Unterrichtsmaterialien zum Thema "Geometrie"

  • Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 4
    zurücksetzen
76 Treffer zu "Geometrie"
Sortierung nach Datum / Relevanz
Kacheln     Liste

Übungen im Koordinatensystem mit Kurvenprofi

Unterrichtseinheit

Die hier vorgestellten Bausteine sind keine starre Unterrichtseinheit, sondern können auch in Wiederholungsphasen oder in besonderen Unterrichtsformen (Wochenplan, Freiarbeit) als abwechslungsreiche Übungen genutzt werden. Der Funktionenplotter Kurvenprofi wird dabei als Punkt- und Streckenplotter verwendet.Lange bevor Funktionen im Unterricht thematisiert werden, finden in den Klassen 5 und 6 Übungen im Koordinatensystem statt. So werden Punkte eingezeichnet und abgelesen, Spiegelungen und Verschiebungen vorgenommen und die Eigenschaften von Vierecken angewendet. Dies geschieht durch eine Beschränkung auf Punkte, Geraden, Strecken und eventuell Kreise. Der Computer bietet dabei die Möglichkeit, Schaubilder schnell anzufertigen, Vermutungen zu entwickeln und diese zu überprüfen. So sehr wir uns saubere Koordinatensysteme wünschen - wie viele davon kann eine Schülerin oder ein Schüler in einer Stunde zeichnen? Wie viel Zeit bleibt dann noch für die eigentliche Mathematik? Von diesem Problem befreit uns der Computer als Rechen- und Zeichenknecht. Er schafft Raum für das Experimentieren und ermöglicht eine schnelle Kontrolle der Ergebnisse (zum Beispiel Verwechselung von x- und y-Koordinate). Zudem müssen Schülerinnen und Schüler bei der Arbeit am Rechner nie fürchten, Falsches in ihren Heften zu ?verewigen?.Computer-Algebra-Systeme (CAS) sind für den Einsatz in Klasse 5 und 6 in ihrer Bedienung zu aufwändig. Ihre Möglichkeiten der graphischen Darstellung fallen gegenüber ihren sonstigen Fähigkeiten oft stark ab. Maßstabsgerechte Zeichnungen und interaktive Elemente (zum Beispiel Punkte, Strecken, Parametervariation, Tangenten, Krümmungskreise) sind - wenn überhaupt - nur mit Programmieraufwand zu erreichen. Funktionenplotter rechnen dagegen nur eingeschränkt oder gar nicht algebraisch. Sie sind auf Funktionsdarstellungen ausgerichtet und in der graphischen Darstellung den CAS oft überlegen, können aber selten für Punkte und Strecken verwendet werden. Dies habe ich zum Anlass genommen, für den von mir entwickelten Funktionenplotter Kurvenprofi Aufgaben zu erarbeiten, die diese Lücke schließen. Mit dem Kurvenprofi steht den Schülerinnen und Schülern nach einer kurzen Einarbeitungsphase ein Werkzeug zur Verfügung, dass in der gesamten Schulzeit bis zum Abitur für fast alle Probleme der zweidimensionalen Graphen eingesetzt werden kann. Einsatz der Arbeitsmaterialien Die Unterrichtsbausteine eignen sich für eine vielfältige Nutzung in Partnerarbeit. Arbeitsblätter und Kurvenprofi-Dateien Materialien und Screenshots zu den Themen "Straßen und Häuser", "Parallel und Senkrecht", "Vierecke" und "Schmetterlinge". Die Schülerinnen und Schüler sollen die Orientierung im Koordinatensystem erlernen. Punkte durch zwei Koordinaten angeben können. ihre Kenntnisse zur Benennung und zu den Eigenschaften verschiedener Vierecke vertiefen. die Eigenschaft "parallel" als Gleichheit der abgezählten Wege erkennen und anwenden. die Eigenschaft "senkrecht" als eine bestimmte Änderung des abgezählten Weges erkennen und anwenden. erkennen, dass Punkte im Koordinatensystem auch durch andere Angaben (Winkel, Länge) festgelegt werden können. Thema Übungen im Koordinatensystem mit Kurvenprofi Autor Ulrich Strautz Fach Mathematik Zielgruppe Klasse 5 und 6 Zeitraum etwa 1 Stunde pro Aufgabenblatt Technische Vorraussetzungen Windows-Rechner Software Kurvenprofi (kostenfrei für private Nutzung, Schullizenz 50 €) oder andere Funktionenplotter Die Beispielaufgaben für den Einsatz von Funktionenplottern stellen keine starre Unterrichtsreihe dar. Es handelt sich um Bausteine, die auch als Wiederholungseinheiten in Vertretungsstunden oder in besonderen Formen des Unterrichts (Wochenplan, Freiarbeit) als abwechslungsreiche Übungsformen genutzt werden und viele Diskussionsanreize bieten können. Die hier vorgestellten Aufgaben sind grundsätzlich für eine Partnerarbeit konzipiert. Diese Arbeitsform ist nicht nur wegen der äußeren Rahmenbedingungen (technische Ausstattung der Schule) oft vorgegeben, sondern auch sehr