• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Nullstellen von quadratischen Funktionen entdecken

Unterrichtseinheit

Die Lösungen einer quadratischen Gleichung müssen sich laut Theorie ja mit Zirkel und Lineal konstruieren lassen. Aber wie geht das? Eine andere interessante Frage lautet: Wie kann man die komplexen Lösungen einer quadratischen Gleichung sichtbar machen? Der Blick über den reellen Tellerrand schafft dabei eine neue Sicht auf die Lösungen von Gleichungen.Quadratische Funktionen mit reellen Koeffizienten haben in R zwei Nullstellen, eine doppelte oder gar keine Nullstelle. Diese Lösungen kann man mit Zirkel und Lineal konstruieren, falls diese reell existieren. GeoGebra zeigt, wie es geht. Die analytische Bestätigung dieser Konstruktion stellt sich als sinnvolle algebraische Aufgabe. Im komplexen Zahlenbereich hingegen hat laut Hauptsatz der Algebra eine quadratische Funktion immer zwei Nullstellen (inklusive doppelte Nullstelle), die man im Funktionsgraphen aber nicht zu sehen bekommt, wenn sie komplex sind.Auf zwei verschiedene Arten sollen diese komplexen Lösungen sichtbar gemacht werden. Zum Einsatz kommen dabei die frei zugänglichen Mathematik-Programme GeoGebra und wxMaxima. Hinweise zum Unterrichtsverlauf Hier sind die Voraussetzungen und die verwendeten Materialien für diese Unterrichtseinheit genauer beschrieben. Anregungen und Erweiterungen Weitere Vorschläge zu Anwendungen mit höhergradigen Polynomen sind hier aufgeführt. Fachkompetenz Die Schülerinnen und Schüler sollen die Problematik der Konstruktionen mit Zirkel und Lineal bewältigen. das Rechnen mit komplexen Zahlen üben. Funktionen mit zwei Variablen und deren Darstellung als Flächen im Raum kennen lernen. den Einsatz von Funktionen und Ortslinien in GeoGebra trainieren. Medienkompetenz Die Schülerinnen und Schüler sollen im Umgang mit verschiedenen Software-Programmen vertraut werden. die Mathematiksoftware wxMaxima anwenden. die Mathematiksoftware GeoGebra anwenden. Thema Quadratische Gleichung Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 3 Stunden Technische Voraussetzungen ein Rechner pro Schülerin und Schüler, die (kostenfreie) Software GeoGebra und wxMaxima sollte installiert sein. Literatur Richard Courant, Herbert Robbins Was ist Mathematik?, 5. Auflage Springer 2000, ISBN 3-540-63777-X, Seite 204 Inhaltliche Voraussetzungen Die Schülerinnen und Schüler können quadratische Gleichungen ohne Mühe lösen. Sie verstehen das Konzept der komplexen Zahlen und können mit ihnen rechnen, etwa den Betrag oder das Einsetzen in einen quadratischen Term. Die Lernenden kennen den Hauptsatz der Algebra und verstehen seine Bedeutung für die Lösbarkeit von Gleichungen. Technische Voraussetzungen Die Unterrichtseinheit beinhaltet insgesamt fünf Online-Arbeitsblätter, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss das Java Plugin (1.4.2 oder höher, kostenloser Download) auf dem Rechner installiert und Javascript aktiviert sein. Nachdem im komplexen Zahlenbereich eine quadratische Funktion immer zwei Nullstellen hat, sollen diese komplexen Lösungen auf zwei verschiedene Arten sichtbar gemacht werden: Mit der komplexen Funktion wird ein Kreis in eine aufgefaltete Bildkurve transformiert, die dynamisch zu den Lösungen führt. Der Real- beziehungsweise Imaginärteil der zugehörigen komplexen Funktion wird als Fläche im Raum dargestellt. Damit erhält man die Nullstellen in 3D-Ansicht. Kreiskonstruktion Die Methode der Konstruktion der reellen Lösungen einer quadratischen Gleichung wird mit GeoGebra demonstriert. Der Nachweis kann dann analytisch erfolgen. Das Arbeitsblatt ist als GeoGebra- und HTML-Datei verfügbar. Funktionen als Flächen im Raum Hier werden Funktionen mit zwei Variablen mithilfe von wxMaxima räumlich dargestellt. Der Aufwand mit wxMaxima hält sich dabei in Grenzen, vorausgesetzt, der Umgang mit dieser Software ist entsprechend eingeübt. Die grafische Umsetzung erlaubt Rotationen und somit die Betrachtung der Flächen von allen Seiten. Der Einsatz eines CAS-Programms erspart den manuell sehr mühsamen Weg komplexer Berechnungen, was die Konzentration der Schülerinnen und Schüler auf die theoretischen Zusammenhänge erhöht. Die wesentlichen Sachinhalte bestehen darin, dass der Realteil beziehungsweise der Imaginärteil einer komplexen Funktion je eine Fläche im Raum darstellt. Ein Beispiel sehen Sie in Abb. 1 (bitte zur Vergrößerung anklicken). Ihr Schnitt mit der xy-Ebene liefert die Spuren, auf denen die Lösungen liegen müssen. Sie ergeben sich tatsächlich als Schnitt dieser Spuren. Mit dem Betrag der komplexen Funktion ändert sich nichts am Funktionswert Null, es pointiert aber die Veranschaulichung der Nullstellen. Anwendung des Fundamentalsatzes Ein anderes Konzept ist die topologisch dynamische Umsetzung und Anwendung des Fundamentalsatzes der Algebra mit GeoGebra. Dabei wird ein Punkt P(a,b) mittels der Transformation f(x+iy) auf P' abgebildet. Zunächst soll man den Punkt P so verschieben, dass P' im Ursprung liegt, P stellt dann die Lösung dar. Systematische Untersuchung der Ebene Das für Arbeitsblatt 4 beschriebene Unterfangen ist eher mühsam, wenn man gar keine Ahnung von der Lösung hat, weil man ja die ganze Ebene durchsuchen muss. Es liegt also nahe, eine Kreislinie mit sich änderndem Radius zu wählen, um die Ebene systematisch zu durchwandern. Dies mögen Schülerinnen und Schüler selber überlegen oder aber man stellt das Arbeitsblatt 5 zur Verfügung. Legt man also P auf einen Kreis mit Radius r, so ist dessen Bild eine geschlossene Kurve. Während P den Kreis einmal durchläuft, macht der Bildpunkt P' in der Bildkurve so viele Umläufe, wie der Grad von f beträgt. Der Radius des Kreises ist nun so einzustellen, dass die Bildkurve durch den Ursprung geht. Anschließend dreht man den Punkt solange im Kreis, bis P' im Ursprung liegt. Zeichnerische Konstruktion Bei der Konstruktion mit Zirkel und Lineal kann man etwa auf die Konstruktion des regelmäßigen Siebzehnecks zu sprechen kommen. Nullstellenkonstruktion Die Nullstellenkonstruktion im Komplexen funktioniert natürlich auch mit höhergradigen Polynomen, sowohl die Entfaltung mittels Kreistransformation in entsprechende Bildkurven als auch die Flächendarstellung im Raum. Konkret bieten sich primitive Kreisteilungsgleichungen der Form z n - 1 = 0 an. Eine solche Standardgleichung n.ten Grades hat genau n komplexe Lösungen. Das Schöne daran ist, dass diese alle auf einem Einheitskreis liegen und ein regelmäßiges n-Eck darstellen. Exemplarisch seien hier eine Kreisteilungsgleichung 3. und eine 5. Grades präsentiert.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Mathe-Domino zum Festigen der Grundrechenarten im Zahlenraum bis 100

Kopiervorlage

Dieses Arbeitsmaterial beinhaltet zwei Karten-Dominos mit jeweils 28 Rechenkärtchen und unterschiedlichen Schwierigkeitsstufen zum Einüben und Festigen der vier Grundrechenarten im Zahlenraum bis 100. In einem kleinen Spielkreis motivieren die Rechenkärtchen zum gezielten Üben und Wiederholen.Beim Mathe-Domino sind unterschiedliche Aufgaben zu den vier Grundrechenarten auf 28 Kärtchen verteilt, auf denen sich jeweils zwei unterschiedliche Aufgaben befinden. Jeweils drei oder vier Spieler sollten in einer Gruppe sein. Jeder Mitspielende wählt fünf Dominosteine aus und legt diese offen vor sich hin. Die Schülerinnen und Schüler berechnen die Aufgaben auf den vor ihnen liegenden Kärtchen und überprüfen, ob sie auf einer Seite einmal oder auch mehrmals anlegen können. Es darf links und rechts der Domino-Steine angelegt werden. Wer nicht direkt anlegen kann, nimmt sich ein Kärtchen vom Kartenstapel und versucht das Anlegen erneut. Sieger ist, wer zuerst alle Kärtchen anlegen konnte. Hinweise und Tipps Die Kärtchen müssen in einem Kreis gelegt werden, der sich nach Fertigstellung schließt. Es empfiehlt sich, die Kärtchen für den mehrmaligen Gebrauch vorm Zerschneiden zu laminieren. Schneiden Sie zunächst entlang der äußeren Ränder, anschließend entlang der Mittelachse. Bei schwächeren Gruppen empfiehlt es sich, die Aufgabe auf dem Kärtchen, an das angelegt werden soll, mit Ergebnis laut vorzusprechen oder auch die Aufgaben auf dem (eigenen) anzulegenden Kärtchen mit Ergebnis laut vorzusprechen. Fachkompetenz Die Schülerinnen und Schüler entnehmen Rechenkärtchen Informationen und verwerten diese. berechnen spielerisch Aufgaben zu den vier Grundrechenarten im Zahlenbereich bis 100. formulieren Rechenaufgaben und finden deren Lösung. Sozialkompetenz Die Schülerinnen und Schüler stärken ihre soziale Kompetenz durch einen kleinen Wettbewerb im Fach Mathematik. erkennen Spielregeln an und handeln nach diesen.

