• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Kampf gegen Krebs

Unterrichtseinheit

Am Beispiel einer Signalkette erkennen Schülerinnen und Schüler, wie molekularbiologische Grundlagenforschung die Entwicklung neuer und innovativer Medikamente ermöglichen kann. Mehr als 200.000 Menschen sterben in Deutschland pro Jahr an Krebserkrankungen. Bei der Behandlung kommen neben Bestrahlungen Chemotherapien zum Einsatz. Die dabei verwendeten Wirkstoffe schädigen insbesondere die sich schnell teilenden Tumorzellen. Aber auch gesunde Zellen werden angegriffen. Schwere Nebenwirkungen sind die Folge. Wissenschaftler und Mediziner arbeiten an der Entwicklung von Wirkstoffen für eine zielgenauere Krebstherapie. Die soll nicht nur weniger belastende Behandlungsmethoden, sondern zukünftig auch die Bekämpfung heute noch schwer therapierbarer Tumore ermöglichen. Ziele der Unterrichtseinheit Die zentrale Botschaft dieser Unterrichtseinheit ist: Krebs entsteht durch den Verlust negativer Kontrollen, die Wachstum und Teilung von Zellen in gesunden Geweben streng überwachen. Die Vielfalt der daran beteiligten zellulären Nachrichtensysteme ist unglaublich komplex und zurzeit nur ansatzweise durchschaubar. Zudem variieren die vielen miteinander vernetzten Signalketten und ihre Störungen von Zelltyp zu Zelltyp, von Tumor zu Tumor. Dies macht den Kampf gegen Krebszellen so schwierig. In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler einen zentralen Mechanismus der Signaltransduktion und die vereinfachte Darstellung eines Signalwegs kennen. Dabei begegnen ihnen "Schalter", die in vielen molekularbiologischen Bereichen von zentraler Bedeutung sind (GTP-bindende Proteine, Konformationsänderungen, Phosphorylierungen). MS Wissenschaft 2011 Im Rahmen des Wissenschaftsjahres 2011 "Forschung für unsere Gesundheit" zeigt die Mitmachausstellung an Bord der MS Wissenschaft "Neue Wege in der Medizin" unter anderem Exponate zum Thema "Im Kampf gegen Krebs - von der Grundlagenforschung zum Medikament". Zu sehen sind dabei auch Animationen von Prof. Dr. Axel Ullrich vom Max-Planck-Institut für Biochemie in Martinsried. Die Filme visualisieren die zellulären Signalsysteme, die Thema dieser Unterrichtseinheit sind. Zudem zeigen sie, wie neuartige Krebsmedikamente wirken und Tumore durch eine Hemmung der Angiogenese - die Neubildung von Blutgefäßen - "aushungern" sollen. Die Darstellungen sind sehr vereinfacht. Anschaulichkeit steht im Vordergrund und nicht die wissenschaftliche Korrektheit im Detail. (Die hier verwendeten Grafiken stammen aus den Animationen.) Vom 19. Mai bis zum 29. September ist das umgebaute Binnenfrachtschiff unterwegs und macht in 35 Städten Halt. Ein Besuch der Ausstellung bietet eine ideale Ergänzung zur Behandlung des Themas im Unterricht. Informationen zum Tourplan und zur Gruppenanmeldung finden Sie auf der Webseite von Wissenschaft im Dialog (siehe Zusatzinformationen). Molekularbiologische Grundlagen Wachstumsfaktor-Rezeptoren werden von vielen Krebszellen überproduziert. Sie setzen eine fatale Signalkette in Gang, die Ansatzpunkte für neuartige Krebsmedikamente bietet. Materialien Schülerinnen und Schüler lernen allgemeine Eigenschaften biologischer Signalsysteme kennen und identifizieren strategische Ziele für die Entwicklung von Wirkstoffen. Die Schülerinnen und Schüler sollen Einblick in Regulationsmechanismen auf molekulare Ebene gewinnen. Mechanismen der Krebsentstehung und -entwicklung