Unterrichtsmaterialien zum Thema "Klimaschutz"

  • Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 4
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die Folgen des Klimawandels für Deutschland

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Klimawandel erarbeiten die Lernenden die Grundlagen von Klimamodellen und setzen sich mit möglichen regionalen Folgen des Klimawandels auseinander. Dabei nutzen Sie die Daten eines Online-Portals.Mithilfe der angebotenen Unterrichtsmaterialien kann der Aufbau von Klimamodellen schülergerecht erarbeitet werden. Die Arbeitsblätter bieten unterschiedliche Zugänge, die alternativ oder differenzierend eingesetzt werden können. Anhand der aufgearbeiteten Klimadaten des Portals KlimafolgenOnline-Bildung.de sollen sich die Lernenden mit möglichen Folgen des Klimawandels in Deutschland beschäftigen. Dabei kann auch das eigene Bundesland oder die eigene Region in den Blickpunkt der Betrachtung rücken.Die Schülerinnen und Schüler beschäftigen sich in dieser Unterrichtseinheit mit modellierten Klimadaten und daraus resultierenden möglichen Folgen. Mithilfe des Material ist eine weitgehend selbstständige Erarbeitung durch die Schülerinnen und Schüler möglich. Die Arbeitsaufträge sind sehr kleinschrittig gewählt, damit die eigenständige Arbeit mit dem Portal KlimafolgenOnline-Bildung.de möglich wird. Das Portal bietet ebenfalls die Möglichkeit, die Ergebnisse anschaulich zu präsentieren. An die Präsentation sollte sich eine Diskussion anschließen, in der die Ergebnisse kritisch hinterfragt werden können. Fachkompetenz Die Schülerinnen und Schüler verstehen den Aufbau von Klimamodellen. erarbeiten mögliche Klimaveränderungen für Deutschland. setzen sich mit möglichen Folgen von Klimaveränderungen am Beispiel der Landwirtschaft auseinander. diskutieren die Klimamodellierung und Simulationen kritisch. Medienkompetenz Die Schülerinnen und Schüler nutzen die Onlineplattform KlimafolgenOnline-Bildung.de. erstellen Präsentationen mit Daten aus dem Portal und einer Präsentationssoftware. entnehmen Informationen aus einem Videoclip. Sozialkompetenz Die Schülerinnen und Schüler arbeiten im Team zusammen. diskutieren gemeinsam und lernen, andere Meinungen aufzugreifen. präsentieren ihre Ergebnisse und Standpunkte im Plenum. Auf Basis des Portals KlimafolgenOnline-Bildung.de werden im PIKee-Projekt, dem aktuellen Umweltbildungsprojekt am Potsdam-Institut für Klimafolgenforschung, interdisziplinäre Unterrichtseinheiten und Handreichungen für Lehrkräfte entwickelt. Dadurch können Schülerinnen, Schüler und Lehrkräfte die mögliche Entwicklung des Klimas in Deutschland anhand selbst gewählter Szenarien nachvollziehen. Das Portal liefert bis auf Landkreisebene aufgelöste Daten für verschiedene Sektoren wie Klima, Landwirtschaft, Forstwirtschaft und Energie. Mehr Informationen finden Sie hier .

  • Geographie
  • Sekundarstufe I, Sekundarstufe II

Der Wald als Klimaretter!?