  • Mathematik / Rechnen & Logik
  • Primarstufe, Sekundarstufe I

Materialsammlung Algebra

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Algebra: Rechnen in Zahlenbereichen, Zuordnungen, Gleichungen und Ungleichungen, lineare Funktionen, quadratische Funktionen, Potenzfunktionen, ganzrationale Funktionen, Exponentialfunktionen und Begabtenförderung. Das Wilhlem-Ostwald-Gymnasium nutzt ab der 8. Klasse Note- und Netbooks im Unterricht. So können die Kosten für teure CAS-Systeme gespart werden, die nur für den Mathematik-Unterricht genutzt werden könnten. Mit freier Software können die Schülerinnen und Schüler alle im Lehrplan geforderten Themen im Mathematikunterricht bearbeiten. Die Geräte können darüber hinaus aber auch in anderen Fächern eingesetzt werden. In diesem Webtalk stellt Henrik Lohmann eine Unterrichtsreihe vor, die exemplarisch zeigt, wie mobile Geräte und digitale Arbeitsmaterialien genutzt werden. Die Materialien zum Thema "Quadratische Gleichungen und Funktionen" stehen unten zum Download bereit. Thema Stationenlernen mit Netbooks: "Quadratische Gleichungen und Funktionen" Autor Henrik Lohmann Anbieter Universität Duisburg Essen - learning lab, MINTec Fächer Informatik, Mathematik Zielgruppe Sekundarstufe I und II, Material erprobt in Jahrgangsstufe 9 Technische Voraussetzungen Computer mit Geogebra und Maxima, Internetzugang mit Schulplattform Materialien zur Informationstechnischen Grundbildung Beiträge und Resultate aus den vielfältigen Aktivitäten des nationalen Excellence-Schulnetzwerks MINT-EC und seiner Netzwerkschulen werden in der Schriftenreihe "Materialien zur Informationstechnischen Grundbildung" zusammengeführt und veröffentlicht. In verschiedenen Themenclustern erarbeiten MINT-EC-Lehrkräfte und Schulleitungen Schul- und Unterrichtskonzepte, entwickeln diese weiter und nehmen dabei neue Impulse aus Wissenschaft und Forschung und aus aktuellen Herausforderungen der schulischen Praxis auf. Das learning lab der Universität Duisburg Essen befasst sich seit Jahren mit der Konzeption und Entwicklung innovativer Lösungen für das Lernen insbesondere mit digitalen Medien. Im IT-Cluster des MINT-EC arbeitet eine Gruppe von Schulleitung und Medienbeauftragten aus dem Netzwerk von über 180 Gymnasien bundesweit zusammen, um die Potentiale digitaler Medien für den Unterricht systematisch nutzbar zu machen. Die Kopiervorlagen lassen sich einfach und schnell individualisieren und an die jeweiligen schulischen Erfordernisse anpassen - und Sie gehen als Lehrkraft stets bestens gerüstet in Ihren Unterricht. Der Mathelehrer Algebra unterstützt Sie mit allem, was Sie zur Unterrichtsvorbereitung brauchen. Hier wird das gesamte Algebra-Wissen der Unter- und Mittelstufe vermittelt - und zwar vollständig vertont. 80 spannende Themenaufgaben helfen den Schülerinnen und Schülern, den Unterrichtsstoff zu begreifen. Druckbare Darstellungen und viele Beispiele machen den trockenen Algebra-Stoff zum leicht verständlichen Lernerlebnis. Die vielen Beispielaufgaben mit Lösungen schaffen abwechslungsreiche Übungsmöglichkeiten. Auch Eltern profitieren von der Lernsoftware - als Nachschlagewerk, Übungsquelle und Unterstützung beim gemeinsamen Lernen mit den Schülerinnen und Schülern. Empfehlen Sie als Mathelehrkraft den Eltern Ihrer Schülerinnen und Schüler diese Software, damit diese auch in ihren Familien die optimale Lernunterstützung erhalten. Die Mappe im praktischen DIN-A4-Format enthält: Lernsoftware für das Fach Algebra 133 Kopiervorlagen mit allen lehrplanrelevanten Themen Alle Kopiervorlagen zum Drucken und Editieren in elektronischer Form Auszeichnung: CLEVER 2009 für Mathelehrer Algebra! CLEVER ist das Prüfsiegel für empfehlenswerte Software, das die ZUM (Zentrale für Unterrichtsmedien) und die Redaktionsagentur S@M Multimedia Services gemeinsam herausgeben. Die hier vorgestellte dynamische Veranschaulichung wurde mit der kostenlosen Mathematiksoftware GeoGebra erstellt und in eine interaktive Webseite eingebunden. Dies ermöglicht es den Schülerinnen und Schülern zu probieren, zu beobachten und ihre Vermutungen einer Prüfung zu unterziehen. Direkte Rückmeldungen unterstützen die Lernenden auf dem Weg, die Rechenregeln für die Addition ganzer Zahlen zu finden, sowie bei der Anwendung und Festigung der erworbenen Kenntnisse. Durch den Einsatz interaktiver dynamischer Arbeitsblätter erfährt das selbstverantwortete Lernen eine methodische Bereicherung. Die Schülerinnen und Schüler sollen durch Experimentieren die unterschiedlichen Regeln für die Addition ganzer Zahlen selbstständig finden. die Regeln für die Addition ganzer Zahlen verbal beschreiben und die erworbenen Kenntnisse auf unterschiedliche Beispiele anwenden können. Thema Addition ganzer Zahlen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Addition ganzer Zahlen Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Die Schülerinnen und Schüler sollen erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden können. Thema Subtraktion ganzer Zahlen mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Verlaufsplan: Subtraktion ganzer Zahlen Die Schülerinnen und Schüler sollen im Lernbereich "Natürliche Zahlen" die Begriffe Teilbarkeit, Vielfache und Teiler sowie Mengen kennen (Klasse 5). im Wahlpflichtbereich "Wie die Menschen Zählen und Rechnen lernten" Einblick gewinnen in das Zählen und in die Schreibweisen von Zahlen in einem anderen Kulturkreis (Klasse 5). sich im Rahmen der Prüfungsvorbereitung mit den Begriffen Teiler- und Vielfachmengen sowie mit Stellenwertsystemen auseinandersetzen (Klasse 10). Thema Zahlen und Kalender der Maya Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 5 (natürliche Zahlen, Schreibweisen von Zahlen) Klasse 10 (Prüfungsvorbereitung) Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit) Einführung der Lernumgebung per Beamer Schülerinnen und Schüler der Klasse 5 sind den Einsatz interaktiver Arbeitsblätter oft noch nicht gewohnt. Daher sollte der Umgang damit zunächst von der Lehrperson per Beamer gezeigt werden. Auch die Steuerung einer VRML-Animation sollte demonstriert werden. Die 3D-Animationen der Lernumgebung zum Maya-Kalender sorgen für Anschaulichkeit und vereinfachen die Visualisierung von Aufgabenstellungen und Zusammenhängen. Alle animierten GIFs und Videos der Lernumgebung wurden vom Autor mithilfe des 3D-CAD-Programmes FluxStudio 2.0 erzeugt. Hinweise zum Einsatz der Übungen Ein Hinweis auf die Notwendigkeit einer korrekten Zahleneingabe bei den Übungen führt zu erhöhter Konzentration und damit zu weniger Frusterlebnissen. Diese entstehen, wenn Fragen inhaltlich richtig, aber formal fehlerhaft (zum Beispiel durch Leerstellen) in die Arbeitsblätter eingegeben werden. Die Angaben werden dann als falsch bewertet. Auch Partnerarbeiten zwischen Schülerinnen und Schülern mit guten Deutschkenntnissen und Lernenden, denen die deutsche Sprache schwer fällt (Integrationskinder), kann zur Vermeidung von Frusterlebnissen beitragen. Inhalte der Lernumgebung Schülerinnen und Schüler lernen die Maya-Ziffern kennen. Zahnrad-Modelle veranschaulichen die Kalenderzyklen bis hin zum "Long Count", der 2012 enden wird. Die Schülerinnen und Schüler sollen eigene Vorstellungen zu den verschiedenen Grundvorstellungen der Bruchzahlen entwickeln. ihre eigenen Vorstellungen von Bruchzahlen verbalisieren können. Bruchzahlen als wichtige Bestandteile in ihrer Umwelt identifizieren und Verständnis für Sinn und Bedeutung der einzelnen Aufgaben entwickeln. an die Bedeutung von Bruchzahlen intuitiv herangehen und ein eigenes Verständnis für diese entwickeln, ohne die Begriffe Zähler und Nenner zu benutzen. die Aufgaben nach Abschluss des jeweiligen Entdeckerarbeitsblattes selbst erarbeiten können. Thema Schulung der Grundvorstellung von Bruchzahlen Autor Katrin Hausmann unter Mithilfe von Thomas Borys Fach Mathematik Zielgruppe Klasse 5 oder 6 Zeitraum 2 Stunden Technische Voraussetzungen Computerraum, Software: Excel Innerhalb der gesamten Anwendung wurde das Konzept verfolgt, zu den Grundvorstellungen spezielle Übungsaufgaben (im Hauptmenü grün gefärbt) und eine zugrunde liegende Erklärung - oder Entdeckungsseite (gelb gefärbt) - anzubieten. Die Entdeckungsseiten sollen für unerfahrene Schülerinnen und Schüler einen ersten Zugang liefern. Sie verfügen über ein Textfeld, in das die Lernenden ihre Beobachtungen und ersten Versuche zur Beschreibung der verschiedenen Grundvorstellungen der Bruchzahlen schreiben können. Die Texte können nach Ende der Bearbeitung von der Lehrkraft in dem Tabellenblatt "Beobachtungen" eingesehen werden. Damit die Excel-Arbeitsblätter richtig funktionieren, müssen Makros aktiviert sein und die Sicherheitsstufe auf "mittel" eingestellt werden. Hinweise zur Durchführung im Unterricht Die interaktive Excel-Lernumgebung ermöglicht den Schülerinnen und Schülern ein selbstständiges Entdecken der Lerninhalte. Thomas Borys ist Gymnasiallehrer für Mathematik und Physik. Er arbeitet als Studienrat im Hochschuldienst an der Pädagogischen Hochschule Karlsruhe am Institut für Mathematik und Informatik. Die Subtraktion gemischter Zahlen ist einer der Bereiche der Bruchrechnung, der sich durch eine hohe Fehlerquote bei Schülerinnen und Schülern auszeichnet. Grund dafür ist nicht selten die Tatsache, dass die Lernenden über unzureichende Grundvorstellungen verfügen. So ist es oftmals im Unterricht verwunderlich, dass Aufgaben wie zum Beispiel "1 minus 3/5", die allein auf der anschaulichen Ebene ohne jedes formale Rechenkalkül zu lösen wären, zu Fehlern führen. Die hier vorgestellte Lernumgebung möchte Wege aufzeigen, wie Schritt für Schritt Grundvorstellungen aufgebaut werden können, um Aufgaben des Typs "3 2/7 minus 1 4/7" auf der anschaulichen und bildlichen Ebene zu lösen. So erzeugte Grundvorstellungen können ein nachhaltiges Lernen fördern. Die Verwendung von interaktiven dynamischen Arbeitsblättern unterstützt die Lernenden und ermöglicht ihnen einen individuellen und eigenständigen Zugang zu Grundvorstellungen. Alle dynamischen Darstellungen wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um algebraische Zusammenhänge dynamisch zu veranschaulichen. Die Schülerinnen und Schüler sollen natürliche Zahlen als Scheinbrüche in die Bruchzahlen einordnen können. Brüche von natürlichen Zahlen und gemischten Zahlen anschaulich und symbolisch subtrahieren können. die Subtraktion einer gemischter Zahl als Subtraktion einer natürlichen Zahl und eines Bruchs verstehen lernen. die Subtraktion gemischter Zahlen symbolisch ausführen können. Thema Gemischte Zahlen anschaulich subtrahieren Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 2-3 Stunden Technische Voraussetzungen Mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; für die Nutzung der dynamischen Materialien benötigen Sie das kostenlose Plugin Java Runtime Environment (Version 1.4 oder höher), Javascript muss aktiviert sein. Planung Gemischte Zahlen anschaulich subtrahieren Die geometrische Veranschaulichung des Erweiterns anhand der Verfeinerung der Unterteilung eines gegebenen Rechtecks wird mithilfe von GeoGebra realisiert. Neben der dynamischen Veranschaulichungs- und Experimentierumgebung bietet die Unterrichtseinheit eine javascript-basierte algebraische Übungsmöglichkeit zur Individualisierung und Differenzierung des Unterrichts. Eine zusätzliche, nicht zu unterschätzende, Motivation während dieser Übungs- und Vertiefungsphase bietet ein Wettbewerb, bei dem die Schülerinnen und Schüler die von Ihnen erreichte Punktzahl in eine Bestenliste eintragen können. Die Schülerinnen und Schüler sollen erkennen, dass für eine Bruchzahl unterschiedliche Darstellungen möglich sind. durch Experimentieren das