Unterrichtsmaterialien zum Thema "Elektrotechnik"

  • Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle

Weiteres Unterrichtsmaterial finden Sie im Lehrer-Online-Shop.

11 Treffer zu "Elektrotechnik"
Sortierung nach Datum / Relevanz
Kacheln     Liste

Elektrosmog messen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Elektrosmog führen die Schülerinnen und Schüler Messungen durch und leiten Maßnahmen zur Verminderung des Elektrosmog ab, dessen Wirkungen auf den menschlichen Organismus derzeit rege diskutiert werden.Im technischen Experiment setzen Schülerinnen und Schüler moderne Elektrosmog-Messgeräte ein. Sie nehmen Fotos von der Versuchsanordnung mit der Digitalkamera auf und fügen diese dem Messprotokoll bei. In der Auswertung werden mithilfe eines Tabellenkalkulationsprogramms Diagramme erstellt. Die Unterrichtseinheit endet mit der Erarbeitung von Maßnahmen zur Verminderung der Belastung durch Elektrosmog. Nachdem die Lernenden kompetent Messungen und Beratung durchführen können, wird in Erwägung gezogen, eine Übungsfirma zu gründen. Die Schülerfirma bietet den Angehörigen der Schule kostenpflichtige Elektrosmog-Messungen an. Als Zusatzangebot werden basierend auf den Messergebnissen Maßnahmen zur Reduzierung des Elektrosmogs vorgeschlagen.Elektrische und magnetische Wechselfelder sind nicht direkt sichtbare physikalische Erscheinungen. Die Schülerinnen und Schüler führen Elektrosmog-Messungen durch, so werden die Felder für sie greifbar. Gegenstand der technischen Experimente sind niederfrequente elektrische und magnetische Wechselfelder. Mit preisgünstigen Messgeräten lassen sich Messungen durchführen. Hinweise zum Unterrichtsverlauf Die Aufgabenstellung in der Unterrichtseinheit "Elektrosmog messen" ist praxisnah und für die Schülerinnen und Schüler motivierend. Alle Erläuterungen und was es bei der Durchführung zu beachten gilt, ist hier ausführlich erklärt. Fachkompetenz Die Schülerinnen und Schüler messen niederfrequente elektrische und magnetische Wechselfelder. lernen die Formelzeichen und Einheiten der magnetischen Flussdichte und der elektrischen Feldstärke kennen. entwickeln ein Gefühl für die Werte der Felder im Alltag. erstellen Messprotokolle. erkennen, dass magnetische Felder durch Ströme erzeugt werden. erkennen, dass elektrische Felder durch elektrische Spannungen erzeugt werden. erarbeiten Maßnahmen zur Verminderung der Belastung durch elektrische und magnetische Wechselfelder. Medienkompetenz Die Schülerinnen und Schüler werten Messergebnisse in einem Tabellenkalkulationsprogramm aus und erstellen Diagramme. nehmen Fotos mit einer Digitalkamera auf und bearbeiten die Bilder mit einer Bildbearbeitungssoftware. führen eine Internetrecherche zum Thema durch. Empfehlenswert sind die Messgeräte ME 3030B oder ME3830B von GIGAHERTZ SOLUTIONS. Der Frequenzbereich geht beim ME 3030B von 16 Hz bis 2 kHz und beim ME 3830B von 5 Hz bis 100 kHz. Mit beiden Messgeräten lassen sich die Wechselfelder der Deutschen Bahn messen. Die Felder der Oberleitungen haben eine Frequenz von 16 2/3 Hz und reichen oft hunderte Meter weit. Handys senden hochfrequente elektromagnetische Strahlung aus, die sich nur mit teuren Messgeräten zufriedenstellend messen lässt. Die Durchführung der Messungen ist anspruchsvoll und wird von Experten durchgeführt. Hochfrequente Frequenzen eignen sich weniger für unterrichtliche Experimente. Im technischen Experiment sollen die elektrische Feldstärke und die magnetische Flussdichte verschiedener niederfrequenter Feldquellen gemessen werden. Parameter ist für jede Messreihe der Abstand vom Elektrosmog-Messgerät zur Feldquelle. Die Schülerinnen und Schüler führen die Messungen in Gruppen durch. Feldquellen innerhalb von Gebäuden Stereoanlage Radiowecker Computer Fernseher Babyphone elektrische Küchengeräte Installationsleitungen et cetera Feldquellen außerhalb von Gebäuden Hochspannungsleitungen Bahnstrom Ortsnetztransformatoren Umspannwerke et cetera Mit dem Messgerät ME 3030B von GIGAHERTZ SOLUTIONS kann für das untere Frequenzband überprüft werden, ob Computer-Bildschirme TCO '99 konform sind. Das untere Frequenzband geht von 5 Hz bis 2 kHz und deckt sich damit fast mit dem des Messgeräts. Der Messfehler aufgrund der Abweichung des Spektrums ist gering. Die TCO-Norm erlaubt für das untere Frequenzband eine elektrische Feldstärke von maximal 10 V/m und für die magnetische Flussdichte 200 nT. Es ist in einem Abstand von 30 cm zum Bildschirm zu messen. Denkbar sind auch Messungen, die Felder von Leuchtmitteln miteinander vergleichen. Gewählt werden Glühlampen, Leuchtstoffröhren, Energiesparlampen, Niedervolt-Halogenlampen und Hochvolt-Halogenlampen. Bei der Messung von Feldern einzelner Feldquellen ist die allgemeine Belastung durch andere Feldquellen (Installationsleitungen, elektrische Geräte im Nachbarzimmer, Hochspannungsleitungen, et cetera) zu berücksichtigen. Dies gilt vor allem für Magnetfelder. Zunächst wird an dem jeweiligen Messort die magnetische Flussdichte bei eingeschaltetem Gerät gemessen. Das Messgerät wird in verschiedene Richtungen ausgerichtet. Es wird diejenige Ausrichtung ermittelt, bei der der höchste Messwert angezeigt wird. Anschließend wird das Gerät ausgeschaltet und die durch die Umgebung verursachte magnetische Flussdichte gemessen. Dabei wird das Messgerät in die gleiche Richtung ausgerichtet, in die vorher bei der Messung mit eingeschaltetem Gerät der höchste Wert angezeigt wurde. Bei der erdbezogenen Messung der elektrischen Feldstärke wird eine Verzerrung des Feldes bewusst in Kauf genommen. Die Messverhältnisse entsprechen der realen Situation, dass sich eine Person im elektrischen Feld befindet und dieses verzerrt. Die TCO-Norm und der Standard der baubiologischen Messtechnik schreiben erdbezogene Messungen vor. Um bei der Messung der elektrischen Feldstärke brauchbare Messergebnisse zu erhalten, darf das Messgerät nicht näher als 10 cm an die Feldquelle herangeführt werden. Außerdem ist ein Abstand von mindestens 10 cm zu Gegenständen wie Bettgestell, Matratze, Kissen oder Wand einzuhalten. Auf keinen Fall sollten die Schülerinnen und Schüler die Krokoklemme des Erdungskabels an den Schutzkontakt der Steckdose anbringen. Es besteht die Gefahr eines Unfalls durch elektrischen Strom. Zur Vermeidung eines Unfalls sollten die Schülerinnen und Schüler über die Gefahren des elektrischen Stroms aufgeklärt werden und der Anschluss der Krokoklemme an den Schutzkontakt der Steckdose untersagt werden. Die Lehrkraft sollte stets den Überblick über alle Gruppen haben. Zur Erdung eignen sich metallische Wasser-, Gas-, oder Heizkörperrohre. GIGAHERTZ SOLUTIONS bietet als optionales Zubehör Erdungsklammern zur Befestigung an den Rohren an. Die Gruppen protokollieren ihre Messungen. Von der Versuchsanordnung werden mit einer Digitalkamera Fotos aufgenommen. Durch die Protokollierung kann das Experiment reproduziert und nachträglich analysiert werden. In der Auswertungsphase vergleichen die Gruppen ihre Ergebnisse mit Grenzwerten. Die deutsche Elektrosmog-Verordnung von 1997 erlaubt elektrische Feldstärken von 5.000 V/m und magnetische Flussdichten von 100.000 nT. Diese übersteigen um das 500fache die inzwischen weltweit akzeptierte TCO-Norm für Computer-Bildschirme. Die Schülerinnen und Schüler vergleichen ihre Ergebnisse für alle Feldquellen daher mit der TCO-Norm, die in einem Abstand von 30 Zentimetern nur elektrische Feldstärken bis 10 V/m und magnetische Flussdichten bis 200 nT zulässt. Diese Grenzwerte gelten für das untere Frequenzband von 5 Hz bis 2 kHz. Es wird ersichtlich, dass die elektrische Feldstärke und die magnetische Flussdichte mit dem Abstand zur Feldquelle abnehmen. Ein weiteres wichtiges Ergebnis ist, dass im niederfrequenten Bereich magnetische Felder durch Ströme und elektrische Felder durch elektrische Spannungen erzeugt werden. Die Gruppen leiten aus den Messergebnissen Maßnahmen zur Reduzierung der Felder ab. Die Messung von Elektrosmog eignet sich auch als Geschäftsidee für eine Schülerfirma: Den Angehörigen der Schule können Elektrosmog-Messungen in den Wohnungen mit entsprechenden Maßnahmen zur Reduzierung des Elektrosmogs angeboten werden.

