• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Trigonometrie am Dach

Unterrichtseinheit

In der Unterrichtseinheit für das Fach Mathematik der Klassen 7–10 aus dem Themenfeld Trigonometrie erörtern die Schülerinnen und Schüler die Begriffe und Eigenschaften von Sinus, Kosinus und Tangens für Berechnungen am Dreieck. Auf drei Arbeitsblättern für unterschiedliche Lernniveaus berechnen sie selbstgesteuert Winkel und Seiten von Dreiecken. In dieser Unterrichtseinheit für den Mathematikunterricht der Sekundarstufe I erarbeiten die Schülerinnen und Schüler anhand von drei differenzierten Arbeitsblättern die grundlegenden Eigenschaften von Dreiecken und lernen Winkel zu berechnen. Um die Relevanz der Theorie in praktischen Anwendungen zu verdeutlichen, wird ein anschaulicher Bezug zum Dachdecker-Handwerk hergestellt. Die Lernenden erwerben dabei Grundkenntnisse zur Berechnung von rechtwinkligen und nicht rechtwinkligen Dreiecken und vertiefen ihr Verständnis der Trigonometrie im Alltagskontext. Im ersten Schritt ( Arbeitsblatt 1 ) setzen sich die Schülerinnen und Schüler mit den verschiedenen Arten von Dreiecken auseinander. Sie erkennen, dass Dreiecke in vielen alltäglichen Strukturen verborgen sind und erlernen die Unterscheidung nach Winkelarten. Anhand vorgegebener Winkelangaben klassifizieren sie spitzwinklige, rechtwinklige und stumpfwinklige Dreiecke. Darüber hinaus beschäftigen sie sich mit allgemeinen, gleichschenkligen und gleichseitigen Dreiecken und lernen die Aufteilung nach Seiten kennen. Mithilfe der Dreiecksungleichung prüfen sie, ob bestimmte Dreiecke gezeichnet werden können. Schließlich wird ein Bezug zu verschiedenen Dachformen hergestellt. Die Schülerinnen und Schüler erkennen, dass viele Hausdächer in ihrer Grundform als Dreiecke dargestellt werden können. In diesem Kontext lernen sie verschiedene Dachformen und deren Bezeichnungen kennen. Sie wenden ihr Wissen an, indem sie in ihrer Umgebung nach unterschiedlichen Dachformen suchen und diese fotografisch dokumentieren. Mithilfe von Arbeitsblatt 2 vertiefen die Schülerinnen und Schüler ihre Fähigkeiten zur Winkelberechnung und insbesondere Berechnung von rechtwinkligen Dreiecken. Sie üben, die passenden trigonometrischen Funktionen (Sinus, Cosinus, Tangens) zu erkennen und korrekt anzuwenden, um aus vorgegebenen Seitenlängen die fehlenden Winkel zu berechnen. Darüber hinaus lernen sie, fehlende Seitenlängen in Dreiecken zu ermitteln, indem sie ihr Wissen über die Beziehungen zwischen Winkeln und Seiten nutzen. Zum Abschluss wird das erworbene Wissen durch eine praxisnahe Textaufgabe vertieft, die das Dachdecker-Handwerk als Anwendungsbeispiel aufgreift. Dadurch wird der mathematische Lerninhalt in einen alltagsrelevanten Kontext eingebettet, was den praktischen Nutzen der Trigonometrie verdeutlicht. Arbeitsblatt 3 führt die Schülerinnen und Schüler in die Berechnung von nicht-rechtwinkligen Dreiecken ein. Sie lernen den Kosinussatz und den Sinussatz kennen. Im Rahmen der Aufgaben wird der Bezug zur Praxis durch die Analyse von Dachformen hergestellt. Die Lernenden berechnen fehlende Seiten und Neigungswinkel, um die Anwendung der trigonometrischen Grundlagen anhand eines Beispiels zu verdeutlichen. Zum Abschluss recherchieren die Schülerinnen und Schüler, wie die Dachneigung die Wahl der Dacheindeckung beeinflusst und warum die Berechnung von Winkeln in handwerklichen Berufen, insbesondere im Dachdeckerhandwerk, eine wichtige Rolle spielt. Abschließend wenden sie ihr Wissen praktisch an, indem sie sich ein Dach in ihrer Umgebung aussuchen und überlegen, welche Dacheindeckung und Materialien aufgrund der Dachneigung geeignet wären. Diese Unterrichtseinheit fördert das Verständnis der Schülerinnen und Schüler für die Anwendung von Geometrie und Trigonometrie in realen Kontexten, wie dem Planen eines Daches, und überführt das abstrakte Wissen in praxisnahe Zusammenhänge. Diese Unterrichtseinheit vermittelt den Schülerinnen und Schülern der Sekundarstufe I grundlegende und weiterführende Kenntnisse zur Trigonometrie, die sowohl zur Einführung neuer Inhalte als auch zur Wiederholung genutzt werden können. Dabei werden die Lernenden anhand von drei differenzierten Arbeitsblättern systematisch an die geometrische Form des Dreiecks herangeführt und lernen, Dreiecksarten zu bestimmen und Winkel zu berechnen. Je nach Jahrgangsstufe wird neues Wissen erarbeitet oder vorhandenes Wissen vertieft und wiederholt. Das Thema "Trigonometrie" ist in verschiedenen Jahrgangsstufen der Sekundarstufe I (je nach Schulform) lehrplanrelevant. Die in der 7. Klasse erarbeiteten Grundlagen bilden eine wichtige Basis für weiterführende Inhalte, die in der 10. Klasse behandelt werden. Die Arbeitsblätter dieser Einheit sind flexibel einsetzbar: In Klasse 10 dient Arbeitsblatt 1 zur Wiederholung, während die Arbeitsblätter 2 und 3 der Erarbeitung eines neuen Themas gewidmet sind. Vorkenntnisse sind daher für die Bearbeitung von Arbeitsblatt 1 erforderlich. In der Jahrgangsstufe 7 kann Arbeitsblatt 1 für die Einführung in ein neues Thema genutzt werden, währen Arbeitsblatt 2 und 3 sich eher für leistungsstarke Schülerinnen und Schüler eignen. Die Aufgabenblätter sind neben dem Einsatz im regulären Unterricht auch für die Wochenplanarbeit geeignet, da sie durch Hilfestellungen und Info-Kästen ein eigenständiges Arbeiten ermöglichen, welches als Prinzip der Unterrichtseinheit zugrunde liegt. Hilfestellungen dienen als Grundlage für differenzierte Aufgaben, die verschiedene Leistungsniveaus abdecken. Vertiefende Übungen mit Praxisbezug bieten zusätzliche Differenzierungsmöglichkeiten. Der Bezug zum Dachdecker-Handwerk veranschaulicht die praktische Anwendung der Trigonometrie in realen Kontexten, sodass das erworbene Wissen nicht abstrakt bleibt, sondern mit alltäglichen Situationen verknüpft wird. Die Aufgaben sind nach Schwierigkeitsgrad gestaffelt, um unterschiedliche Lernniveaus zu berücksichtigen. Aufgaben mit einem geringeren Schwierigkeitsgrad eignen sich besonders für den Förderunterricht oder zur Wiederholung, während anspruchsvollere Aufgaben leistungsstarke Schülerinnen und Schüler herausfordern und fördern. Dadurch können die Arbeitsblätter in verschiedenen Lernsettings eingesetzt werden. Ziel dieser Unterrichtseinheit ist es, das trigonometrische Verständnis der Schülerinnen und Schüler zu vertiefen und ihre Fähigkeit zu stärken, dieses Wissen auf praktische Fragestellungen anzuwenden. Durch den Einsatz vielfältiger Lernmethoden – von Erklärungen und Beispielen über Info-Kästen bis hin zu praxisnahen Aufgaben – wird ein abwechslungsreicher und motivierender Lernprozess unterstützt. Fachkompetenz Die Schülerinnen und Schüler lernen verschiedene Arten von Dreiecken kennen. berechnen Streckenlängen und Winkelgrößen, auch unter Nutzung von trigonometrischen Beziehungen. operieren gedanklich mit Strecken, Flächen und Körpern. Medienkompetenz Die Schülerinnen und Schüler suchen, verarbeiten und bewahren Inhalte und Materialien auf. kommunizieren und kooperieren auf verschiedenen Ebenen miteinander. Sozialkompetenz Die Schülerinnen und Schüler können sachlich kommunizieren. können gemeinsam Aufgaben bearbeiten und ausführen. können sich an Absprachen und Vereinbarungen halten.