Erweitern eines Bruchs visuell erfahren. das Erweitern eines Bruchs durch das Multiplizieren von Zähler und Nenner mit der gleichen Zahl selbstständig entdecken. die erworbenen Kenntnisse über das Erweitern von Brüchen auf unterschiedliche Beispiele anwenden. Thema Erweitern von Brüchen - eine interaktive Einführung Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript; Java Runtime Environment (kostenloser Download) Unterrichtsplanung Erweitern von Brüchen - eine interaktive Einführung In dieser Unterrichtseinheit werden drei unterschiedliche Übungsmöglichkeiten vorgestellt, mithilfe derer das Rechnen mit ganzen Zahlen vertieft werden kann. Anhand von zwei Übungen soll dabei zuerst das Ausgangsniveau gesichert werden. Darin werden noch einmal die Kenntnisse zur Addition und Multiplikation von ganzen Zahlen auf einen aktuellen Stand gebracht. Durch die Verwendung von variablen Rechenbäumen werden in einem zweiten Schritt die Rechenarten miteinander verbunden. Abschließend wird das bereits im Bereich der Dezimalzahlen behandelte arithmetische Mittel in Verbindung mit dem Rechnen mit ganzen Zahlen aufgefrischt und in einen Anwendungskontext, der Ermittlung von Durchschnittstemperaturen, gestellt. Die Schülerinnen und Schüler sollen ihre Kenntnisse im Bereich der Addition und Multiplikation ganzer Zahlen vertiefen. durch die Kombination von Grundrechenarten im Bereich der ganzen Zahlen Sicherheit im Rechnen erlangen. das arithmetische Mittel auf ganze Zahlen anwenden können. mithilfe des arithmetischen Mittels auf Ausgangswerte schließen können. Thema Ganze Zahlen - Grundrechenarten verbinden und anwenden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schüler oder Schülerinnen; Software: Java , Version 1.4 oder höher, kostenfreier Download Interaktive dynamische Arbeitsblätter können durch die automatische Kontrolle der Ergebnisse und Rückmeldungen, die den Schülerinnen und Schülern eine eigenständige Fehleranalyse ermöglichen, einen wertvollen Beitrag zur Vertiefung der erworbenen Kenntnisse leisten. Hinweise zum Einsatz im Unterricht Aufbau und Funktionsweise der interaktiven Arbeitsblätter werden erläutert. Die Lernenden können eigenständig mit ihnen arbeiten. Erste Unterrichtsstunde In der einführenden Stunde lösen die Lernenden Aufgaben zur Multiplikation und Addition positiver und negativer ganzer Zahlen. Zweite Unterrichtsstunde Anhand von variablen Rechenbäumen sollen die Schülerinnen und Schüler drei fehlende ganze Zahlen ermitteln. Dritte Unterrichtsstunde Das Rechnen mit positiven und negativen ganzen Zahlen wird in einen Anwendungskontext zur Ermittlung von Durchschnittstemperaturen gestellt. Bei der Einführung des Termbegriffs gilt es, Kontexte zu finden, die es den Schülerinnen und Schülern ermöglichen, Grundvorstellungen auszubilden. Die Länge eines Zugs ist abhängig von der Länge der Lokomotive und der Länge sowie der Anzahl der Waggons. Anhand dieses konkreten Kontexts werden in dieser Unterrichtseinheit die Begriffe Term und Termwert anschaulich eingeführt. Ein wesentliches Element dieser kontextorientierten Einführung ist die enge Verknüpfung von bildlicher, symbolischer und nummerischer Darstellung, die durch die Verwendung der dynamischen Mathematiksoftware GeoGebra möglich wird. Für die sich anschließende Übungsphase werden Aufgaben bereitgestellt, die ein individualisiertes und differenziertes Lernen ermöglichen. Die Schülerinnen und Schüler sollen erkennen, dass die Länge eines Zugs von der Länge der Lokomotive, der Länge und der Anzahl der Waggons abhängt. erkennen, dass die Zuglänge, abhängig von der Anzahl der Waggons, mithilfe von Tabellen dargestellt werden kann. Einsicht gewinnen, dass Zuglängen mit Termen beschrieben werden können. Tabellen analysieren und fehlende Termwerte ergänzen können. ausgehend von tabellarischen Darstellungen Terme selbstständig entwickeln können. Thema Terme - eine kontextorientierte Einführung mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Software: Java , Version 1.4 oder höher, kostenfreier Download Planung Terme - eine kontextorientierte Einführung mit GeoGebra Die Schülerinnen und Schüler sollen den Dreisatz für die direkte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen. Zuordnungsvorschriften der Form y=mx formulieren. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen direkt proportionaler Zuordnungen ansteigende Geraden ergeben, die durch den Koordinatenursprung verlaufen. Thema Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-3 Unterrichtsstunden Technische Voraussetzungen Computerarbeitsplatz (am Besten ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten Die Unterrichtseinheit zielt in erster Linie auf das Übertragen von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können die interaktiven Übungen der Arbeitsblätter entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten werden (eine Unterrichtsstunde), oder bereits für die Erarbeitung des Themas "Darstellung der direkten Proportionalität im Koordinatensystem" verwendet werden (drei Unterrichtsstunden). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Schülerinnen und Schüler sollen den Dreisatzes für die indirekte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen können. Zuordnungsvorschriften der Form y=m/x formulieren können. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen indirekt proportionaler Zuordnungen keine ansteigende Geraden mehr ergeben, sondern bestimmte Arten von Kurven: Hyperbeläste (ohne den Begriff zu kennen). Thema Indirekte Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten und Voraussetzungen Die Unterrichtseinheit zielt in erster Linie auf das Üben des Übertragens von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können diese interaktiven Übungen bereits bei der Behandlung dieses Themas im Unterricht als selbstständige Schülertätigkeit angeboten werden. Voraussetzung dafür ist allerdings, dass die direkte Proportionalität bereits auf diese Weise bearbeitet wurde (siehe Unterrichtseinheit Direkte Proportionalität ). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Verwendung webbasierter interaktiver Arbeitsblätter zum Thema Gleichungen und Ungleichungen ermöglicht Schülerinnen und Schülern in dieser Unterrichtseinheit einen neuen Umgang mit Fehlern. Die eingesetzten Online-Arbeitsblätter sind Bestandteil der umfangreichen Unterrichtsmaterialien von realmath.de . Bei der Bearbeitung des ersten Arbeitsblattes analysieren die Schülerinnen und Schüler die Hausaufgaben des fiktiven Geschwisterpaares Paul und Paula, suchen Fehler und beschreiben deren Ursachen. Anschließend begegnen sie in einem zweiten Online-Arbeitsblatt Aufgabenstellungen, bei denen sie ihre Fehleranalyse produktiv umsetzen können: Sie bauen ganz bewusst Fehler in Gleichungen ein, die ihre Partnerin oder ihr Partner dann korrigieren soll. Die hier vorgestellte Unterrichtseinheit entstand im Rahmen der Mitarbeit am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung webbasierter Arbeitsblätter umgesetzt werden können (Modul 3: Aus Fehlern lernen). Die Schülerinnen und Schüler sollen Fehler in bearbeiteten Gleichungen und Ungleichungen finden. Fehler und deren Ursachen beschreiben. das Wissen über Fehler kreativ und produktiv umsetzen. Thema Gleichungen und Ungleichungen - Fehler produktiv nutzen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 7-8 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Browser mit aktiviertem Javascript; Beamer Unterrichtsplanung Verlaufsplan Gleichungen und Ungleichungen der Unterrichtseinheit Das Lösen von Gleichungen und Ungleichungen durch Äquivalenzumformungen sowie das Inversions- und Distributivgesetz müssen bereits besprochen und an Beispielen behandelt worden sein. Die Unterrichtseinheit selbst basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Methodische Vorgehensweise Wie können die negativen Vorerfahrungen der Schülerinnen und Schüler mit dem Begriff ?Fehler? ins Positive gewendet werden? Unterrichtsverlauf "Gleichungen und Ungleichungen" Beschreibung der Unterrichtsphasen, Hinweise zum Einsatz der Arbeitsmaterialien und Screenshots der Online-Arbeitsblätter Bezug der Unterrichtseinheit zu SINUS-Transfer Aus Fehlern lernen - Schwerpunkt von SINUS-Modul 3 ist die Rehabilitierung des Fehlers als Lerngelegenheit. Zentrales Element dieser Lerneinheit ist das Beispiel eines Flugzeugs, das für Scanneraufnahmen über eine Landschaft fliegt und durch eine Windböe vom geraden Kurs abkommt. Die dadurch auf dem Scannerbild entstandene Verzerrung können die Schülerinnen und Schüler durch eine Funktion korrigieren. Zusätzlich zum Verständnis der mathematischen Inhalte lernen die Schülerinnen und Schüler auch Aspekte der Fernerkundung kennen. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen die Entstehung von Scannerbildern nachvollziehen können. einen klaren Bezug zwischen den mathematischen Inhalten und der realen Situation herstellen können. die Struktur eines digitalen Bildes kennen und auf die Problemstellung übertragen können. die Anforderung an eine Funktion formulieren, welche für die Lösung der Problemstellung notwendig ist. denn Sinn und die Arbeitsweise von Funktionen anhand des zu entzerrenden Bildes verstehen. Thema Pixel auf Abwegen Autoren Dr. Kerstin Voß, Henryk Hodam Fach Mathematik Zielgruppe Klasse 8 Zeitraum 2 Stunden Technische Voraussetzungen Adobe Flash-Player (kostenloser Download) Planung Pixel auf Abwegen Ziel der Unterrichtseinheit ist es, Aufgaben und die Mechanismen einfacher linearer Funktionen zu verstehen. Durch die praktische Anwendung sollen mögliche Verständnisbarrieren frühzeitig überwunden werden und den Lernenden ein klarer Bezug der mathematischen Inhalte zu realen Situationen aufgezeigt werden, in diesem Fall zur rechnerischen Entzerrung von Scannerbildern. Schülerinnen und Schüler sollen mithilfe des Moduls vielmehr das Verständnis für den Sinn und die Charakteristik von einfachen Funktionen festigen, bevor es lehrplangemäß zur Vertiefung dieser Thematik kommt. Es ist jedoch denkbar, Themen wie den Aufbau einer Funktionsgleichung oder die Herleitung einer Funktionsgleichung aus zwei Punkten eines Graphen an das Modul anzulehnen und sich im regulären Unterricht sukzessive die Werkzeuge zur Lösung des Moduls zu erarbeiten. Die mathematische Auseinandersetzung mit dem Funktionsbegriff ist zentrale Aufgabe des Moduls. Zusätzlich lernen die Schülerinnen und Schüler Aspekte der Fernerkundung kennen. Einführung in die Thematik Das interaktive Modul gliedert sich in ein Startmenü, eine Einleitung und den in drei Bereiche unterteilten Aufgabenteil. Aufgabenteil im Computermodul Hier wird der Aufgabenteil mit den drei Bereichen Analyse, Funktion und Entzerrung genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der multimedialen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Um den Kern der Problematik im Modul erfassen zu können, ist eine kurze Erklärung notwendig, denn die hier behandelte Verzerrung ist nur charakteristisch für Scannerbilder. Die Beispiele aus den Hintergrundinformationen und vor allem die interaktive Animation am Anfang des Moduls sollen hier behilflich sein. Folie 1 zeigt klar den Unterschied zwischen einem normalen Luftbild und einem Scannerbild auf. Um zu verdeutlichen, wo die Vorteile eines Scannerbildes liegen, kann Folie 2 gezeigt werden. Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus ist die durchgeführte Bildkorrektur nur mithilfe eines Rechners durchführbar. Ein Umstand, der den Schülerinnen und Schülern das Medium Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei "FIS_Pixel auf Abwegen.exe" gestartet. Dazu ist ein Adobe Flash Player notwendig. Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Die Animation verdeutlicht die Arbeitsweise eines flugzeuggestützten Scanners. Das Flugzeug scannt dabei eine Landoberfläche ab, gleichzeitig wird auf der rechten Seite der gescannte Bildbereich Reihe für Reihe, der aktuellen Flugzeugposition entsprechend, aufgebaut. Abb. 1 verdeutlicht dies (Platzhalter bitte anklicken). Die mittig angeordneten Pfeile dienen der Beeinflussung des Flugverhaltens. Das gescannte Bild reagiert dabei auf die ausgelösten Manöver und die entstandene Verzerrung wird angezeigt. Wird eine Seitwärtsbewegung ausgelöst, erscheint ein Button. Ein Klick auf den Button "Driftverzerrung bearbeiten" leitet über zum nächsten Menüpunkt. Zur Anpassung der Animation an geringere Rechnerleistung kann die Qualität mithilfe des Buttons im oberen linken Fensterbereich angepasst werden. Der zweite Bereich bietet eine animierte Einführung, in der ein Flugzeug über eine Landschaft fliegt. Abb. 2 gibt einen Eindruck dieser Animation (bitte auf den Platzhalter klicken). Eine semi-fiktionale Geschichte erzählt kurz, wie es zur Situation der Driftverzerrung gekommen ist, die es auf mathematischem Weg zu lösen gilt. Die "Weiter"-und "Zurück"-Buttons navigieren durch die beiden Abschnitte dieses Bereichs und leiten zum dritten Bereich, dem Aufgabenteil, weiter. Die Besonderheit der Übungen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass von Schülerinnen und Schülern erstellte Zeichnungen per Computer analysiert und bewertet werden. Somit muss sich die Lehrkraft nicht mehr mit der unmittelbaren Korrektur der Schülerarbeiten befassen, sondern kann sich in einer differenzierten Unterrichtssituation leistungsschwächeren Schülerinnen und Schülern zuwenden und diesen bei auftretenden Schwierigkeiten helfend und erklärend zur Seite stehen. Alle dynamischen Zeichnungen innerhalb der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um interaktive dynamische Lernumgebungen zu erstellen. Die Schülerinnen und Schüler sollen erkennen, dass die Steigung einer Geraden durch das Steigungsdreieck eindeutig festgelegt ist. die Gleichung von Ursprungsgeraden anhand der Steigung bestimmen können. Ursprungsgeraden nach einer gegebenen Gleichung zeichnen können. die Gleichung von Ursprungsgeraden aus den Koordinaten eines Punktes bestimmen können. Thema Steigung einer Geraden - mit GeoGebra entwickeln Autor Dr. Andreas Meier Fach Mathematik Zielgruppe 8. und 9. Klasse Zeitraum 2-3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript, Java Runtime Environment (kostenloser Download) Planung Steigung einer Geraden - mit GeoGebra entwickeln In der Verbindung von Alltagssituationen mit dem Thema Lineare Funktionen soll den Schülerinnen und Schülern in dieser Unterrichtseinheit durch den Einsatz von interaktiven Webseiten ein eigenständiger Wissenserwerb ermöglicht werden. Die grafische Darstellung der bei Regen steigenden Wasserhöhe in einer Regentonne in Abhängigkeit von der Zeit ist das Thema des ersten interaktiven Arbeitsblattes (von der Website realmath.de ), das in dieser Unterrichtseinheit zum Einsatz kommt. Wird das Arbeitsblatt für den Einstieg in das Themengebiet "Lineare Funktionen" verwendet, kann hier propädeutisch der Begriff der Steigung erarbeitet werden. Kommt das Online-Arbeitsblatt erst im Verlauf des Themas zum Einsatz, so kann der mathematisch erarbeitete Begriff der Steigung mit neuer anschaulicher Bedeutung gefüllt werden. In dem darauf folgenden zweiten interaktiven Arbeitsblatt sind unterschiedliche Preisangebote eines Kartbahnbetreibers grafisch dargestellt. Es ermöglicht den Schülerinnen und Schülern, die eben erworbenen Kenntnisse in einem neuen Aufgabenumfeld anzuwenden und sich in einem Wettbewerb mit den Mitschülern zu messen. Die Unterrichtseinheit entstand im Rahmen der Mitarbeit des Autors am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung von webbasierten Arbeitsblättern umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Schülerinnen und Schüler sollen Texte grafischen Darstellungen zuordnen. Informationen aus grafischen Darstellungen entnehmen und interpretieren. selbstständig Texte zu grafischen Darstellungen erstellen. eigene grafische Darstellungen zu Sachverhalten entwerfen. Thema Lineare Funktionen - grafische Darstellungen interaktiv erkunden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 8-9 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler, Browser mit aktiviertem Javascript, Beamer, OHP Unterrichtsplanung Lineare Funktionen der Unterrichtseinheit Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die Interaktivität möglich wird, muss jedoch Javascript im Browser aktiviert sein. Die Inhalte der Webseiten sind so konzipiert, dass eine Behandlung der Linearen Funktionen als Voraussetzung zur Bearbeitung der Aufgaben nicht zwingend notwendig ist. Die Aufgaben können sogar als Baustein für den Einstieg in die Thematik Lineare Funktion verwendet werden. Das ?ICH-DU-WIR?-Prinzip Das methodische Konzept der Schweizer Didaktiker Peter Gallin und Urs Ruf zeigt einen Weg zur nachhaltigen Anregung individueller Lernprozesse auf. Unterrichtsverlauf "Lineare Funktionen" Hinweise zum Verlauf des Unterrichts und zum Einsatz der Arbeitsmaterialien (Arbeits- und Hausaufgabenblatt, Online-Arbeitsblätter) Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen anhand der Funktionsmaschine den Funktionsbegriff verinnerlichen. Zuordnungsvorschriften linearer Funktionen kennen und anwenden können. Zuordnungsvorschriften der Form y=mx+n formulieren können. das Ablesen von linearen Funktionen aus dem Koordinatensystem beherrschen. das Eintragen von linearen Funktionen in ein Koordinatensystem beherrschen. Achsenabschnitte als Hilfsmittel zur Darstellung linearer Funktionen erkennen. das grafische Lösen linearer Gleichungssysteme kennen lernen. Thema Lineare Funktionen - die Funktionsmaschine Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 7 oder 10 Zeitraum etwa 4 Stunden bei der Erarbeitung in Klasse 7; etwa 2 Stunden beim Einsatz als Prüfungskomplex in Klasse 10 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Schülerin/Schüler), Flash-Player (kostenloser Download aus dem Internet), Browser mit aktiviertem Javascript Die Unterrichtseinheit dient der Erarbeitung des Funktionsbegriffs. Da sehr viele Schülerinnen und Schüler Schwierigkeiten haben, den Funktionsbegriff zu verinnerlichen, wird gerade auf die anschauliche Darstellung der Funktion als Maschine, die Zahlen verändert, Wert gelegt. Das Modell der Funktionsmaschine hat sich in der Mathematik-Didaktik als sehr anschaulich und einprägsam für die Lernenden erwiesen. Die auf dem ersten Arbeitsblatt verwendete Animation soll einen Beitrag zur weiteren Erhöhung dieser Anschaulichkeit leisten! Damit die Animation richtig angezeigt wird, muss ein Flash-Player für den Browser installiert sein und interaktive Webinhalte müssen zugelassen werden. Einsatz der Materialien Hinweise zum Einsatz der Arbeitsblätter, Links zu den Onlinematerialien und Screenshots. Die Schülerinnen und Schüler sollen die Bedeutung des Vorfaktors a in der Funktionsvorschrift f(x) = ax 2 + bx + c erkennen und benennen können. erkennen, dass ein negatives (positives) Vorzeichen des Vorfaktors b eine Verschiebung der Parabel nach rechts (links) bewirkt, vorausgesetzt der Vorfaktor a ist positiv (negativ). den Einfluss des Vorfaktors c auf die Lage der Parabel angeben können. anhand vorgegebener Funktionsvorschriften angeben können, wie die Parabel geöffnet und verschoben ist. Thema Untersuchung von Parabeln mit Excel Autorin Sandra Schmidtpott Fach Mathematik Zeitraum 1-2 Unterrichtsstunden (je nach Excel-Vorkenntnissen) Zielgruppe Klasse 9 technische Voraussetzungen Rechner in ausreichender Menge für Partnerarbeit, Beamer Software Excel Die Schülerinnen und Schüler sollen Quadratische Funktionen in der Normalform erkennen und zeichnen können. Quadratische Funktionen in der Scheitelpunktform erkennen und zeichnen können. Quadratische Funktionen von der Scheitelpunktform in die Normalform überführen können und umgekehrt. das Lösen Quadratischer Gleichungen beherrschen. das Lösen von Sachaufgaben mittels Quadratischer Gleichungen beherrschen. Thema Quadratische Funktionen und Gleichungen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 9 oder 10 Zeitraum 7 Stunden Technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Flash-Player , Java Runtime Environment , Browser mit aktiviertem Javascript, Excel (für die Nutzung einer Hilfedatei zur Lösung Quadratischer Gleichungen); im Idealfall Beamer Die Schülerinnen und Schüler sollen die Problematik der Konstruktionen mit Zirkel und Lineal bewältigen. das Rechnen mit komplexen Zahlen üben. Funktionen mit zwei Variablen und deren Darstellung als Flächen im Raum kennen lernen. den Einsatz von Funktionen und Ortslinien in GeoGebra trainieren. Die Schülerinnen und Schüler sollen im Umgang mit verschiedenen Software-Programmen vertraut werden. die Mathematiksoftware wxMaxima anwenden. die Mathematiksoftware GeoGebra anwenden. Thema Quadratische Gleichung Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 3 Stunden Technische Voraussetzungen ein Rechner pro Schülerin und Schüler, die (kostenfreie) Software GeoGebra und wxMaxima sollte installiert sein. Auf zwei verschiedene Arten sollen diese komplexen Lösungen sichtbar gemacht werden. Zum Einsatz kommen dabei die frei zugänglichen Mathematik-Programme GeoGebra und wxMaxima. Unterrichtsverlauf "Nullstellen" Hier sind die Voraussetzungen und die verwendeten Materialien für diese Unterrichtseinheit genauer beschrieben. Anregungen und Erweiterungen Weitere Vorschläge zu Anwendungen mit höhergradigen Polynomen sind hier aufgeführt. Literatur Richard Courant, Herbert Robbins Was ist Mathematik?, 5. Auflage Springer 2000, ISBN 3-540-63777-X, Seite 204 Am Beispiel der Einführung in die Potenzfunktion mit ganzzahligem Exponent soll aufgezeigt werden, wie Schülerinnen und Schüler sich die Eigenschaften dieser Funktionen durch Experimentieren und Beobachten erarbeiten können. Durch die mit GeoGebra erzeugten dynamischen Veranschaulichungen werden sie in die Lage versetzt, sich ihrem eigenen Lerntempo entsprechend mit den Eigenschaften von Potenzfunktionen aktiv auseinander zu setzen. Die inhaltliche Aufbereitung der einzelnen interaktiven dynamischen Arbeitsblätter bietet eine Vorstrukturierung der zu erarbeitenden Unterrichtsinhalte. So leitet die Unterteilung in geradzahlige und ungeradzahlige Exponenten sowie die Vorgabe von jeweils neun zu prüfenden Aussagen zu zielgerichtetem Experimentieren an und unterstützt den individuellen Lernprozess. Die Zahl n als Exponent steht im Folgenden in allen Funktionsgleichungen stets für eine natürliche Zahl. Die Schüler und Schülerinnen sollen erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax n auf den Verlauf des Graphen beschreiben können. erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x -n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax -n auf den Verlauf des Graphen beschreiben können. anhand vorgegebener Graphen deren Gleichung ermitteln können. Thema Potenzfunktion - Graphen analysieren, Eigenschaften entdecken Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 10 Zeitraum etwa 3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang und aktiviertem Javascript für je zwei Lernende, Java Plugin (1.4.2 oder höher, kostenloser Download) Planung Potenzfunktion - Graphen analysieren Die Schülerinnen und Schüler sollen Potenzfunktionen erkennen und in ein Koordinatensystem einzeichnen können. Potenzfunktionen mithilfe von Funktionsplottern darstellen können. das Berechnen von Wertetabellen für Potenzfunktionen beherrschen. den Einfluss des