• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 5
Sortierung nach Datum / Relevanz
Kacheln     Liste

Flächenberechnung mit TurboPlot

Unterrichtseinheit

Die Schülerinnen und Schüler entdecken in einer Doppelstunde am Beispiel der Berechnung von Blumenbeetgrößen den Zusammenhang zwischen Flächengrößen und dem Verfahren der Integration. Da die Berechnung verschiedener Ober- und Untersummen arbeits- und zeitintensiv ist, wird bei der Visualisierung die kostenlose Software TurboPlot als „Zeichenknecht“ eingesetzt.Zu Beginn des Unterrichts wird zunächst auf grundlegende mathematische Kenntnisse aus dem Bereich der Flächenberechnung zurückgegriffen, mit deren Hilfe dreieckige Flächengrößen ermittelt werden. Durch eine gezielte Anweisung zur Berechnung der bestimmten Integrale können die Schülerinnen und Schüler schließlich eine Vermutung über den Zusammenhang zwischen Integral und Flächengröße formulieren. Im Rahmen der Flächenberechnung eines nicht linear umrandeten Blumenbeetes erfolgt anschließend die Verallgemeinerung der Thematik auf nichtlineare Funktionen. Dabei wird der Schwerpunkt auf die Visualisierung gelegt, um den Zusammenhang zwischen Flächengrößen und Integration zu verdeutlichen. Auf dessen konkrete mathematische Herleitung wird jedoch verzichtet. Dies kommt dem Unterricht in Grundkursen und Lernenden mit schwächerem Leistungsniveau entgegen.Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen.Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Zu Beginn der Doppelstunde werden die Schülerinnen und Schüler anhand eines Plakats sowie durch einen kurzen Lehrervortrag mit einer Problemstellung konfrontiert: Sie sollen die Flächengrößen verschiedener Blumenbeete berechnen. Nachdem in einem Unterrichtsgespräch Möglichkeiten zur Messung der Flächengröße genannt worden sind und die Berechnung von Dreiecksflächen thematisiert wurde, setzen sich die Lernenden in arbeitsteiliger Gruppenarbeit mit der konkreten Berechnung von zwei dreieckigen Flächen auseinander. Diese ermitteln sie zunächst mithilfe ihrer Kenntnisse aus der Sekundarstufe I. Anschließend werden sie dazu angeleitet, das bestimmte Integral der zugehörigen linearen Funktion zu berechnen. Anhand des Vergleichs der beiden Ergebnisse formulieren sie dann eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Die Lernenden erhalten zur Gruppenarbeit eines der beiden Arbeitsblätter und je Gruppe eine Skizze der Blumenbeete. Die Musterlösungen können Sie sich hier ebenfalls herunterladen. Im Anschluss an eine kurze Präsentation der Ergebnisse mithilfe von Plakaten am Ende der ersten Stunden und dem Austausch der Vermutungen der Gruppen bezüglich des Zusammenhangs zwischen Integral und Flächeninhalt wird die Berechnung des Sonnenblumenbeetes, das durch eine Parabel begrenzt wird, thematisiert. Mithilfe des in der ersten Stunde gelernten Verfahrens sollen die Lernenden zunächst gemeinsam die zugehörige quadratische Funktion integrieren und eine Vermutung über die Größe der Fläche äußern. Um die Vermutung jedoch zu bestätigen, wird die Problematik der Flächenberechnung anhand des Funktionsgraphen einer Funktion vierter Ordnung verallgemeinert. Fragend-entwickelnd werden hierzu Möglichkeiten der Flächenberechnung erarbeitet, bevor die Veranschaulichung der Bildung von Unter- und Obersummen mithilfe von Folien schrittweise verdeutlicht wird. Bevor das Integral unter der Parabelfläche ausgerechnet wird, wird die Folie mit der Fläche gezeigt und die Funktion angegeben. Dann berechnen die Schüler gemeinsam das bestimmte Integral und äußern die Vermutung über die Fläche (tafelbild_sonnenblumenbeet.pdf). Die Grafen (grafen.pdf) werden dann mithilfe von Folien nacheinander auf den OHP gelegt, um die Annäherung der Ober- und Untersummen an die Fläche zu verdeutlichen und die Begriffe zu erläutern. Zur wertmäßigen Bestätigung der Vermutung setzen sich die Schülerinnen und Schüler in Partnerarbeit mit der quadratischen Funktion auseinander, durch die das dritte bearbeitete Blumenbeet (Begrenzung durch eine Parabel) abgegrenzt wird (partnerarbeit_turboplot.pdf). Hierzu wird die Software TurboPlot eingesetzt (partnerarbeit_turboplot_anleitung.pdf; siehe auch Internetadresse), in welche die Lernenden die Funktionsgleichung eingeben und sich dann schrittweise verschiedene Unter- und Obersummen anzeigen lassen. Bei TurboPlot handelt es sich um ein kostenloses Programm aus dem Internet. Da die explizite Berechnung verschiedener Ober- und Untersummen mit hohem Rechenaufwand verbunden ist und viel Unterrichtszeit in Anspruch nehmen würde, wird in dieser Phase, in der der Schwerpunkt auf Visualisierung liegt, die Software als Zeichenknecht eingesetzt. Die Sozialform der Partnerarbeit wird hierbei verwendet, damit sich die Lernenden im Umgang mit der Software unterstützen und ihre Beobachtungen diskutieren. Die mithilfe von TurboPlot gemachten Beobachtungen werden auf Arbeitsblättern festgehalten und können anschließend im Rahmen einer kurzen Präsentationsphase mithilfe von Folienabschnitten verglichen werden. Hierbei soll insbesondere die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen führen und den Zusammenhang zwischen Flächeninhalt und Integral begründen (partnerarbeit_turboplot.pdf). Zur allgemeinen Formulierung und Einführung der mathematischen Schreibweise des bestimmten Integrals wird am Ende ein kurzer Lückentext im Klassengespräch ergänzt (partnerarbeit_turboplot.pdf, Seite 3). Abschließend erhalten die Schülerinnen und Schüler eine Übungsaufgabe, die zur Vertiefung des Erlernten dient (arbeitsblatt_vertiefung.pdf).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Flächenberechnung

Unterrichtseinheit

Mithilfe dieses Arbeitsblattes berechnen die Schülerinnen und Schüler am Beispiel alltäglicher Sachprobleme auf einer Baustelle die Flächeninhalte verschiedener geometrischer Figuren. Dadurch haben die Lernenden die Möglichkeit, ihre Kenntnisse im Bereich der Flächenberechnung zu vertiefen. Dabei wenden sie die entsprechenden Formeln an und vertiefen ihr Wissen zum Satz des Pythagoras. Das Material kann ergänzend zur Unterrichtseinheit "Flächen- und Winkelberechnungen" oder davon unabhängig genutzt werden. Mithilfe des Unterrichtseinheit " Flächen- und Winkelberechnungen " ergänzenden Arbeitsblattes können die Schülerinnen und Schüler die Flächeninhalte verschiedener geometrischer Figuren am Beispiel alltäglicher Sachprobleme auf einer Baustelle berechnen. Sie können dadurch ihre Kenntnisse im Bereich der Flächenberechnung vertiefen. Sie wenden dazu entsprechende Formeln an und vertiefen ihr Wissen zum Satz des Pythagoras. Die Lernenden berechnen die Flächeninhalte zusammengesetzter geometrischer Figuren, indem Sie charakteristische Eigenschaften erkennen, Beziehungen zwischen Figuren und Längen analysieren sowie Formeln zur Bestimmung der Fläche anwenden. Darüber hinaus sollen sie Flächen- und Längeneinheiten umrechnen können. Möglichkeiten der Differenzierung Bei Bedarf können zum Bearbeiten der Arbeitsblätter weitere Hilfsmittel mit Tipps und Hinweisen zur Verfügung gestellt werden, der Schwierigkeitsgrad gewählt und/oder die Anzahl der Aufgaben reduziert werden. Darüber hinaus besteht die Möglichkeit, die Aufgaben auf unterschiedlichen Wegen zu lösen – nicht immer ist eine Berechnung notwendig. Durch Erkennen von Zusammenhängen und mithilfe logischen Denkens können die Schülerinnen und Schüler Flächen berechnen oder Seitenlängen ermitteln. Mögliche Umsetzung Als Einstieg kann die Lehrkraft eine Luftaufnahme einer Baustelle projizieren. Es wird auf die begrenzte Lagerfläche hingewiesen und die Schülerinnen und Schüler sollen Ideen sammeln, wie die Fläche berechnet werden könnte, wobei sie ihr Vorwissen zum Thema Flächenberechnungen nutzen. Der Alltagsbezug kann durch Fragen wie "In welcher Situation musstet ihr Flächen berechnen?" oder "Wie habt ihr das Problem gelöst?" hergestellt werden. In der Erarbeitung tragen die Schülerinnen und Schüler ihr Vorwissen über die Formeln zur Flächen- und Umfangsberechnung verschiedener geometrischer Figuren zusammen und sammeln diese in einer Mindmap. Sie wenden die Fachterminologien an und erläutern kurz die Anwendung der Formeln. Danach bearbeiten sie die Aufgaben dieses Arbeitsblattes . Sie berechnen den Flächeninhalt und den Umfang verschiedener geometrischer Figuren beziehungsweise zusammengesetzter Figuren, indem sie die entsprechenden Formeln anwenden. Ferner vertiefen und wiederholen die Schülerinnen und Schüler den Satz des Pythagoras und wandeln Flächen- und Längeneinheiten um. Anmerkung: Zur Überprüfung der Ergebnisse und/oder Skizzierung der geometrischen Formen kann zusätzlich ein Online-Tool (Online-Formel-Rechner) herangezogen werden. Zum Schluss präsentieren, diskutieren und beurteilen die Schülerinnen und Schüler ihre Arbeitsergebnisse. Einige Aufgaben können als Hausaufgabe bearbeitet werden.