Unterrichtseinheit

In dieser Unterrichtseinheit für den Biologie- und Geographie-Unterricht setzen die Lernenden sich mit der Bedeutung des Waldes im Hinblick auf den Klimawandel auseinander. Mit Satellitenbildern ermitteln sie die Fläche der Wälder in Deutschland, bestimmen deren Kohlenstoffdioxid-Assimilation und diskutieren mögliche Ausgleichsmaßnahmen für den Ausstoß des Treibhausgases.Der anthropogen erzeugte Klimawandel ist ein viel diskutiertes Thema. In dieser Unterrichtseinheit sollen sich die Lernenden jedoch nicht mit seinen Folgen auseinandersetzen, sondern mit der Kohlenstoffdioxid bindenden Funktion des Waldes und dem damit verbundenen positiven Einfluss auf die Folgen des Klimawandels. Mithilfe von Satellitenbildern messen sie Flächen in Deutschland aus und erhalten erste Einblicke in die Methodik der Fernerkundung (Kartenerstellung, Klassifikation). So können sie die Größe der Waldflächen und damit deren Bedeutung vor dem Hintergrund des Klimawandels ermitteln. Die Unterrichtseinheit ist im Rahmen des Projekts "Fernerkundung in Schulen" (FIS) am Geographischen Institut der Universität Bonn entstanden. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II.In der Unterrichtseinheit zum Themenfeld Klimawandel wird das Verständnis grundlegender Funktionen des Waldes sowie deren Bedeutung in Bezug auf den Klimawandel und seine Folgen vermittelt. In diesem Zusammenhang wird geklärt, ob der Wald in Deutschland als Kohlenstoffsenke ausreicht, um den landesweiten Ausstoß an Kohlenstoffdioxid zu kompensieren. Als wissenschaftliche Grundlage dient eine Einführung in die Methodik der Fernerkundung, mit deren Hilfe die Schülerinnen und Schüler das Ausmaß der Waldflächen in Deutschland ermitteln und dabei einen ersten Einblick in die Erstellung von Karten gewinnen. Inhalte und Einsatz der Lernumgebung im Unterricht Hier erhalten Sie Hinweise zum Aufbau der Lernumgebung "Der Wald als Klimaretter!?". Screenshots veranschaulichen die Funktionen und die interaktiven Übungen zu dem Themenfeld "Wald, Klimawandel und Fernerkundung". Die Schülerinnen und Schüler können erklären, wie und wofür Waldflächen mit Satellitenbildern erfasst werden können. bewerten die Bedeutung des Waldes als Kohlenstoffdioxid-Speicher. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit "Der Wald als Klimaretter!?" bedient sich der spezifischen Möglichkeiten des Computers, um die Thematik des Klimawandels durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Rechner nicht als reines Informations- oder Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "WaldCO2_Startmanager.exe", unter anderen Betriebssystemen durch Klick auf die Datei "WaldCO2_Startmanager.swf" gestartet. Dafür ist der Adobe Flash Player ( kostenloser Download ) notwendig. Die Lernumgebung "Der Wald als Klimaretter!?" gliedert sich in drei inhaltlich aufeinander aufbauende Bereiche: die Einführung in das Thema sowie die beiden weiterführenden Teilbereiche "Infrarot" und "Wald-Karte". Der jeweils aktivierte Bereich wird auf der linken Leiste eingeblendet. Während der erste Teil einen Einblick in die Thematik liefert und die übergeordnete Aufgabestellung benennt, gliedert sich der Hauptteil in zwei fachliche Sequenzen, die neue Aufgaben und Info-Boxen mit Hintergrundinformationen enthalten (Abbildung 1, Platzhalter bitte anklicken). Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der jeweils folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. Ergänzt wird das Modul durch Tutorials, die die Nutzung der Lernumgebung veranschaulichen. Arbeit in Zweierteams Der Ablauf der Unterrichtsstunden wird durch die Struktur des Computermoduls vorgegeben. In Zweierteams erarbeiten sich die Schülerinnen und Schüler die Inhalte der Lernumgebung. Der Unterricht beginnt jeweils mit einer Erläuterung des Moduls und gegebenenfalls der Aufgabenstellung. Dann folgt die selbstständige Erarbeitung und Überprüfung der Kenntnisse im Quiz (Partnerarbeit). Abschließend können die Ergebnisse jeder Stunde noch einmal im Plenum gebündelt werden. 1. Einführung Der erste Bereich der Lernumgebung wird nach ihrem Start automatisch geladen. Zu Beginn ist der Professor an seinem Schreibtisch vor dem Computer mit einer Zeitung und einem Brief zu sehen (Abbildung 2, Platzhalter bitte anklicken). Die Schülerinnen und Schüler "blättern" interaktiv in der Zeitung und lesen den Brief (das Handsymbol dient zur Navigation). Dabei erhalten sie erste Informationen zum Thema Klimawandel und dem Zusammenhang mit der möglichen Bedeutung von Wäldern. Der Brief gibt Hinweise darauf, welche weiteren Informationen nun benötigt werden. Dafür steht auch eine Info-Box zur Verfügung. 2. Das Infrarot Dieser Teil der Lernumgebung startet mit einem Tutorial, das die Schülerinnen und Schüler mit dem Umgang des Moduls vertraut macht. Fachlich setzen sich die Lernenden hier mit den Eigenschaften von Infrarotbildern und der Darstellung von Vegetation in Satellitenbildern auseinander. Ein Satellitenbild von Deutschland sowie ein Overlay mit den Grenzen der Bundesländer (Abbildung 3) können ganz einfach geladen werden, indem man sie in das Hauptfeld der Lernumgebung zieht. Die Info-Box (Abbildung 4) informiert die Schülerinnen und Schüler über die Besonderheiten von Infrarotbildern und macht ihre Vorteile bei der Untersuchung von Vegetationsflächen deutlich. Ein erster Aufgabenteil wird hier bearbeitet. Ein Quiz schließt auch dieses Modul ab und leitet zum letzten Teil der Lernumgebung über. 3. Waldkarte Auch dieser Bereich startet mit einem Tutorial. Hier stehen den Schülerinnen und Schülern nun vier Satellitenbilder zur Verfügung, die Deutschland zu den vier Jahreszeiten zeigen (Abbildung 5). Auch das Overlay mit den Ländergrenzen kann geladen werden. Mithilfe des Pipetten-Werkzeugs sollen die Lernenden nun als Wälder identifizierte Fläche markieren und so aus dem Satellitenbild eine "Waldkarte" erstellen. Auf diese Weise wird die gesamte Waldfläche Deutschlands ermittelt und es kann berechnet werden, wie viel Kohlenstoffdioxid Deutschlands Wälder binden. Auf dieser Grundlage sollen die Jugendlichen über die Bedeutung des Waldes in Bezug auf den Klimawandel und dessen Folgen diskutieren. Ist zum Beispiel der Wald in Deutschland als Kohlenstoffsenke in der Lage, den landesweiten Ausstoß an Kohlenstoffdioxid zu kompensieren? Nach dem Bestehen des Quiz ist die Bearbeitung der Lernumgebung abgeschlossen.