kennenlernen. allgemeine Eigenschaften biologischer Signalkaskaden am Beispiel der Rezeptor-Tyrosinkinasen kennenlernen. Wirkungsmechanismen neuartiger Krebsmedikamente verstehen. Die Unterrichtseinheit kann in das Wahlmodul "Krebs: Auslösende Faktoren, molekulare Mechanismen der Entstehung, Aspekte der Gesundheitserziehung, Zellzyklus und Apoptose" integriert werden. Eigenschaften von Krebszellen sollten bereits bekannt sein. Die Bedeutung der Bildung von Blutgefäßen (Angiogenese) für das schnelle Wachstum von Tumoren kann - falls nicht schon geschehen - im Rahmen dieser Unterrichtseinheit behandelt werden. Kenntnisse zur Apoptose sind hilfreich, aber nicht erforderlich. Fehlfunktionen verursachen Krankheiten Molekulare Regulationsmechanismen sind die Voraussetzung für Differenzierung und Organbildung und erhalten die Lebensfähigkeit eines Organismus. Wichtige Stellschrauben dieser molekularen Nachrichtensysteme sind Botenstoffe, die über das Blut oder die Gewebsflüssigkeit transportiert werden oder diffundieren. Sie binden nach dem Schlüssel-Schloss-Prinzip an spezifische Rezeptoren auf der Oberfläche der Zielzellen und aktivieren komplexe Signalketten im Zellinneren. Diese steuern die Genaktivität und beeinflussen Eigenschaften und Verhalten der Zelle. Fehlfunktionen dieser Nachrichtensysteme haben fatale Folgen. Sie sind die Ursache aller Krebserkrankungen und vieler anderer Krankheiten. Wachstumsfaktoren binden an Rezeptor-Tyrosinkinasen Der Epidermale Wachstumsfaktor (epidermal growth factor, EGF) ist ein wichtiger Botenstoff. Die Bindung des Polypeptids an seinen Rezeptor stimuliert die Ausbildung verschiedener Zelltypen sowie Wachstum und Teilung der Zellen (Proliferation). Der EGF-Rezeptor (epidermal growth factor receptor, EGFR) gehört zur Familie der Rezeptor-Tyrosinkinasen. Diese einander sehr ähnlichen Transmembranmoleküle kommen beim Menschen auf allen Zellarten vor. Sie bestehen aus einem extrazellulären Bereich, der den Botenstoff bindet, einem die Membran durchquerenden Abschnitt und einem intrazellulären Bereich. Der intrazelluläre Bereich besitzt eine Kinase-Domäne mit ATP-Bindungsstelle. Kinasen sind Enzyme, die Phosphatgruppen von ATP auf die Hydroxylgruppen (-OH) anderer Moleküle übertragen. Tyrosinkinasen phosphorylieren Proteine und verändern dadurch deren Aktivität. Sie übertragen die Phosphatgruppe dabei auf die Hydroxylgruppe der Aminosäure Tyrosin. Aktivierung des Wachstumsfaktor-Rezeptors Die Bindung des Wachstumsfaktors an seinen Rezeptor bewirkt eine Änderung der Proteinstruktur. Aufgrund dieser Konformationsänderung lagern sich die Rezeptoren paarweise zusammen (Dimerisierung). Die intrazellulären Bereiche der Rezeptor-Dimere können sich dann über ihre Kinase-Aktivität gegenseitig phosphorylieren. Danach sind die Rezeptoren "scharf" und initiieren komplexe intrazelluläre Signalketten. Dies erfolgt sehr schnell: Bereits eine Sekunde nach der Bindung des Botenstoffs ist die intrazelluläre Signalkette aktiviert. Abb. 1 (Platzhalter bitte anklicken) zeigt ein Rezeptor-Dimer (rot und gelb) mit gebundenem Botenstoff (hellblau) in der Zellmembran. Im Fall des EGF-Rezeptors wird ein Wachstumsfaktormolekül von zwei Rezeptoren gebunden. Andere Rezeptor-Tyrosinkinasen binden je ein Botenstoffmolekül pro Rezeptor (dieser Fall ist auf dem Arbeitsblatt der Unterrichtseinheit dargestellt, "ab_2_signalkette_bauelemente.pdf"). Das intrazelluläre Nachrichtensystem wird in Abb. 1 durch das Netzwerk