  • Mathematik
  • Sekundarstufe I

Umfang und Flächeninhalt von einem Trapez

Unterrichtseinheit
14,99 €

Wie viel Kreppband und wie viele Sprühdosen werden benötigt, um das Logo einer bekannten Sportfirma an die Wand zu sprühen? In dieser Unterrichtseinheit geht es darum, mithilfe der mathematischen Modellierung den Umfang und den Flächeninhalt von Trapezen in einem Anwendungszusammenhang zu bestimmen. Viele Logos von Marken und Firmen bestehen aus geometrischen Formen. Ebenso ein Logo, welches Inhalt dieser Unterrichtseinheit ist, denn es besteht aus drei Trapezen. Ziel der Stunde ist es, die Frage zu lösen, wie viel Kreppband und wie viele Sprühdosen benötigt werden, um das Logo an eine Wand sprühen zu können. Die Erarbeitung beziehungsweise die Herleitung der Formel für den Flächeninhalt orientiert sich nach dem EIS-Prinzip von Brunner, in der ein Lerninhalt auf enaktiver (handelnder), ikonischer (bildlicher) und symbolischer (formalisierter) Ebene behandelt wird. In der enaktiven Phase legen die Schülerinnen und Schüler in Einzelarbeit das Trapez aus dem zusätzlichen Material so an das deckungsgleiche Trapez auf dem Arbeitsblatt an, dass ein bereits bekanntes Viereck (Parallelogramm) entsteht. Dies führt zur ikonischen Ebene, in der die Schülerinnen und Schüler in Paararbeit mithilfe des Bildes Erkenntnisse für den Flächeninhalt gewinnen. Auf der symbolischen Ebene werden dann schließlich die Flächeninhalte berechnet und die Erkenntnisse in eine verallgemeinernde Formel übersetzt. Nachdem die Formel für den Flächeninhalt gesichert ist, haben die Schülerinnen und Schüler das nötige Werkzeug, um die Modellierung " Wie viel Kreppband und wie viele Sprühdosen werden benötigt, um das Logo an eine Wand zu sprühen? " selbstständig zu bearbeiten. In Paararbeit werden alle relevanten Informationen in mathematische Terme und Gleichungen übersetzt und anschließend gelöst. Leistungsstärkere Schülerinnen und Schüler können sich darüber hinaus in einem zweiten Arbeitsblatt mit alternativen Flächeninhaltsberechnungsmöglichkeiten auseinandersetzen. Umfang und Flächeninhalt von einem Trapez Hinter dem Logo einer Sportmarke verstecken sich Trapeze, deren Umfänge und Flächeninhalte berechnet werden sollen. Da die Formeln für die Schülerinnen und Schüler noch unbekannt sind, bildet die Herleitung dieser Formeln den inhaltsbezogenen mathematischen Kern der Stunde. Der Umfang ist im Vergleich zum Flächeninhalt einfach hergeleitet. Wie bei allen geometrischen Formen entspricht der Umfang einfach der Summe aller Seitenlängen. Das ist den Lernenden bereits von anderen geometrischen Formen bekannt, weshalb der Fokus auf der Herleitung des Flächeninhalts liegt. Diese Herleitung soll gelingen, indem die Fläche durch geschickte Ergänzung auf bereits bekannte Flächen zurückgeführt wird, wodurch die Formel für die relevante Fläche abgeleitet werden kann. Zwei deckungsgleiche Trapeze werden hier zu einem Parallelogramm geformt. Den Flächeninhalt eines Parallelogramms berechnet man, indem man die Länge einer Grundseite mit der dazugehörigen Höhe multipliziert. Der Flächeninhalt des entstandenen Parallelogramms wird halbiert und es ergibt sich die Formel für den Flächeninhalt eines Trapezes. Didaktisch-methodische Analyse Methodisch ist die Unterrichtsstunde nach dem EIS-Prinzip mit Think-Pair-Share aufgebaut. Diese Herangehensweise bedient alle Lerntypen, da neben dem haptischen Arbeiten auch bildlich gearbeitet wird. Die erste Phase findet in Einzelarbeit statt, damit alle Lernenden nach dem Stundeneinstieg aktiviert bleiben und in die anschließende Paararbeit eigene Gedanken mitnehmen können. Durch die Paararbeit findet eine lernförderliche Kommunikation statt, die zum Formalisieren führt. Durch den problemorientierten Stundeneinstieg und das Lösen des Kreppband- und Sprühdosenproblems im zweiten Teil der Stunde findet eine automatische Binnendifferenzierung durch die mathematische Modellierung statt. Vorkenntnisse und Vorbereitung Die Schülerinnen und Schüler sollten die Flächeninhaltsformel eines Parallelogramms kennen, um diese Unterrichtseinheit zielgerecht bearbeiten zu können. Für die Vorbereitung muss das Arbeitsmaterial von der Lehrkraft ausgedruckt und ausgeschnitten werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler leiten selbstständig die Flächeninhaltsformel des Trapezes her. wenden die Flächeninhaltsformel im Modellierungskreislauf ab. bestimmten selbständig aus ihren mathematischen Ergebnissen eine reale Lösung für den Sachzusammenhang. Sozialkompetenz Die Schülerinnen und Schüler stellen ihre Überlegungen ihren Mitschülerinnen und Mitschülern nachvollziehbar vor. lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Flächen und Umfänge von geometrischen Formen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zu Geometrie betrachten die Lernenden Größen wie den Flächeninhalt und den Umfang der geometrischen Figuren Rechteck, Parallelogramm, Dreieck, Trapez und Kreissektor. Mithilfe von GeoGebra lassen sich die Berechnungsideen sehr anschaulich darstellen. In der Geometrie werden zur Beschreibung von Flächen Größen wie der Flächeninhalt und der Umfang betrachtet. In dieser Unterrichtseinheit erstellen die Schülerinnen und Schüler mithilfe von GeoGebra dynamisches Material zu Rechtecken, Parallelogrammen, Dreiecken, Trapezen und Kreissektoren sowie dessen geometrische Zusammenhänge für Flächeninhalte und Umfänge. Zuvor haben sie stets die Möglichkeit an sehr anschaulichen vorbereiteten GeoGebra-Dateien zu experimentieren, um Erfahrungen zu sammeln und Gesetzmäßigkeiten zu erkennen. Durch die Möglichkeit, schnell Änderungen vornehmen zu können, werden die Lernenden angeregt, selbst Fragestellungen zu ermitteln. Die Schülerinnen und Schüler entdecken außerdem Möglichkeiten, mithilfe von GeoGebra die Anschaulichkeit zu erhöhen. Lehrpläne sehen es vor, dass Schülerinnen und Schüler Flächeninhalte unterschiedlicher geometrischer Figuren ihrer Lebenswelt vergleichen, messen und schätzen. Mit GeoGebra lassen sich derartige Figuren einfach erstellen. Die Schülerinnen und Schüler können sich die Zusammenhänge für Fläche und Umfang für die grundlegenden Formen selbst erarbeiten und visualisieren, so dass ein besseres Verständnis für verschiedene Problemlösestrategien (beispielsweise Zerlegen, Auslegen von fremden Formen mit bekannten Flächentypen) entsteht, diese verwendet und eingeübt werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler produzieren und präsentieren. analysieren und reflektieren ihre erstellten GeoGebra Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). arbeiten im Team und geben Hilfestellungen. stoßen durch offene Fragestellungen auf neue Ideen und zeigen Engagement und Motivation.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Das Hühnerei mathematisch modellieren

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit hat das mathematische Modellieren eines Hühnereis zum Ziel. Dazu werden zunächst Schnittflächen von Ebenen mit einem Würfel sowie Rotationsebenen und daraus entstehende Körper betrachtet und dann mithilfe der Differential- und Integralrechnung Volumen und Oberflächeninhalte bestimmt. Die Inhalte werden mit GeoGebra visualisiert. In dieser Unterrichtseinheit werden die Lernenden mit vier Arbeitsblättern zur Idee herangeführt, wie sie mithilfe der Differential- und Integralrechnung ein Hühnerei vermessen können. In allen Arbeitsblättern steht der Einsatz von GeoGebra zur Visualisierung im Mittelpunkt. Auf dem ersten Arbeitsblatt werden Schnitte eines Würfels mit Ebenen betrachtet. Die Art der Schnittflächen hängt stark damit zusammen, wie die schneidende Ebene bezüglich des Würfels verläuft. Da sich die schneidende Ebene bewegt, lassen sich unterschiedliche Konstellationen betrachten. Auf dem zweiten Arbeitsblatt werden diese Betrachtungen durch weitere Lagen und Bewegungsmöglichkeiten der Ebenen bezüglich des Würfels erweitert und es erfolgen Betrachtungen von Schnitten mit weiteren Körpern. Es werden vor allem auch Körper mit gekrümmten Oberflächen betrachtet. Den Lernenden wird verdeutlicht, dass die Kenntnis der Schnittflächen ausreicht, um Körper zu beschreiben. Kenntnis von Maßzahlen wie Höhen und Längen und anderer beschreibender Größen führen zu einem bekannten Formelapparat für Volumen und Ober- beziehungsweise Mantelflächen. Eine interaktive Übung dient als Ergänzung zum Arbeitsblatt. Auf dem dritten Arbeitsblatt findet ein Übergang zur Differential- und Integralrechnung statt. Rotationskörper, die durch die Rotation einer Fläche um eine Achse entstehen, können mithilfe der Differential- und Integralrechnung erfasst werden. Anwendungen zu Körpern, die durch Rotation eines Halbkreises, der Wurzelfunktion oder einer Parabel entstehen, werden erarbeitet. Drei interaktive Übungen dienen als Ergänzung zum Arbeitsblatt. Auf dem letzten Arbeitsblatt geschieht der Übergang vom Halbkreis über Ellipsen zur "Eiform". Neben den Möglichkeiten durch Integration und Differentiation exakte Maßzahlen zu bestimmen, wird auch die Möglichkeit einer Annäherung thematisiert, um das Hühnerei möglichst exakt rechnerisch erfassen zu können. Wo Berechnungen von Hand mühsam – ja teilweise unmöglich – sind, können mit dem Einsatz von GeoGebra den Körpern Maßzahlen zugeschrieben werden. Am Bespiel der Körperform eines Eies wird aber auch gezeigt, dass die Software an Grenzen stößt. Für die Betrachtung eines eiförmigen Körpers werden zunächst die Formelapparate für die Körper Zylinder, Kegel und Kugel erarbeitet, sodass mit Radien, Längen und Höhen Volumen, Mantel- und Oberfläche bestimmt werden können. Im Zusammenhang mit der Differential- und Integralrechnung werden schließlich komplexere Rotationskörper mithilfe bestimmter Integrale berechenbar. Da für eine Ellipse und für ein Ei die Integrandenfunktionen zu komplex für händisches Rechnen werden, nutzt man CAS. Mithilfe mehrerer GeoGebra Simulationsdateien wird den Lernenden das Arbeiten mit der Integral- und Differentialrechnung vorgestellt, bis hin zu einem eiförmigen Körper. Interaktive Übungen dienen als Ergänzung zur Unterrichtseinheit. Fachbezogene Kompetenzen Die Schülerinnen und Schüler gewinnen Erkenntnisse zu verschiedenen Schnittflächen und Rotationskörpern durch experimentellen Umgang mit GeoGebra. wiederholen Teile des bekannten Formelapparates für Oberflächen und Volumen. erweitern und festigen Kenntnisse im Zusammenhang der Differential- und Integralrechnung. Medienkompetenz Die Schülerinnen und Schüler experimentieren mit interaktiven GeoGebra-Dateien. setzen mobile Endgeräte im Unterricht zur Modellierung des Hühnereis ein. analysieren und reflektieren mit von GeoGebra erzeugten Rotationskörpern. Sozialkompetenz Die Schülerinnen und Schüler steigern ihr Selbstwertgefühl und ihre Eigenverantwortung (Rückmeldungen zu Lösungsstrategien sowie Rückmeldungen und Hinweise beim Erarbeiten von Lösungen). lernen sich selbst durch die Differenzierungsmöglichkeiten in den Aufgabenstellungen einzuschätzen. zeigen durch offene Fragestellungen Engagement und Motivation und stoßen auf neue Ideen durch das Experimentieren in den Experimentierecken der verschiedenen Einheiten.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Flächenland – Unterricht gegen eindimensionales Denken