  • Biologie / Geographie
  • Sekundarstufe I

Talking about statistics and climate change

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "talking about statistics and climate change" erlernen die Schülerinnen und Schüler neue Redemittel zur Besprechung von Statistiken und setzen sich gleichzeitig unter Verwendung der Seite climateimpactsonline.com mit dem Klimawandel auseinander.In dieser Unterrichtssequenz werden am Beispiel von Klimamodellen Vokabular und Redemittel zur Besprechung von Statistiken eingeführt. Die Erarbeitung erfolgt in Gruppenarbeit und mithilfe verschiedener Arbeitsblätter, die unterschiedliche Zugänge anbieten und alternativ oder differenzierend eingesetzt werden können. Die Lernenden sollen sich mit den aufgearbeiteten Klimadaten, Karten und Graphen des Portals climateimpactsonline.com auseinandersetzen, Stichpunkte machen und ihre Ergebnisse diskutieren. Dabei wenden die Schülerinnen und Schüler die neu erlernten Redemittel zur Auswertung von Statistiken an. Dieses Unterrichtsmaterial ist im Rahmen des PIKee-Projekts entstanden. Auf Basis des Portals KlimafolgenOnline-Bildung.de werden im PIKee-Projekt, dem aktuellen Umweltbildungsprojekt am Potsdam-Institut für Klimafolgenforschung, interdisziplinäre Unterrichtseinheiten und Handreichungen für Lehrkräfte entwickelt. Dadurch können Schülerinnen, Schüler und Lehrkräfte die mögliche Entwicklung des Klimas in Deutschland anhand selbst gewählter Szenarien nachvollziehen. Das Portal liefert bis auf Landkreisebene aufgelöste Daten für verschiedene Sektoren wie Klima, Landwirtschaft, Forstwirtschaft und Energie. Mehr Informationen finden Sie hier . Gruppenarbeit Die Schülerinnen und Schüler beschäftigen sich in dieser Unterrichtseinheit mit modellierten Karten und Graphen, um die Auswertung von Statistiken zu üben. Voraussetzung dafür ist, dass die Arbeit mit Klimamodellen aus dem Geographieunterricht bekannt ist. Zu Beginn der Stunde müssen neues Vokabular ("precipitation", "accumulated", "evapotranspiration") und Redemittel eingeführt werden. Die Lernenden können zur Aneignung die Übersicht der Seite englisch-hilfen.de/diagramme nutzen. Anschließend erhält jede Gruppe, je nach Klassengröße, ein Arbeitsblatt (AB01-AB05). Mit dem Material ist eine weitgehend selbstständige Erarbeitung durch die Schülerinnen und Schüler in der Gruppe möglich. Expertenrunde Nach der Gruppenarbeit sollte eine Expertenrunde stattfinden, sodass die Schülerinnen und Schüler andere Gruppen über ihre Ergebnisse informieren und sich austauschen können. Somit findet erneut eine Anwendung der Redemittel statt, wobei jede Schülerin und jeder Schüler zu Wort kommt. Anschließend sollte unter Einbeziehung der Karten und Graphen eine Diskussion im Plenum über den Klimawandel folgen. Fachkompetenz Die Schülerinnen und Schüler erlernen Redemittel zur Besprechung von Statistiken. wenden die Redemittel an, um die Veränderungen von Temperatur, Niederschlag, Wasserhaushalt, Sonnenschein und Schneefall zu beschreiben. setzen sich mit möglichen Folgen von Klimaveränderungen auseinander. Medienkompetenz Die Schülerinnen und Schüler können mit den Graphen und Karten auf den Arbeitsblättern umgehen, die aus dem englischsprachigen Portal climateimpactsonline.com entnommen wurden. Sozialkompetenz Die Schülerinnen und Schüler arbeiten im Team. diskutieren gemeinsam und lernen, andere Meinungen aufzugreifen. präsentieren ihre Ergebnisse in anderen Gruppen, wobei jeder zu Wort kommt.