  • Mathematik
  • Sekundarstufe I

Sinus, Cosinus und Tangens im rechtwinkligen Dreieck

Unterrichtseinheit
14,99 €

Wie hängen Seitenlängen und Winkel in rechtwinkligen Dreiecken zusammen? Diese Unterrichts-einheit führt anschaulich mit GeoGebra zu Sinus, Cosinus und Tangens. Die Schülerinnen und Schüler lernen, Winkel und Längen rechnerisch zu bestimmen und wenden ihr Wissen in besonderen Vierecken und im dreidimensionalen Raum an. Diese Unterrichtseinheit führt Schülerinnen und Schüler systematisch in die Welt der Winkelfunktionen ein – beginnend beim rechtwinkligen Dreieck bis hin zur Anwendung im dreidimensionalen Raum. Ausgehend vom Satz des Pythagoras und der Beobachtung, dass Seitenverhältnisse in rechtwinkligen Dreiecken nur vom jeweiligen Winkel abhängen, werden die Winkelfunktionen Sinus, Cosinus und Tangens eingeführt. Mithilfe der Begriffe Ankathete, Gegenkathete und Hypotenuse werden diese Verhältnisse definiert und rechnerisch nutzbar gemacht. Die Inhalte werden durch interaktive Aufgaben und anschauliche Darstellungen in GeoGebra vertieft. Besonders betont wird dabei die visuelle Erkenntnis, dass Winkelverhältnisse unabhängig von der Größe des Dreiecks sind. In einem zweiten Abschnitt wenden die Schülerinnen und Schüler die Winkelfunktionen auf besondere Vierecke an und reflektieren deren Grenzen. Den Abschluss bildet die Übertragung ins Dreidimensionale: Hier lernen die Lernenden, wie sich Winkel im Raum verorten lassen und wenden ihr Wissen in praxisnahen Aufgaben an. Die gleichzeitige Nutzung der Grafik- und 3D-Ansicht in GeoGebra ermöglicht einen besonders anschaulichen Zugang und fördert ein nachhaltiges Verständnis der mathematischen Zusammenhänge. Die Unterrichtseinheit baut auf dem bereits bekannten Satz des Pythagoras auf und vertieft das Verständnis für die grundlegenden Winkelfunktionen Sinus, Cosinus und Tangens im rechtwinkligen Dreieck. Im Zentrum steht die Erkenntnis, dass Seitenverhältnisse bei gleichen Winkeln unabhängig von der Größe des Dreiecks konstant bleiben. Diese zentrale mathematische Einsicht wird mithilfe von GeoGebra anschaulich visualisiert, um ein nachhaltiges, konzeptuelles Verständnis aufzubauen. Die Visualisierung in GeoGebra ermöglicht es den Schülerinnen und Schülern, mathematische Zusammenhänge selbst zu entdecken und aktiv zu überprüfen. Durch gezielte Übungen lernen sie, mit den definierten Winkelfunktionen Längen und Winkel rechnerisch zu bestimmen. Darauf aufbauend werden die gelernten Inhalte in vielfältigen Anwendungsszenarien im Zwei- und Dreidimensionalen vertieft. Die Raumvorstellung spielt dabei eine zentrale Rolle: Die Schülerinnen und Schüler lernen Winkel im Raum zu lokalisieren, zu beschreiben und zu begrenzen. Die parallele Nutzung der Grafik- und 3D-Ansicht in GeoGebra unterstützt diesen Prozess wirkungsvoll und trägt zur Förderung einer ganzheitlichen, anschaulich-analytischen Kompetenzentwicklung bei. Die Einheit ist so konzipiert, dass sie differenziertes Lernen erlaubt, sowohl durch unterschiedliche Anforderungsniveaus in den Aufgaben als auch durch den Wechsel zwischen visuellen, rechnerischen und begrifflichen Zugängen. Dadurch werden sowohl leistungsschwächere als auch leistungsstärkere Schülerinnen und Schüler gezielt gefördert. Fachbezogene Kompetenzen Die Schülerinnen und Schüler kennen die Definitionen von Sinus, Cosinus und Tangens im rechtwinkligen Dreieck. berechnen fehlende Seitenlängen und Winkel im rechtwinkligen Dreieck. wenden das Wissen auf Objekte in der Fläche und im Raum an. Medienkompetenz Die Schülerinnen und Schüler setzen mobile Endgeräte im Unterricht ein. nutzen eine Geometriesoftware in 2D und 3D. Sozialkompetenz Die Schülerinnen und Schüler steigern Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Antwortmöglichkeiten). arbeiten in Paar- und Gruppenarbeit und unterstützen sich gegenseitig.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Kreise im gleichseitigen Dreieck

Unterrichtseinheit

In der Unterrichtseinheit zum Thema "Kreise im gleichseitigen Dreieck" stellen die Schülerinnen und Schüler geometrische Betrachtungen zum Einbeschreiben in Dreiecken an und erarbeiten die algebraische Berechnung von Radien und Flächen.Der Inkreis eines Dreiecks wird durch Konstruktion bereits in Klasse 7 thematisiert. Mit den Mitteln der Algebra und Ideen aus der Geometrie lassen sich für einen Kreis der Radius und somit die Fläche bestimmen. Mit diesem Unterrichtsmaterial können sich die Schülerinnen und Schüler aber darüber hinaus nun erarbeiten, welche Folgen es hat, wenn man nicht nur einen, sondern 3, 6, 10 oder mehr kongruente Kreise in ein gleichseitiges Dreieck einbeschreibt. Dabei können selbstständig Hilfeleistungen zur Lösungsfindung herangezogen werden. Das Thema "Kreise im gleichseitigen Dreieck" im Unterricht Kennenlernen von irrationalen Wurzeln – Kennenlernen des Satzes von Pythagoras: irrationale Zahlen bei Längenbetrachtungen erscheinen in unterschiedlichen Kontexten. Schon die Diagonale in einem Quadrat lässt sich nur mit Hilfe der Wurzel aus 2 exakt bestimmen. Aber Wurzeln treten bei Längenbetrachtungen in vielen Figuren auf. Zum Erarbeiten von Endergebnissen ist oft auch ein sicherer Umgang mit Wurzeln nötig. Vorkenntnisse Die Formeln zur Berechnung von Kreis- und Dreiecksflächen sind bekannt. Wiederholt werden besondere Linien im Dreieck und deren Bedeutung. Der Satz des Pythagoras sowie die Bedeutung von Sinus, Kosinus und Tangens im rechtwinkligen Dreieck sind nötig, auch wenn manche Überlegungen mit Hilfe der Ähnlichkeit gelöst werden können. Ein sicherer Umgang mit Wurzeln und Termen wird vorausgesetzt und geübt. Didaktische Analyse Gelingt es den Schülerinnen und Schülern Teilfiguren zu erkennen? Während der Umgang mit Termen zur Berechnung von Flächen für die Lernenden eine Selbstverständlichkeit sein sollte, treten häufig Schwierigkeiten auf, passende Teilstücke in einer Fragestellung zu entdecken. Oft genügt der Hinweis auf wenige Hilfslinien, sodass den Schülerinnen und Schülern ein anderer Blick auf das Problem gelingt. Ein Teil der Lerngruppe benötigt mehr Hilfen, dem anderen fällt diese Einteilungen leicht. Mit dem vorgestellten Problem können leistungsstarke Schülerinnen und Schüler anspruchsvollere Probleme bearbeiten. Die Vorstellung der Lösung wird aber auch den schwächeren Schülerinnen und Schülern verständlich sein, vor allem da sie sich mit ähnlichen Fragenstellungen beschäftigen konnten. Dadurch, dass sich alle Schülerinnen und Schüler mit der Thematik auseinandergesetzt haben, wird ihnen das Endergebnis – egal ob sie schwierige Fragen selbst oder nur die Einstiegsaufgaben gemeistert haben – plausibel erscheinen. Methodische Analyse Wenn ein Schüler oder eine Schülerin nicht mehr weiter kommt, können unterschiedliche kurze Hilfeleistungen auf den Arbeitsblättern gegeben werden. Vieles sollen die Schülerinnen und Schüler allein oder in Partnerarbeit lösen. So kann sehr individuelle spezielle Unterstützung erfolgen. Fachkompetenz Die Schülerinnen und Schüler argumentieren und modellieren mathematisch. lösen Probleme mathematisch. gehen mit symbolischen, formalen und technischen Elementen der Mathematik um. arbeiten mit mathematischen Darstellungen kommunizieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler arbeiten sicher am PC mit einem dynamischen Geometrie-System. verstehen, wie eine Tabellenkalkulation viele Werte bestimmt und darstellt. Sozialkompetenz Die Schülerinnen und Schüler bringen sich in der Gruppenarbeit ein. geben zur Erarbeitung und Vorstellung von Inhalten Unterstützung und fragen nach individuellen Hilfen von anderen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Trigonometrie mit GeoGebra – ein variables Übungskonzept