hilfreich, einen inhaltlichen Austausch der Schülerinnen und Schüler über die Aufgabenstellungen anzuregen. Häufig werden spielerische Elemente verwendet, die erreichen sollen, dass nach der gemeinsamen Problemlösungsphase die Fähigkeiten beider Partner gesichert werden, zum Beispiel durch einen Rollenwechsel. Alle Aufgaben, die in diesem Artikel vorgestellt werden, lassen sich außer mit dem Kurvenprofi mit sämtlichen Funktionenplottern umsetzen, die Punkte und Strecken zeichnen können. Für die Nutzung der entsprechenden KRV-(Kurvenprofi-)Dateien müssen Sie jedoch das Programm Kurvenprofi installieren. Dies steht Lehrkräften, Schülerinnen und Schülern für die private Nutzung kostenfrei zur Verfügung, eine Schullizenz ist für 50 € zu haben. Unter Hilfe/Beispiele/Einführung finden Sie im Programm eine leicht verständliche Einweisung. Die Schülerinnen und Schüler üben in den ersten Aufgaben die Bedienung des Programms, das Ablesen und Zeichnen von Punkten und Strecken sowie die Orientierung im Koordinatensystem. Dabei werden die Kenntnisse über die Koordinaten der Punkte wiederholt. Es zeigt sich hier schnell, dass das Schaubild bei einer Verwechselung der beiden Koordinaten unerwartete Ergebnisse zeigt, die schnell bemerkt, diskutiert und behoben werden können. "Das Haus vom Nikolaus" erfordert planvolles Handeln durch eine kleine Skizze und die Überlegung, in welcher Reihenfolge die Punkte abgelaufen werden. Zur inneren Differenzierung kann gefordert werden, nur eine festgelegte Anzahl der Punkte (einen durchgängigen Streckenzug) zu verwenden. Die Anregung, die Farben und Stricharten zu ändern, puffert unterschiedliche Bearbeitungszeiten ab. Mit dem Abzählen der x- und y-Änderungen erkennen die Schülerinnen und Schüler eine weitere Möglichkeit, die Eigenschaft "parallel" nachzuweisen oder parallele Strecken zu zeichnen. Zunächst werden in verschiedenen Übungen durch die Strecken bestimmte Abschnitte angeboten. Die letzten Aufgaben erfordern das Suchen geeigneter Punkte auf einer Geraden. Möglicherweise kann an dieser Stelle im Rahmen der Binnendifferenzierung schon von einigen Schülerinnen und Schülern die Nichteindeutigkeit der Pfeile durch Verdoppelung, Verdreifachung und weitere Vervielfachungen herausgearbeitet werden. Entsprechend wurde die Untersuchung der Eigenschaft "senkrecht" angelegt, wobei die vorangegangenen Aufgaben unter der geänderten Fragestellung gelöst werden sollen. Die Festigung des über die Eigenschaften "parallel" und "senkrecht" Gelernten geschieht in den Aufgaben zu Vierecken. Nach einer spielerischen Vorübung zu Koordinaten werden die Eigenschaften bestimmter Vierecke benötigt, um Figuren durch Änderung einzelner Punkte in vorgegebene Vierecke zu verwandeln und später Streckenzüge zu Vierecken zu ergänzen. Obwohl der Begriff des Steigungsdreiecks nicht verwendet wurde, haben die Schülerinnen und Schüler eine Idee gewonnen, die in späteren Unterrichtsreihen vielleicht mit Rückgriff auf diese Übungen leicht auf die Gerade und deren Senkrechte übertragen werden kann. Für den Fall, dass in Klasse 6 die Winkel und die negativen Zahlen behandelt wurden, bietet das Blatt "Schmetterlinge" eine spielerische Übung im Raten von Winkelgrößen und Längen. Auf höherem Niveau reift die Erkenntnis, dass ein Punkt im Koordinatensystem auch durch Angabe des Winkels und der Länge eindeutig festgelegt werden kann. Dabei wird der Begriff der Polarkoordinaten nicht genannt. (Welche Schülerinnen und Schüler finden heraus, dass Winkel und Länge eines Punktes nicht eindeutig sind?) Durch viele der hier vorgestellten Aufgaben ziehen sich Anknüpfungspunkte an spätere Themen. Explizit zu nennen sind die Steigung, die Steigung einer Senkrechten, Polarkoordinaten, aber auch die negativen Zahlen, die im Gegensatz zum üblicherweise eingeführten Koordinatensystem schon in Form der vier Quadranten auftreten. Durch leichte Variation der Aufgaben können diese auch in späteren Unterrichtsreihen als Einstiege verwendet werden. Wie schnell ragt ein Viereck in einen anderen Quadranten und bietet damit einen Unterrichtsanlass zur Zahlbereichserweiterung? Die hier vorgestellten Arbeitsblätter sind Bestandteil einer Aufgabensammlung für die Klassen 5-10, die auf der Kurvenprofi -Website in verschiedenen Formaten bereit steht (unter "Downloads").