  • Englisch
  • Sekundarstufe I

Asynchronmotor: Arbeiten mit Herstellerkatalogen

Unterrichtseinheit

Mit der Neuordnung der Elektroberufe ist der Unterricht lernfeldorientiert. Eine berufstypische Tätigkeit ist das Lesen von Datenblättern. In der Lernsituation nutzen die Schülerinnen und Schüler Online-Kataloge eines Motorenherstellers und eines Herstellers von Schutzeinrichtungen.Ausgangspunkt der Lernsituation ist ein betrieblicher Auftrag: Schülerinnen und Schüler sollen einen Asynchronmotor für ein Rührwerk einer Wasseraufbereitungsanlage bei einem Zulieferer bestellen. Die Anforderungen für den Betrieb des Antriebsmotors liegen vor. Nachdem ein erster Motor ausgewählt wurde, werden im nächsten Schritt ökologische und ökonomische Gesichtspunkte in die Entscheidungsfindung einbezogen.In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler, Datenblätter zu lesen. Sie erkennen, dass die Datenblätter nur interpretiert werden können, wenn die technischen Hintergründe beherrscht werden. Die Schüler begründen die Auswahl der Betriebsmittel in jedem Punkt des Anforderungskatalogs. Lernsituation Die Aufgabenstellung ist praxisnah und für die Schülerinnen und Schüler motivierend. Sie führen eine vollständige berufliche Handlung aus. Lernschritte In vier Lernschritten werden Unterrichtsmaterialien und die Online-Quellen eines Zulieferbetriebs eingesetzt. Die Schülerinnen und Schüler sollen einen Asynchronmotor und eine Motorschutzeinrichtung unter Berücksichtigung technischer Anforderungen aus Hersteller-Katalogen auswählen Betriebskosten mithilfe eines Tabellenkalkulationsprogramms berechnen und Diagramme erstellen Schaltpläne erstellen erkennen, dass sich ökonomisches und ökologisch verantwortliches Handeln vereinen lässt. Die Schüler berechnen in MS-Excel oder OpenOffice-Calc die Betriebskosten von Motoren unterschiedlicher Wirkungsgradklassifizierungen und stellen die Ergebnisse in einem Diagramm vergleichend dar. Sie wählen einen passenden Motorschutzschalter aus dem Online-Katalog eines Herstellers von Schutzeinrichtungen. Alternativ setzen sie den Online-Assistenten des Herstellers ein. Der Online-Assistent schlägt den Schülern nach Eingabe der Motordaten einen Motorschutzschalter vor. Die Schüler vervollständigen die Dokumentation der Planungsabteilung und erstellen Schaltpläne von der Unterverteilung bis zum Motor. Thema Asynchronmotor: Arbeiten mit Herstellerkatalogen Autor Markus Asmuth Fach Elektrotechnik Zielgruppe Elektroberufe, 2. Lehrjahr Lernfeld Antriebssysteme auswählen und integrieren Zeitraum 8 Unterrichtsstunden Technische Voraussetzungen Internetzugang, Webbrowser, MS-Excel oder OpenOffice-Calc Planung Verlaufsplan Asynchronmotor Lernvoraussetzungen Vorausgesetzt wird, dass die Schülerinnen und Schüler die technischen Grundlagen Betriebsverhalten, Betriebsart, Polpaarzahl, Isolierung, Bauform, Schutzart und Motorschutz verstehen Berechnungen in MS-Excel oder OpenOffice-Calc durchführen können und Diagramme erstellen können Lernsituation Die Aufgabenstellung ist praxisnah und für die Schülerinnen und Schüler motivierend. Gegenstand ist der Antrieb eines Rührwerks einer Wasseraufbereitungsanlage eines Chemiewerks. Die Lernenden bearbeiten eine vollständige berufliche Handlung. Diese umfasst neben technischen und methodischen Aspekten zusätzlich ökonomische und ökologische Aspekte. Ein wichtiges Grundprinzip beruflicher Handlungen ist, negative Einflüsse auf die Umwelt zu minimieren. In der Lernsituation lernen die Schüler, dass sich Ökonomie und Ökologie miteinander vereinen lassen. Die Schüler setzen moderne Arbeitsmittel wie Online-Kataloge der Hersteller und Tabellenkalkulationsprogramme zur Lösungsfindung ein. Eine wichtige Kompetenz ist das Lesen von Datenblättern. Interpretiert werden können die Produkttabellen nur, wenn die fachlichen Inhalte beherrscht werden. Auswahl des Motors Zunächst müssen die sprachlich formulierten Anforderungen an die Schutzart und Betriebsart mithilfe des Tabellenbuches und des Fachbuches in Kennzeichnungen übertragen werden. Diese Kennzeichnungen können dann mit den Angaben im Online-Katalog verglichen werden. Außerdem ist mittels der Polpaarzahl und der Netzfrequenz die Drehfelddrehzahl zu berechnen. Nicht alle Anforderungen finden sich in den Datenblättern. Die Schülerinnen und Schüler müssen die technischen Erläuterungen hinzuziehen. Dort wird die standardmäßige Schutzart und Isolierstoffklasse für die Motoren des Herstellers genannt. Berechnung der Betriebskosten Die Betriebskosten werden über die elektrische Arbeit und den Strompreis berechnet. Zur Berechnung der elektrischen Arbeit bestimmen die Schülerinnen und Schüler die zugeführte Leistung des Motors mittels im Datenblatt angegebenen Wirkungsgrad und der ebenfalls notierten abgegebenen Leistung. Die Betriebszeit des Rührwerks fließt in die Berechnung ein. Die Berechnungen werden direkt im Tabellenkalkulationsprogramm durchgeführt. Für jeden Tag werden über den Zeitraum von zwei Jahren die bis zu diesem Tag angefallenen Stromkosten in jeweils einem separaten Tabellenfeld berechnet. Rentabilität Die Schülerinnen und Schüler berechnen die Betriebskosten für den im Schritt 1 ausgewählten Motor der Wirkungsgradklassifizierungen EFF2 und für das etwas teurere Modell mit der besseren Wirkungsgradklassifizierung EFF1. Die benötigten Daten finden sie auch diesmal im Online-Katalog des Motorenherstellers. Ein zu erstellendes Diagramm, das die Differenz der Betriebskosten über die Tage aufträgt, verdeutlicht, ab wann ein Motor der Klassifizierung EFF1 rentabel ist. Auswahl des Motorschutzschalters Zunächst dimensionieren die Schülerinnen und Schüler den Motorschutzschalter. Dem Datenblatt entnehmen sie den Bemessungsstrom für den im Schritt 2 ausgewählten Motor. Der Motor wird ohne ein zusätzliches Anlassverfahren direkt an die Netzspannung gelegt. Der Überlastschutz des Motorschutzschalters wird auf den Bemessungsstrom des Motors eingestellt. Alternativ kann auch der Online-Assistent von Moeller eingesetzt werden, der nach Auswahl des Motors, einen Motorschutzschalter vorschlägt. Erstellung der Schaltpläne Als Teil der vollständigen beruflichen Handlung erstellen die Schülerinnen und Schüler Schaltpläne. Diese werden der Planungsabteilung zur Vervollständigung der Dokumentation ausgehändigt. Die Schüler zeichnen Schaltpläne von der Unterverteilung bis zum Motor in einpoliger und in mehrpoliger Darstellung. Entsprechend der Betriebsbedingungen ist den Schaltplänen ein TN-S-Netzsystem zugrunde zu legen. Im Tabellenbuch oder in den Fachbüchern finden die Lernenden die Schaltsymbole für den Motorschutzschalter und die Schaltsymbole für den Sicherungslasttrennschalter mit NH-Sicherung.