unter der Zellmembran angedeutet. Die Grafik ist - wie alle Abbildungen in dieser Unterrichtseinheit - ein Screenshot aus einer Animation Prof. Dr. Axel Ullrich vom Max-Planck-Institut für Biochemie in Martinsried, die auch auf der MS Wissenschaft "Neue Wege in der Medizin" zu sehen ist. Überproduktion von Wachstumsfaktor-Rezeptoren in Krebszellen Bereits in den 1990er Jahren des vergangenen Jahrhunderts entdeckte man, dass Krebszellen vieler Tumore auf ihrer Oberfläche wesentlich mehr EGF-Rezeptoren als gesunde Zellen tragen. Zudem wiesen Tumore höhere EGF-Konzentrationen als gesunde Gewebe auf. Patienten, die zugleich Rezeptor und Wachstumsfaktor vermehrt bilden, haben besonders schlechte Heilungschancen (schnelles Tumorwachstum, verstärkte Bildung von Metastasen). Wissenschaftler erforschen die Nachrichtensysteme, mit denen Signale von der Zelloberfläche in das Zellinnere und in den Zellkern übermittelt werden. Das Verständnis dieser Signalketten und ihrer Fehlfunktionen ist der Schlüssel für die gezielte Entwicklung neuartiger Krebsmedikamente. Rezeptor-Tyrosinkinasen wie der EGF-Rezeptor spielen bei der Krebsentstehung eine wichtige Rolle und stehen im Fokus der Molekularbiologen und Mediziner. Rezeptor-Tyrosinkinasen stimulieren Wachstum und Teilung der Zellen. In gesundem Gewebe wird ihre Aktivität von hemmenden Kontrollmechanismen streng reglementiert. In Krebszellen haben diese negativen Kontrollinstanzen ihre Wirkung verloren. Die Rezeptor-Tyrosinkinasen sind immer aktiv und verursachen die unkontrollierte Vermehrung von Krebszellen (Proliferation). die Bildung von Blutgefäßen, die den Tumor mit Sauerstoff und Nährstoffen versorgen (Angiogenese). die Hemmung des programmierten Zelltods (Apoptose), einem "Notfallprogramm", mit dem sich entartete Zellen selbst zerstören. die Wanderung von Zellen und somit die Bildung von Tochtergeschwülsten (Metastasen). Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München haben den ersten zielspezifischen Anti-Krebs-Wirkstoff entwickelt, der in die zelluläre Signalkette eingreift: Trastuzumab oder Herceptin (Handelsname). Die Substanz, ein monoklonaler Antikörper, wurde im Jahr 2000 in der Europäischen Union zugelassen. Er bindet an der Zellaußenseite an eine Rezeptor-Tyrosinkinase, die als Wachstumsfaktor-Rezeptor fungiert und in Krebszellen überproduziert wird. Durch die Bindung des Antikörpers wird die Bindung des Botenstoffs und so die Übertragung des Signals in die Zelle unterbunden (Abb. 2). Dies führt dazu, dass sich die Tumorzellen sich durch Apoptose - einem Notfallprogramm für die Selbstzerstörung entarteter Zellen - selbst zerstören können. Zudem führt die Antikörperbindung zur Rekrutierung von Immunzellen, die die Tumorzellen angreifen (Abb. 3). Ein weiterer Effekt von Herceptin ist auch die Hemmung der Angiogenese, also der Bildung von Blutgefäßen, die den Tumor mit Sauerstoff und Nährstoffen versorgen. Für das schnelle Tumorwachstum ist der Anschluss an die Versorgungssysteme des Organismus eine wichtige Voraussetzung. Von den Krebszellen ausgesendete Botenstoffe stimulieren die Blutversorgung des Tumors. Der Einfluss von Herceptin auf das Nachrichtensystem der Krebszellen wirkt dem entgegen - der Tumor muss "hungern". Wirkstoffe mit einem geringen Molekulargewicht können in das Zellinnere gelangen und dort Zielmoleküle des zellulären Signalsystems angreifen. Eine solche Substanz wurde ebenfalls am Max-Planck-Institut für Biochemie entwickelt: Das Medikament Sunitinib (Handelsname Sutent, Zulassung in der Europäischen Union im Jahr 2006) verhindert die Bindung von ATP an die Kinase-Domäne der Rezeptor-Tyrosinkinasen (kompetitive Hemmung). In Abb. 4 ist Sutent orange, ATP grün dargestellt. Der Wirkstoff verhindert die für die Signalübertragung entscheidende Autophosphorylierung des Rezeptors. Wie Herceptin soll auch Sutent sowohl das Wachstum der Krebszellen, anti-apoptotische Mechanismen und auch die Neubildung von Blutgefäßen hemmen, die das schnelle Wachstum des Tumors ermöglichen (Abb. 5). Während der monoklonale Antikörper Herceptin per Infusion verabreicht werden muss, können Patienten den niedermolekularen Wirkstoff Sutent in Tablettenform zu sich nehmen. Die Kombination verschiedener Wirkstoffe ist ein wichtiger Schritt, um das Wettrennen gegen die schnelle Wandlungsfähigkeit von Krebszellen gewinnen zu können. Nachdem Rezeptor-Tyrosinkinasen als strategische Ziele für die Krebstherapie identifiziert waren, suchte man nach Substanzen, die an die ATP-Bindungsstelle der Kinasen binden und so die Enzymaktivität kompetitiv hemmen. In einem ersten Schritt wurden aus zehntausenden Molekülen diejenigen ausgewählt, deren Struktur (theoretisch) die Kriterien für eine Affinität zu der ATP-Bindungsstelle erfüllten. Die Vorauswahl wurde einem Wirkstoffscreening unterzogen. Die Strukturen der erfolgreichsten Substanzen wurden mithilfe der medizinischen Chemie weiter optimiert. Das Ergebnis, Sutent, bindet jedoch nicht nur an eine Rezeptor-Tyrosinkinase, sondern an die ATP-Bindungsstelle von mehr als 150 Kinasen! Die Substanz wirkt also als "Breitband-Kinase-Hemmer". Wissenschaftler versuchen heute, unter diesen Kinasen diejenige(n) zu identifizieren, auf die die anti-Krebs-Wirkung von Sutent zurückzuführen ist. In dem darauf folgenden Schritt gilt es dann, die Struktur des Wirkstoffs so zu verändern, dass er nur noch die für die Krebsbekämpfung relevanten Kinasen hemmt. Durch die Erhöhung der Spezifität können die Dosierung des Wirkstoffs und so auch die Nebenwirkungen reduziert werden. Herceptin und Sutent sowie viele andere Medikamente helfen heute, die Lebensqualität und die Überlebenschancen von Krebspatienten zu erhöhen. Wie weit die oben so klar beschriebenen Wirkungen und Zusammenhänge tatsächlich den zellulären Abläufen entsprechen, ist jedoch noch nicht vollständig erforscht. Ein Sieg über den Krebs ist noch nicht greifbar. Dies liegt an der Diversität der Krebszellen, ihrer Wandlungsfähigkeit und der Vielfalt der in ihnen außer Kontrolle geratenen Regulationsmechanismen. Ansatzpunkte für eine gezielte Krebstherapie Das erste Arbeitsblatt (ab_1_therapie_ansatzpunkte.pdf) weist auf den Zusammenhang zwischen der Überproduktion von Wachstumsfaktoren sowie ihrer Rezeptoren und der Bösartigkeit von Tumoren hin. Die Lernenden gliedern die Ereigniskette (Signal, Signalübertragung, Signalwirkung) und identifizieren strategische Angriffspunkte für eine gezielte Krebstherapie. Sie erkennen, dass für die Umsetzung die molekularen Grundlagen des zellulären Nachrichtensystems erforscht werden müssen. Die Signalkette "downstream" des Rezeptors Mit dem zweiten Arbeitsblatt lernen Schülerinnen und Schülern Details der Signalkette kennen, die von einer Rezeptor-Tyrosinkinase angestoßen wird. Sie sollen die im Arbeitsblatttext (ab_2_1_signalkette.pdf) beschriebene Abfolge der Wechselwirkungen zwischen verschiedenen Proteinen bildlich umsetzen (Partner- oder