  • Elektrotechnik
  • Berufliche Bildung, Sekundarstufe II

Regelung einer Wärmepumpenanlage

Unterrichtseinheit

Mit den immer aktueller und dringender werdenden Diskussionen über Energiesparen nimmt das Interesse an Wärmepumpenanlagen zu. Lerngegenstand der Unterrichtseinheit ist die Funktionsweise einer Wärmepumpenanlage und deren Regelung.Die Schülerinnen und Schüler analysieren methodisch die Funktionsweise einer Wärmepumpenanlage. Diese wird durch eine Animation veranschaulicht. Sie ziehen Kennzahlen von Wärmepumpen heran und vergleichen mithilfe von Tabellenkalkulationsprogrammen den Energieverbrauch zweier Wärmepumpen. Ein weiterer Schwerpunkt liegt auf der Analyse der Regelung der Wärmepumpenanlage. Die Schülerinnen und Schüler bilden die Zweipunktregelung in das Modul BORIS des Programms WinFACT ab und lernen den Einfluss der Schalthysterese auf die Schalthäufigkeit kennen.Lerngegenstand ist eine zweipunktgeregelte monovalente Elektrowärmepumpenanlage zur Raumheizung. Aufgrund der Komplexität des Systems ist die Anforderung an die Schülerinnen und Schüler hoch. Der Lerngegenstand eröffnet ihnen die Chance, komplexe Systeme fachgerecht verstehen zu lernen. Eine geeignete fachspezifische Methode ist die Analysemethode. Zunächst wird die Funktionsweise der Wärmepumpenanlage und anschließend die Regelung der Anlage analysiert. Aufgabenstellung Das Erläutern der Aufgabenstellung steht zu Beginn des Unterrichtsverlaufs. Die Lehrkraft sollte in die Fragestellungen einführen. Funktionsweise einer Wärmepumpenanlage Die Schülerinnen und Schüler setzen sich intensiv mit den Arten von Wärmepumpen, mit Energiebilanzen und Kennwerten dieser Bilanzen auseinander. Regelungen einer Wärmepumpenanlage Um die Ursache der Unterbrechungsmeldung und die Auswirkungen einer Änderung der Schalthysterese auf die Raumtemperatur verstehen zu können, analysieren die Schülerinnen und Schüler die Regelung einer Wärmepumpenanlage. Methodenkompetenzen Die Schülerinnen und Schüler sollen ihre methodischen Fähigkeiten im Umgang mit komplexen technischen Systemen weiterentwickeln. die Analysemethode einüben und anwenden lernen. mit Bedienungsanleitungen vertraut werden und diese einsetzen. Fachkompetenzen Die Schülerinnen und Schüler sollen die Funktionsweise einer Wärmepumpenanlage verstehen. mit Kennzahlen von Wärmepumpenanlagen rechnen. die Regelung einer Wärmepumpenanlage verstehen. die Funktionsweise einer Zweipunktregelung, den Begriff Schalthysterese und die Begriffe oberer beziehungsweise unterer Schaltpunkt verstehen. Thema Regelung einer Wärmepumpenanlage Autor Markus Asmuth Zielgruppe Handwerkliche und industrielle Elektroberufe Lernfeld Energie- und gebäudetechnische Anlagen in Stand halten und ändern Zeitraum 10 Unterrichtsstunden Technische Voraussetzungen Tabellenkalkulationsprogramm (MS-Excel oder OpenOffice Calc), Software WinFACT mit dem Modul BORIS Planung Regelung einer Wärmepumpenanlage Am Beispiel einer zweipunktgeregelten Wärmepumpenanlage soll das Verhalten unstetiger Regler in Regelkreisen mit Einfluss der Hysterese untersucht werden. Geeignet ist folgende praxisbezogene Aufgabenstellung: Die Aufgabenstellung spiegelt eine reale Situation authentisch wieder. Eine Unterbrechungsmeldung am Display von Waterkotte Wärmepumpenanlagen kann auftreten und es sollte dann Einfluss auf den Anlagenbetrieb genommen werden. Parameter können direkt am Bedienteil des Reglers geändert werden. Optional kann der Regler mit einem Telefonmodem ausgestattet werden und so jederzeit mit der Servicefirma in Verbindung treten. Auf dem Bildschrim ist dann der Systemzustand ersichtlich und aus der Ferne kann eingegriffen