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit zum Thema Trigonometrie bietet durch dynamische Arbeitsblätter ein differenziertes Übungsumfeld zu Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dadurch werden die aktuellen Kenntnisse und Fertigkeiten aller Schülerinnen und Schüler berücksichtigt. Die Besonderheit der Lernumgebung zur Trigonometrie "Sinus, Kosinus und Tangens im rechtwinkligen Dreieck" besteht darin, dass sie in jeder Phase des Unterrichts flexibel eingesetzt werden kann. Die dynamischen Arbeitsblätter eignen sich sowohl für die Erarbeitung der trigonometrischen Zusammenhänge im rechtwinkligen Dreieck, als auch für eine differenzierte Übungs- und Anwendungsphase. Die Lernumgebung bietet dynamische Veranschaulichungen sowie einfachere und komplexere Übungen und ermöglicht so den Lernenden eine eigenständige und selbstverantwortliche Wissenserweiterung. Die zu bearbeitenden Aufgaben werden per Computer analysiert und bewertet. Deshalb kann sich die Lehrkraft in der Übungsphase individuell leistungsschwächeren Lernenden zuwenden und gemeinsam mit ihnen Probleme analysieren. So wird eine gezielte Förderung möglich. Das Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck (grüner Kasten auf der rechten Seite). Dazu kommen sechs Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen (blauer Kasten auf der rechten Seite) sowie drei variable Übungen zur Unterrichtsdifferenzierung (gelber Kasten auf der rechten Seite). Die Navigation der Lernumgebung befindet sich rechts neben der dynamischen Darstellung. Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Die Schülerinnen und Schüler lernen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen. beheben erkannte Defizite im Bereich dieser Zusammenhänge selbstständig. können die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden. Das hier vorgestellt Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Da die Lernumgebung aber flexibel einsetzbar ist, können diese auch innerhalb der Lernumgebung selbstständig erarbeitet werden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dazu kommen drei Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen sowie zwei variable Übungen zur Unterrichtsdifferenzierung. Die Navigation der Lernumgebung (Einführung und Erläuterung sowie Übungen) befindet sich rechts neben der dynamischen Darstellung. Übungen zur Selbstkontrolle und Leistungsbestimmung In dieser Unterrichtsphase haben die Schülerinnen und Schüler Zeit, sich mit den ersten drei Übungen zu beschäftigen und so ihre bisherigen Kenntnisse zu überprüfen. Bei allen Übungen erzeugt der Computer per Zufallsgenerator unterschiedliche rechtwinklige Dreiecke und gibt Winkelfunktion und Winkelmaß vor. Die Lernenden sollen den richtigen Quotienten ergänzen. Computer gibt Lösungshinweise Mit dem Button "prüfen" können die Schülerinnen und Schüler ihre Eingabe prüfen und sich mit "Neue Aufgabe" eine weitere Aufgabe stellen lassen. Sie erhalten auf fehlerhafte Eingaben neben der Meldung, dass ihre Eingabe falsch war, einen Lösungshinweis: "Leider falsch! Für Tangens brauchst du doch die Gegenkathete und die Ankathete im Dreieck. Also versuch's noch mal". Die Mindestbearbeitungsdauer der drei Übungen ergibt sich aus der Vorgabe "Schaffst du mehr als 199 Punkte?". Die Lehrkraft kann auch eine bestimmte Zeit für jede Übung vorgeben. Sollten die Schülerinnen und Schüler mit der Bearbeitung der ersten drei Online-Arbeitsblätter nicht zurechtkommen, können sie stets die jeweilige Erläuterungsseite verwenden und sich den einen oder anderen Zusammenhang noch einmal veranschaulichen lassen. Die Lernenden können so die noch bestehenden Defizite aufarbeiten. Die Lehrkraft wird nur dann aktiv ins Unterrichtsgeschehen eingreifen, wenn sich die Schülerinnen und Schüler auch anhand der Erläuterungsseite nicht zurechtfinden. Variation der Aufgaben Bei der ersten variablen Übung werden abwechselnd eine der drei Winkelfunktionen sin, cos, tan und ein bestimmtes Winkelmaß vorgegeben. Die Aufgabe der Schülerinnen und Schüler besteht darin, den richtigen Quotienten anzugeben. Die Funktionsweise des interaktiven Arbeitsblatts unterscheidet sich nicht von der der ersten Übungen. Mit dem Button "prüfen" wird die Eingabe kontrolliert und mit "Neue Aufgabe" werden weitere Aufgaben erzeugt. Die Variation der Aufgabenstellung führt zur Festigung des bisher Gelernten. Dabei besteht auch weiterhin die Möglichkeit, innerhalb der Lernumgebung zu den vorausgegangenen Übungen oder den Erläuterungsseiten zurückzukehren, um Defizite aufzuarbeiten. Differenzierung des Unterrichts Die zweite variable Übung eignet sich zur inneren Differenzierung des Unterrichts. Zu einem zufällig erzeugten Dreieck werden nun der Quotient und das Winkelmaß vorgegeben. Die Schülerinnen und Schüler sollen die zugehörige Winkelfunktion sin, cos oder tan angeben. Dazu müssen sie zuerst die jeweiligen Seitenlängen als Katheten oder Hypotenuse identifizieren und anschließend über das gegebene Winkelmaß die Katheten als An- oder Gegenkathete bestimmen. Anschließend benötigen sie die Definition des Sinus, Kosinus oder Tangens, um die Aufgabe zu lösen. Die Fülle der notwendigen Überlegungen und deren Einbindung in eine Lösungsstrategie ermöglicht ihnen eine weitere Vertiefung ihrer Kenntnisse. Abschließend bietet sich eine herkömmliche Lernzielkontrolle mit Papier und Bleistift an. Sie kann als Leistungserhebung durchgeführt werden, bei der die Inhalte der vorangegangenen Übungen abgefragt und die Leistungen der Schülerinnen und Schüler überprüft werden. Dieser Test kann aber auch als Hausaufgabe gestellt oder in Form einer Partnerarbeit im Anschluss an die Online-Arbeitsblätter bearbeitet werden. So mündet die Arbeit am Computer wieder in die "normale" Unterrichtsarbeit im Klassenzimmer. Ein wichtiger Aspekt beim Lernen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass eine Interaktion zwischen dem Lernenden und dem Computer möglich wird. Diese Interaktion führt zu einem ständigen Wechsel von spannenden und entspannenden Zuständen. Nach jeder Eingabe wartet die Schülerin oder der Schüler auf die Bewertung, um sich danach sofort eine neue Aufgabe stellen zu lassen. Auf diese Weise kann die Konzentration der Lernenden über einen längeren Zeitraum aufrechterhalten werden. Die Rückmeldungen des Computers auf falsche Eingaben führen in der Lerngruppe oft zu einer regen Diskussion über die gemachten Fehler. Wo die kritische Nachfrage der Lehrkraft oft als lästig empfunden und daher möglichst ignoriert wird, akzeptieren die Schülerinnen und Schüler die Rückmeldung des Computers bereitwillig und korrigieren ihre Fehler. Im Unterricht lässt sich immer wieder beobachten, dass selbstständiges Arbeiten Begabungsunterschiede sehr deutlich hervortreten lässt. So sind oft einige Klassenmitglieder mit der Bearbeitung einer Aufgabe bereits fertig, während andere damit noch gar nicht begonnen haben. Um diesem Phänomen zu begegnen, ist ein differenziertes Angebot von Übungen erforderlich, das die Unterschiede im Arbeitstempo und in der Auffassung berücksichtigt. Im regulären Unterricht mit gewöhnlichem Material ist dies nur schwer zu realisieren. Durch die Verwendung der hier vorgestellten interaktiven dynamischen Übungsumgebung wird ein differenziertes und selbsttätiges Lernen möglich. Zudem stehen alle Übungen den Schülerinnen und Schülern - sofern sie über einen Internetzugang verfügen - auch zu Hause zur Verfügung. So können Interessierte das Angebot unbegrenzt nutzen, was die Eigenverantwortlichkeit in hohem Maße fördern kann. Ein wichtiges Element in einer Übungsphase ist die Motivation, mit der die Lerngruppe Aufgaben bearbeitet. Übungen, die die Schülerinnen und Schüler widerwillig ausführen, verfehlen ihr Ziel und sind eigentlich verlorene Zeit. Eine Intensivierung der Übungsarbeit kann durch gelegentliche Wettbewerbe und spielerische Elemente erreicht werden. Wettbewerbe bringen Abwechslung in eine Übungsphase und mobilisieren zusätzlich Motivationskräfte. Die Klasse setzt sich bei Wettbewerben im Allgemeinen in einer Weise ein, wie dies sonst kaum der Fall ist. Wer Lernen und Spielen in einem Zusammenhang nennt und dies noch mit Mathematik in Verbindung bringt, stößt bei Mathematiklehrkräften oft auf große Skepsis. Setzt man aber die bestimmenden Elemente des Spiels mit Aufgabenfunktionen sowie mit den meist vernachlässigten emotionalen Aspekten des Lernens zueinander in Beziehung, wird deutlich, dass das Spiel durchaus ein interessantes didaktisches Rahmenkonzept darstellen kann, das neue unterrichtliche Gestaltungsmöglichkeiten bietet. Für die hier vorgestellten interaktiven Übungen gilt, was für alle Arbeitsmaterialien gelten sollte, nämlich, dass sie zur Unterrichtssituation passen sowie selbsterklärend und motivierend in Form und Inhalt sind. Sie lassen sich nahtlos in einen bestehenden Mathematikunterricht einbinden. Somit wird das Lernen am Computer nicht zu einer Sonderveranstaltung, sondern zu einem weiteren Element eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Zusätzlich können die Schülerinnen und Schüler bei der Bearbeitung der interaktiven Aufgabenblätter immer erkennen, ob sie die Aufgabe korrekt gelöst haben, was in dieser Form bei herkömmlichen Unterrichtsmaterialien nicht leicht zu realisieren ist.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Einführung in die Sinus- und Cosinusfunktion