Koeffizienten a auf den Verlauf der Potenzfunktionen y = f(x) = ax n erarbeiten. Wurzelfunktionsgraphen erkennen und beschreiben können. Thema Potenzfunktionen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 2 Stunden technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript; eventuell Beamer Die Vorteile von Netbooks für den schulischen Einsatz liegen auf der Hand: Sie sind klein, leicht und deutlich preiswerter als herkömmliche Laptops. Die vorliegende Unterrichtseinheit zeigt Einsatzmöglichkeiten digitaler Medien für den Mathematikunterricht, ohne dass dafür der Computerraum aufgesucht werden muss. Vielmehr dienen die Netbooks dazu, im eigenen Klassenraum die fachlichen Inhalte mithilfe digitaler Medien noch anschaulicher zu vermitteln. Die Schülerinnen und Schüler sollen die mathematischen Inhalte der Kurvendiskussion erfassen und anwenden können. die mathematische Software (GeoGebra, wxMaxima) bedienen können. die verschiedene Software entsprechend ihrer Vorteile unterscheiden und zielgerichtet einsetzen können. Thema Nullstellen ganzrationaler Funktionen in Netbook-Klassen Autor Dr. Karl Sarnow Fach Mathematik Zielgruppe Klasse 10 im G8 Zeitraum 7 Stunden Technische Voraussetzungen Netbooks, Mathematiksoftware GeoGebra und wxMaxima (beides kostenfrei erhältlich) Hintergrund Einordnung der Unterrichtseinheit in den schulischen Kontext mit einer Verkürzung der Gymnasialzeit auf acht Jahre Unterrichtsverlauf 1. bis 3. Stunde Die ersten Stunden dienen dazu, dass sich die Lernenden beim ersten Einsatz von Netbooks mit den Geräten vertraut machen können. Unterrichtsverlauf 4. bis 6. Stunde Die Nullstellen einer Gleichung 3. Grades werden mit wxMaxima untersucht und anschließend mit dem konventionellen Ansatz begründet. Unterrichtsverlauf 7. Stunde Thema der letzten Stunde ist die Untersuchung der Nullstellen ganzrationaler Funktionen mit wxMaxima. Das Ergebnis wird im Nullstellensatz zusammengefasst. Die Schülerinnen und Schüler sollen im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a* x n kennen lernen. Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. die Nutzung von Funktionsplottern üben. Die Schülerinnen und Schüler sollen im Lernbereich "Wachstumsvorgänge und periodische Vorgänge" Einblick in verschiedene Wachstums- und Zerfallsprozesse gewinnen. die Begriffe unbeschränktes Wachstum (zum Beispiel linear und exponentiell) und beschränktes Wachstum (zum Beispiel logistisch) verstehen. ihre Kenntnisse auf Exponentialfunktionen und auf Wachstumsvorgänge übertragen. die exponentielle Regression unter Verwendung von Hilfsmitteln nutzen. im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a * x n und Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. Thema Die Exponentialfunktion und die "Unendlichkeitsmaschine" Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit), VRML-Plugin (blaxxun Contact, Cortona3D Viewer) In der Unterrichtseinheit kommt eine interaktive Lernumgebung zum Einsatz. Wenn die Schülerinnen und Schüler die Arbeit mit dynamischen Arbeitsblättern nicht gewohnt sind, hat sich eine Einführung der Materialien per Beamer bewährt. Auch der Umgang mit einem VRML-Plugin sollte über den Beamer demonstriert werden. Hinweise zur Technik und zum Unterrichtsverlauf Das 3D-Modell der Unendlichkeitsmaschine soll die Motivation der Lernenden steigern, sich mit der Exponentialfunktion auseinanderzusetzen. Die Schülerinnen und Schüler sollen den Unterschied zwischen Linearen Funktionen und Exponentialfunktionen kennen. die Begriffe Wachstumsrate und Wachstumsfaktor kennen und anwenden können. den Unterschied zwischen Linearem Wachstum und Exponentiellem Wachstum (Zerfall) kennen und aus Anwendungsbezügen das entsprechende Wachstumsmodell bestimmen können. die Begriffe Anfangswert und Wachstums-(Zerfalls-)faktor kennen und anwenden können. den Einfluss des Wachstumsfaktors a beziehungsweise des Zerfallsfaktors 1/a auf den Graphen der Exponentialfunktion kennen. die Eigenschaften der Exponentialfunktionen kennen. verschiedene Wachstums-(Zerfalls-)faktoren bestimmen und Funktionsvorschriften angeben können. Thema Einführung der Exponentialfunktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 10 Zeitraum 6-8 Unterrichtsstunden Technische Vorraussetzungen Computer in ausreichender Anzahl (Partner- oder Kleingruppenarbeit), Beamer, GeoGebra, Java-Plugin Von der GeoGebra-Homepage können Sie die dynamischen Arbeitsblätter der Unterrichtseinheit in zwei Paketen (ZIP-Archive) herunterladen: Das Bevölkerungsmodell von Malthus sowie die Materialien zur Verzinsung und Exponentialfunktion . Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen magische Quadrate als solche erkennen können. magische "4 x 4"-Quadrate auf weitere Eigenschaften hin untersuchen können. aus bereits bekannten magischen Quadraten neue erstellen können. ein magisches Geburtstagsquadrat erstellen können. Hypothesen aufstellen und überprüfen. weitgehend eigenverantwortlich und kooperativ arbeiten. magische Quadrate mit den Zahlen 1 bis 16 erzeugen können (eine nicht ganz einfache Krönung der Arbeit). Thema Magische Quadrate Autorin Dr. Renate Motzer Fach Mathematik Zielgruppe begabte Schülerinnen und Schüler ab Klasse 5 Zeitraum 2-10 Stunden, je nachdem wie viele Fragestellungen bearbeitet werden Technische Voraussetzungen Computer mit Tabellenkalkulationssoftware (hier Microsoft Excel) Die vorliegende Unterrichtseinheit beschäftigt sich mit magischen "4 mal 4"-Quadraten, wie sie von der Grundschule bis zur gymnasialen Oberstufe untersucht werden können. Schülerinnen und Schüler können sich oder Freunden ein magisches Geburtstagsquadrat errechnen, sobald ihnen negative Zahlen vertraut sind. Es sind auch schon gute Erfahrungen mit Lernenden in der Primarstufe gesammelt worden, die sich, so weit es bei ihren Daten nötig war, auch an negative Zahlen herangewagt haben. Für Schülerinnen und Schüler höherer Jahrgangsstufen gibt es weiterführende Aufgabenstellungen, die zum einen mit dem Lösen von Gleichungssystemen, zum anderen mit Matrizenaddition und skalarer Multiplikation zu tun haben. Oberstufenschülerinnen und -schüler können mit den Eigenschaften von Vektorräumen arbeiten. Auch in niedrigeren Jahrgangsstufen kann man sich mit manchen Vektorraumeigenschaften - ohne die zugehörigen Begrifflichkeiten - auseinandersetzen. Unterrichtsverlauf und Materialien Neben der Addition der Linearkombinationen von Grundquadraten können magische Quadrate auch auf anderen Wegen gefunden werden. Die Schülerinnen und Schüler sollen sich magischen Quadraten auf spielerische Weise nähern. die grundsätzlichen Eigenschaften magischer Quadrate kennen lernen. Thema Magisches Quadrat digital Autoren Elfi Petterich Fach Mathematik, auch für Vertretungsstunden geeignet Zielgruppe ab Klasse 5 (für alle Klassenstufen als spielerische Ergänzung zu magischen Quadraten) Zeitraum weniger als 1 Stunde Technik Computerarbeitsplätze zur Nutzung des Computermoduls, Lautsprecher müssen aktiviert sein. Das Programm ist im Grunde altersstufenunabhängig. Es ist ab der Klasse 5 einsetzbar, kann aber ebensogut auch bei älteren Schülerinnen und Schülen genutzt werden. Nutzung und Anpassung des magischen Quadrates Hier finden Sie Erläuterungen zur Funktionsweise des Programms sowie zur Möglichkeit der Darstellung eigener magischer Quadrate.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Ganze Zahlen - Grundrechenarten verbinden und anwenden

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Ganze Zahlen" werden die Grundrechenarten mit ganzen Zahlen durch interaktive Arbeitsmaterialien eingeübt, indem die Addition, Subtraktion, Multiplikation und Division miteinander verbunden werden.Nach einer Unterrichtsphase, in der die Grundrechenarten Addition, Subtraktion, Multiplikation und Division mit ganzen Zahlen getrennt betrachtet wurden, um die einzelnen Rechenregeln zu stabilisieren, ist es notwendig, die Grundrechenarten miteinander zu verbinden. Dabei sollten die bisher erworbenen Kenntnisse vertieft und auf Aufgaben in neuem Kontext angewandt werden. In dieser Unterrichtseinheit werden drei unterschiedliche Übungsmöglichkeiten vorgestellt, mithilfe derer das Rechnen mit ganzen Zahlen vertieft werden kann. Anhand von zwei Übungen soll dabei zuerst das Ausgangsniveau gesichert werden. Darin werden noch einmal die Kenntnisse zur Addition und Multiplikation von ganzen Zahlen auf einen aktuellen Stand gebracht. Durch die Verwendung von variablen Rechenbäumen werden in einem zweiten Schritt die Rechenarten miteinander verbunden. Abschließend wird das bereits im Bereich der Dezimalzahlen behandelte arithmetische Mittel in Verbindung mit dem Rechnen mit ganzen Zahlen aufgefrischt und in einen Anwendungskontext, der Ermittlung von Durchschnittstemperaturen, gestellt.Interaktive dynamische Arbeitsblätter können durch die automatische Kontrolle der Ergebnisse und Rückmeldungen, die den Schülerinnen und Schülern eine eigenständige Fehleranalyse ermöglichen, einen wertvollen Beitrag zur Vertiefung der erworbenen Kenntnisse leisten. Hinweise zum Einsatz im Unterricht Aufbau und Funktionsweise der interaktiven Arbeitsblätter werden erläutert. Die Lernenden können eigenständig mit ihnen arbeiten. Erste Unterrichtsstunde In der einführenden Stunde lösen die Lernenden Aufgaben zur Multiplikation und Addition positiver und negativer ganzer Zahlen. Zweite Unterrichtsstunde Anhand von variablen Rechenbäumen sollen die Schülerinnen und Schüler drei fehlende ganze Zahlen ermitteln. Dritte Unterrichtsstunde Das Rechnen mit positiven und negativen ganzen Zahlen wird in einen Anwendungskontext zur Ermittlung von Durchschnittstemperaturen gestellt. Die Schülerinnen und Schüler vertiefen ihre Kenntnisse im Bereich der Addition und Multiplikation ganzer Zahlen. erlangen durch die Kombination von Grundrechenarten im Bereich der ganzen Zahlen Sicherheit im Rechnen. können das arithmetische Mittel auf ganze Zahlen anwenden. können mithilfe des arithmetischen Mittels auf Ausgangswerte schließen. Das hier vorgestellte Übungskonzept setzt voraus, dass die Schülerinnen und Schüler die Grundrechenarten in Bezug auf die ganzen Zahlen und das arithmetische Mittel bereits kennen. Die Unterrichtseinheit selbst beinhaltet insgesamt bis zu acht HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Aufgabenstellungen bei den Übungen mit den Rechenbäumen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Beschreibung des Aufbaus der Arbeitsblätter Der Aufbau der Web-Arbeitsblätter folgt einer einheitlichen Grundstruktur. Alle Arbeitsblätter sind in zwei Spalten unterteilt (Abb. 1, zur Vergrößerung bitte anklicken). In der linken Spalte finden sich Hinweise auf die Bedienung, wie etwa eingegebene Ergebnisse überprüft beziehungsweise neue Aufgaben erzeugt werden können. Die eigentliche Aufgabestellung findet sich immer in der rechten Spalte des Arbeitsblatts. Diese beinhaltet die interaktiven Elemente sowie das Rückmeldefenster und den aktuellen Punktestand. Rückmeldungen als Ausgangspunkt für eine eigenständige Fehleranalyse Eines der zentralen Elemente interaktiver dynamischer Arbeitsblätter ist die Rückmeldung auf eine Schüleraktivität. Ist eine Aufgabe richtig gelöst, so beinhaltet diese eine positive Verstärkung, wie zum Beispiel "Ausgezeichnet!" oder "Das hast du sehr gut gemacht!". Wurde hingegen die Aufgabe fehlerhaft bearbeitet, so gibt es je nach Aufgabenstellungen unterschiedliche Rückmeldungen. Dies kann einerseits die Ausgabe der richtigen Lösung sein, die die Schülerinnen und Schüler in die Lage versetzt, ihre Eingabe mit der korrekten Lösung zu vergleichen und so den gemachten Fehler einzuordnen. Ferner kann bei komplexeren Aufgaben die Rückmeldung