  • Elektrotechnik
  • Sekundarstufe II

Forschung zu fossilen Energieträgern

Unterrichtseinheit

Wie lange können fossile Energieträger noch genutzt werden? Was macht ökonomisch Sinn, was ist ökologisch vertretbar und was sind die sozialen Folgen? Diese Unterrichtseinheit behandelt aktuelle Forschungsfelder und fordert zur Diskussion über die strategische Ausrichtung der Energiepolitik auf.Unser materieller Wohlstand basiert zu einem sehr großen Teil auf der Nutzung fossiler Energieträger. Strom und Wärme werden traditionell durch die Verbrennung von Kohle, Öl und Erdgas erzeugt – sowohl für die Industrie als auch für die private Nutzung. Die Energiewende, also der Umbau der Energieversorgung weg von fossilen Energieträgern hin zur Nutzung erneuerbarer Energien, braucht Zeit. Gründe hierfür sind vielfältig und zur Dauer des Übergangs gibt es unterschiedliche Einschätzungen. Sicher ist jedoch, dass fossile Energiequellen noch viele Jahre genutzt werden. Lohnt es sich also, die bestehenden Technologien weiterzuentwickeln?Zum Einstieg in das Thema spielen die Schülerinnen und Schüler das „KEEP COOL mobil“. Während des Spiels können gemeinsam Forschungen zu verschiedenen Energiebereichen durchgeführt werden, die einen bestimmten Einfluss auf den Spielfortgang haben. Diese Forschungstätigkeiten sollen anschließend vertieft werden, speziell die Forschungstätigkeiten für sogenannte „Schwarze Fabriken“, also aus dem Bereich der fossilen, klimabelastenden Energienutzung. Hierfür stehen vier Arbeitsblätter zur Verfügung, sodass vier Gruppen gebildet werden können. Nach einer ersten Erarbeitungsphase sollen die Schülerinnen und Schüler ihre Ergebnisse vorstellen und diskutieren. In einer zweiten Arbeitsphase beschäftigen sich die Schülerinnen und Schüler mit den fossilen Energieträgern als Teil des gesamten Energiemixes. Auch hierfür steht ein Arbeitsmaterial zur Verfügung, das am zielführendsten in Gruppenarbeit bearbeitet wird. Zum Abschluss sollten auch diese Ergebnisse präsentiert und im Plenum diskutiert werden. Forschungsprojekte im Spiel „KEEP COOL mobil“ Die Spielerinnen und Spieler haben die Möglichkeit, gemeinsame Forschungsprojekte durchzuführen und sich dadurch einen wirtschaftlichen Vorteil zu verschaffen. Forschungsfelder der fossilen Energieversorgung Früher oder später versorgen wir uns zu 100 Prozent aus erneuerbaren Energien. Bis dahin wird weiter zu fossilen Energieträgern geforscht. Energiemix der Zukunft Die Schülerinnen und Schüler werden Energieminister eines fiktiven Landes. Welche Rolle spielen die verschiedenen Energiequellen? Woran soll geforscht werden? Fachkompetenz Die Schülerinnen und Schüler lernen Forschungsthemen aus dem Bereich der fossilen Energienutzung kennen: Fracking, Tiefsee-Ölförderung, Kraftwerkstechnologie, Flugverkehr, Bauwirtschaft. analysieren Chancen und Risiken dieser Technologien. nehmen die fossile Energienutzung als Teil des Energiemix wahr. erörtern Zukunftsvisionen, wägen Handlungsoptionen ab und entwerfen einen vereinfachten Plan für die zukünftige Energieversorgung eines Landes. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren in dem mobilen Multiplayer-Spiel „KEEP COOL mobil“ mit anderen Spielern. entwickeln gemeinsam eine Gruppenarbeit gemeinsam zur Zukunft der Energieversorgung. präsentieren ihre Ergebnisse und diskutieren im Plenum. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet. nutzen das mobile Multiplayer-Spiel „KEEP COOL mobil“. Anmeldung und Start des Spiels In "KEEP COOL mobil" übernimmt jeder Spieler die Rolle einer Metropole (zum Beispiel Sao Paolo, Berlin, Shanghai oder Mexico City). Die Metropolen sind dabei vier Ländergruppen zugeordnet: Europa USA & Partner BRIC (Schwellenländer Brasilien, Russland, Indien und China) G77 (Entwicklungsländer) Spielablauf Nachdem der Spielleiter das Spiel freigegeben beziehungsweise gestartet hat, laufen die Ticks und der Spieler kann definierte Aktionen durchführen. Aktionen sind etwa: Fabriken oder Gebäude bauen/abreißen (Anpassungsmaßnahmen) Forschungen betreiben (Forschungsfonds) in Kontakt/Verhandlung treten mit einem anderen Spieler Gelder anderen Spielern senden oder von anderen Spielern erhalten Informationen zu anderen Spielern einholen (inklusive Einsicht ins Spielerprofil) eigene Statistiken und Ergebnisse betrachten Mehr Informationen zum Spielablauf von "Keep Cool mobil" finden Sie hier. Forschungsprojekte bei Keep Cool mobil Während des Spiels haben die Spielerinnen und Spieler die Möglichkeit, „grüne“ (erneuerbare) oder „schwarze“ (fossile) Forschungsprojekte zu starten und können andere Mitspielerinnen und -spieler einladen, mit ihnen zu forschen. Da zu Forschungszwecken Geld in einen Forschungs-Fonds eingezahlt werden muss, ist es sogar sinnvoll, gemeinsam zu forschen. Forschungsprojekte zahlen sich für alle teilnehmenden Metropolen aus: Der Neubau einer grünen oder schwarzen Fabrik – je nach Forschungsart – kostet nach erfolgreichem Abschluss eines Forschungsprojektes weniger Geld. Auf diese Art und Weise können die Spielerinnen und Spieler die wirtschaftliche Entwicklung ihrer Metropolregion