Unterrichtseinheit
14,99 €

Die Definition von Sinus und Cosinus im rechtwinkligen Dreieck bildet die Grundlage für die Erweiterung der Winkelfunktionen auf die gesamte reelle Zahlenmenge. In dieser Unterrichtseinheit werden die Sinus- und Cosinuswerte anschaulich über den Winkelbereich des rechtwinkligen Dreiecks hinaus erweitert und die Entstehung der Graphen sowie die grundlegenden Größen der Winkelfunktionen visualisiert und verständlich vermittelt. Ausgehend von der Definition von Sinus und Cosinus im rechtwinkligen Dreieck wird in dieser Unterrichtseinheit ein rechtwinkliges Dreieck mit der Hypotenuse 1 in Verbindung mit einem Viertelkreis betrachtet. Dabei wird anschaulich gezeigt, wie die Punkte auf dem Kreis mit den Sinus- und Cosinuswerten sowie dem entsprechenden Winkel zusammenhängen. Diese Überlegungen werden anschließend auf den Vollkreis erweitert, um die Zusammenhänge zwischen den Winkelfunktionswerten in verschiedenen Bereichen zu erarbeiten und zu visualisieren. Die Zuordnung von Winkeln zu den Sinus- und Cosinuswerten wird grafisch verdeutlicht und die Verläufe der beiden Funktionen für x E R werden systematisch entwickelt. Darüber hinaus werden die Einflüsse der Parameter auf die Funktionen untersucht, um ein tieferes Verständnis für deren Verhalten zu schaffen. In interaktiven GeoGebra-Übungen wird das erarbeitete Wissen gefestigt. Rückmeldungen und Visualisierungen unterstützen die Lernenden dabei, die Inhalte nachhaltig zu verinnerlichen. Als thematische Unterstützung und begleitend zum zweiten Arbeitsblatt dient das Arbeitsmaterial " Winkel: Gradmaß und Bogenmaß ". Die Unterrichtseinheit setzt grundlegende Kenntnisse zu Sinus und Cosinus im rechtwinkligen Dreieck sowie zum Bogenmaß (" Winkel: Gradmaß und Bogenmaß ") voraus. Ziel ist es, den Lernenden ein tiefes Verständnis für die Werte von Sinus und Cosinus außerhalb des Winkelbereichs von 0° bis 90° zu vermitteln. Hierfür wird der Einheitskreis als zentrales Werkzeug genutzt, um die Zusammenhänge zwischen Winkeln und den entsprechenden Funktionswerten anschaulich zu visualisieren. Mithilfe von GeoGebra wird die Zuordnung von Winkeln zu den Sinus- und Cosinuswerten interaktiv dargestellt und deren Übertragung in die Funktionsgraphen nachvollziehbar gemacht. Ein weiterer Schwerpunkt liegt auf der Untersuchung der Parameter in den allgemeinen Funktionsgleichungen f( x) =A∙ sin( ax+b) +d und f( x) =A∙ cos⁡ ( ax + b )+ d . Die einzelnen Parameter werden schrittweise analysiert, um ihre spezifischen Einflüsse auf die Amplitude, die Periodenlänge, die Phasenverschiebung und die Verschiebung entlang der y-Achse zu verdeutlichen. Abschließend wird das erarbeitete Wissen in interaktiven Übungen gefestigt, die durch gezielte Rückmeldungen und Visualisierungen unterstützt werden. Ein kurzer Exkurs in die Tangensfunktion ergänzt die Einheit und bietet den Lernenden einen umfassenden Überblick über die grundlegenden Winkelfunktionen. Fachbezogene Kompetenzen Die Schülerinnen und Schüler erfahren die Bedeutung des Einheitskreises für die Werte von Sinus und Cosinus. kennen die Bedeutung der Parameter in den allgemeinen Winkelfunktionen. wenden das Wissen auf unterschiedliche Fragestellungen an. Medienkompetenz Die Schülerinnen und Schüler produzieren und präsentieren Ergebnisse. setzen mobile Endgeräte im Unterricht ein. analysieren und reflektieren anhand dynamischer Geometriesoftware. Sozialkompetenz Die Schülerinnen und Schüler steigern ihr Selbstwertgefühl und das eigenverantwortliche Lernen (Rückmeldungen zu Antwortmöglichkeiten). haben die Möglichkeit, in Teamarbeit Hilfsbereitschaft zu zeigen. lernen, auf vielfältige Fragenstellungen zu den Winkelfunktionen adäquat einzugehen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Satzgruppe des Pythagoras