Kleingruppenarbeit). Die Vorgabe grafischer Elemente (ab_2_2_signalkette_bauelemente.pdf) sorgt dabei für einen "gemeinsamen Nenner" innerhalb des Kurses. Methodisch kann hier - je nach Gegebenheiten und Lerngruppe - ganz unterschiedlich vorgegangen werden. Schülerinnen und Schüler können die vorgegeben Bausteine der Signalkette zum Beispiel ausschneiden und "zusammenpuzzeln". Ergebnisse können dann mit entsprechenden Folienfragmenten am Tageslichtprojektor vorgestellt und im Plenum diskutiert werden. Schließlich kann die Lehrkraft eine Folie mit dem vollständigen Signalweg auflegen (ab_2_2_signalkette_bauelemente_loesung.pdf). Bei entsprechender technischer Ausstattung kann die Signalkette von den Lernenden von auch digital visualisiert werden - zum Beispiel als PowerPoint-Animation. Ähnlich wie in der Unterrichtseinheit Waffen im Kampf gegen AIDS können, aufbauend auf die Textarbeit, die fachlichen Inhalte mit der Kreativtechnik "Storyboard" intensiv reflektiert werden. Allgemeine Eigenschaften biologischer Nachrichtensysteme Bei der Übung kommt es natürlich nicht darauf an, Details der Signalkette zu vermitteln (von der die Darstellung ohnehin nur einen Ausschnitt zeigt). Vielmehr sollen Schülerinnen und Schüler ein Gefühl für die Natur komplexer biologischer Nachrichtensysteme entwickeln. Sie sollen erkennen, wie das Signal innerhalb der Zelle kaskadenartig vervielfältigt wird, indem ein aktiviertes Protein viele weitere Proteine aktiviert - wie bei einer Telefonkette (so zumindest stellt man sich das vor - experimentell belegt ist dies zurzeit noch nicht). Zudem sollen sie prinzipielle und in vielen biologischen Prozessen wiederkehrende "Schalter" für die Aktivität von Proteinen kennen lernen. Ein G-Protein und seine Zusammenarbeit mit einem membranständigen Rezeptor begegnet den Lernenden zum Beispiel auch bei der Signaltransduktion in den Sehzellen der Netzhaut. So lernen sie ein wichtiges Prinzip der Biologie kennen: Die Mehrfachverwertung bewährter molekularer Module und Konzepte in ganz verschiedenen Kontexten. Schließlich sollen die Schülerinnen und Schüler auf der Basis des von ihnen erstellten "Signal-Organigramms" argumentieren, warum es sinnvoll ist Wirkstoffe gegen Krebs zu entwickeln, die die Aktivierung der Rezeptor-Tyrosinkinase unterbinden und die nicht weiter "downstream" ansetzen.

  • Biologie
  • Sekundarstufe II

Materialsammlung Biochemie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen, Anregungen und Arbeitsmaterial für den Unterricht zum Themenbereich Biochemie im Fach Biologie an weiterführenden Schulen. Das Angebot deckt die folgenden Themen ab: Proteine, Nukleinsäure, Fotosynthese und Nanotechnologie. Klicken Sie sich einfach mal durch! Das schöne in der Biologie ist der strenge Zusammenhang zwischen Struktur und Funktion von der Nano- bis zur Makroebene: Die Analyse dreidimensionaler Strukturen erweist sich stets als aufschlussreich und ist weit mehr als eine bloße "Bildbeschau". Franz Josef Scharfenberg vom Richard-Wagner-Gymnasium in Bayreuth hat die dreidimensionalen Ausarbeitungen von Eric Martz (University of Massachusetts, USA) zu unserem Blutfarbstoff für den Einsatz im deutschsprachigen Unterricht aufbereitet. Die dreidimensionale Darstellung der Proteinstrukturen, die mithilfe des kostenlosen Plugins Chime mit der Maus nach Belieben angefasst, gedreht und herangezoomt werden können, zeigen, was schon Thomas Mann wusste (woher eigentlich? - schließlich