Unterrichtseinheit

In diesem fächerübergreifenden Unterrichtsprojekt gewinnen die Schülerinnen und Schüler anhand der Parabel "Flächenland" von Edwin A. Abbott grundlegende physikalische und ethisch-moralische Erkenntnisse. Das Buch kann zur Erhellung einiger fundamentaler Zusammenhänge beitragen.Kennen Sie Flächenland? Führen Sie Ihre Schülerinnen und Schüler in die zweidimensionale Welt eines kleinen Quadrates und lassen Sie sie einiges über Raum und Zeit, über Dimensionen und über ein- und mehrdimensionales Denken in einer ganz besonderen Gesellschaft entdecken. Die Flächenland-Parabel von Edwin A. Abbott (1838-1926), eine Gesellschaftssatire aus dem viktorianischen England, dient in der hier vorgestellten Unterrichtseinheit als Basis für grundlegende physikalische und ethisch-moralische Erkenntnisse. Sie kann zur Erhellung einiger fundamentaler Zusammenhänge beitragen. "Flächenland" bietet sich dabei für fächerübergreifende Unterrichtsprojekte an. Unterrichtsverlauf und Arbeitsmaterialien Die Unterrichtseinheit ist modular aufgebaut, Sie können also beliebig Module weglassen, austauschen oder auch erweitern. Dennoch wird auf den folgenden Seiten ein Unterrichtsverlauf beschrieben, der als Vorschlag zu verstehen ist. Dabei findet ein allmählicher Übergang von dem rein physikalisch-mathematischen Verständnis der Dimensionen zu den sozialkritischen und ethischen Aspekten im Zusammenhang mit eindimensionalem Denken statt. Was ist Flächenland? Für alle, die den Roman noch nicht kennen: Eine Kurzfassung der Story und worum es in der Parabel eigentlich geht. Allgemeine Hinweise, Modul 1 bis 3 Der thematische Einstieg erfolgt über ein Experiment oder die Betrachtung von Stereogrammen. Die Schülerinnen und Schüler lernen den Roman kennen, zeichen und betrachten verschiedendimensionale Formen und klären den Begriff der "Dimension". Modul 4 bis 8 Die Schülerinnen und Schüler beschäftigen sich mit den Verständnisschwierigkeiten zwischen der Kugel und dem Quadrat, der Rolle der Frauen in Flächenland und der politischen Dimension von Vorurteilen. Schließlich schreiben sie eine eigene Geschichte. Fächerverbindender Unterricht - Beispiel Mathematik Der Flächenland-Roman bietet sich auf vielfältige Weise für fächerverbindende Ansätze an. Wie schön (und humorvoll) diese im Fach Religion/Ethik durchgeführte Unterrichtseinheit mit der Behandlung der mathematischen Inhalte des Romans verzahnt werden kann, zeigt der folgende Beitrag aus dem Fachportal Mathematik. Die dort vorgestellte Lernumgebung kann zum Beispiel zwischen den Modulen 3 (Dimensionen) und 4 (Das Quadrat begegnet der Kugel) zum Einsatz kommen. Eine Reise ins "Flächenland" mit GEONExT Interaktive Applets, die mit der dynamischen Geometriesoftware GEONExT erzeugt wurden, veranschaulichen Schülerinnen und Schülern den mathematischen Hintergrund von Textpassagen aus dem Roman "Flächenland". Fachkompetenz Die Schülerinnen und Schüler erfahren und verstehen das Prinzip der Dimensionen. definieren den Begriff "Dimension" im physikalisch-mathematischen und im philosophisch-ethischen Sinne. können die (teilweise gefahrvolle) Situation eines "freien" Denkers innerhalb einer engstirnigen Gesellschaft nachvollziehen. lernen das Entdecken neuer Perspektiven und einer neuen, ungewohnten Weltsicht als innovativ und wichtig für den Erkenntnisfortschritt einer Gesellschaft kennen. erkennen Zusammenhänge zwischen eindimensionalem Denken und Vorurteilen. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet als Medium zur gezielten Recherche. lernen mit der Zeichenfunktion von Word (oder mit einer Geometriesoftware) umgehen. stellen eigene Beiträge ins Internet und diskutieren in einem Forum die Beiträge der Mitschülerinnen und Mitschüler. Der Roman "Flächenland" ("Flatland - A romance of many dimensions") des Briten Edwin A. Abbott erschien 1884 in England. Er zählt längst zu den Klassikern der Science-Fiction-Literatur, ist aber eigentlich eine geometrische Humoreske, ein in viele Richtungen lesbares und interpretierbares Gedankenexperiment, das als Gesellschaftssatire und als Plädoyer für die Freiheit des Denkens verstanden werden kann. Die Erzählung thematisiert die Situation des Denkers, der eine neue, riskante Sicht auf die Welt wagt - in einer Gesellschaft, die diese Perspektive (noch) nicht nachvollziehen kann und will. Physikalisch gesehen kann der Roman auch als Gleichnis für die Entdeckung der für uns schwer vorstellbaren "Raumzeit" dienen. Die Parabel von Flächenland zeigt, dass es Dimensionen gibt, die wir zwar nicht wahrnehmen oder anschaulich verstehen, die aber dennoch existieren können. Ein altes Quadrat, Bewohner der fiktiven 2D-Welt "Flächenland", erzählt von seinem zweidimensionalen Land, in dem Dreiecke, Vierecke und Kreise leben, die bestimmte, genau definierte und geordnete Funktionen und Kompetenzen haben, und von dem Besuch einer Kugel aus der 3D-Welt. Diese zunächst unerklärliche Erscheinung löst bei den einfachen Bewohnern von Flächenland Verwirrung und Panik aus. Dem cleveren und neugierigen Quadrat gelingt jedoch die Kommunikation mit der Kugel, es macht Reisen in das eindimensionale "Linienland" und das dreidimensionale "Raumland" und begreift das Prinzip der Dimensionen. Zurück in der Heimat versucht das Quadrat, von seinen Erlebnissen und Erkenntnissen zu berichten, wird aber von den Priestern, die das Wissen über die Existenz der dritten Dimension dem Volk vorenthalten wollen, bedroht und von deren Justizgewalt ins Gefängnis gebracht. Der Roman "Flächenland" (1884) von Edwin A. Abbott Infos zum Inhalt des Romans auf der Website der Humboldt-Gesellschaft. Flatland - A romance of many dimensions Die englischsprachige Ausgabe des Romans mit Illustrationen des Autors im Internet. Einige Punkte der Unterrichtseinheit setzen im Zusammenhang mit dem Thema Dimensionen einen recht hohen Abstraktionsgrad und auch ein gewisses geometrisches Grundverständnis voraus. Daher wird in diesen Modulen methodisch und inhaltlich zwischen jüngeren (Klasse 6 und 7) und älteren Schülerinnen und Schülern (Klasse 8 bis 10) unterschieden. Die Arbeitsblätter werden in diesen Fällen in zwei Varianten angeboten. Verschiedendimensionales auf dem Schulhof Besonders für jüngere Schülerinnen und Schüler ist es sicher sinnvoll und motivierend, den Unterschied zwischen ein- und mehrdimensionalen Verhältnissen physisch-räumlich zu erfahren. Deshalb schlagen wir hier einen praktischen Versuch auf dem Schulhof vor, der schnell und einfach zu realisieren ist und - ganz im Sinne eines beweglichen Verstandes - ein wenig Bewegung in den Unterricht bringt. Die Klasse wird dazu in vier Gruppen aufgeteilt, die jeweils die Eigenschaften von "Punkt-, Linien, Flächen- und Raumland" erfahren sollen. Arbeit mit Stereogrammen Eine andere Möglichkeit für den Einstieg in das Thema Dimensionen bieten die 3D-Effekte von Stereogrammen, mit deren Hilfe Schülerinnen und Schüler anschaulich erleben und verstehen können, was sich ändert, wenn sich an einem ganz bestimmten Punkt eine dritte Dimension öffnet und eine andere "Welt" zeigt. Die Stereogramme können einzeln oder zu zweit am Bildschirm betrachtet werden. Als Alternative bietet sich aber auch die Projektion ausgewählter Stereogramme per Beamer an. Dabei kann dem Ganzen noch eine sportliche Note gegeben werden: "Wer erkennt als erster das verborgene 3D-Bild?" Anhand von Texten aus dem Internet lernen die Schülerinnen und Schüler Flächenland kennen. Die Internetseiten geben einen Überblick über den Inhalt des Romans und führen direkt in die zweidimensionale Welt des Romanhelden, eines Quadrates, und seiner Mitbewohner ein. Hier geht es um die Lektüre der Kapitel 15 ("Einen Fremden aus Raumland betreffend") und 16 ("Wie der Fremde vergeblich versucht, mit Worten die Geheimnisse von Raumland zu enthüllen") aus der Erzählung "Flächenland" und die Umsetzung des Gelesenen in ein kurzes Rollenspiel. Dabei soll das Verständnis für die konsequent logische Argumentation der Kugel (der das zweidimensionale Quadrat aber nur theoretisch folgen kann) sichergestellt werden. Der vierten - für Nicht-Physiker und Nicht-Mathematiker schwer vorstellbaren - Dimension ist zur Vertiefung im Rahmen der Unterrichtseinheit ein eigenes Modul gewidmet, obwohl das Prinzip bereits in Modul 4 deutlich wurde. Der Transfertext aus "Alice im Wunderland" bietet an dieser Stelle Anknüpfungspunkte für den Deutschunterricht. Das 4. Romankapitel lautet "Über die Frauen". Da diese in Flächenland die Form gerader Linien haben, erscheinen sie von vorne als Punkt, sind also praktisch unsichtbar. Für die Flächenländer stellen sie daher eine große Gefahr dar - Frontalzusammenstöße mit ihnen enden tödlich. Die Frauen unterliegen deshalb "zum Schutze der Bürger" einer besonderen Gesetzgebung, die sie diskriminiert, mit tödlichen Strafen bedroht und ihnen ein normales, gleichberechtigtes Leben unmöglich macht. Der satirische Charakter der Erzählung ist in diesem Kapitel nicht zu übersehen. Die Parallelen zum fundamentalistisch verstandenen Islam sind offensichtlich, dennoch sollten die Schülerinnen und Schüler vor platten Gleichsetzungen gewarnt und zu vielfältigen Interpretationen der Parabel ermuntert werden (zumal Abbot zu seiner Zeit sicher eine etwas andere Perspektive hatte). In einer offenen Debatte könnten diverse Diskriminierungen und Randgruppenprobleme unserer heutigen Gesellschaft angesprochen werden, was zu Modul 7 überleiten könnte. Dieses Modul basiert auf einem relativ langen Text auf der Website von Martin Blumentritt zum Thema Die politische Dimension von Vorurteilen . Es ist deshalb nur für ältere Schülerinnen und Schüler in der Sekundarstufe I (Klasse 8 bis 10) geeignet. Es empfiehlt sich gegebenenfalls, auf ein Detailverständnis des gesamten Textes zu verzichten und sich nach einer Globallektüre auf den ersten Teil zu konzentrieren, der dann mit den üblichen textanalytischen Verfahren erschlossen werden kann. Hier wird vorgeschlagen, mit Schlüsselwörtern zu arbeiten und ein Strukturskizze anzufertigen. Dafür könnte ein MindMap-Programm benutzt werden. Als kreative Aufgabe im Sinne einer Transferleistung soll von den Schülerinnen und Schülern ein eigener Text mit einer Situation entworfen werden, die mit derjenigen von Flächenland vergleichbar ist. Auch hier gibt es wieder Arbeitsblattvarianten für den Einsatz in Klasse 6 und 7 beziehungsweise Klasse 8 bis 10, wobei bei den älteren Schülerinnen und Schülern schon ein gewisses gesellschaftspolitisches Bewusstsein vorausgesetzt wird. Um die Schreibmotivation zu erhöhen, könnten die Texte im Internet veröffentlicht werden, zum Beispiel im Webspace eines virtuellen Klassenraums im Lehrer-Online-Netzwerk (lo-net). Mithilfe eines Homepagegenerators ist dies problemlos ohne HTML-Kenntnisse möglich. Im Forum des virtuellen Klassenraums können die Texte der Mitschülerinnen und Schüler kommentiert und diskutiert werden.