neben der korrekten Lösung auch einen möglichen Rechenweg beinhalten. So kommt gerade den Rückmeldungen im Hinblick auf den Umgang mit Fehlern eine zentrale Bedeutung zu. Eigene Fehler selbstständig zu analysieren und deren Ursachen zu erkennen, ermöglicht den Schülerinnen und Schülern auf diese Weise ein eigenständiges und eigenverantwortliches Lernen. "Fehler machen" wird in diesem Zusammenhang nicht als Versagen, sondern als Lernchance verstanden. Flexibilität interaktiver dynamischer Arbeitsblätter Bei der Konzeption der Arbeitsblätter ist als zweites wesentliches Element die flexible Verwendung der Arbeitsblätter von großer Bedeutung. Flexibel bedeutet hier einerseits, dass die Materialien wie in diesem Unterrichtsverlauf beschrieben verwendet werden können. Es ist aber auch möglich, nur einen Teil dieser Arbeitsblätter zu verwenden, da die einzelnen Übungen voneinander unabhängig sind. Flexibel bedeutet ferner, dass sich weder Lehrkräfte noch Schülerinnen und Schüler in die Handhabung einarbeiten müssen, sondern sie die Arbeitsblätter ohne jegliche zusätzliche Werkzeugkompetenz an beliebiger Stelle im Unterricht verwenden können. Nach einer kurzen Einführung durch die Lehrkraft in die Funktionsweise des Online-Arbeitsblatts sollen die Schülerinnen und Schüler aus sechs vorgegebenen ganzen Zahlen jeweils zwei auswählen, deren Produktwert maximal beziehungsweise minimal ist. Die Rückmeldung gibt auf falsche Eingaben zum einen die Produktwerte aus, die sich auf Grund der Schülereingaben ergeben, zum anderen auch die korrekten maximalen und minimalen Produktwerte. Auf eine Angabe der richtigen beiden Zahlen wird bewusst verzichtet. So müssen sich die Schülerinnen und Schüler mit den Rückmeldungen auseinandersetzen und die Ursachen ihres Fehlers selbst erforschen. Im Anschluss an die Bearbeitung der Aufgaben am Computer können die Lernenden die Aufgaben des zugehörigen PDF-Arbeitsblatts (grundrechenarten_verbinden_ab_1.pdf, Aufgaben 1 bis 5) lösen und die Ergebnisse und ihre zugehörigen Überlegungen im Klassenplenum vorstellen. Dabei können auch gemachte Fehler während der Arbeit am Computer thematisiert werden. Nach einer kurzen Erläuterung der Funktionsweise des dynamischen Arbeitsblatts durch die Lehrkraft sollen die Schülerinnen und Schüler zwei ganze Zahlen finden, die durch ihren Summen- und Produktwert beschrieben sind. Die Rückmeldung gibt auf falsche Eingaben zum einen die beiden richtigen Zahlen aus. Daneben wird aber auch der Produkt- und Summenwert ausgegeben, der sich aus den Zahlen ergibt, die die Schülerin oder der Schüler eingegeben hat. Diese zusätzliche Angabe kann wieder der Ausgangspunkt einer Diskussion über vorgekommene Fehler sein. Die Unterrichtsstunde endet mit der Besprechung der Aufgaben des PDF-Arbeitsblatts (grundrechenarten_verbinden_ab_1.pdf, Aufgaben 6 bis 10), die als Hausaufgabe gegeben werden können. Eine interessante Hausaufgabenstellung in diesem Zusammenhang ergibt sich dann, wenn die Lernenden beschreiben sollen, welche Fehler bei der Bearbeitung der beiden Web-Arbeitsblätter (Online-Arbeitsblatt 1 und 2) auftreten können. So reflektieren sie noch einmal die Unterrichtsstunde und deren Inhalte. Nach der Lehrereinführung in die Funktionsweise des interaktiven Arbeitsblatts sollen die Schülerinnen und Schüler drei fehlende Ergebnisse in Rechenbäumen ermitteln. Die Übung beinhaltet variabel gestellte Aufgaben zu den Grundrechenarten. Die Rückmeldung gibt auf falsche Eingaben jeweils nur die richtigen Zahlenwerte aus. Dieser Aufgabentyp ist für leistungsschwächere Lernende gut geeignet, um Sicherheit im Umgang mit den Grundrechenarten in Bezug auf die ganzen Zahlen zu gewinnen. Das Erzielen von Punkten kann die Motivation für diese Schülergruppe noch zusätzlich hoch halten. Begabtere Schülerinnen und Schüler hingegen werden diese Übung rasch als langweilig empfinden. Für diese Gruppe gilt es, einen zusätzlichen Anreiz zu schaffen. Dynamische Arbeitsblätter bieten hier eine gute Möglichkeit, Unterricht zu differenzieren. Dies soll mit dem folgenden Beispiel verdeutlicht werden. Da die Bedienung des Arbeitsblatts identisch zum vorhergehenden ist, kann für die Gruppe der leistungsstärkeren Schülerinnen und Schüler auf eine Einführung verzichtet werden. Die Besonderheit der neuen Aufgabestellung ist darin zu sehen, dass nun nicht mehr Summen-, Differenz-, Produkt- oder Quotientenwerte ermittelt werden sollen, sondern je nach Aufgabestellung unterschiedliche Elemente aus Summen, Produkten, Differenzen oder Quotienten zu bestimmen sind. Die Rückmeldung gibt auf falsche Eingaben wieder jeweils nur die richtigen Zahlenwerte aus. Zusätzliche Motivation kann sich daraus ergeben, dass die Schülerinnen und Schüler dieser Gruppe abschließend aufgefordert werden, ihre Lösungsstrategie anhand einer Aufgabe auf dem zugehörigen PDF-Arbeitsblatt (grundrechenarten_verbinden_ab_2.pdf) der Klasse vorzustellen. Als Hausaufgabe können die im Unterricht nicht bearbeiteten Aufgaben des PDF-Arbeitsblatts gestellt werden. Grundaufgabe Mit der Übung in einer dritten Unterrichtsstunde können die Schülerinnen und Schüler ihre Kenntnisse bezüglich der Grundrechenarten mit ganzen Zahlen weiter vertiefen und auf eine Aufgabenstellung anwenden, die sie bereits in anderen Zahlbereichen bearbeitet haben. Anhand von vier vorgegebenen Temperaturen soll die Durchschnittstemperatur ermittelt werden. Die Lehrkraft kann anhand eines Beispiels des zugehörigen PDF-Arbeitsblatts (grundrechenarten_verbinden_ab_3.pdf) beispielhaft eine Aufgabe ansprechen und den Begriff des arithmetischen Mittels wiederholen. In der folgenden Übungsphase arbeiten die Lernenden weitgehend selbstständig. Die Rückmeldung gibt auf falsche Eingaben den zugehörigen Berechnungsweg und die richtige Lösung aus. Wie in der Unterrichtsstunde vorher, gibt es auch hier die Möglichkeit einer unterrichtlichen Differenzierung durch die Variation der Aufgabenstellung. Aufgabenvariationen Bei der zweiten Übung in diesem Zusammenhang sind die Durchschnittstemperatur und drei Messwerte gegeben. Die Schülerinnen und Schüler sollen den fehlenden vierten Messwert ermitteln. Inwieweit die Lehrkraft Hilfestellungen oder Anleitungen geben möchte, kann sie hier selbst entscheiden. Das zugehörige PDF-Arbeitsblatt stellt Aufgaben zur Verfügung, die beispielhaft bearbeitet werden können. Viel interessanter ist es meines Erachtens jedoch, die Lernenden selbstständig Lösungsstrategien für diesen Aufgabentyp finden zu lassen. Da die Rückmeldung neben der Bewertung der Schülerlösung zusätzlich Auskunft darüber gibt, wie viele Punkte die Schülerin oder der Schüler erreicht hat, kann sich die die Übung beobachtende Lehrkraft rasch einen Überblick über die Leistungsfähigkeit ihrer Schülerinnen und Schüler verschaffen. Für den weiteren Unterrichtsverlauf stehen bei Bedarf weitere Aufgabentypen zur Verfügung, bei denen zwei oder alle Messwerte bei vorgegebener Durchschnittstemperatur fehlen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Erweitern von Brüchen - eine interaktive Einführung

Unterrichtseinheit

In dieser Unterrichtseinheit zum Erweitern von Brüchen eröffnen dynamische Arbeitsblätter den Schülerinnen und Schülern einen experimentellen, interaktiven und neuartigen Zugang zum grundlegenden Verständnis des Erweiterns von gemeinen Brüchen.Eine wichtige Voraussetzung für das Verständnis des Erweiterns von gemeinen Brüchen ist die Einsicht, dass ein und dieselbe Zahl durch verschiedene wertgleiche Brüche dargestellt werden kann. Die geometrische Veranschaulichung des Erweiterns anhand der Verfeinerung der Unterteilung eines gegebenen Rechtecks wird mithilfe von GeoGebra realisiert. Neben der dynamischen Veranschaulichungs- und Experimentierumgebung bietet die Unterrichtseinheit eine Javascript-basierte algebraische Übungsmöglichkeit zur Individualisierung und Differenzierung des Unterrichts. Eine zusätzliche, nicht zu unterschätzende, Motivation während dieser Übungs- und Vertiefungsphase bietet ein Wettbewerb, bei dem die Schülerinnen und Schüler die von Ihnen erreichte Punktzahl in eine Bestenliste eintragen können. Voraussetzungen, Einstieg, Vertiefung, Individualisierung Hinweise zur Nutzung der dynamischen Arbeitsblätter mit Screenshots Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur (Modul 1), Naturwissenschaftliches Arbeiten (Modul 2) Die Schülerinnen und Schüler erkennen, dass für eine Bruchzahl unterschiedliche Darstellungen möglich sind. erfahren durch Experimentieren das Erweitern eines Bruchs visuell. entdecken das Erweitern eines Bruchs durch das Multiplizieren von Zähler und Nenner mit der gleichen Zahl selbstständig. wenden die erworbenen Kenntnisse über das Erweitern von Brüchen auf unterschiedliche Beispiele an. Die Schülerinnen und Schüler sollen die Darstellung von Bruchteilen anhand von unterteilten Rechtecken bereits kennen. Beispielhafte Aufgaben für die Grundlegung dieser Kenntnisse finden sich auf der Mathematikseite des Autors: Bruchteile eines Ganzen Um das interaktive Online-Arbeitsblatt nutzen zu können, benötigen Sie das kostenlose Plugin Java Runtime Environment . Bruchteile eines Ganzen zeichnen Um das interaktive Online-Arbeitsblatt nutzen zu können, benötigen Sie das kostenlose Plugin Java Runtime Environment . Diese Webseiten können in einer der Vorstunden zum Erweitern verwendet werden. Die Unterrichtseinheit selbst basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die dynamische Veranschaulichung realisiert werden kann, muss Java 1.4 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Funktionsweise des dynamischen Arbeitsblatts Mit dem Button "Neu erstellen" werden auf dem Online-Arbeitsblatt 1 (Abb. 1, Platzhalter bitte anklicken) zwei wertgleiche Brüche erzeugt. Der erste der beiden Brüche kann nun mit den beiden Elementen "Zähler" und "Nenner" im dynamischen Arbeitsblatt eingestellt werden. Dadurch wird der Bruch als farbiger Bruchteil eines Rechtecks dargestellt. Das Ziehen am Element "Erweiterungszahl einstellen" ermöglicht eine feinere Unterteilung des blau eingefärbten Bruchteils des Rechtecks. Der Bruchteil bleibt also gleich, nur die Darstellung ändert sich. Diese grundlegende mathematische Einsicht wird für die Schülerinnen und Schüler visuell erfahrbar. Gleichzeitig ändert sich die Darstellung des zweiten Bruchs. Somit kann die Erweiterungszahl als Lösung der Aufgabe entnommen und in das vorgesehene Feld eingetragen werden. Der Button "Ergebnis prüfen" dient zur Kontrolle des Ergebnisses. Erarbeitungsphase Die Schülerinnen und Schüler sollen zunächst einige Aufgaben auf diese Weise bearbeiten und die Ergebnisse auf dem von der Lehrkraft bereitgestellten Notizblatt (brueche_erweitern_notizblatt.pdf) festhalten. Sie sind beim Lösen der Aufgaben durch die dynamische Veranschaulichung aufgefordert, zu beobachten und herauszufinden, wie man die Erweiterungszahl bestimmt, ohne dabei die Veranschaulichung zu benutzen. Ihre Entdeckung sollen die Schülerinnen und Schüler auf dem Notizblatt schriftlich fixieren und anschließend Aufgaben ohne Veranschaulichung lösen, um ihre Regel anzuwenden und zu überprüfen. Zusammenfassung Im nächsten Unterrichtsschritt stellt eine Schülerin oder ein Schülerin den gefundenen allgemeinen Zusammenhang in einem kurzen Statement vor. Die Lehrkraft fixiert die Ergebnisse auf einer Folie, die dem Arbeitsblatt (brueche_erweitern_arbeitsblatt.pdf) der Schülerinnen und Schüler entspricht. Im Anschluss daran übernehmen diese den Eintrag in ihr Arbeitsblatt. Online-Arbeitsblatt Nun folgt eine Phase der Vertiefung durch Variation der Aufgabenstellung. Die Schülerinnen und Schüler sollen dabei die Aufgaben von Online-Arbeitsblatt 2 bearbeiten (Abb. 