Unterrichtseinheit

Die hier vorgestellte Unterrichtseinheit basiert auf interaktiven Webseiten mit dynamischen GeoGebra-Applets. Sie schaffen Visualisierungsmöglichkeiten, die auf dem Papier und an der Tafel nicht realisierbar sind und das Verständnis erleichtern. Wie hoch darf ein Schrank höchstens sein, damit man ihn noch durch Kippen aufstellen kann, ohne dass er an der Decke kratzt? Wie weit kann man von einem 30 Meter hohen Ausguck eines Schiffs bei klarer Sicht auf das Meer sehen? Welchen Weg beschreibt ein in einem fahrenden Zug senkrecht nach oben steigender Lichtblitz, wenn man ihn vom Bahnhof aus betrachtet? Bei der Lösung dieser Probleme stößt man auf Dreiecke. Es sind nicht irgendwelche Dreiecke. Es sind Dreiecke mit einem 90°-Winkel: rechtwinklige Dreiecke. Das, was man wissen will, ist eine Seitenlänge dieser Dreiecke. Ausgerechnet die unbekannte Seitenlänge. Doch mit wenigen Tricks kann man aus den bekannten Stücken des Dreiecks die unbekannten berechnen. Damit beschäftigten sich schon die Pythagoräer etwa 500 vor Christus, ja schon über 1.000 Jahre zuvor kannten die Babylonier diese Tricks. Und wer sie kennt, kann auch obige Fragen beantworten... Bei den dynamischen GeoGebra-Applets können die Nutzerinnen und Nutzer mithilfe der Maus oder der Tastatur am Computer die Zeichnungen und Konstruktionen kontinuierlich verändern und so bestimmte Fragestellungen dynamisch verfolgen und überprüfen. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den mathematischen Sachverhalten. Kurze Kontrollaufgaben mit einblendbaren Lösungen dienen der Lernzielkontrolle. Einsatz im Unterricht Fachliche Voraussetzungen sowie Hinweise zu den Einsatzmöglichkeiten des Online-Kurses und zur Gestaltung der Arbeitsmaterialien. Unterrichten mit Beamer - Praxiserfahrungen Sowohl der Unterricht an der Tafel als auch mit dem Beamer bietet jeweils Vorteile, die nicht in jedem Fall kombinierbar sind. Die Schülerinnen und Schüler sollen die Bezeichnungen am rechtwinkligen Dreieck sicher beherrschen. den "Kathetensatz" (mithilfe der Ähnlichkeit) beweisen, formulieren und anwenden können aus einem Rechteck ein flächengleiches Quadrat konstruieren können. den "Satz des Pythagoras" (mithilfe des Kathetensatzes) beweisen, formulieren und (insbesondere an Körpern) anwenden können. andere Beweise und die "verallgemeinerte Form" des "Satzes von Pythagoras" kennen lernen. den Umkehrsatz des "Satzes von Pythagoras" formulieren und anwenden können. den "Höhensatz" aus den vorausgehenden Sätzen herleiten, formulieren und anwenden können. Thaleskreis und Ähnlichkeitssätze Erforderliche mathematische Voraussetzungen für den Kurs sind Kenntnis des Thaleskreis und der Ähnlichkeitssätze, die zum Beweis des Kathetensatzes herangezogen werden. Diese Vorkenntnisse werden in der Unterrichtseinheit kurz wiederholt. Deduktive Herleitung Mit dem Kathetensatz kann dann leicht algebraisch oder anschaulich geometrisch der Satz des Pythagoras bewiesen werden. Aus diesen beiden Sätzen resultiert dann wiederum (aus einem einfachen linearen Gleichungssystem) der Höhensatz. Bei dieser Vorgehensweise lernen die Schülerinnen und Schüler unter Anwendung bekannter algebraischer und geometrischer Fertigkeiten das Prinzip der deduktiven Herleitung neuer Sätze kennen. Die Umkehrung des Satzes von Pythagoras bietet eine gute Gelegenheit, die Problematik von Satz und Umkehrsatz zu vertiefen. Mit einfachen Berechnungen an Körpern soll auch das räumliche Vorstellungsvermögen geschult werden. Für diese Unterrichtseinheit bieten sich verschiedene Einsatzmöglichkeiten an: begleitende dynamische Visualisierung der mathematischen Sachverhalte während der Neudurchnahme im Unterricht inklusive Hefteintrag selbstständige Vertiefung und Festigung des bereits im Unterricht behandelten Stoffes, eventuell in Übungsstunden oder als Hausaufgabe Wiederholung und Zusammenfassung zurückliegender Lerninhalte (beispielsweise vor Prüfungen) Selbstständiges Erarbeiten Der Text der Webseiten wurde bewusst prägnant gehalten, um einen selbstständigen Hefteintrag zu erleichtern. (Merk-)Sätze sind (wie im Tafel-Unterricht) rot eingerahmt. Wichtige Formeln oder weiterführende Begriffe sind farblich hervorgehoben. Zeigt man mit der Maus auf sie, werden eine kurze Definition oder Zusatzinformationen eingeblendet (siehe Abb. 1, zur Vergrößerung bitte anklicken). Zur Gewährleistung eines möglichst linearen Lernablaufs wurden Hyperlinks nur sehr sparsam eingesetzt. Die Kontrollaufgaben sind kurz und einfach zu bearbeiten, um die Lernenden durch ein schnelles und erfolgreiches Fortkommen zu motivieren. Die Antworten der Kontrollfragen können durch Anklicken der blauen Satz- oder Rechenzeichen angezeigt werden. In nachfolgenden oder begleitenden Übungen sollte der Schwierigkeitsgrad mit reorganisatorischen und Transferaufgaben erhöht werden. Erarbeitung Schritt-für-Schritt Ein großer Vorteil des Unterrichtens an der Tafel, nämlich ein aus dem fragend-entwickelnden Unterricht flexibles, sukzessiv entstehendes Tafelbild, geht bei Präsentationen mit dem Computer verloren. Mit Hilfe von auf Java-Script-Code basierenden Einblendungen wird dieses Defizit zum Teil ausgeglichen. Ergebnisse und Lösungen werden so nicht vorweg projiziert, sondern können nach gemeinsamer Erarbeitung präsentiert werden. Diese Möglichkeit der animierten Wiedergabe ist mit gängiger Präsentationssoftware wie Impress oder Powerpoint leichter realisierbar. Leider gestaltet sich hier jedoch die Einbindung von Java-Applets in Folien als problematisch. Außerdem können Webseiten - unabhängig von Präsentationssoftware und Betriebssystem - online und damit von Schülerinnen und Schülern auch zu Hause verwendet werden. (Tipp: Taste F11 zur Vollbild-Darstellung der Webseiten). Beamereinsatz und Tafelunterricht Die dynamischen Arbeitsblätter könnten parallel zum Tafelunterricht eingesetzt werden, was sich jedoch in der Praxis in engen Klassenzimmern mit mehr als 30 Schülerinnen und Schülern leider oft als sehr umständlich erweist. Die für den Beamer erforderliche Projektionsfläche liegt meist hinter der Tafel. Die Computerräume wiederum sind meist nicht für den Tafelunterricht ausgelegt. Ein in der Praxis nicht immer leicht zu realisierender Kompromiss ist das Abwechseln von Unterrichtsstunden mit Beamer zur Einführung und Fixierung der Inhalte und Übungsstunden mit Tafel zur Einübung und Festigung des Gelernten anhand von Aufgaben zum Beispiel aus dem begleitenden Lehrbuch.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Vom Lotto zum Pascalschen Dreieck