  • Religion / Ethik / Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe I

Das simulierte Gummituch - Raumkrümmung am Computer

Unterrichtseinheit

Die Lernenden werden schrittweise an den Begriff der Raumkrümmung herangeführt. Sie erkennen, dass die Bahnen von Himmelskörpern in Gravitationsfeldern mithilfe des Modells einer gekrümmten Fläche sehr gut dargestellt werden können. Die Effekte der Raumkrümmung (Allgemeine Relativitätstheorie) lassen sich anschaulich mithilfe einer Gummimembrane demonstrieren, in deren Mitte eine schwere Kugel liegt, die die Fläche der Membrane eindellt. Eine kleine Kugel, die über diese Fläche rollt, wird durch die Mulde so beeinflusst, als würde sie von der großen Kugel angezogen werden. Solche Gummihaut-Modelle sind allerdings schwierig zu bauen. Das hier vorgestellte Computerprogramm simuliert eine solche deformierbare Fläche und ermöglicht die Darstellung der Bahnkurven einer kleinen Kugel, die über diese Fläche ?rollt?. Das hier vorgestellte Programm Raumkrümmung.exe ermöglicht die Erkundung von Auswirkungen der Flächenkrümmung auf die Bahn einer rollenden Kugel unter verschiedenen Parametereinstellungen (Tiefe der Mulde, Startposition und -geschwindigkeit der Kugel). Die Schülerinnen und Schüler können so schrittweise an den Begriff der Raumkrümmung herangeführt werden und erfahren, dass die bekannten Bahnen innerhalb von Gravitationsfeldern sehr gut durch die Vorstellung eines gekrümmten Raums (hier einer gekrümmten Fläche) anschaulich verstanden werden können. Das Programm wurde vom Autor mithilfe der Programmiersprache Delphi verfasst. Die Datei ist nach dem Herunterladen direkt ausführbar, muss also nicht installiert werden. Das simulierte Gummituch Das Programm zur Raumkrümmung ist eine sehr gute Alternative zum schwer herzustellenden "echten" Modell. Screenshots zeigen, was die Simulation kann. Einsatz der Simulation im Unterricht Hier finden Sie Beispielwerte für verschiedene Parameter, die in der Simulation unterschiedliche Bahnformen - Kreise, Ellipsen, Rosetten - erzeugen und Erläuterungen. Die Schülerinnen und Schüler sollen erfahren, dass sich die abstrakte Idee eines dreidimensionalen, gekrümmten Raums mithilfe eines Gummimembranen-Modells veranschaulichen lässt. mithilfe der Computersimulation die didaktischen Möglichkeiten eines solchen Modells spielerisch erfassen. mit konkreten Daten die unterschiedlichsten Bahnkurven von Körpern in der Nähe großer Massen mit dem Computer simulieren. erkennen, dass Abweichungen vom klassischen Gravitationspotential zu rosettenförmigen Umlaufbahnen führen. Thema Raumkrümmung, Gravitation, Allgemeine Relativitätstheorie Autor Matthias Borchardt Fächer Physik (Kegelschnittbahnen, Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Verzerrung von Raum und Zeit durch Massen Eine zentrale Aussage der Allgemeinen Relativitätstheorie (Albert Einstein, 1915) ist die Behauptung, dass Gravitation ein Effekt der sogenannten Raumkrümmung ist. Eine große Masse verzerrt in ihrer Umgebung Raum und Zeit derart, dass Körper, die sich an der Zentralmasse vorbeibewegen, abgelenkt oder sogar auf Ellipsen- oder Kreisbahnen gezwungen werden. Reduktion des gekrümmten Raums auf eine zweidimensionale Membrane Die Krümmung des Raums kann man sich anschaulich nicht vorstellen - dazu müsste man sich ein vierdimensionales Koordinatensystem denken, in das der dreidimensionale Raum eingebettet ist. Um dennoch eine gewisse Vorstellung von der Raumkrümmung zu gewinnen, wird häufig das sogenannte Gummituch-Modell verwendet. Eine Masse deformiert eine Gummimembrane derart, dass eine Mulde entsteht. Eine Kugel, die sich zuvor auf einer geraden Linie bewegt hat, wird durch diese Mulde abgelenkt - es scheint eine Kraft (Gravitation) von der Masse auszugehen, die die Mulde verursacht hat. In diesem Modell wird also der gekrümmte Raum auf eine zweidimensionale Membrane reduziert, die in den dreidimensionalen Raum eingebettet ist. Dieses Modell kann viele Effekte der Raumkrümmung hervorragend demonstrieren, wie zum Beispiel die Ablenkung einer Masse von ihrer geraden Bahn oder die Entstehung von kreis- und ellipsenförmigen Umlaufbahnen. Das Modell als Simulation Die Herstellung eines großen, funktionstüchtigen Gummituch-Modells ist allerdings aufwändig und oft nur größeren naturwissenschaftlichen Museen oder Planetarien vorbehalten. Eine sehr gute Alternative bietet das hier vorgestellte Simulationsprogramm Raumkrümmung.exe. Visualisierung der Membran Das Programm stellt das Schrägbild einer Fläche dar, in deren Mitte sich eine Mulde erzeugen lässt. Die Tiefe dieser Deformation ist über den Schieberegler "Tiefe der Mulde" einstellbar (Abb. 1; zur Vergrößerung bitte anklicken). Die Bahnkurve einer rollenden Kugel wird direkt auf dieser Fläche durch eine gelbe Linie abgebildet. Startort und Startgeschwindigkeit der Kugel lassen sich ebenfalls einstellen. Für eine optimale Darstellung kann die Situation aus verschiedenen Blickwinkeln betrachtet werden. Die Fläche lässt sich in beliebige Richtungen drehen (Rotation der Darstellung um die drei Achsen) oder per Klick auf den Button "von oben" in der Aufsicht darstellen (Abb. 2; zur Vergrößerung bitte anklicken). Das Muldenprofil folgt dem Newtonschen Gravitationspotenzial, also einer Hyperbel. Dieses Hyperbelprofil wäre allerdings nach unten offen. Daher wurde es unten durch eine Kugelfläche abgeschlossen, die sich tangential an die Hyperbelfläche anschmiegt (Abb. 3). So ist gewährleistet, dass eine (simulierte) Kugel durch diese Mulde rollen kann, ohne ins Bodenlose zu stürzen. Allerdings kann das zuweilen auch zu überraschenden Bahnformen führen. Ein solcher Fall wird weiter unten dargestellt. Wenn das Programm geöffnet wird, ist das Schrägbild einer Fläche zu sehen, die in ihrer Mitte eingedellt ist. Mit dem Start-Button kann man nun die Kugel starten, die über diese Fläche rollen soll. Zunächst ist der Ort mit x = 160, y = -500 und die Geschwindigkeit mit vx = 0, vy = 2000 für die Startsituation eingestellt. Man sieht deutlich, dass der Weg der Kugel gekrümmt verläuft. Bewegung der Kugel auf einer geraden Linie Sinnvoll ist es nun, die Flächenkrümmung auf Null zu setzen, was durch den Schieberegler "Tiefe der Mulde" (unten rechts) zu bewerkstelligen ist. Sehr schön ist zu erkennen, dass der Weg der Kugel nun eine Gerade ist. Ellipsenförmige Bahn Stellen Sie nun wieder die Mulde her. Um eine geschlossene Bahn (Ellipse) der Kugel zu erzeugen, wählen Sie zum Beispiel: x = 140, y = 0 und vx = 0, vy = 2000. Kreisförmige Bahn Eine fast ideale Kreisbahn ergibt sich zum Beispiel bei x = 120, y = 0 und vx = 0, vy = 1800. Rosettenförmige Bahn Stellen Sie nun ein: x = 200, y = 0 und vx = 0, vy = 1200. Es entsteht wieder eine Ellipsenbahn. Wenn Sie nun die Geschwindigkeit geringfügig ändern, zum Beispiel auf vy = 1100, entsteht überraschenderweise keine Ellipse mehr, sondern eine rosettenförmige, ständig wandernde Bahn um die Mulde herum (Abb. 4). Die Rolle der Kugelfunktion am Boden der Mulde Der "Rosetteneffekt" wird dadurch verursacht, dass bei den gewählten Parametern die Bahn der Kugel die Hyperbelfläche verlässt und ein kurzes Stück über die Kugelfläche unten in der Mulde läuft. Da die Kugelfunktion deutlich von der Hyperbelfunktion und damit vom Newtonschen Gravitationspotenzial V(r) = - G • M/r abweicht, kann keine Kegelschnittbahn, in diesem Fall also keine Ellipse, mehr entstehen. Es ist ja gerade das Besondere, dass allein aus der Hyperbelform des Potenzials die Kegelschnittbahnen folgen - jede Abweichung von der Hyperbel führt zu einer völlig veränderten Bahnkurve. Möchte man den Schülerinnen und Schülern also geschlossene Kegelschnittbahnen demonstrieren, sollte man die Bahnkurve der Kugel nicht zu tief in die Mulde führen, jedenfalls nicht so tief, dass sie die untere Halbkugelfläche berührt. Andererseits kann es auch recht interessant und lehrreich sein, die Auswirkungen der Abweichung von der Hyperbelform zu demonstrieren. Periheldrehung der Merkurbahn Übrigens beruht die Periheldrehung der Merkurbahn, also die langsame Verschiebung der Ellipse, auf einer Abweichung von der Hyperbelform des Potenzials. In der Nähe großer Massen folgt das Potenzial nämlich nicht mehr der klassischen Physik, sondern muss durch die Allgemeine Relativitätstheorie beschrieben werden. Vielfältige Einsatzmöglichkeiten Durch eine geschickte Wahl der Parameter ermöglicht das Programm Raumkrümmung.exe die Erzeugung der unterschiedlichsten Bahnen. Es bietet sich daher auch für ein spielerisches Erfassen der verschiedenen Situation durch die Schülerinnen und Schüler an. Zudem ist auch sehr gut geeignet, um zum Beispiel mithilfe eines Arbeitsblatts konkrete Situationen ausprobieren zu lassen. Die Schülerinnen und Schüler könnten so schrittweise an den Begriff der Raumkrümmung herangeführt werden und erfahren, dass die bekannten Bahnen innerhalb von Gravitationsfeldern sehr gut durch die Vorstellung eines gekrümmten Raums (hier einer gekrümmten Fläche) verstanden werden können. Auch am heimischen Rechner können die Lernenden mithilfe des kostenfreien Programms mit der Raumkrümmung "experimentieren". Anmerkung zu den Begriffen Raumkrümmung und Raumzeitkrümmung Im Sinne der Allgemeinen Relativitätstheorie sollte man bei der Beschreibung von Bahnkurven bewegter Körper eigentlich nicht den Begriff Raumkrümmung verwenden, sondern stattdessen von der Raumzeitkrümmung sprechen. Die Darstellung der Situation als gekrümmte Fläche (Gummituch) beinhaltet nämlich zwei starke Vereinfachungen: zum einen die Reduktion des dreidimensionalen Raumes auf zwei Dimensionen und zum anderen die Vernachlässigung der Zeitkomponente. Diese Vereinfachungen machen aber - gerade für jüngere Schülerinnen und Schüler- die Ideen der Relativitätstheorie begreifbar. In höheren Klassen sollte man jedoch auf diese didaktischen Reduzierungen hinweisen. Gedankenexperimente zu verschiedendimensionalen Räumen finden Sie auch in der Unterrichtseinheit Eine Reise ins "Flächenland" mit GEONExT . In dem darin verwendeten Humoreske "Flächenland" von Edwin Abbott (1838-1926) werden unter anderem die Probleme eines alten Quadrats beschrieben, das das zweidimensionale Flächenland bewohnt und das von einer Kugel Besuch aus der dritten Dimension bekommt. Ausgewählte Aspekte des Romans werden mithilfe der dynamischen Mathematiksoftware GEONExT visualisiert.