werden. Wärmepumpenanlagen sind Wärmekraftmaschinen, die zur Raumbeheizung, zur Warmwasserbereitung und in der Verfahrenstechnik eingesetzt werden. Hierbei wird die in der Umgebung (Erdreich, Grundwasser, Umgebungsluft) zwischengespeicherte Sonnenenergie oder Abwärme aus Produktionsprozessen genutzt. Neben der Umgebungsenergie benötigt die Wärmepumpe elektrische Energie, Verbrennungsenergie (Kompressionswärmepumpen) oder thermische Energie (Absorptionswärmepumpen). Der größte Anteil der in Deutschland installierten Wärmepumpenanlagen fällt auf elektrische Wärmepumpenanlagen zur Wohnraumbeheizung und auf Kleinstanlagen zur Warmwasserbereitung. Meistens werden Wärmepumpen mit monovalenter Betriebsweise installiert. Monovalente Anlagen decken als alleiniger Wärmeerzeuger den gesamten Wärmebedarf des Gebäudes. In den letzten Jahren ist die Zahl neu installierter Wärmepumpen zur Wohnraumbeheizung deutlich gestiegen. Grund für diesen Marktaufschwung sind die steigenden Energiepreise und vor allem die Diskussion bezüglich der ökologischen Nebenwirkungen von Anlagen zur Raumheizung. Die Raumheizung ist in Deutschland besonders in der Diskussion, da auf sie ca. 30 % des Primärenergieverbrauchs fällt und somit entsprechend hohe Minderungspotentiale der C02-Emissionen bestehen. Impulse erhielt der Wärmepumpenmarkt durch die Energieeinsparverordnung von 2002 und Fördermaßnahmen von Bund, Ländern, Kommunen und Energieversorgungsunternehmen. bmvbw.de Die Energiesparverordnung können Sie auf der Seite des Bundesministeriums für Verkehr, Bau- und Wohnungswesen nachlesen. Die Anzahl der Niedrigenergie- und Passivhäuser wird durch die Klimaschutzbemühungen weiter wachsen und damit auch die Anwendungsmöglichkeiten von Wärmepumpen. Insbesondere bei Niedrigenergie- und Passivhäusern hat die Wärmepumpe günstige Einsatzbedingungen. Ob der Einsatz einer Wärmepumpe zur Raumheizung sinnvoll ist, muss im Einzelfall entschieden werden. Mehr Anwendungsfelder könnten mit dem zunehmenden Einsatz kohlenstoffärmerer Brennstoffe in der Stromerzeugung und damit einer besseren ökologischen Bilanz der Wärmepumpe ergeben. Die Warmwasserversorgung wird in die unterrichtliche Betrachtung nicht mit einbezogen. Einerseits um die Komplexität zu verringern, andererseits, da empfohlen wird, die Warmwasserversorgung möglichst nicht mit der Heizungswärmepumpe sicherzustellen. Als Systemgrenze wird die Wärmepumpenanlage (mit den Komponenten Wärmezuführung, Wärmepumpe, Wärmeverteilsystem) einschließlich Wohnraum festgelegt. Die Wärmepumpe selbst besteht aus den Wärmetauschern, dem Kompressor und dem Expansionsventil. Die Umwälzpumpen, der Motorschutz, eine Anlaufstrombegrenzung, der Tonfrequenz-Rundsteuerempfänger und andere "Details" werden nicht betrachtet. Das so abgegrenzte und reduzierte System wird in den vier Schritten der Analysemethode von den Schülerinnen und Schülern analysiert. Wichtig für das Verständnis einer Wärmepumpe ist, dass neben elektrischer Energie Umgebungsenergie zur Raumerwärmung beziehungsweise zur Wassererwärmung genutzt wird. Die Unterrichtseinheit soll technisches Basiswissen vermitteln, um eine Diskursfähigkeit in Hinblick auf das Minderungspotential von C02-Emissionen und der Wirtschaftlichkeit zu ermöglichen. Die Leistungsziffer und die Jahresarbeitszahl als Kennwerte der ökologischen Bilanz einer Wärmepumpenanlage sind Unterrichtsinhalt. Das Thema "Regelung einer Wärmepumpenanlage" dient als Einführung in die Regelungstechnik. Die Regelung der Temperatur der abgegebenen Wärme erfolgt üblicherweise durch Ein- und Ausschalten der Wärmepumpe (Zweipunktregelung). Neben einer Zweipunktregelung besteht neuerdings noch die Möglichkeit der