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Binomialkoeffizient führen die Schülerinnen und Schüler im Kontext des Lottospielens eine etwas andere Art der Kurvendiskussion durch, die eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik herstellt.Ausgangspunkt der Unterrichtseinheit ist die Frage, ob man einen eventuellen Jackpot-Gewinn bei der ("6 aus 49"-)Lotterie bei steigender Teilnehmerzahl umso wahrscheinlicher mit anderen Gewinnerinnen und Gewinnern teilen muss. Die mathematische Modellierung der Aufgabenstellung führt zu einem Funktionsterm, dessen Diskussion zu einem tieferen Verständnis von Exponentialfunktion und Binomialkoeffizient führt.Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler innerhalb eines Mathematik-Pluskurses der Oberstufe oder im Rahmen eines W-Seminars (Wissenschaftspropädeutischen Seminars) geeignet, die bereit sind, sich intensiver mit einem Thema zu befassen. Dabei werden das Urnenmodell beziehungsweise die hypergeometrische Verteilung und die Binomialverteilung als bekannt vorausgesetzt. Unterrichtsverlauf und Materialien Im ersten Teil sollen die Schülerinnen und Schüler eine zunächst intuitiv beantwortete Frage mathematisch begründen. Variation und Verallgemeinerung Der zweite Teil verallgemeinert die Fragestellung des ersten Teils und führt zu tiefer liegenden mathematischen Sachverhalten. Fachkompetenz Die Schülerinnen und Schüler können die Fragestellung mathematisch mithilfe der hypergeometrischen Verteilung und der Binomialverteilung modellieren. können die Regel von l'Hospital kennen lernen und zur Grenzwertberechnung anwenden. können einen Graphen zeichnen und interpretieren. können Aussagen über vorteilhaftes Verhalten beim Lottospielen machen. erkennen den Binomialkoeffizienten "k aus n" als Polynom k-ten Grades in n. lernen das "Pascalsche Dreieck" kennen und verstehen es. lernen eine rekursive Funktionsschreibweise kennen. können mithilfe der Gaußschen Summenformel die Äquivalenz der rekursiven Definition und der Polynomschreibweise einer Funktion zeigen. lernen "Dreieckszahlen" kennen. verstehen, dass eine Exponentialfunktion schneller wächst als jedes Polynom. Sozialkompetenz Die Schülerinnen und Schüler arbeiten weitgehend eigenverantwortlich und kooperativ. Basieux, P. Die Welt als Roulette - Denken in Erwartungen, Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, 1995 Barth, F. et. al. Stochastik, Oldenbourg Schulbuchverlag, München, 7. verb. Auflage, 2001 Krengel, U. Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg, Braunschweig, 3. erw. Auflage, 1991 Schätz, U. und Einsentraut, F. (Hrsg.) delta 11 - Mathematik für Gymnasien, C.C. Buchner Bamberg u. Duden Paetec Schulbuchverlag Berlin, 2009 Voraussetzungen und Einstieg Die Aufgabenstellung gliedert sich in zwei Teile, deren erster ("Konkrete Beantwortung der Fragestellung") die Schülerinnen und Schüler vom Lehrplan der 12. Jahrgangsstufe am Gymnasium abholt. Zum Einstieg und zur Motivation der Fragestellung können eventuell geeignete Zeitungsartikel genutzt werden (siehe Zusatzmaterialien, die einen Bezug zur Realität herstellen. Die schrittweise Modellierung des Problems in den Teilaufgaben 1.1 bis 1.6 gelingt unter der Voraussetzung, dass das "Ziehen mit Zurücklegen" und das "Ziehen ohne Zurücklegen", also die hypergeometrische und die Binomial-Verteilung, bereits bekannt sind. Variation und Verallgemeinerung Durch die Einführung der Regel von l'Hospital erschließt sich das mathematische Modell den bekannten Mechanismen einer Kurvendiskussion. Außerdem ermöglicht die "ungewohnte" Betrachtung des Binomialkoeffizienten als einer Funktion in n das Anknüpfen an vertraute Sachverhalte. Zu den Themen "Rekursion", "Pascalsches Dreieck" und "Dreieckszahlen" in den Teilaufgaben 2.6 bis 2.9 sollen die Schülerinnen und Schüler selbstständig im Internet oder in entsprechender Literatur nach Hintergründen und Bedeutung recherchieren. Zur Förderung des Verständnisses und zum Abschluss des Modellierungsprozesses wird zu den Ergebnissen der Teilaufgaben generell eine Interpretation beziehungsweise eine Versprachlichung eingefordert. Die Lernenden werden mit folgender Fragestellung konfrontiert: "Ist es wahrscheinlicher, dass es bei der ("6 aus 49"-) Lotterie mehr Jackpot-Gewinnerinnen und -gewinner gibt, wenn es mehr Teilnehmende gibt?" Diese Fragestellung soll diskutiert und zunächst intuitiv beantwortet werden. In der Regel wird sich schnell ein Konsens einstellen: Ja. Doch wie genau bleibt noch offen und zu untersuchen. Nach der Ermittlung der Trefferwahrscheinlichkeit für "r Richtige plus Zusatzzahl" sowie der Wahrscheinlichkeit dafür, dass k von insgesamt n Lotterie-Teilnehmerinnen und-teilnehmer r Richtige getippt haben, stellt sich das mathematische Gesamtmodell als eine Kombination aus hypergeometrischer und binomial-verteilter Formulierung dar. Nach einigen konkreten Berechnungen wird für Grenzwertbetrachtungen zum einen die (mittlerweile im Lehrplan oft nur noch optionale) Regel von l'Hospital und zum anderen die einfache, aber mächtige Identität für a > 0 eingeführt. Damit lassen sich alle Grenzwert- und Monotoniebetrachtungen durchführen. Anhand des Graphen für einen geeigneten Spezialfall werden die Schülerinnen und Schüler zur abschließenden Beantwortung der Ausgangsfrage geführt. Verallgemeinerung auf k erfolgreiche Teilnehmer Im zweiten Teil der Aufgabenstellung ("Variation und Verallgemeinerung") wird der Kontext mindestens zweier Jackpot-Gewinnerinnen oder -gewinner vom Ende des ersten Teils auf genau beziehungsweise mindestens k erfolgreiche Lotterie-Teilnehmende verallgemeinert. Nun wird für eine Diskussion des Funktionsterms allerdings ein tieferes Verständnis des Binomialkoeffizienten notwendig. Dazu wird dieser als Funktion in n betrachtet, auf den Bereich der reellen Zahlen verallgemeinert, exemplarisch graphisch dargestellt und berechnet. Hierbei stellen die Schülerinnen und Schüler fest, dass es sich im Grunde bei dem Symbol um nichts anderes als ein Polynom k-ten Grades in x handelt. Damit befinden sich die Lernenden wieder auf vertrautem Terrain aus Mittel- und Oberstufe. Pascalsches Dreieck Im Anschluss wird der Aufbau des Pascalschen Dreiecks bewiesen und gezeigt, dass sich die Werte der jeweiligen "Binomialkoeffizient-Polynome" für natürliche Argumente einfach in den Spalten beziehungsweise Diagonalen des Pascalschen Dreiecks ablesen lassen. Offensichtlich liefert das Pascalsche Dreieck aber auch jeweils eine Rekursionsformel für die einzelnen Polynome. Die Schülerinnen und Schüler lernen dieses andersartige Konzept zur Definition einer Funktion für den Spezialfall k=2 kennen und ermitteln mithilfe der Gaußschen Summenformel den Zusammenhang zwischen der rekursiven und der expliziten Darstellung. Dabei gibt es neben diesem algebraischen aber auch einen geometrischen Beweisweg über die so genannten Dreieckszahlen. Anwendung der Regel von l'Hospital Mithilfe der Regel von l'Hospital erhalten die Schülerinnen und Schüler nun Zugang zu einer mathematisch sehr gewichtigen Tatsache, nämlich dass eine Exponentialfunktion schneller wächst als jede Potenz beziehungsweise jedes Polynom. Damit lässt sich nun auch die Ausgangsfrage allgemein sehr schnell beantworten. Graphen zur Veranschaulichung Zum Abschluss sehen die Schülerinnen und Schüler anhand von exemplarischen Graphen mittels eines Funktionsplotters (hierzu eignet sich zum Beispiel auch GeoGebra), wie sich die gesuchte Wahrscheinlichkeit verhält und in welchem Bereich sich überhaupt erst Bezüge zur Realität anbieten (vergleiche Abb. 1, zur Vergrößerung bitte anlicken). Auf die Thematisierung der für den Kontext kleiner Erfolgswahrscheinlichkeiten bei großer Stichprobe als gute Näherung geeigneten Poisson-Verteilung ("Verteilung der seltenen Ereignisse") wird verzichtet, da in erster Linie nicht das rein statistische Problem, sondern die Vernetzung von stochastischen/statistischen mit analytischen und algebraischen Inhalten im Vordergrund stehen soll. Fazit Die Schülerinnen und Schüler erhalten durch diese Lerneinheit die Möglichkeit, eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik herzustellen. Zudem zeigt sich, dass neuartige Symbole (wie der Binomialkoeffizient) oder Schreibweisen (wie die rekursive Definition einer Funktion) durch geeignete Betrachtungsweise gar nicht mehr so neuartig sein müssen, sondern bereits bekannten Dingen entsprechen. Durch die zusätzliche Einführung einiger weniger Hilfsmittel (allgemeine Exponentialfunktion als e-Funktion, Regel von l'Hospital) erschließt sich so auch eine ungewohnte Funktion den oftmals schematisch verfolgten Argumenten der Kurvendiskussion.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Mittendreiecke und Mittenvierecke