  • Physik / Astronomie
  • Sekundarstufe II

Flächeninhalte - die Monte-Carlo-Methode

Unterrichtseinheit

Mit einer interaktiven Lernumgebung auf der Basis der Tabellenkalkulation Excel erkunden Schülerinnen und Schüler die Monte-Carlo-Methode zur Bestimmung von Flächeninhalten. Ein integriertes Hilfesystem unterstützt die Lernenden beim selbstständigen und kooperativen Arbeiten. Die Monte-Carlo-Methode ist in den vierziger Jahren des 20. Jahrhunderts im Rahmen des Manhattan-Projekts entstanden, um die zufällige Diffusion von Neutronen in spaltbarem Material zu simulieren. Bei der Namensgebung der Methode stand tatsächlich das weltberühmte Casino in Monte-Carlo Pate, denn die ersten Tabellen von Zufallszahlen hat man aus den Ergebnissen der Roulettspiele, die in diesem Casino regelmäßig ausgehängt wurden, gewonnen. Bei der Monte-Carlo-Methode handelt es sich um numerische Verfahren, die mithilfe von Zufallszahlen mathematische Probleme lösen beziehungsweise simulieren. So können Probleme, die deterministischer Art sind, zum Beispiel Berechnungen von Integralen, Berechnung von Summen, im Rahmen einer stochastischen Genauigkeit (Gesetz der großen Zahlen) näherungsweise gelöst werden. Problemstellungen, die probabilistischer Natur sind, zum Beispiel Warteschlangenprobleme, Lagerhaltungskosten, Versicherungsprobleme, können dagegen nur simuliert werden. Im Folgenden wird die Monte-Carlo-Methode genutzt, um Problemstellungen zum Thema Flächeninhalt näherungsweise zu lösen. Voraussetzungen, Ablauf der Unterrichtseinheit, Materialien Die vorliegende Lerneinheit ist zum selbstständigen Arbeiten am Computer konzipiert. Das individuelle Lernen wird durch verschiedene interaktive Elemente unterstützt. Die Schülerinnen und Schüler sollen die Monte-Carlo-Methode erläutern können. den Flächeninhalt eines Kreises mit der Monte-Carlo-Methode näherungsweise berechnen können. erkennen, dass durch die Erhöhung der Anzahl der Zufallspunkte die Wahrscheinlichkeit für das Abweichen des approximativ berechneten Ergebnisses vom algebraisch berechneten Ergebnis abnimmt. mithilfe der Monte-Carlo-Methode den Flächeninhalt unter einer Parabel approximieren können. mithilfe einer Tabellenkalkulation Monte-Carlo-Methoden rechnerisch durchführen können. Thema Bestimmung von Flächeninhalten mit der Monte-Carlo-Methode Autor Thomas Borys Fach Mathematik Zielgruppe ab Klasse 9, begabte Schülerinnen und Schüler, Mathematik-AG Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzelarbeit) Software Microsoft Excel Damit alle eingebauten Funktionen genutzt werden können, müssen bei Excel die Makros aktiviert werden. Vor dem Öffnen der Datei muss dazu im Menu "Extras/Optionen", auf der Registerkarte die Makrosicherheit mindestens auf "mittel" gestellt werden. Als Lernvoraussetzungen sind grundlegende Kenntnisse im Umgang mit einer Tabellenkalkulation notwendig, wie zum Beispiel die Eingabe von Rechenoperationen. Weiterführende Kenntnisse, wie das Erzeugen von Zufallszahlen, werden nicht vorausgesetzt. Diese können selbstständig erarbeitet werden. Erarbeitung der notwendigen Kenntnisse im Umgang mit EXCEL Auf der Start-Seite der interaktiven Lerneinheit werden die Schülerinnen und Schüler nach ihren Excel-Kenntnissen gefragt. Je nach Antwort werden sie mit Hyperlinks weiter geleitet. Nach entsprechender Auswahl können die Schülerinnen und Schüler die Eingabe von Zufallszahlen und die Eingabe von Wenn-Funktionen erlernen beziehungsweise bereits Bekanntes vertiefen. Auch steht eine weitere zielorientierte Übung zur Verfügung Zentrale Problemstellung Die Einführung in die Monte-Carlo-Methode erfolgt an Hand der näherungsweisen Bestimmung des Flächeninhalts eines Kreises mit einem Radius Eins. Dazu steht den Schülerinnen und Schülern ein ausführliches Aufgabenblatt zur Verfügung. Unterstützt werden sie unter anderem durch ein interaktives Schaubild, nach dem Erzeugen der Zufallspunkte erscheinen diese auch im Schaubild. Aufgaben zum selbstständigen Arbeiten Zur weiteren Vertiefung der Monte-Carlo-Methode stehen noch sechs weitere Aufgabenblätter zur Verfügung. Die ersten beiden Aufgabenblätter vertiefen die näherungsweise Bestimmung des Flächeninhalts eines Kreises. Des Weiteren wird der Vergleich mit dem algebraischen Ergebnis thematisiert. Die beiden folgenden Arbeitsblätter behandeln die Thematik "Flächeninhalt unter einer Geraden", wobei auch hier der Vergleich mit dem algebraischen Ergebnis möglich ist. Die letzten beiden Aufgabenblätter geben schon einen kleinen Einblick in die Integralrechnung, denn die Schülerinnen und Schüler sollen den Flächeninhalt unter einer Parabel bestimmen (Abb. 1, Platzhalter bitte anklicken). An dieser Stelle wird die Notwendigkeit der Monte-Carlo-Methode richtig plastisch: Die Lernenden sind durch diese Methode in der Lage, einen Flächeninhalt näherungsweise zu bestimmen, den sie algebraischen noch nicht berechnen können. Makros aktivieren Damit alle eingebauten Funktionen genutzt werden können, müssen bei Excel die Makros aktiviert werden. Vor dem Öffnen der Datei muss dazu im Menü "Extras/Optionen", auf der Registerkarte die Makrosicherheit mindestens auf "mittel" gestellt werden. Dateien mit und ohne Blattschutz Die erste Tabelle (monte_carlo.xls) ist so angelegt, dass die Lehrperson diese komplett ändern kann. Allerdings können auch die Lernenden Dinge verändern, die sie eigentlich nicht ändern sollten. Die zweite Tabelle (monte_carlo_schutz.xls) ist mit dem für Excel üblichen Blattschutz teilweise geschützt, das heißt die Schülerinnen und Schüler können nur auf gewissen Feldern Eintragungen vornehmen, die nicht geschützt sind. Dopfer, G., Reimer, R. Tabellenkalkulation im Mathematikunterricht, Klett Verlag, Stuttgart 1995 Engel, A. Wahrscheinlichkeitsrechnung und Statistik, Band 1, Klett Studienbücher, Stuttgart 1973 Hermann, D. Monte-Carlo-Integration, in: Stochastik in der Schule, 12 (1), 1992, Seite 18-27