langfristig lenken – doch Vorsicht – massive Investitionen in fossile Energieträger beschleunigen die Gesamterwärmung der Erdatmosphäre. Klimafolgen können mit Fortschreiten der Spielrunde stärker und häufiger auftreten. Reflektion Wie in der realen Welt, können auch in "Keep Cool mobil" diejenigen Akteure Profit erzielen (im Spiel: Siegpunkte und Siegpunkte aus politischen Forderungen), die auf schwarze Fabriken und somit auf die Weiternutzung und Förderung fossiler Energieträger setzen. Wirtschaftlich gesehen macht das Sinn, denn bis die Energieversorgung das Label „100 Prozent erneuerbar“ trägt, vergehen auch in der Realität noch einige Jahre. Der Effekt der Weiternutzung fossiler Energieformen nach heutigen Standards und mit den derzeitigen CO 2 -Emissionen allerdings ist mit Blick in die Zukunft besorgniserregend – die dadurch konstant steigende Erderwärmung bildet sich auch im Spielverlauf einer Runde "Keep Cool mobil" ab. Hieran und an den Klimafolgen kann die Lehrkraft exemplarisch aufzeigen, dass die Erforschung bestehender fossiler Energieversorgungssysteme wichtig ist, um neben dem Voranbringen erneuerbarer Energien auch Optimierungspotentiale zu nutzen. Eine effizientere Technik spart nicht nur Kosten, sondern auch CO 2 -Emissionen. Die Energiewende lässt auf sich warten Die Nutzung fossiler Energieträger ist der Hauptgrund für den Klimawandel. Wir verbrennen Kohle und Gas zur Stromerzeugung. Wir verbrennen Benzin, Diesel und Kerosin als Treibstoff für unsere Mobilität. Erst allmählich werden erneuerbare Energien genutzt. Der Umstieg braucht Zeit. Das liegt einerseits an technischen Hürden. Aber auch ökonomische Interessen spielen eine Rolle. Denn je länger eine Technologie genutzt werden kann, desto eher amortisieren sich die Investitionen in Forschung und Innovation. Die großen Energieversorger sind daher träge und wollen die hohen Gewinnmargen ihrer Kraftwerke möglichst lange abschöpfen. Übergangsfrist für fossile Energieversorgung Bis wir unsere Energieversorgung mit dem Label "100 Prozent erneuerbar" versehen und komplett umgestellt haben werden, vergehen noch einige Jahre. Aber sollen die bestehenden Kraftwerke und Energieversorgungssysteme einfach so weitermachen wie bisher, ohne Optimierungspotentiale zu nutzen? Eine effizientere Technik spart nicht nur Kosten sondern auch CO 2 -Emissionen. An sich also ein lohnendes Forschungsfeld. Oder etwa nicht? Forschungsgebiete der fossilen Energieversorgung Anhand der Arbeitsblätter 1 bis 4 sollen sich die Schülerinnen und Schüler mit ausgewählten Forschungsthemen aus dem Bereich der fossilen Energieversorgung beschäftigen. Die Arbeitsblätter enthalten kurze Zusammenfassungen, weiterführende Internetadressen und Aufgaben. 1. Neue Rohstoffvorräte 2. Kraftwerkstechnik 3. Flugverkehr 4. Bauwirtschaft Hier bietet es sich an, vier kleinere Gruppen zu bilden. Nach einer Erarbeitungsphase sollen die Schülerinnen und Schüler ihre Ergebnisse vorstellen und diskutieren. Fossile Energieträger sind endlich Es dauert Jahrmillionen, um fossile Energieträger wie Kohle und Öl entstehen zu lassen. Nach menschlichen Zeitmaßstäben sind die fossilen Vorräte also endlich. Und die Lagerstätten sind unterschiedlich leicht auszubeuten. Selbstverständlich werden zunächst die Lagerstätten genutzt, die einfach auszubeuten sind. Je näher wir dem Ende der weltweiten Ressourcen kommen, desto schwieriger wird es, die Rohstoffe zu fördern. Deshalb werden neue Fördertechnologien erforscht, die bislang unwirtschaftliche Lagerstätten interessant werden lassen. Schwer zugängliche Rohstoffquellen Oberflächennahe Ölsande und Ölschiefer, Erdgas in dichten Speichergesteinen, flach und sehr tief liegende Erdgasvorkommen, Gas in Kohleflözen und Gashydrat, diese Rohstofflagerstätten waren lange Zeit nicht wirtschaftlich nutzbar. Durch Fortschritte bei der Erkundung der Lagerstätten als auch bei der Förderung, werden große Mengen fossiler Energieträger zusätzlich nutzbar. Was ist Fracking? Der Begriff Fracking leitet sich von Hydraulic Fracturing ab, also dem „hydraulischen Zerbrechen“, und zwar von Untergrund-Gestein. Dadurch sollen mehr gasförmige und lösliche Stoffe (Erdöl und Erdgas) zugänglich gemacht werden. Wissenschaftler sprechen von „Stimulierung“. Erreicht wird dieses Aufbrechen, indem man chemische Substanzen mit sehr hohem Druck (mehrere hundert Bar) in das Gestein presst. Die Chancen Im Vordergrund stehen ökonomische Interessen. Durch Fracking werden noch mehr Rohstoffe pro Lagerstätte genutzt. Oder es wird die Nutzung von bislang ökonomisch nicht nutzbaren Lagerstätten erst möglich. Abgesehen von den technischen und wirtschaftlichen Aspekten, spielen auch geopolitische Interessen eine Rolle. So setzten die USA unter anderem deshalb so stark auf Fracking, weil es dadurch unabhängiger wird von Rohstoffimporten aus dem mittleren Osten. In Deutschland überwiegen die Bedenken vor den schädlichen Auswirkungen. Dementsprechend ist Fracking bei uns (Stand Juli 2016) nur sehr eingeschränkt erlaubt. Die Risiken Die chemischen Substanzen, die mit hohem Druck in den Untergrund gepumpt werden, sind hochgiftig. Sie