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Mittendreiecke und Mittenvierecke" erschließen sich die Schülerinnen und Schüler ausgehend von den Eigenschaften der Punktspiegelung und des Parallelogramms anhand dynamischer Konstruktionen die Zusammenhänge zwischen einem Dreieck und seinem Mittendreieck. Die analoge Thematik bei Vierecken gibt Anlass zu vielfältigen Forschungen und Entdeckungen in der Welt der Vierecke. Die Unterrichtseinheit "Mittendreiecke und Mittenvierecke" besteht aus zwei Teilen: Mit dem ersten Arbeitsblatt und den zugehörigen dynamischen Konstruktionen (hier mit Euklid DynaGeo) erkunden die Schülerinnen und Schüler Mittendreiecke. Indem sie wiederholt das Mittendreieck zum Mittendreieck einzeichnen, finden die Lernenden Gesetzmäßigkeiten, nach denen die Mittendreiecke immer kleiner werden. Anhand entsprechender Figuren entdecken sie, dass die Höhen des Mittendreiecks zugleich die Mittelsenkrechten des ursprünglichen Dreiecks sind und sich somit ebenfalls in genau einem Punkt schneiden. Mit dem zweiten Arbeitsblatt werden die Überlegungen auf Vierecke übertragen: Die Seitenmitten eines Vierecks bilden das Mittenviereck. Es ist immer ein Parallelogramm, unabhängig von der Form des Ausgangsvierecks. Welche besondere Form aber muss das Ausgangsviereck besitzen, damit das Mittenviereck etwa ein Rechteck, eine Raute oder ein Quadrat ist? Diese Problemstellungen lassen sich besonders gut mit dynamischer Geometriesoftware untersuchen. Die Lernenden können die zugrunde liegenden Gesetzmäßigkeiten selbst entdecken und die Begründungen finden. Die vorliegende Unterrichtseinheit "Mittendreiecke und Mittenvierecke" ist für begabte Schülerinnen und Schüler der Klassen 7 bis 9 konzipiert. Im regulären Mathematikunterricht können die Arbeitsblätter als Material zur Binnendifferenzierung genutzt werden. Dabei sollten die Schülerinnen und Schüler Zugang zu einem Computer mit dynamischer Geometriesoftware besitzen (Einzel- oder Partnerarbeit). Daneben bietet die Unterrichtseinheit aber auch eine geeignete Grundlage für Mathematik-Arbeitskreise, die sich speziell der Begabtenförderung widmen. Es empfiehlt sich, den Unterricht methodisch so zu gestalten, dass sich die Schülerinnen und Schüler weitgehend eigenständig in Kleingruppen mit den Arbeitsaufträgen und den dynamischen Konstruktionen befassen. Zur Zusammenschau und Sicherung der Ergebnisse bietet sich eine Phase der Präsentation und Diskussion aller Ideen und Resultate im Klassenplenum beziehungsweise im Arbeitskreis an. Die Schülerinnen und Schüler erkunden Problemstellungen mithilfe dynamischer Geometrie. begreifen Zusammenhänge zwischen Sätzen und deren Umkehrung. entwickeln Argumentationen und geometrische Beweise. übertragen gewonnene Ergebnisse durch Variieren erweitern und auf verwandte Situationen. arbeiten weitgehend eigenverantwortlich und kooperativ.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Flächen, Winkel und Volumen – Mathematik im Alltag

Unterrichtseinheit

Die Unterrichtseinheit für das Fach Mathematik der Klasse 9 vermittelt Schülerinnen und Schüler Grundlagenwissen über Flächen-, Winkel- und Volumenberechnung. Sie üben die Anwendung des Satzes des Pythagoras zur Berechnung von Längen und Flächen in rechtwinkligen Dreiecken. Zusätzlich werden der Dreisatz und das Umrechnen von Maßeinheiten geübt. Durch das Bearbeiten von Textaufgaben und das Erstellen von Skizzen üben die Lernenden, geometrische Probleme systematisch zu lösen. Diese Unterrichtseinheit kann in den Rahmenplan der Sekundarstufe I der neunten und zehnten Klasse eingeordnet werden. Thematisch orientiert er sich an der Bestimmung und Berechnung von Längen und Flächen. Hierfür wird zunächst der Satz des Pythagoras eingeführt. Mit Hilfe des Satzes lernen die Schülerinnen und Schüler in einfachen Aufgabenstellungen Streckenlängen über die vorherige Berechnung der Flächen innerhalb eines rechtwinkligen Dreiecks zu ermitteln. In weiterführenden Aufgabenstellungen lernen sie Textaufgaben zu bearbeiten. Hierfür entwerfen sie Skizzen, in denen die angesprochenen Sachprobleme so dargestellt sind, dass der mathematische Zusammenhang zu erkennen und zu bestimmen ist. Nachfolgend wird die Umkehrung des Satzes des Pythagoras genutzt, um rechte Winkel in Dreiecken nachzuweisen. Die Schülerinnen und Schüler lernen verschiedene geometrische Größen zu bestimmen und können diese auch in zusammengesetzten Figuren berechnen. Ein Teil der gestellten Aufgaben wird mit der Nutzung des Dreisatzes und der Verwendung von verschiedenen Maßeinheiten kombiniert. In allen Aufgabenstellungen sind Längeneinheiten zu finden, die zum Teil für die Berechnung der Ergebnisse zuvor umgewandelt werden müssen. Der Begriff Maßstab wird hier ebenfalls eingeführt und ein Zusammenhang zu dem Berechnen von Vergrößerungen und Verkleinerungen hergestellt. Anhand verschiedener Aufgabenstellungen aus dem Alltag wird der direkte Bezug zum Gerüstbau-Handwerk geschaffen. Die Aufgaben greifen typische Sachprobleme aus dem Berufsleben eines Gerüstbauers auf, wodurch das Interesse hinsichtlich des Handwerkberufs geweckt wird. Der Satz des Pythagoras besitzt eine hohe Relevanz im mathematischen Unterricht. Er bietet verschiedene Möglichkeiten alltägliche Sachprobleme zu lösen. Das Thema kann als Grundlage für die Trigonometrie des Rahmenplans der Sekundarstufe I verstanden werden. Für die Bearbeitung der Arbeitsblätter sollten die Schülerinnen und Schüler über Basiswissen zum Thema Umrechnen von Maßeinheiten sowie der Quadratwurzelrechnung besitzen. Sie sollten außerdem den Begriff eines rechten Winkels kennen und mit den Grundlagen der Geometrie vertraut sein. In der ersten Stunde wird zunächst die inhaltliche Aussage des Satzes des Pythagoras hergeleitet und daraufhin werden erste einfache Rechenaufgaben gelöst. Besonderes Augenmerk sollte dabei auf die signifikante Bedeutung des rechten Winkels gelegt werden. Wahlweise können die Schülerinnen und Schüler ein Puzzle für den Nachweis des Satzes in Einzelarbeit lösen, dessen Vorlage und Anleitung Sie hier finden. Die zweite Stunde dient der Vertiefung der Thematik. Die Schülerinnen und Schüler bearbeiten hier komplexere Textaufgaben. In der darauffolgenden Stunde wird die Umkehrung des Satzes des Pythagoras besprochen, mit dessen Hilfe rechte Winkel nachgewiesen werden können. Die Schülerinnen und Schüler können sich die Bedeutung und Anwendung des Maßstabs in Stillarbeit selbst erarbeiten und entsprechende Aufgaben lösen. Zuvor sollte hierfür auf die Umrechnung von Maßeinheiten eingegangen werden. Abschließend werden Aufgaben zur Wiederholung des Dreisatzes behandelt. Hier sollte betont werden, dass die Anwendung im Alltag wiederkehrend ist. Für die Zielsetzung des Unterrichts bietet sich zunächst die Form des darbietenden Unterrichts an, da eine strukturierte Einführung in das Thema, das die Grundlage für die gesamte Einheit liefert, am besten geeignet ist. In dieser Unterrichtseinheit wird stets auf einen Lebensweltbezug der Schülerinnen und Schüler geachtet, indem diese mathematischen Phänomene in ihrer Umgebung erkannt werden und durch variierende Medien wie Bilder und Filme auch (audio-)visuell verarbeitet werden können. Im späteren Verlauf der Unterrichtseinheit kann die Umkehrung des Satzes in einem gelenkten Unterrichtsgespräch zusammen erarbeitet werden, sodass die Schülerinnen und Schüler nicht nur passiv zuhören, sondern auch aktiv den Unterricht mitgestalten und zur Lösung des Problems beitragen. Möglichkeiten der Differenzierung: Optional kann der Umfang der Hausaufgaben verringert oder ergänzt werden. Es besteht außerdem die Möglichkeit, aus verschiedenen Schwierigkeitsstufen zu wählen und einfache oder komplexere Aufgaben wegzulassen. Weiterführend zu dieser Unterrichtseinheit können die Strahlensätze thematisiert werden. Ergänzendes Arbeitsblatt Zur weiteren Vertiefung mit der Unterrichtseinheit steht das Arbeitsblatt " Flächenberechnung " zum Download bereit. Fachkompetenz Die Schülerinnen und Schüler beherrschen die Bezeichnungen am rechtwinkligen Dreieck sicher, können den Satz des Pythagoras formulieren und zur Berechnung von Streckenlängen anwenden. weisen rechte Winkel im Dreieck nach, entwerfen Skizzen zu Sachproblemen und berechnen Streckenlängen im Raum. nutzen Eigenschaften und Beziehungen geometrischer Objekte und können so geometrische Größen in zusammengesetzten Figuren berechnen, wodurch ihr räumliches Vorstellungsvermögen geschult wird. Medienkompetenz Die Schülerinnen und Schüler stärken ihre Fähigkeit, den Computer für die Recherche zu nutzen. stärken ihre Fähigkeit, im Umgang mit Formelsammlungen. Sozialkompetenz Die Schülerinnen und Schüler entwickeln und verbessern ihre Fähigkeit, Probleme zu lösen. entwickeln ihre Fähigkeit, Arbeitsergebnisse zu präsentieren und zu kommunizieren.