  • Mathematik
  • Sekundarstufe I

Anwendung der Winkelfunktionen

Unterrichtseinheit

In dieser Unterrichtseinheit soll anhand einer komplexen Beispielaufgabe, verpackt in einer kleinen Geschichte, das Verständnis für Auswahl und Verwendung der Winkelfunktionen entwickelt werden. In gewerblich-technischen Ausbildungsberufen, in denen CNC gelehrt wird (Metall, Holz), gehören diese zu den theoretischen Grundlagen – genauso wie das Erfassen von technischen Zeichnungen und Koordinatensystemen.Bei diesem Online-Spiel müssen Sie dem Hahn Gaga dabei helfen, seinen Hühnerhof aus der Eierkrise zu heben, und zwar mit einem Schatz, den Sie selber finden und ausgraben müssen. Sie brauchen dafür lediglich einige Kenntnisse über die Winkelfunktionen, um die Schatzkarte zu verstehen. Aktien warten auf Sie - als Belohnung dafür, dass Sie das Rätsel lösen konnten. Die Hilfe auf der Internetseite besteht aus einer Formelsammlung und einem Modul, welches Sinus-, Cosinus- und Tangenswinkel berechnet. Die Eselsbrücke "GAGA Hühnerhof AktienGesellschaft", die die Dreiecksseiten Hypothenuse, Ankathete und Gegenkathete in den trigonometrischen Formeln visualisiert, war Anlass für die Rahmenstory als auch Inhalt einer Lerneinheit. Mit den neu erworbenen Kenntnissen lässt sich das Problem auf der Schatzkarte lösen. Der gefundene Wert ist ein Ort auf dem Koordinatensystem. Ein virtueller Spaten hebt den Schatz. Der Programmautor wird auf Wunsch benachrichtigt und schickt virtuelle Aktien zurück.In Berufsschulklassen, Bildungsmaßnahmen oder allgemeinbildenden Schulen bietet das Programm innerhalb einer Unterrichtsreihe zum Thema Winkelfunktionen die entsprechende Motivation nach einer theoretischen Einführung. Es kann sich im Unterricht oder in der Hausaufgabe ein Wettbewerb um Art und Schnelligkeit der Problemlösung ergeben. Vorteilhaft ist ein Ausdruck der Schatzkarte und die Verwendung eines Taschenrechners, da dann jedes Medium seine Stärken auspielt und der Lerneffekt nachhaltiger wirkt.

  • Mathematik
  • Sekundarstufe II