enthalten krebserregende Kohlenwasserstoffe, Schwermetalle und teilweise auch radioaktive Substanzen. Immer wieder dringen diese Schadstoffe an die Oberfläche oder ins Grundwasser. Die Bohrschlämme müssen in speziellen Deponien entsorgt werden. Umweltverbände rechnen vor , dass bereits im Jahr 2016 bis zu 35 Millionen Tonnen Sondermüll entsorgt werden müssen. Die Chancen Ob in der Tiefsee Öl gefördert wird, hängt vorrangig davon ab, ob es sich wirtschaftlich lohnt. Durch entsprechende Forschungsaktivitäten können Verfahren entwickelt werden, die den Kostenaufwand für die Förderung reduzieren. Und wenn die Nachfrage steigt, kann das geförderte Öl auch noch teuer verkauft werden. So kann sich insgesamt das wirtschaftliche Verhältnis von Aufwand zu Nutzen dahingehend verschieben, dass sogar die Tiefseeförderung ein lohnendes Geschäft wird. Neben den rein wirtschaftlichen Interessen gibt es auch geopolitische Interessen. Die Unabhängigkeit von Staaten mit hohen Öl- und Gasvorkommen kann auch eine große Rolle spielen. Die Risiken Das Bohren in großen Wassertiefen ist mit besonderen technischen Anforderungen verbunden. Der Druck in großen Tiefen ist enorm. In 2.800 Metern Tiefe ist der Druck der Wassersäule doppelt so groß wie der einer Autopresse. Entsprechend teuer sind die eingesetzten technischen Geräte und Verfahren. Schwierigkeiten bereiten auch die Temperaturunterschiede. In diesen Tiefen ist der geförderte Rohstoff teilweise sehr heiß. Beim kilometerlangen Aufstieg zur Bohrplattform können durch das Abkühlen störende Effekte wie Wachsbildung auftreten. Wenn ein Störfall eintritt, ist er viel schwieriger zu kontrollieren. Schon allein aufgrund der Entfernung zum Bohrloch, aber auch aufgrund der extremen Bedingungen in solchen Tiefen. Trauriges Beispiel ist die Katastrophe am 20. April 2010 auf der Plattform "Deepwater Horizon", einer Bohrplattform im Golf von Mexico. Höhere Wirkungsgrade Übliche Kohlekraftwerke erreichen hinsichtlich der Stromerzeugung einen Wirkungsgrad von 30 bis 40 Prozent. Moderne Kohlekraftwerke erreichen bis zu 45 Prozent. Eine weitere Steigerung auf über 50 Prozent wird angestrebt. Möglich sein soll das durch höhere Temperaturen und höheren Druck. Bisherige Materialien der Kraftwerkstechnik würden diesen Belastungen nicht oder nur sehr kurz standhalten. Deshalb wird an neuen Materialien geforscht, die auch extremen Bedingungen lange standhalten. Eine andere Möglichkeit, den Wirkungsgrad zu erhöhen, ist die Verbrennung von Kohle mit reinem Sauerstoff. Allerdings ist bislang die Herstellung von reinem Sauerstoff sehr aufwendig. Aus diesem Grund versucht man das Herstellungsverfahren zu optimieren oder andere, effizientere Verfahren zu entwickeln. Häufige Lastwechsel Kraftwerke müssen zunehmend flexibel auf unterschiedlichen Strombedarf reagieren können. Grund hierfür ist der steigende Anteil der Stromerzeugung aus erneuerbaren Energien. Sie hängt vom Wetter ab und schwankt entsprechend. Der Stromverbrauch ist aber unabhängig vom Wetter. Diese Differenz müssen Kraftwerke ausgleichen (dabei können fossile oder erneuerbare Brennstoffe eingesetzt werden). Je nach Wetterlagen können kurzfristige und häufige Lastwechsel auftreten. Entsprechend müssen Kraftwerke hoch- oder runtergefahren werden. Jeder Lastwechsel führt zu Temperatur- und Druckwechseln in der Kraftwerkstechnik. Die Folge ist, dass die Materialien stärker beansprucht werden und schneller verschleißen. Abhilfe können neue Materialien bringen. Aber auch die Wartungstechnik muss auf die höheren Belastungen reagieren, um sicherzustellen, dass Bauteile rechtzeitig ausgetauscht werden. Chancen und Risiken Höhere Wirkungsgrade haben zur Folge, dass bei gleicher erzeugter Strommenge weniger CO 2 freigesetzt wird. Das ist natürlich grundsätzlich zu begrüßen. Gleichzeitig besteht das Risiko, dass durch sogenannte Rebound-Effekte der Vorteil der modernen Technik wieder zunichte gemacht wird. Das bedeutet, dass der Stromverbrauch in gleichem Maß oder sogar mehr steigt als der Wirkungsgrad des Kraftwerks. Leider sind solche Rebound-Effekte nicht selten. Als Beispiel hierfür sei die Autobranche genannt: Motoren werden immer sparsamer, gleichzeitig werden die Autos immer leistungsstärker. Auch die Atomenergie beruht auf einem fossilen Energieträger, dem Uran. Zwar emittieren Kernkraftwerke prinzipiell kein CO 2 . Aufgrund des außerordentlichen Gefährdungspotentials und der ungelösten Entsorgungsproblematik verliert diese Art der Energieversorgung nicht nur in Deutschland an Bedeutung. Selbst nach dem Atomausstieg wird die Entsorgung von Atommüll und der Rückbau stillgelegter Atommeiler noch lange als Herausforderung beziehungsweise als Forschungsfeld relevant bleiben. Belastung für das Klima Der Flugverkehr hat bislang einen Anteil von 2 Prozent an den globalen CO 2 -Emissionen. Der Anteil am anthropogenen Klimawandel liegt allerdings bei 5 Prozent, da nicht nur CO 2 , sondern auch weitere klimarelevante Gase in großen Höhen freigesetzt werden. Zudem muss davon ausgegangen werden, dass in Zukunft noch mehr geflogen wird als heute. Kein Wunder also, dass