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Prismen und Körper selbstgesteuert erlernen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zum Thema "Prismen und Körper" lernen die Schülerinnen und Schüler die Begriffe und die Eigenschaften verschiedener Körper kennen. Sie berechnen die Oberfläche und das Volumen eines Quaders und eines Würfels. Sie lernen die Volumeneinheiten mit einfachen Umrechnungen kennen. Ziel ist die Umsetzung im Sinne des selbstgesteuerten Lernens. Diese Unterrichtseinheit hat das Ziel, die Lerninhalte zum Thema "Prismen und Körper" für eine 5. Klasse der Realschule mit den Elementen des selbstgesteuerten Lernens den Schülerinnen und Schülern zu vermitteln. Die Unterrichtseinheit ist thematisch in vier Lernmodule eingeteilt. Zu jedem Modul stehen Lernkarten als interaktives H5P Element bereit: Lernmodul 1: Begriffe zu Körper und Prismen mit den interaktiven H5P Lernkarten "Körperarten" . Lernmodul 2: Netze und Schrägbilder mit den interaktiven H5P Lernkarten "Begriffe" und "Netze und Schrägbilder" . Lernmodul 3: Mantelflächenberechnung und Oberflächenberechnung mit den interaktiven H5P Lernkarten "Oberflächenberechnung" . Lernmodul 4: Volumenberechnung und Volumenberechnung II mit den interaktiven H5P Lernkarten "Volumeneinheiten" und "Volumenberechnung" . Die Inhalte der Lernmodule sind jeweils der Beschreibung der Plenumsphase aus dem Unterrichtsablauf zu entnehmen. Vorkenntnisse Für die inhaltliche Umsetzung sind für die jeweiligen Lernmodule folgende Voraussetzungen relevant: Bestimmung der Begriffe Kanten, Ecken und Flächen und Bestimmung der Eigenschaften von Würfel, Quader, Zylinder, quadratische Pyramide, Kegel und Kugel mit der Zuordnung zu den Prismen (Lernmodul 1). Die Zuordnung von Netzen und das Erstellen von Schrägbildern fokussiert auf Würfel und Quader (Lernmodul 2). Die Berechnung der Oberfläche O ist beschränkt auf Quader und Würfel (Lernmodul 3). Die Berechnung der Volumina V ist beschränkt auf Quader und Würfel (Lernmodul 4). Didaktische und methodische Analyse Diese Einheit basiert auf dem Prinzip des eigenständigen Lernens. Die Lernenden arbeiten in den Übungsphasen an den Lernmodulen wöchentlich nach eigenem Zeitplan . Die Lehrkraft klärt in den Plenumsphasen, die sich nach einem festgelegten Zeitraster orientieren, mit den Lerngruppen die Themen- und Aufgabenstellung des jeweiligen Lernmoduls. Es empfiehlt sich, mehrere solcher Phasen in einer Woche anzubieten, sodass die Lernenden sich ihre "Präsenszeit" aussuchen können. Die Rückmeldungsphase gestaltet sich individuell über die Plenumsphasen. Fachkompetenz Die Schülerinnen und Schüler operieren gedanklich mit Strecken, Flächen und Körpern. stellen Körper (zum Beispiel als Netz, Schrägbild oder Modell) dar und erkennen Körper aus ihren entsprechenden Darstellungen. berechnen Volumen und Oberflächeninhalt von Prisma, Pyramide, Zylinder, Kegel und Kugel sowie daraus zusammengesetzten Körpern. Medienkompetenz Die Schülerinnen und Schüler suchen, verarbeiten und bewahren Inhalte und Materialien auf. kommunizieren und kooperieren auf verschiedenen Ebenen miteinander. setzen digitale Werkzeuge zum Lösen von Problemen ein. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren sachlich. bearbeiten und führen gemeinsam Aufgaben aus. halten sich an Absprachen und Vereinbarungen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Dodekaeder - Juwel der Symmetrie

Unterrichtseinheit

Das Dodekaeder ist einer der fünf platonischen Körper, der einzigen regelmäßigen "Vielflächner", deren Seitenflächen regelmäßige Vielecke gleicher Eckenzahl sind. Es hat seit Urzeiten die Aufmerksamkeit von Künstlern und Philosophen gefunden und ist bis heute im Fokus solcher Aufmerksamkeit geblieben. Immer noch gibt es Neues an diesem Körper zu entdecken.Symmetrien üben nicht nur einen großen ästhetischen Reiz aus, sie sind auch in der Natur - der belebten wie der unbelebten - von fundamentaler Bedeutung. Ordnung und Chaos, Symmetrie und Symmetriebrechung sind Grundkategorien in der Wahrnehmung unserer Welt. Das Periodensystem der Elemente, die Postulierung von Quarks als Grundbausteine der Materie, die Entstehung der Welt durch den Urknall - all dies sind wissenschaftliche Ergebnisse, an deren Zustandekommen Betrachtungen der Symmetrie entscheidenden Anteil hatten. So stellt Lisa Randall, theoretische Physikerin, fest: "Der Begriff Symmetrie hat für die Physiker einen heiligen Klang."In den heutigen, an den Bildungsstandards orientierten Lehrplänen, taucht "Symmetrie" als Leitidee auf. Hier wird gefordert, Symmetrien an Körpern und ebenen Figuren zu untersuchen. Dies kann in Bezug auf die platonischen Körper auf sehr unterschiedlichen Anforderungsniveaus erfolgen: Vom Herstellen eines Dodekaeders mit Papier und Schere im 5. Schuljahr über die Berechnung von Streckenlängen, Abständen und Winkeln mit Mitteln der Trigonometrie (Klasse 10) bis hin zu Untersuchungen seiner Symmetriegruppe in der Sekundarstufe II ergeben sich zahlreiche Möglichkeiten. Hinweise zum Unterrichtsverlauf Hier sind Materialien und Werkzeuge sowie Vorschläge zur Erarbeitung des Themas zusammengetragen. Die Schülerinnen und Schüler sollen erkennen, welche primären Symmetrien ein Dodekaeder besitzt und ausgehend davon elementare Größen des Dodekaeders bestimmen können. erkennen, dass aus einer Abbildung beziehungsweise aus Daten des Dodekaeders Abbilder oder Daten der restlichen vier platonischen Körper abgeleitet werden können. erkennen, dass es außer Tetraeder, Hexaeder, Oktaeder, Dodekaeder und Ikosaeder keine anderen regulären Polyeder geben kann. unter Einsatz eines Computeralgebrasystems (oder geometrischer 3D-Software) Untersuchungen zu den Symmetriegruppen der platonischen Körper durchführen können. Thema Symmetrien des Dodekaeders (und anderer platonischer Körper) Autor Rolf Monnerjahn Fach Mathematik, Bildende Kunst Zielgruppe Sekundarstufe I Zeitraum 7-9 Stunden Technische Voraussetzungen Computeralgebrasystem (MuPAD) oder dynamische 3D-Software Voraussetzungen Für den Unterricht in Mittel- und Oberstufe sollte entweder ein Computeralgebrasystem (hier verwendet: MuPAD) oder Dynamische Geometriesoftware für 3D-Konstruktionen zur Verfügung stehen, da so Symmetrien noch besser veranschaulicht werden können als durch reale Modelle - wobei auf letztere aber keinesfalls verzichtet werden soll. Das Dodekaeder sollte im Sinne eines Spiralcurriculums an mehreren Stellen Objekt des Mathematikunterrichts sein: In der Orientierungsstufe als interessanter Körper, mit dem Schülerinnen und Schüler sich konkret handelnd auseinandersetzen: Herstellen von Kantengerüst und Faltmodell. In der Mittelstufe als Gegenstand trigonometrischer Berechnungen (Winkel und Streckenlängen). In der Oberstufe als Objekt entdeckenden Untersuchens im Hinblick auf Symmetrien und Beziehungen zu den anderen platonischen Körpern und zu den archimedischen Körpern. Arbeit mit realen Modellen Grundlage jeglicher theoretischer Beschäftigung mit den platonischen Körpern sollte ein praktisches, handlungsorientiertes Herangehen durch Herstellung von Flächen- und Kantenmodellen sein. Auch die Symmetrien der platonischen Körper sollten auf der Grundlage der Arbeitsmaterialien zunächst praktisch erkundet werden: durch Rotation der Körpermodelle und Zerschneiden der Kartonmodelle, so dass durch Auflegen auf einen ebenen Spiegel die Vervollständigung des Körpers durch die Spiegelung erfahrbar wird. Die Darstellung der Körper und der Vollzug von Kongruenztransformationen sollten in Einzel- oder Partnerarbeit durch Handhabung eines CAS oder dynamischer 3D-Geometriesoftware erfolgen. Zusammengesetzte Kongruenzabbildungen wie etwa die Drehspiegelung sind praktisch nicht realisierbar, wohl aber mit derartiger Software deutlich zu veranschaulichen. Das hier beigegebene PDF-Dokument (dodekaeder_juwel_der_symmetrie.pdf) stellt eine Auswahl von Berechnungen und Abbildungen bereit, die mit MuPAD erarbeitet wurden. Es ist als Ideensammlung, zusammenfassende Darstellung und Anregung für den Umgang mit einem CAS gedacht. Einzel-, Partner- und Projektarbeit Die Unterrichtseinheit eignet sich vor allem zur Vertiefung von im Kernunterricht erworbenem faktischen und prozeduralen Wissen und sollte daher in Formen von Einzel-, Partner- und Projektarbeit organisiert werden. Dodekaeder und platonische Körper bieten als Unterrichtsobjekt den Vorteil, dass von einfachsten bis zu höchsten Ansprüchen gestufte Problemstellungen möglich sind. Nachfolgend werden Vorschläge für Arbeitsaufträge formuliert und thematischen Blöcken zugeordnet. 1. Die Darstellung der platonischen Körper Die Eckpunktdaten der platonischen Körper nach geeignetem Einzeichnen rechtwinkliger Dreiecke in Schrägbilddarstellungen (Arbeitsblatt 11) sind durch Anwendung der Trigonometrie zu berechnen, Kantenlängen, In- und Umkugelradius, Winkel zwischen Kanten und Winkel zwischen Flächen sind zu bestimmen. 2. Symmetrien der platonischen Körper Hier sind die Spiegelungen, Rotationen und aus Spiegelungen und Rotationen zusammengesetzten Kongruenzabbildungen zu bestimmen, die die platonischen Körper in sich selbst abbilden. Damit über diese Abbildungen Aussagen formuliert werden können, sind in den beigegebenen Arbeitsblättern 1 bis 5 auf die Netze der platonischen Körper die Durchstoßpunkte der Drehachsen aufgezeichnet, Mittellinien, Mittelsenkrechte und Diagonalen der Seitenflächen eingezeichnet, alle Eckpunkte und Flächen durchnummeriert und damit benennbar. Für das Tetraeder ist im Begleitmaterial die vollständige Symmetrietabelle beigegeben (dodekaeder_juwel_der_symmetrie.pdf). Für Ikosaeder und Dodekaeder ist es nicht sinnvoll, die vollständige Symmetrietabelle zu erarbeiten, wohl aber ausgewählte, vor allem zusammengesetzte Kongruenzabbildungen exemplarisch herauszugreifen. 3. Symmetrie als Grundlage von Emergenz Die fünf platonischen Körper sind durch Symmetrie und Dualität aufeinander bezogen. Dualität heißt, dass Hexa- und Oktaeder, Dodeka- und Ikosaeder jeweils durch Zuordnung von Ecken zu Flächenmitten aufeinander bezogen sind. Verbindet man die Flächenmitten eines Dodekaeders, so erhält man ein Ikosaeder, und verbindet man umgekehrt die Flächenmitten eines Ikosaeders, so erhält man ein Dodekaeder. Auch der Würfel ist durch Konstruktion (Aufbringen eines "Walmdachs" auf jede Fläche) zu einem Dodekaeder umzuwandeln (Arbeitsblätter 6,7, Video dodeca_cubus.wmv). Das Dodekaeder erlaubt durch seine umfassende Symmetrie die regulären Polygone Dreieck, Quadrat, Fünfeck, Sechseck und Zehneck mehrfach aus seiner räumlichen Darstellung "herauszulesen". Diese Polygone und die Polyeder sind in die Schrägbilder der platonischen Körper durch Verbinden von Ecken, Flächen- und Kantenmitten, Diagonalenmitten einzuzeichnen (Arbeitsblatt 11). Hier ist Staunen angebracht: Aus einer Konstruktion, die lediglich auf einer Figur mit Winkeln von 108° und fünf Seiten gleicher Länge beruht, gehen - sozusagen als Dreingabe - Dreiecke, Quadrate, andere Fünfecke, Sechsecke, Zehnecke und völlig unterschiedliche Körper hervor! 4. Gesetzmäßigkeiten an den platonischen Körpern Dass es nicht mehr als fünf platonische Körper geben kann (Euklid), dass für ihre Graphen der Euler'sche Polyedersatz (e + f - 2 = k) gilt, dass nur für das Oktaeder ein Euler'scher Rundweg ("Abschreiten" aller Kanten ohne Wiederholung) existiert, sind leicht zu beweisende Gesetzmäßigkeiten. Das Aufsuchen Hamilton'scher Rundwege ("Abschreiten" aller Ecken ohne Wiederholung) ist eine ohne Überforderung realisierbare Erkundungsaufgabe (Arbeitsblatt 12). 5. Archimedische Körper Verzichtet man auf die Forderung, dass der Körper nur von gleichartigen regulären Vielecken begrenzt sein soll, ergeben sich 13 weitere Körper, die archimedischen, bei denen aber auch alle Kanten die gleiche Länge haben. Sie gehen zum Teil durch Abstumpfung der Ecken aus den platonischen Körpern hervor (siehe Arbeitsblatt 11). 6. Polyedersterne Errichtet man auf den Begrenzungsflächen der platonischen Körper Pyramiden, so erhält man Polyedersterne. Es ist eine reizvolle Bastelarbeit, solche Sterne herzustellen, indem man beispielsweise die Pyramidennetze zu den in den Arbeitsblättern 1 bis 5 vorgegebenen Polyedernetzen konstruiert und die Pyramiden auf die Polyederflächen aufklebt. Arbeitsblätter Die Netze aller platonischen Körper sind hier als Schnittbogen herunterzuladen (1-5). Den Netzen sind die Nummerierungen der Ecken und Flächen sowie alle Symmetrieachsen und drehsymmetrischen Zentren der Flächen aufgedruckt. Zusätzlich ist ein Schnittbogen zur Herstellung eines Umstülpmodells Hexaeder - Dodekaeder beigegeben (6, 7). Zwei Arbeitsblätter zeigen die Zentralprojektion des Dodekaeders in verschiedenen Ansichten (10) und die zentralprojektiven Darstellungen aller platonischen Körper (11). Dabei wurden zu jeder Kante Drittelungs- und Halbierungspunkte eingezeichnet, so dass die dualen Körper und die Abstumpfungen eingezeichnet werden können. Ein Arbeitsblatt zeigt die Graphen der platonischen Körper (12), womit Hamilton'sche und Euler'sche Rundwege gesucht werden können. Monnerjahn, Rolf MuPAD im Mathematikunterricht, Verlag Cornelsen, ISBN 978-3-06-000089-0 Zum Einarbeiten in die Handhabung des CAS MuPAD Adam, Paul und Wyss, Arnold Platonische und Archimedische Körper, ihre Sternformen und polaren Gebilde, Verlag Freies Geistesleben, ISBN 3-7725-0965-7