  • Mathematik
  • Sekundarstufe I

Mit Geogebra arbeiten – Grundlagen Teil 3

Unterrichtseinheit
14,99 €

Für den Mathematikunterricht eignet sich bei vielen Themen der Einsatz vom Computer – beispielsweise um Probleme unter einem anderen Blickwinkel zu betrachten und vielseitiger zu erforschen. In der Geometrie bewährt sich dazu die dynamische Geometriesoftware GeoGebra. Die Schülerinnen und Schüler üben in dieser Unterrichtseinheit das computergestützte Konstruieren, Verstehen und Reflektieren geometrische Zusammenhänge und Erlernen gleichzeitig wertvolle Grundlagen im Umgang mit der Software. Diese Unterrichtseinheit baut auf der Einheit "Mit GeoGebra arbeiten – Grundlagen Teil 2" auf und handelt vom Konstruieren und Messen im zweidimensionalen Raum mit Hilfe der dynamischen Geometriesoftware GeoGebra. Auf dem ersten Arbeitsblatt dreht sich dabei alles um die Konstruktion von Dreiecken. So werden beispielsweise gleichschenklige und gleichseitige Dreiecke mithilfe von Schiebereglern konstruiert. Auch die Konstruktionsbeschreibung mithilfe des Textwerkzeuges und die Möglichkeit der Integration von gemessenen Werten (Variablen) in Texte wird thematisiert. Auf dem zweiten Arbeitsblatt werden neben der Konstruktion von rechtwinkligen Dreiecken und Ellipsen das Anzeigen von Spuren erkundet, indem Spuren von Punkten und Flächen entdeckt werden. Abschließend werden an zwei Experimentierdateien "Thaleskreis_und_mehr" sowie "Winkelbetrachtungen" besondere geometrische Eigenschaften dynamisch wiederholt. Da die Schülerinnen und Schüler unterschiedliche Voraussetzungen im Umgang mit dem Computer haben, ermöglichen die kleinschrittig konzipierten Aufgaben den Lernenden selbstständig oder in Paar-Arbeit die Arbeitsblätter zu bearbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten bestehen, so können die Musterlösungen alternativ als Begleittexte verwendet werden. Diese enthalten detaillierte Hinweise mit Visualisierungen. Des Weiteren gibt es zu jeder Aufgabe eine fertig konstruierte GeoGebra-Datei als Download. Um mit GeoGebra arbeiten zu können, müssen die Grundelemente erlernt und eingeübt werden. Mithilfe der beiden Arbeitsblätter entdecken die Schülerinnen und Schüler in Einzel- oder Paar-Arbeit weitere Grundlagen der dynamischen Geometriesoftware, indem sie einfache geometrische Figuren konstruieren, Abmessungen an ihnen vornehmen und Lagen erforschen. Zusätzlich können die Musterlösungen den Lernenden als Hilfestellung angeboten werden. Durch die freie Erarbeitungsphase hat die Lehrkraft die Möglichkeit leistungsschwächere Schülerinnen und Schüler individuell zu unterstützen. So wird gewährleistet, dass den Lernenden der Einstieg individuell im Umgang mit GeoGebra ermöglicht wird. Durch die entstehenden Konstruktionen werden die Lernenden außerdem dazu angeregt selbst Fragestellungen zu Lageverschiebungen und neuen Konstruktionsproblemen zu entwickeln. Der Umgang mit Computern und Software ist den Schülerinnen und Schülern bekannt, so dass sie mit der Oberfläche von GeoGebra schnell vertraut werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler verwenden computergestützte Software zum Konstruieren und Messen. erforschen geometrische Beziehungen in interaktiven Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Flächen und Umfänge von geometrischen Formen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zu Geometrie betrachten die Lernenden Größen wie den Flächeninhalt und den Umfang der geometrischen Figuren Rechteck, Parallelogramm, Dreieck, Trapez und Kreissektor. Mithilfe von GeoGebra lassen sich die Berechnungsideen sehr anschaulich darstellen. In der Geometrie werden zur Beschreibung von Flächen Größen wie der Flächeninhalt und der Umfang betrachtet. In dieser Unterrichtseinheit erstellen die Schülerinnen und Schüler mithilfe von GeoGebra dynamisches Material zu Rechtecken, Parallelogrammen, Dreiecken, Trapezen und Kreissektoren sowie dessen geometrische Zusammenhänge für Flächeninhalte und Umfänge. Zuvor haben sie stets die Möglichkeit an sehr anschaulichen vorbereiteten GeoGebra-Dateien zu experimentieren, um Erfahrungen zu sammeln und Gesetzmäßigkeiten zu erkennen. Durch die Möglichkeit, schnell Änderungen vornehmen zu können, werden die Lernenden angeregt, selbst Fragestellungen zu ermitteln. Die Schülerinnen und Schüler entdecken außerdem Möglichkeiten, mithilfe von GeoGebra die Anschaulichkeit zu erhöhen. Lehrpläne sehen es vor, dass Schülerinnen und Schüler Flächeninhalte unterschiedlicher geometrischer Figuren ihrer Lebenswelt vergleichen, messen und schätzen. Mit GeoGebra lassen sich derartige Figuren einfach erstellen. Die Schülerinnen und Schüler können sich die Zusammenhänge für Fläche und Umfang für die grundlegenden Formen selbst erarbeiten und visualisieren, so dass ein besseres Verständnis für verschiedene Problemlösestrategien (beispielsweise Zerlegen, Auslegen von fremden Formen mit bekannten Flächentypen) entsteht, diese verwendet und eingeübt werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler produzieren und präsentieren. analysieren und reflektieren ihre erstellten GeoGebra Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). arbeiten im Team und geben Hilfestellungen. stoßen durch offene Fragestellungen auf neue Ideen und zeigen Engagement und Motivation.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I
ANZEIGE