Leistungsregelung mittels Frequenzumformer. In Deutschland zeichnet sich bisher nicht ab, dass sich solche drehzahlgeregelten Elektrowärmepumpen zur Hausheizung durchsetzen werden. Es wird eine konstante Außentemperatur über den betrachteten Zeitraum angenommen und es wird eine ausbleibende Wärmeeinstrahlung auf den Raum, beispielsweise durch Sonnenstrahlung, Personen oder Beleuchtung, vorausgesetzt. Durch diese Annahmen wird erreicht, dass die Lüftungs- und Transmissionswärmeverluste konstant sind und somit die Rücklauftemperatur der Fußbodenheizung als Regelziel konstant gehalten werden soll, das heisst das Führungsverhalten des Regelkreises bei konstantem Sollwert der Rücklauftemperatur wird untersucht. Gewählt wurde eine Anlage ohne Einzelraumregelung, um die Komplexität des Systems weiter zu verringern. Im Wirkungsplan ist die Regelung einer Wärmepumpenanlage der Firma Waterkotte dargestellt. Der Wärmepumpenregler "RESÜMAT CD" besteht aus der Reglerplatine und einem Bedienteil, das in die Blende der Wärmepumpe eingebaut ist. Folgende Texte enthalten die Anleitung für die Wärmepumpenalage der Firma Waterkotte: Nachdem die Regelung mittels der Analysemethode von den Schülerinnen und Schülern untersucht wurde, ordnen sie die Größen und die Elemente der Wärmepumpenregelung dem Wirkungsplan einer Regelung nach DIN 19226 zu. Der Regelkreis wird von den Schülerinnen und Schülern im Modul BORIS des Programms WinFACT abgebildet. Sie setzen die Software erstmalig ein. Das Programm ist in verschiedenen Varianten von Komponenten und Lizenzen erhätlich. Auf der Site des Ingeneurbüro Kahlert gibt es eine Preisliste mit den günstigeren Studienlizenzen. Eine Demo-Version (ohne die Möglichkeit des Speicherns und Druckens) kann kostenlos angefordert werden. In dem Fachbuch "Regelungstechnik - Projekte für den Lernfeldunterricht" vom Bildungsverlag EINS gibt es eine Light-Version des Programms. In der Aufgabenstellung ist die Behebung des Unterbrechungsbetriebs gefordert. Grund für den Unterbrechungsbetrieb sind Vorschriften des Versorgungsnetzbetreibers. Er verlangt eine Begrenzung der Schalthäufigkeit auf maximal drei Einschaltungen pro Stunde. Die Begrenzung der Schalthäufigkeit vermindert die Netzrückwirkungen. Der Unterbrechungsbetrieb des Wärmepumpenreglers ist im Regler "RESÜMAT CD" programmtechnisch wie folgt realisiert: Sind 20 Minuten zu dem vorherigen Einschaltpunkt vergangen? Wenn ja -> Einschalten Wenn nein -> Warten bis 20 Minuten um sind und dann einschalten Die Begriffe Schalthäufigkeit und Schalthysterese wurden während der Analyse der Wärmepumpenregelung geklärt. Die einzige sinnvolle Lösung zur Aufgabe besteht in der Vergrößerung der Schalthysterese. Nur theoretisch wäre der Einbau eines Pufferspeichers eine Alternative. Die Schülerinnen und Schüler lesen die Ein- und Ausschaltzeit und die Schalthysterese aus dem Diagramm ab. Sie berechnen die Schaltzyklusdauer und die Schalthäufigkeit. Der gestrichelte Zeitverlauf wurde für eine Hysterese von 2°C und der durchgezogene Zeitverlauf für eine Hysterese von 3°C aufgenommen. Da die Regelstrecke träge ist, überschreitet die Rücklauftemperatur den oberen Schaltpunkt und unterschreitet den unteren Schaltpunkt. Dieses Nachheizen und das Abkühlen sind im Zeitverlauf erkennbar. Die Auswirkungen der Erhöhung der Schalthysterese wird in der Simulation mittels BORIS deutlich. Der Unterbrechungsbetrieb wurde aufgehoben.

  • Elektrotechnik
  • Sekundarstufe II

Prüfen mit der Multiple-Choice-Methode

Fachartikel

... der Erstellung von Multiple-Choice-Aufgaben jedoch beachtet werden.Markus Asmuth unterrichtet Elektrotechnik und Informatik. ...

  • Fächerübergreifend