2, Platzhalter bitte anklicken). In der javascript-basierten algebraischen Übung muss ein Zähler oder ein Nenner ergänzt werden. Lehrerrolle Die Funktionsweise des interaktiven Arbeitsblatts ist einfach. Die Schülerinnen und Schüler geben die gesuchte Zahl für x ein und betätigen anschließend den Button "Lösung prüfen". Mit "Neue Aufgabe erstellen" wird per Zufallsgenerator eine neue Erweiterungsaufgabe erstellt. Im Rahmen des Differenzierungsprozesses kann die Lehrkraft in diesem Unterrichtsabschnitt die Arbeitsweise und Ergebnisfindung der Schülerinnen und Schüler gezielt beobachten. Sollten bei der Bearbeitung der Aufgaben schwächere Schülerinnen oder Schüler auf Schwierigkeiten stoßen, so kann die Lehrkraft helfend zur Seite stehen und gemeinsam mit ihnen noch einmal die Aufgaben des ersten interaktiven Arbeitsblatts bearbeiten. Wettbewerb als spielerisches Element und Anreiz für leistungsstärkere Schüler Für alle anderen Schülerinnen und Schüler bietet das interaktive Arbeitsblatt einen Wettbewerb, bei dem derjenige der Sieger ist, der die meisten Punkte erreicht. Als besonderer Anreiz besteht dabei die Möglichkeit, die erreichten Punkte in eine Bestenliste eintragen zu lassen und sich so mit Schülerinnen und Schüler anderer Schulen und anderen Ländern zu messen. Algebraische Gesetzmäßigkeiten erfahrbar machen Im Rahmen der Weiterentwicklung von Aufgaben und Aufgabenumgebungen darf der Beitrag, den motivierende Medien leisten können, nicht unterschätzt werden. Veranschaulichung und visuelles Erschließen von algebraischen Zusammenhängen durch dynamische Modelle spielen für die Motivierung des Lernens im Mathematikunterricht eine wichtige Rolle. Gesetzmäßigkeiten werden nicht als Faktum vorgegeben, sondern können intuitiv erfahren und eigenständig entdeckt werden. Interaktive Aufgabenstellungen fördern Eigentätigkeit Interaktive, dynamische Arbeitsblätter leisten in diesem Zusammenhang einen wichtigen Beitrag zur Schaffung von Lernumgebungen für selbstständiges, eigenverantwortliches und kooperatives Lernen. Sie versetzen Schülerinnen und Schüler in die Lage, durch Experimentieren und Beobachten Zusammenhänge zu entdecken und diese ihren Mitschülern mitzuteilen. Die Lehrkraft als wissensvermittelnde Instanz tritt damit in den Hintergrund, der selbstständige, eigenverantwortliche Wissenserwerb rückt stärker in den Mittelpunkt. Systematisches Probieren - ein unterrichtliches Prinzip Das Experimentieren, Beobachten, Vergleichen und Systematisieren spielt im gesamten naturwissenschaftlichen Unterricht und somit auch im Mathematikunterricht eine sehr wichtige Rolle. Die Besonderheiten und den Sinn der naturwissenschaftlichen Denk- und Vorgehensweise erschließen sich Schülerinnen und Schüler aber nur dann, wenn sie im Unterricht daran gewöhnt werden, zielgerichtet und systematisch zu experimentieren und zu beobachten. Dynamische Modelle als Ausgangspunkt Zu diesem Erschließungsprozess kann der Einsatz interaktiver dynamischer Webseiten wichtige Elemente beitragen. Die Schülerinnen und Schüler werden durch dynamische Modelle in die Lage versetzt, durch Experimentieren und Beobachten, mathematische Zusammenhänge selbst zu entdecken. Durch die Interaktivität der Arbeitsblätter, mit der Möglichkeit der sofortigen Rückmeldung an die Schülerinnen und Schüler, wird die Interpretation und Reflexion der gefundenen Ergebnisse zur Selbstverständlichkeit. So organisierter Mathematikunterricht leistet daher einen wesentlichen Beitrag zum Erlernen naturwissenschaftlicher Methoden.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Gemischte Zahlen anschaulich subtrahieren

Unterrichtseinheit

In dieser Unterrichtseinheit wird am Beispiel der Veranschaulichung der Subtraktion gemischter Zahlen gezeigt, wie tragfähige Grundvorstellungen entwickelt werden können.Die Subtraktion gemischter Zahlen ist einer der Bereiche der Bruchrechnung, der sich durch eine hohe Fehlerquote bei Schülerinnen und Schülern auszeichnet. Grund dafür ist nicht selten die Tatsache, dass die Lernenden über unzureichende Grundvorstellungen verfügen. So ist es oftmals im Unterricht verwunderlich, dass Aufgaben wie zum Beispiel "1 minus 3/5", die allein auf der anschaulichen Ebene ohne jedes formale Rechenkalkül zu lösen wären, zu Fehlern führen. Die hier vorgestellte Lernumgebung möchte Wege aufzeigen, wie Schritt für Schritt Grundvorstellungen aufgebaut werden können, um Aufgaben des Typs "3 2/7 minus 1 4/7" auf der anschaulichen und bildlichen Ebene zu lösen. So erzeugte Grundvorstellungen können ein nachhaltiges Lernen fördern. Die Verwendung von interaktiven dynamischen Arbeitsblättern unterstützt die Lernenden und ermöglicht ihnen einen individuellen und eigenständigen Zugang zu Grundvorstellungen. Alle dynamischen Darstellungen wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um algebraische Zusammenhänge dynamisch zu veranschaulichen. Voraussetzungen und Hinweise zum Einsatz der Materialien Der komplexe und vielschichtige Aufgabentyp "Subtraktion zweier gemischter Zahlen" wird in vier Schritten veranschaulicht. Erste Unterrichtsstunde Die Schülerinnen und Schüler führen Übungen zur Subtraktion eines Bruchs von einer natürlichen Zahl und zur Subtraktion eines Bruchs von einer gemischten Zahl durch. Zweite Unterrichtsstunde Die Lernenden führen Übungen zur Subtraktion einer natürlichen Zahl von einer gemischten Zahl und zur Subtraktion zweier gemischter Zahlen durch. Dritte Unterrichtsstunde In der letzten Stunde der Unterrichtseinheit soll der Aspekt der unterrichtlichen Differenzierung im Mittelpunkt stehen. Die Schülerinnen und Schüler können natürliche Zahlen als Scheinbrüche in die Bruchzahlen einordnen. können Brüche von natürlichen Zahlen und gemischten Zahlen anschaulich und symbolisch subtrahieren. lernen die Subtraktion einer gemischter Zahl als Subtraktion einer natürlichen Zahl und eines Bruchs verstehen. können die Subtraktion gemischter Zahlen symbolisch ausführen. Das hier vorgestellte Übungskonzept setzt voraus, dass die Schülerinnen und Schüler die Darstellung von natürlichen Zahlen und gemischten Zahlen als in gleich große Segmente unterteilte Kreisflächen beziehungsweise Kreissegmente kennen. Sollten diese Voraussetzungen nicht gegeben sein, finden sich auf der Webseite des Autors entsprechende Veranschaulichungen und Übungen. Hier ein Beispiel: Bruchrechnen - Gemischte Zahl Die Lernenden müssen eine gemischte Zahl angeben, die in einer per Zufallsgenerator ausgewählten Zeichnung dargestellt ist. Die Unterrichtseinheit selbst beinhaltet insgesamt sieben Online-Arbeitsblätter, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss auf den Rechnern Javascript aktiviert und Java 1.4.2 (oder höher) installiert sein. Da der Aufgabentyp "Subtraktion zweier gemischter Zahlen" sehr komplex und vielschichtig ist, wird eine einzige Veranschaulichung mit interaktiven dynamischen Arbeitsblättern der Problemstellung nicht gerecht. Daher erfolgt die Veranschaulichung der Subtraktion von gemischten Zahlen in vier Schritten: Veranschaulichung der Subtraktion eines Bruchs von einer natürlichen Zahl Veranschaulichung der Subtraktion eines Bruchs von einer gemischten Zahl Veranschaulichung der Subtraktion einer natürlichen Zahl von einer gemischten Zahl Veranschaulichung der Subtraktion zweier gemischter Zahlen. Die Bedienung aller vier hier verwendeten interaktiven dynamischen Arbeitsblätter ist identisch und ermöglicht daher ein flüssiges, selbstständiges Arbeiten der Schülerinnen und Schüler. Die Lehrkraft sollte lediglich bei der Verwendung des ersten Arbeitsblatts dessen Bedienung erläutern: Bei allen Online-Arbeitsblättern werden beim Seitenstart eine Aufgabe und die zugehörige dynamische Zeichnung erstellt (siehe Abb. 1). Durch Betätigen des Schiebereglers "Nimm ... weg" kann die Aufgabe auf bildliche Art gelöst werden. Die Lösung kann dann in die dafür vorgesehenen Felder eingetragen werden. Mittels des Buttons "Lösung prüfen" können die Eingaben geprüft und mittels des Buttons "Neue Aufgabe stellen" viele weitere Aufgaben erzeugt werden. Die Einbettung der natürlichen Zahlen in die Bruchzahlen ist eine notwendige Grundlage für das Verständnis von gemischten Zahlen und deren Subtraktion. Um möglichen Fehlvorstellungen bei der Einbettung natürlicher Zahlen in die Bruchzahlen zu begegnen, wird zu Beginn eine visuelle Einbettung der natürlichen Zahlen in die Bruchzahlen vorgenommen. Als Anschauungsmodell zur Visualisierung wird im zugehörigen interaktiven dynamischen Arbeitsblatt (Abb. 1, Platzhalter bitte anklicken) die gleichmäßig unterteilte Kreisfläche verwendet. Diese Darstellung nimmt Bezug zur Alltagserfahrung der Schülerinnen und Schüler. So können die Lernenden zum Beispiel mit der Kreisfläche eine Pizza assoziieren. Die bräunliche Farbgebung der Kreisfläche und die gestrichelte Unterteilung in gleich große Stücke soll diese mögliche Assoziation einer vorgeschnittenen Pizza unterstützen. Die durch das interaktive dynamische Arbeitsblatt ermöglichte intuitive und anschauliche Begegnung mit Aufgaben der Art "1 minus 7/5" oder "3 - 1/3" soll die Schülerinnen und Schüler befähigen, Aufgaben dieses Typs - ohne jeden Rechenkalkül - einfach durch Anschauung zu lösen. Bei der Veranschaulichung der Subtraktion eines Bruchs von einer gemischten Zahl stehen zwei Gesichtspunkte im Vordergrund. Zum einen wird die bildliche Darstellung einer gemischten Zahl in Form von ganz gefüllten Kreisen und einem zusätzlichen Kreissegment eingeführt oder aus dem vorangegangenen Unterricht wieder aufgegriffen und zusätzlich die Subtraktion mit und ohne Umwandlung zum ersten Mal problematisiert. Bei der Gestaltung des zweiten interaktiven dynamischen Arbeitsblatts (Abb. 2) wurde auf Kontinuität geachtet, das heißt Aufbau und Funktionsweise entsprechen dem ersten Arbeitsblatt. Die Schülerinnen und Schüler müssen sich daher nicht erst an eine neue Aufgabenumgebung gewöhnen, sondern können sich unmittelbar mit der mathematischen Problemstellung auseinandersetzen. Ein fließender Übergang zur Bearbeitung von Aufgaben zur Subtraktion eines Bruchs von einer gemischten Zahl ist somit gegeben. Nachdem die Schülerinnen und Schüler die ersten beiden interaktiven dynamischen Arbeitsblätter bearbeitet haben, erfolgt eine Zusammenfassung der Ergebnisse im Heft. Beim Hefteintag ist darauf zu achten, dass die Verbindung zur vorherigen Arbeit der Schülerinnen und Schüler hergestellt wird. Hierzu kann das Arbeitsblatt "ab_hefteintag_1.pdf" verwendet werden, bei dem die Lernenden die Subtraktion eines Bruchs von einer natürlichen Zahl und die Subtraktion eines Bruchs von einer gemischten Zahl noch einmal zeichnerisch durchführen müssen. Damit soll einer allzu schnellen und rein symbolischen Lösung der Aufgaben begegnet und den Lernenden Zeit gegeben werden, ihr Vorgehen zu reflektieren. Den Abschluss der Unterrichtsstunde kann die Bearbeitung der Aufgaben der interaktiven dynamischen Arbeitsblätter ohne Veranschaulichung bilden. Je nach Klassensituation kann aber auch die Bearbeitung von Aufgaben auf bildlicher Ebene mithilfe des Arbeitsblatts "ab_hausaufgabe_1.pdf" fortgesetzt werden. Zur Erstellung von Hausaufgaben auf bildlicher Ebene kann die Kopiervorlage "bruchteile.pdf" verwendet werden. Die Vorgehensweise ist analog zur ersten Unterrichtsstunde. Zuerst setzen sich die Schülerinnen und Schüler mit den Aufgaben der interaktiven Arbeitsblätter auseinander. Die Notwendigkeit einer Veranschaulichung der Subtraktion einer natürlichen Zahl von einer gemischten Zahl (Abb. 3, Platzhalter bitte anklicken) mag auf den ersten Blick verwundern, da diese Subtraktion doch trivial erscheint. Doch sollte man zurückhaltend und vorsichtig sein, Aufgabenstellungen