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Temperaturmessung aus dem All: Summer in the City

Unterrichtseinheit

In dieser Unterrichtseinheit zum Themenkomplex Temperatur und Energie unterscheiden die Lernenden mithilfe von Thermalbildern Oberflächen unterschiedlicher Temperatur voneinander. Dabei lernen sie den Zusammenhang zwischen Oberflächentemperatur, spezifischer Wärmekapazität und weiteren thermalen Objekteigenschaften kennen.Klimatisch unterscheiden sich Städte stark von ihrem Umland. Am Beispiel von Berlin sollen Lernende die Temperaturunterschiede in der Großstadt am Tag und in der Nacht erklären und bewerten. Eingebettet in diesen Kontext erkennen sie den Zusammenhang von Sonnenstrahlung und Wärmeenergie. Die von der Erde abgestrahlte Wärmeenergie wird von Satellitensensoren aufgenommen und in Thermalbildern visualisiert. Diese dienen den Schülerinnen und Schülern als Grundlage für ihre Untersuchungen. Darüber hinaus erhalten sie erste Einblicke in die Methodik der Fernerkundung (Kartenerstellung, Klassifikation). Die Unterrichtseinheit entstand im Rahmen des Projekts Fernerkundung in Schulen (FIS) am Geographischen Institut der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II.Diese Unterrichtseinheit zum Themenfeld Temperatur und Energie soll die klimatischen Besonderheiten einer Großstadt verdeutlichen. Als wissenschaftliche Grundlage dient eine Einführung in die Methodik der Fernerkundung, mit deren Hilfe die Schülerinnen und Schüler in der Lernumgebung Temperaturunterschiede bestimmen und erste Einblicke in die Erstellung von Karten gewinnen. Inhalte und Einsatz im Unterricht Hinweise zum Aufbau der Lernumgebung "Summer in the City". Screenshots veranschaulichen die Funktionen und die interaktiven Übungen zum Themenfeld Temperatur und Energie. Die Schülerinnen und Schüler können die Begriffe Spezifische Wärmekapazität, Reflexion und Absorption mit eigenen Worten erklären. können verschiedene Stoffe und Oberflächen anhand ihrer spezifischen Wärmekapazität einordnen. können die Erwärmung verschiedener Oberflächen im Tagesgang bewerten. können die Temperaturunterschiede verschiedener Oberflächen in Thermalbildern von Tag- und Nachtaufnahmen erkennen und benennen. können Thermalbilder auswerten, interpretieren und bewerten. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um den Themenkomplex Temperatur und Energie durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Computer nicht als reines Informations- und Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung "Summer in the City" ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "SummerInTheCity.exe", unter anderen Betriebssystemen durch Klick auf die Datei "SummerInTheCity.swf" gestartet. Dafür ist der Adobe Flash Player ( kostenloser Download ) notwendig. Der jeweils aktivierte Bereich wird auf der linken Leiste der Lernumgebung eingeblendet (Abbildung 1, Platzhalter bitte anklicken). Während der erste Teil einen Einblick in die Thematik Temperatur und Energie liefert und eine übergeordnete Aufgabestellung benennt, gliedert sich der Hauptteil in zwei thematische Sequenzen, die neue Aufgaben sowie Info-Boxen mit Hintergrundinformationen enthalten. Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der jeweils folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. Ergänzt wird das Modul durch Tutorials, die die Nutzung der Lernumgebung veranschaulichen. Arbeit in Zweierteams Der Ablauf der Unterrichtsstunden wird durch die Struktur des Computermoduls vorgegeben. In Zweierteams erarbeiten sich die Schülerinnen und Schüler die drei Teilbereiche der Lernumgebung. Der Unterricht beginnt jeweils mit einer Erläuterung des Moduls und gegebenenfalls der Aufgabenstellung. Dann folgt die selbstständige Erarbeitung und Überprüfung der Kenntnisse im Quiz (Partnerarbeit). Abschließend können die Ergebnisse jeder Stunde noch einmal im Plenum gebündelt werden. 1. Einstieg Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Zu Beginn ist ein Professor zu sehen, der sich mit einem Getränk erfrischt, während er im Radio eine Hitzemeldung hört (siehe Abbildung 1). Mithilfe der Infobox (Abbildung 2) erhalten Schülerinnen und Schüler Hintergrundinformationen zum Thema "Spezifische Wärmekapazität". Ein kurzes Quiz schließt den einführenden Teil ab. Erst nach der Beantwortung der Fragen wird der folgende Bereich der Lernumgebung zugänglich. Der zweite Teil beginnt mit einem Tutorial, das die Lernenden in die Nutzung der Lernumgebung einweist. Inhaltlich beschäftigen sie sich mit der Darstellungsform von Thermalbildern und vergleichen die Temperaturunterschiede verschiedener Landoberflächen bei Tag. Ein Thermalbild sowie eine Landnutzungskarte können in das Hauptfeld gezogen und untersucht werden. Die Info-Box gibt Auskunft über die Besonderheit von Thermalbildern (Abbildung 3) und macht die Vorteile dieser Technologie deutlich. Ein Quiz schließt die Bearbeitung des Moduls ab und leitet zum letzten Teil der Lernumgebung über. Hier stehen den Lernenden neben den am Tag aufgenommenen Bildern auch Thermalbilder zur Verfügung, die dieselben Orte während der Nacht zeigen (Abbildung 4). Die Schülerinnen und Schüler sollen die Bilder vergleichen, mithilfe des Pipetten-Werkzeugs Flächen markieren und auf diese Weise unterschiedlich temperierte Flächen kartografisch herausarbeiten. Abschließend soll die übergeordnete Frage beantwortet werden, welcher Ort im Sommer als Aufenthaltsort am angenehmsten ist. Nach dem Absolvieren des Quiz haben die Lernenden das Modul erfolgreich beendet.

