerinnen und Schüler üben Teamfähigkeit und unterstützen sich gegenseitig. erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Vektorrechnung – Kreuzprodukt

Interaktives

In diesem interaktiven Arbeitsmaterial dreht sich alles um das Kreuzprodukt von Vektoren. Die Schülerinnen und Schüler bearbeiten dazu digitale Arbeitsblätter mit Visualisierungen durch GeoGebra sowie Übungen als Lernkontrolle.Dieses Arbeitsmaterial widmet sich der auch als Kreuzprodukt bezeichneten Vektormultiplikation. Es wird gezeigt, wie man mithilfe der Sarruschen Regel und der Einheitsvektoren das Kreuzprodukt ermittelt. Die Erläuterungen dazu erfolgen kleinschrittig und mit Unterstützung eines Farbcodes. Sie führen zwingend zu der Erkenntnis, dass der Ergebnisvektor ein Normalenvektor für beide Operanden sein muss. Diese Erkenntnis wird dann auch gleich mittels der Orthogonalitätsbedingung für Vektoren überprüft. In der GeoGebra 3D-Animation wird die Eigenschaft des Ergebnisvektors – ein Normalenvektor zu sein – verdeutlicht, indem der Ergebnisvektor erzeugt und die Ebene der Ausgangsvektoren farbig markiert wird. Durch Schwenken des Koordinatensystems kann man sich anschaulich davon überzeugen, dass der Ergebnisvektor senkrecht auf der Ebene steht. Interaktive Übungen runden das Arbeitsmaterial ab. Die Lernenden können die Arbeitsblätter in Einzel- oder Paararbeit nutzen. Die im Material integrierten GeoGebra-Dateien stehen für Sie als Lehrkraft zusätzlich als Download zur Verfügung. So können die Dateien auch über die interaktiven Arbeitsblätter hinaus verwendet werden. Weitere Materialien des Autors zum Themenbereich Vektorrechnung finden Sie hier: Einführung des Vektorbegriffs Addition und Subtraktion von Vektoren Multiplikation von Vektoren und das Skalarprodukt Spatprodukt von Vektoren Anwendung der Vektorrechnung Vorwissen und technische Voraussetzungen Bei der Einführung des interaktiven Arbeitsblattes sollte der Umgang mit GeoGebra erläutert werden, falls die Software den Lernenden nicht bekannt ist. Diese kann zum Beispiel mithilfe eines Beamers durchgeführt werden. Für die Nutzung der Übungen zur Einführung der Vektorrechung bedarf es Tablets oder Computer mit einer Internetverbindung, da die Informationstexte, Grafiken, Videos, Applets und 3D-Animationen in einer HTML-Seite eingebunden sind Alle 3D-Konstruktionen (die mit dem 3D Rechner von GeoGebra erstellt worden sind) können mit der GeoGebra-App auch in Augmented Reality betrachtet werden. So kann man diese Konstruktionen direkt in den Klassenraum holen. Fachkompetenz Die Schülerinnen und Schüler lernen die Definition und Eigenschaften der Orthogonalitätsbedingung für Vektoren kennen. beherrschen das Vektorprodukt (Kreuzprodukt). Medienkompetenz Die Schülerinnen und Schüler untersuchen Vektordarstellungen mithilfe des Computers oder Tablets. verwenden dynamische Geometriesoftware. Sozialkompetenz Die Schülerinnen und Schüler üben Teamfähigkeit und unterstützen sich gegenseitig. erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II
ANZEIGE