allzu schnell als trivial abzutun. Zudem ist die Veranschaulichung dieses Aufgabentyps für die abschließende Veranschaulichung der Subtraktion von gemischten Zahlen notwendig. Beabsichtigt man, die Subtraktion von gemischten Zahlen anschaulich in zwei Teilsubtraktionen zu zerlegen, nämlich in die Subtraktion einer natürlichen Zahl von der gemischten Zahl und eines Bruchs von der gemischten Zahl, sollte der erste Teilschritt vorher anschaulich als Grundlage gelegt werden. Der zeitliche Aufwand im Unterricht für die Veranschaulichung der Subtraktion einer natürlichen Zahl von einer gemischten Zahl ist gering. Die Einsicht der Schülerinnen und Schüler in den Zusammenhang ergibt sich rasch. Dennoch ist dieser Aufgabentyp für das Verständnis unverzichtbar. Die Bedienung des Online-Arbeitsblatts ist wieder analog zu den bisher verwendeten Arbeitsblättern. Nach den drei vorangestellten Beispielen wird abschließend die Veranschaulichung der Subtraktion zweier gemischter Zahlen mithilfe interaktiver dynamischer Arbeitsblätter dargestellt. Dabei werden die in den vorangegangenen Arbeitsblättern gewonnenen Anschauungen miteinander verbunden und zu einer Veranschaulichung zusammengeführt. Bei der Beschreibung der Veranschaulichung der Subtraktion zweier gemischter Zahlen wird im Folgenden nur auf den Aufgabentyp "Subtraktion mit Umwandlung" eingegangen, da sich die "Subtraktion ohne Umwandlung" aus dem vorgestellten Beispiel selbst erschließt. Das entsprechende Arbeitsblatt (Abb. 4) zeigt den gewohnten Aufbau. In der linken Spalte findet sich neben der Einführung wieder das interaktive Element mit der Aufgabenstellung, den Eingabefeldern, dem Button zur Überprüfung der Eingabe und der Möglichkeit, weitere Aufgaben zu erzeugen. Die beiden Schieberegler "Nimm ... weg" können unabhängig voneinander bewegt werden: Linker Schieberegler - Subtraktion einer natürlichen Zahl Wird der linke Schieberegler bewegt, so wird eine natürliche Zahl von der gemischten Zahl subtrahiert und die zugehörigen Darstellungen angepasst. Eine gefüllte Kreisfläche wird ausgeblendet und die symbolische Darstellung aktualisiert. Rechter Schieberegler - Subtraktion eines Bruchteils Wird der rechte der beiden Schieberegler "Nimm ... weg" nach rechts bewegt, wird jeweils ein Bruchteil subtrahiert. Die Subtraktion zweier gemischter Zahlen entsteht. Die Schülerinnen und Schüler entwickeln so eine tragfähige Grundvorstellung zur Subtraktion gemischter Zahlen. Die Zusammenfassung als Hefteintrag unterscheidet sich nicht von der der ersten Unterrichtsstunde. Dabei steht wieder das bildlich dargestellte Subtrahieren der gemischten Zahl im Vordergrund (ab_hefteintag_2). Als abschließende Lernzielkontrolle bietet es sich wieder an, die Aufgaben ohne Veranschaulichung zu lösen. Zur Hausaufgabenstellung mit Aufgaben auf bildlicher Ebene kann das Arbeitsblatt "ab_hausaufgabe_2" verwendet werden. Anhand von drei weiteren interaktiven Arbeitsblättern können die Schülerinnen und Schüler gemäß ihrer Kenntnissen und Fertigkeiten unterschiedliche Aufgaben bearbeiten oder bei Bedarf noch einmal zu den Veranschaulichungen zurückkehren, um Defizite aufzuarbeiten. Die Rolle der Lehrperson ist hierbei eine beobachtende. Sie kann bei Schwierigkeiten der Lernenden gezielt helfen, da sie von der unmittelbaren Korrektur der Schülereingaben befreit ist. Bei dieser Aufgabe geht es darum, gemischte Zahlen zu subtrahieren (Abb. 5, Platzhalter bitte anklicken). Im Gegensatz zur vorhergehenden Unterrichtsstunde wird nun auf eine Veranschaulichung verzichtet. Zudem werden die Zähler und Nenner größer, die Brüche bleiben aber gleichnamig. Als Anreiz werden für richtig gelöste Aufgaben Punkte vergeben. Die Summen der erreichten Punkte können in einer Bestenliste gespeichert werden. Bei der zweiten Aufgabe sollen die Schülerinnen und Schüler den fehlenden Subtrahenden einer Subtraktion gemischter Zahlen angeben (Abb. 6). Dies verlangt bereits eine vertiefte Einsicht in die Subtraktion. In der Rückmeldung auf falsche Eingaben erhalten die Lernenden die richtige Lösung angezeigt. Diese kann dann zum Ausgangspunkt einer Reflexion über die fehlerhafte Eingabe werden und die Schülerinnen und Schüler zu Diskussionen anregen. Auch bei dieser Aufgabe bietet die Punktevergabe und -speicherung einen äußeren Anreiz, mehrere Aufgaben dieses Typs zu bearbeiten. Bei der abschließenden Übung besteht die Aufgabe der Schülerinnen und Schüler darin, den fehlenden Minuenden einer Subtraktion gemischter Zahlen zu ermitteln (Abb. 7). Dabei wird der Zusammenhang von Subtraktion und Addition vertieft, da zur Lösung der jeweiligen Aufgaben zum Differenzwert lediglich der Subtrahend addiert werden muss. Erstmals werden dabei gemischte Zahlen verwendet, deren Nenner sich unterscheiden können. Damit leitet diese Aufgabe zur Subtraktion gemischter Zahlen mit unterschiedlichen Nennern und zur Arbeit im Klassenzimmer über.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Subtraktion ganzer Zahlen mit GeoGebra

Unterrichtseinheit

In dieser Unterrichtseinheit zur Subtraktion ganzer Zahlen wird durch interaktive dynamische Arbeitsblätter eine Veranschaulichung der Subtraktion vermittelt. Die Mathematiksoftware GeoGebra kommt dabei zum Einsatz.Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Einführung der Subtraktion ganzer Zahlen Hier finden Sie Hinweise zur Funktionsweise und zum Einsatz des dynamischen Arbeitsblattes zur Subtraktion ganzer Zahlen. Vertiefung, Individualisierung und Wettbewerb In der Phase der Anwendung und Vertiefung erfolgt eine Variation der Aufgabenstellungen mithilfe eines interaktiven Arbeitsblattes. Die Schülerinnen und Schüler erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. können die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden. Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die dynamische Veranschaulichung realisiert werden kann, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die folgenden Webseiten können in den Stunden vor der hier vorgestellten Unterrichtseinheit verwendet werden: realmath.de: Das Zahlenpfeilmodell der Subtraktion Die Lernenden sollen die Darstellung ganzer Zahlen mit Zahlenpfeilen und die Subtraktion von natürlichen Zahlen mithilfe des Zahlenpfeilmodells kennen. realmath.de: Der Begriff der Gegenzahl Der Begriff der Gegenzahl einer ganzen Zahl sollte vorbesprochen sein. Hier finden sich Aufgaben für die Einführung und die Grundlegung dieses Begriffs. realmath.de: Welche Zahl muss man zu ... addieren, um ... zu erhalten? Zur Hinführung auf die Subtraktion ganzer Zahlen sollte auf Additionsaufgaben dieser Art nicht verzichtet werden. Das erste Online-Arbeitsblatt dient zur Erarbeitung der Regel für die Subtraktion ganzer Zahlen. Mit dem Button "Aufgabe neu" wird eine entsprechende Aufgabe erzeugt. Die Aufgabe kann anschließend im dynamischen Arbeitsblatt mit den Elementen "Minuend" und "Subtrahend" eingestellt werden. Zeitgleich wird die entsprechende Subtraktion im Zahlenpfeilmodell erzeugt, und das Ergebnis kann abgelesen werden. Dieses wird in das vorgesehene Feld eingetragen. Der Button "Auswertung" dient zur Kontrolle des Ergebnisses. Ist das Ergebnis richtig, so wird die zu dieser Subtraktion gehörige Additionsaufgabe erzeugt. Dabei wird der Minuend zum ersten Summanden, das Ergebnis bleibt erhalten. Nun soll der fehlende zweite Summand in das freie Feld eingetragen werden. Damit wird die Subtraktion durch die Addition der Gegenzahl ersetzt. Mit dem Button "Kontrolle " wird die Eingabe überprüft. Erarbeitungsphase Die Schülerinnen und Schüler probieren, beobachten, ordnen, vermuten und sollen so Schritt für Schritt den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen erkennen. Dazu bearbeiten sie Aufgaben auf die oben angesprochene Weise und halten die Ergebnisse auf dem von der Lehrkraft bereitgestellten Notizblatt fest. Sie sind beim Lösen der Aufgaben durch die dynamische Veranschaulichung ferner aufgefordert, herauszufinden, wie die Subtraktion ganzer Zahlen durch eine zugehörige Addition ersetzt werden kann. Ihre Vermutung können sie dadurch verifizieren, dass sie Aufgaben lösen, ohne dabei die Veranschaulichung zu benutzen. Haben die Schülerinnen und Schüler eine Regel gefunden, so sollen sie diese schriftlich auf dem Notizblatt festhalten. Zusammenfassung Im nächsten Unterrichtsschritt stellen die Lernenden ihre Ideen für den gesuchten Zusammenhang vor. Zusammen mit den Wertungen und Kommentaren der Lehrkraft ergibt sich so das Arbeitsergebnis, das die Lehrkraft als Zusammenfassung auf einer Folie, die dem Arbeitsblatt der Schülerinnen und Schüler entspricht, festhält. Die Einträge werden von den Schülerinnen und Schülern in ihr Arbeitsblatt übernommen. Durch die zusätzlich auf dem Arbeitsblatt eingefügten Zahlenpfeildarstellungen wird noch einmal Schritt für Schritt der Prozess der Regelfindung für alle Schülerinnen und Schüler nachvollziehbar festgehalten. Anwendung Auf dem Schülerarbeitsblatt finden sich zusätzlich einige Aufgaben zur Subtraktion ganzer Zahlen. Diese können anschließend in Auswahl in Partner- oder Einzelarbeit bearbeitet und anschließend besprochen werden. Nicht bearbeitete Aufgabe können als Hausaufgabe verwendet werden. Anwendung mit Wettbewerb Nun folgt eine Phase der Anwendung und Vertiefung durch erste Übungsaufgaben. Die Schülerinnen und Schüler sollen dabei die Aufgaben des zweiten interaktiven Arbeitsblattes bearbeiten. Online-Arbeitsblatt 2: Übung zur Subtraktion ganzer Zahlen Interaktives Arbeitsblatt mit Variationen der Aufgabenstellungen auf realmath.de, der Website des Autors. Einfacher Aufbau des Arbeitsblattes Der Aufbau des interaktiven Arbeitsblattes ist gemäß der Altersstufe der Schülerinnen und Schüler einfach gehalten. Sie sind hier aufgefordert, das Ergebnis einer Subtraktion aus vier vorgegebenen Antworten auszuwählen. Ist das Ergebnis angeklickt, so kann durch Betätigung des Buttons "Auswertung" die Eingabe überprüft werden. Mit "Neu erstellen" wird per Zufallsgenerator eine neue Subtraktionsaufgabe erstellt. Individuelle Betreuung Im Rahmen der Individualisierung des Unterrichts, indem nun jeweils zwei Schülerinnen und Schüler Aufgaben in Partnerarbeit bearbeiten, kann die Lehrkraft die Arbeitsweise der Schülerinnen und Schüler gezielt beobachten. Die fortwährende Anzeige des erreichten Punktestandes und die Anzahl der bearbeiteten Aufgaben im interaktiven Arbeitsblatt ermöglicht der Lehrkraft, jederzeit zu erkennen, bei welchem Schülerpaar noch Schwierigkeiten bestehen. Hier kann sie gezielt helfen. Schülerinnen und Schüler, die mit den Aufgaben gut zurecht kommen, kann sie durch Lob und Anerkennung ermuntern, weitere Aufgaben zu bearbeiten und ihre Kenntnisse weiter zu vertiefen. Das interaktive Arbeitsblatt bietet zudem einen Wettbewerb, bei dem derjenige gewinnt, der am Ende die meisten Punkte erreicht. Da die Punkte in einer Bestenliste gespeichert werden, kann dies für Schülerinnen und Schüler eine besondere Motivation darstellen. Aufgaben zur Nachbereitung finden sich in allen zugelassenen Schulbüchern. Sollten die im verwendeten PDF-Arbeitsblatt enthaltenen Aufgaben nicht alle gelöst worden sein, so können auch diese als Hausaufgabe verwendet werden. Auf der Webseite des Autors finden sich für die nachfolgenden Unterrichtsstunden sechs weitere interaktive Übungen zur Subtraktion ganzer Zahlen. In der sich im Unterricht anschließenden Übungsphase kann hier die eine oder andere Aufgabe ausgewählt werden, um so die folgenden Unterrichtsstunden abwechslungsreich zu gestalten. realmath.de: Weitere Interaktive Übungen Für die Nutzung muss Javascript aktiviert sein.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I
ANZEIGE