  • Physik / Astronomie
  • Sekundarstufe I

Raumnutzungskonflikte bei Windenergieanlagen

Unterrichtseinheit

In dieser Unterrichtseinheit zu Raumnutzungskonflikten bei Windenergieanlagen schlüpfen die Lernenden in die Rolle einer Raumplanungsbehörde und schlagen einen "optimalen" Standort für Windkraftanlagen in der Gemarkung Simmersfeld–Seewald/Besenfeld im Nordschwarzwald vor.Der Ausbau erneuerbarer Energien stößt bei den Bundesbürgerinnen und -bürgern auf breites Interesse. Etwa 80 Prozent der Bevölkerung sehen es als sehr wichtig oder sogar außerordentlich wichtig an, die erneuerbaren Energien stärker zu nutzen und auszubauen. Allerdings stellt es sich häufig als herausfordernde Aufgabe dar, geeignete Standorte für die Produktion regenerativer Energien zu finden, da viele unterschiedliche Interessen und Anforderungen zu berücksichtigen sind. Diesen Prozess einer Standortwahl können die Schülerinnen und Schüler mithilfe eines WebGIS nachvollziehen und die Ergebnisse anhand der gewählten Kriterien begründen.Die Schülerinnen und Schüler bearbeiten den Standortfindungsprozess für einen Windpark mithilfe eines Geographischen Informationssystems und analysieren die raumwirksamen Ausschlusskriterien. Das beigefügte Arbeitsblatt gibt detaillierte Hinweise zur Vorgehensweise. "Raumnutzung bei Windenergieanlagen": technische Hinweise Auf dieser Seite erhalten Sie wissenswerte Hinweise, bevor Sie und Ihre Schülerinnen und Schüler im Unterricht mit dem WebGIS-Modul starten. Unterrichtsverlauf "Raumnutzung bei Windenergieanlagen" Hier finden Sie Informationen zum Ablauf der Unterrichtseinheit "Raumnutzung bei Windenergieanlagen". Die Arbeitsschritte bei der Standortplanung werden zunächst an der Tafel und anschließend am Computer mithilfe des WebGIS durchgeführt. Die Schülerinnen und Schüler analysieren und bewerten Möglichkeiten der Energienutzung. verstehen und bewerten Perspektiven der Energieversorgung der Zukunft. analysieren bedingende und auslösende Faktoren eines raumwirksamen Problems in ihrer Wechselwirkung erarbeiten und Lösungsansätze für ein konkretes Planungsbeispiel. übertragen auf kommunaler Ebene die Leitideen der Agenda 21 auf ein konkretes Planungsbeispiel. Dieses WebGIS-Projekt läuft nicht mit dem Internet-Explorer! Verwenden Sie einen der folgenden Browser: Mozilla FireFox, Google Chrome, Apple Safari oder Opera. GeoPortal des LMZ Baden-Württemberg: Windparkprojekt Über diesen Link wird das Projekt "Windpark" auf der Oberfläche des GeoPortals des Landesmedienzentrums Baden-Württemberg gestartet. Symbolleiste Es wird empfohlen, dass die Schülerinnen und Schüler sich mit den Buttons in der Symbolleiste in den ersten fünf Minuten des Unterrichts vertraut machen. Von Bedeutung sind vor allem die sichere Handhabung des Zeichnens und des Löschens von Polygonen sowie des Speicherns des Projekts, wenn der Unterrichtsverlauf eine Unterbrechung verlangt. In der oberen Leiste über dem Kartenfenster stehen Werkzeuge zur Verfügung. Digitalisieren von Polygonen Zeichnen mit der Maus nennt man Digitalisieren. Es entstehen hierbei Vektorgrafiken. Dazu muss man das Werkzeug zum Zeichnen eines Polygons anklicken. Per linkem Mausklick werden die jeweiligen Eckpunkte des Polygons festgelegt. Per Doppelklick wird das Polygon fertiggestellt beziehungsweise die Zeichnung beendet und das Polygon geschlossen. Korrektur von Polygonen Wurde ein Eckpunkt falsch gesetzt, kann nachträglich das fertige Polygon bearbeitet werden, auch einzelne Korrekturen sind möglich: Dazu einfach den "Verändern"-Button anklicken, und einmal auf das zu verändernde Polygon klicken. Nun sind alle Eckpunkte durch Punktsymbole hervorgehoben, und die nachfolgend aufgeführten Funktionen können durchgeführt werden: Eckpunkt verschieben, löschen oder hinzufügen. Eckpunkt verschieben Ein einzelner Eckpunkt lässt sich mit gedrückter linker Maustaste an die gewünschte Position verschieben. Eckpunkt löschen Mit dem Mauszeiger über einen Eckpunkt fahren, bis über ihm gekreuzte Pfeile erscheinen und die Taste drücken. Eckpunkt hinzufügen Man fährt mit dem Mauszeiger auf die gewünschte Position des neuen Eckpunkts auf einer Linie, bis gekreuzte Pfeile erscheinen. Durch einen Linksklick wird einer neuer Punkt erzeugt. Der neue Eckpunkt kann verschoben werden, siehe oben. Alle Polygone zugleich löschen Durch Anklicken des Buttons, der an ein "Einfahrt verboten"-Verkehrsschild erinnert (roter Kreis mit waagerechtem weißen Balken) lassen sich alle Objekte auf einmal löschen. Projekt speichern Wenn der Unterrichtsverlauf die Unterbrechung der Arbeit verlangt, kann das Projekt gespeichert werden. Dazu den "Speichern"-Button anklicken (Diskettensymbol) und das Verzeichnis wählen, auf das die Lernenden in der nächsten Stunde Zugriff haben. Es wird empfohlen, den vom System gewählten Namen der Projektdatei "Project.gbw" umzubenennen. Projekt öffnen WebGIS starten im Browser Mozilla FireFox oder Google Chrome, Safari, Opera mit der URL gis.lmz-bw.de/windpark/ . "Öffnen"-Button anklicken, die Einstellungen und Verortung des Projekts werden entsprechend wieder hergestellt. An einem realen Beispiel erarbeiten die Schülerinnen und Schüler in aufeinander folgenden Schritten, welche Kriterien bei der Standortwahl zu berücksichtigen sind. Sie beschäftigen sich mit den Wechselwirkungen, die mit den verschiedenen Ansprüchen an bestimmte Flächen verbunden sind, und entwickeln Lösungsansätze. Einstieg: Raumnutzungskonflikte Als Einstieg in die Thematik können Nachrichtenmeldungen dienen. Anhand dieser Meldungen sammeln die Lernenden, welche Raumnutzungskonflikte bei der Planung des Windparks aufgetreten sind. Problematisierung Nun sollen die Schülerinnen und Schüler in die Rolle einer Planungsbehörde schlüpfen und nach Abwägen der Anforderungen an den Standort einen Vorschlag für einen Windpark für die Gemarkung Simmersfeld-Seewald/Besenfeld erarbeiten. Erarbeitung an der Tafel An der Tafel werden zunächst die Standortanforderungen für Windkraftanlagen gesammelt. Anschließend werden die Flächen gesucht, die nicht geeignet für die Errichtung von Windrädern sind und daher ausscheiden (beispielsweise Siedlungen, Schutzgebiete). Im nächsten Schritt nutzen die Lernenden den Computer als Entscheidungshilfe, um geeignete Flächen für die Standortplanung zu visualisieren. Erarbeitung am Computer Standortplanung Mithilfe des WebGIS führen die Schülerinnen und Schüler nun eine Standortplanung für den Untersuchungsraum durch. Orientieren Zunächst starten die Schülerinnen und Schüler das WebGIS-Modul "Ein Standort für einen Windpark". Als erstes erscheint im Kartenfenster eine topographische Karte und links die Legende, in der einzelne Themen sichtbar oder unsichtbar geschaltet werden können. Mithilfe der Ortssuche (Suchfenster unterhalb der Legende) ist die Eingabe des gewünschten Ortsnamens möglich, auf den die Karte dann zentriert wird. In diesem Unterrichtsbeispiel wird der Ortsname "Simmersfeld" eingegeben. Ausschlusskriterien bearbeiten Hierbei wird der Kartenausschnitt schrittweise eingegrenzt, indem Flächen, die für Windkraftanlagen ungeeignet sind, farbig hervorgehoben werden. Als erstes wird in der Legende das Feld "Schutzgebiete" durch ein Häkchen aktiviert und damit sichtbar. Weitere Einschränkungen ergeben sich durch Siedlungen und rundherum erforderliche Pufferzonen als Abstandsflächen. Die Siedlungsflächen werden per Mausklick mit der Polygonfunktion eingezeichnet. Anschließend kann mit dem Pufferwerkzeug experimentiert werden, indem verschieden breite Pufferzonen um die Siedlungen gelegt werden. Bei einer 1000m-Pufferzone ist die verbleibende Fläche für einen Windpark schon erheblich reduziert. Anforderungen bearbeiten Die noch übrigen Flächen müssen nun hinsichtlich der Standortanforderungen, die ein Windpark stellt, genauer betrachtet werden. Dazu analysieren die Schülerinnen und Schüler die Relief-Situation zunächst durch Anklicken des Themas "Schummerung" in der Legende. Hierbei werden Höhenrücken als geeignete Flächen bereits gut erkennbar. Mithilfe des Werkzeugs "Profil zeichnen" können die Lernenden einen Geländeschnitt anzeigen lassen, um so geeignete Flächen zu identifizieren. Schließlich sollen noch die Windgeschwindigkeiten berücksichtigt werden, indem die dargestellten Windrosen untersucht werden (dazu das Häkchen beim Thema "Windrose" aktivieren).

  • Geographie / Jahreszeiten
  • Sekundarstufe II
ANZEIGE