zu umweltverträglicheren Alternativen geforscht wird. Propellerantriebe der Zukunft Bei der sogenannten Open-Rotor-Technologie kommen große, vielblättrige Rotoren zum Einsatz. Sie sollen bis zu 30 Prozent weniger Treibstoff verbrauchen. Es gibt aber auch Nachteile. So erreichen Flugzeuge mit diesem Antrieb nur geringere Fluggeschwindigkeiten als mit herkömmlichen Triebwerken. Außerdem sind die Antriebe deutlich lauter. Und der dritte große Nachteil ist die Größe der Triebwerke. Sie passen nicht unter die Flügel und müssen stattdessen im Heckbereich integriert werden. Dadurch werden neue Bauarten von Flugzeugen notwendig. Biokraftstoff Könnte man Biokraftstoffe im Flugverkehr einsetzen, wäre die CO 2 -Bilanz deutlich besser. Denn im Prinzip wird nur die Menge an CO 2 freigesetzt, die vorher eine Pflanze aus der Atmosphäre entnommen hat, um ihre Biomasse aufzubauen. Beachtet werden muss allerdings auch, ob die Quellen, aus denen die Biomasse stammt, nachhaltig bewirtschaftet wurden. Wenn nämlich Regenwald gerodet wird, um dort Soja für Biokraftstoff anzubauen, dann ist die Ökobilanz nicht mehr so rosig. Brennstoffzelle Ähnliches gilt für die Idee, Energie aus Brennstoffzellen zu nutzen. Die meisten Brennstoffzellen erzeugen Strom aus Wasserstoff und Sauerstoff, und zwar mit einem beachtlichen Wirkungsgrad. Theoretisch können 80 Prozent der Energie in Strom umgewandelt werden. In der Praxis werden jedoch „nur“ 45 Prozent erreicht. In der Gesamt-Ökobilanz muss allerdings berücksichtigt werden, wie das Wasserstoff-Gas hergestellt wurde. Dafür muss nämlich zunächst eine Menge Energie investiert werden. Nur wenn diese Energie aus erneuerbaren Quellen stammt, stellen Brennstoffzellen eine Entlastung des Klimas dar. Der Gesamt-Wirkungsgrad (Wasserstoff-Herstellung – Stromerzeugung – Antriebsenergie) kann zwar theoretisch bis zu 45 Prozent betragen, in der Praxis dürfte er jedoch deutlich darunter liegen. Auch der Preis der Technologie ist für den Massenmarkt noch nicht attraktiv. Ressourcenverbrauch und CO 2 -Emissionen Die Bauwirtschaft hat einen sehr hohen Anteil an unserem Ressourcenverbrauch. Aus ökologischer Sicht ist insbesondere das Bauen mit Beton problematisch. Beton besteht aus Sand, Kies und dem Bindemittel Zement. Zement wird aus Kalkstein, Ton, Sand, Eisenerz und Gips hergestellt. Bei der Zementherstellung werden enorme Mengen an CO 2 freigesetzt. Einerseits entsteht CO 2 als chemisches Produkt beim Brennen von Kalkstein. Andererseits wird CO 2 durch Verbrennungsvorgänge frei, die für die hohen Temperaturen von über 1.400 °C benötigt werden. Laut IPCC gehen weltweit 7 Prozent der anthropogenen (vom Mensch gemachten) CO 2 -Emissionen auf das Konto der Zementherstellung. Auch Ersatzbrennstoffe machen schlechte Luft Zur Einsparung fossiler Brennstoffe werden bei der Zementherstellung zunehmend sogenannte „Ersatzbrennstoffe" verwendet. Unter anderem Altöl, Lösemittel, Haus- und Gewerbemüll, Autoreifen, Tiermehl. Auch wenn Filteranlagen einen Teil der Schadstoffe aus den Abgasen entfernen können, ein mehr oder weniger großer Rest an Schadstoffen entweicht in die Umwelt. Forschung zur Zementherstellung Wissenschaftler haben ein Verfahren entwickelt, das deutlich weniger CO 2 emittiert. Statt 1.450°C sollen weniger als 300°C ausreichen, um den alternativen Zement herzustellen. Zudem wird weniger Kalk benötigt, wodurch sich die CO 2 -Emissionen weiter senken lassen. Forschung im Bereich Betonbau An der Hochschule Bochum wurde ein Verfahren entwickelt, um bei gleicher Bauweise den Betonanteil zu verringern. Dazu werden Hohlkörper aus recyceltem Kunststoff in den Beton gemischt. Auf diese Weise werden über 20 Prozent weniger Primärenergie verbraucht. Außerdem sind die Bauteile leichter, wodurch die gesamte Gebäudekonstruktion schlanker ausfallen kann. Das spart weitere Ressourcen und dadurch auch CO 2 -Emissionen. Bislang haben sich die Schülerinnen und Schüler schwerpunktmäßig mit fossilen Energieträgern beschäftigt. Diese sind aber nur ein Teil der Energieversorgung. Zur Energieversorgung tragen auch die erneuerbaren Energien einen erheblichen Teil bei. Beim Strom ist das bereits über 25 Prozent, Tendenz stark steigend. Die Zukunft der Energieversorgung Legen Sie die Zukunft der Energieversorgung schon heute in die Hände Ihrer Schülerinnen und Schüler (später werden ohnehin sie es sein, die bestimmen werden). Arbeitsblatt 5 bietet hierfür eine einfache Vorlage, um auf einem sehr hohen Abstraktionsniveau die Planung bis ins Jahr 2100 durchzuführen. Es kommt dabei weniger auf „richtig“ oder „falsch“ an, sondern darauf, dass sich die Schülerinnen und Schüler gemeinsam in kleinen Gruppen über Ideen und Ansätze zu einer generellen Strategie und den damit verbundenen Entscheidungsfaktoren unterhalten. Welche Gewichtung haben ökonomische und ökologische Fragestellungen? Wo sind die Investitionen am sinnvollsten? Welche sozialen Konsequenzen haben die Entscheidungen (Energiepreis, Bau von Stromleitungen, Gesundheitsrisiken, Folgen des Klimawandels …), im eigenen Land, aber auch weltweit?

  • Politik / WiSo / SoWi
  • Sekundarstufe II