gelang das erste Beugungsbild eines Proteins Dorothy Hodgkin erst 1932): Proteine sind "unhaltbar verwickelt und unhaltbar kunstreich aufgebaute Eiweißmolekel" (aus "Der Zauberberg"). Es lohnt sich, einen genaueren Blick auf das Hämoglobin zu werfen. An diesem Beispiel lassen sich zahlreiche allgemeine Aspekte der Proteine und Enzyme herausarbeiten: Als oligomeres Protein bietet der Blutfarbstoff die Möglichkeit, alle Strukturhierarchien - von der Primär- bis zur Quartärstruktur - durchzuspielen. Von der Anordnung der Aminosäuren innerhalb der Untereinheiten - hydrophobe Aminosäureseitenketten an der Oberfläche, hydrophile im Inneren des Proteins - lässt sich leicht der Bogen zur thermodynamischen "driving force" des in der Primärstruktur kodierten Selbstfaltungsprozesses der Biopolymere schlagen. Hämoglobin ist zwar "nur" ein Transportprotein, seine in die Polypeptidketten eingebetteten Häm-Gruppen können jedoch - was die Architektur aktiver Zentren und die Modellierung ihrer katalytischen Aktivität betrifft - exemplarisch als prosthetische Gruppen der Enzyme betrachtet werden (schließlich wird Hämoglobin von Molekularbiologen gerne auch als "Enzym honoris causa" bezeichnet). Die auf dem Austausch einer einzigen Aminosäure basierende Sichelzellenanämie verdeutlicht stellvertretend für Erkrankungen wie Alzheimer oder BSE das Prinzip der auf Protein-Polymerisationen basierenden Erkrankungen. Das Startkapitel zeigt vier (zunehmend "abstrahierte") Darstellungsformen der Aminosäure Glycin. Diese "Struktursprachen" werden in den nachfolgenden Kapiteln wiederholt auf weitaus komplexere Strukturen angewendet. Das Glycin-Beispiel ist daher eine wichtige Einführung in die verschiedenen Darstellungsformen des gesamten Hämoglobin-Materials. Gezeigt werden die "ball and stick"-Projektion des Zwitterions (Vorsicht: Doppelbindungen werden nicht als solche dargestellt), eine raumfüllende Darstellung (Kalottenmodell; Abb. 1, Platzhalter bitte anklicken), die "stick"-Struktur sowie die "Aminosäure-Rückgrat"-Struktur (Hydroxylgruppe und Wasserstoffatome sind noch als "rudimentäre Stacheln" dargestellt). Wurden in dem vorausgegangenen Abschnitt die Darstellungsmöglichkeiten einer Aminosäure vorgestellt, werden diese hier auf ein Oligopeptid angewendet. Damit betritt man hier die Primärstruktur-Ebene. Als neue Darstellungsform wird schließlich das Polypeptidketten-Rückgrat vorgestellt (nicht zu verwechseln mit dem Aminosäure-Rückgrat). Zunächst wird die allgemeine Rückgrat-Struktur einer Aminosäure (ohne Seitenkette) dargestellt. Aus dieser Struktur wird das "allgemeingültige" Rückgrat eines Tripeptids aufgebaut. Die "anonymen" Einheiten werden durch Hinzufügen von Methylgruppen in ein Alanyl-alanin-alanin (Ala-Ala-Ala) umgewandelt. Um das ganze zunehmend komplexer zu machen, wird das Tripeptid in ein Lysyl-alanyl-alanin (Lys-Ala-Ala) und schließlich in ein Lysyl-alanyl-isoleucin (Lys-Ala-Ile) umgewandelt, bevor es zum Tetrapeptid ergänzt wird. Bis hierher folgen alle Darstellungen der "stick"-Struktur. Im Folgemodul haben die SchülerInnen die raumfüllende Darstellung des Tetrapeptids vor Augen (Abb. 2). Am Beispiel des Tetrapeptids wird nun verdeutlicht, wie die Biochemiker die Darstellung von Peptidketten abstrahieren, um bei der Strukturanalyse von Polypeptidketten aus mehreren Hundert Aminosäuren nicht "den Wald vor lauter Bäumen nicht mehr sehen zu können": In den beiden letzten Modulen wird daher die "Rückgrat"-Darstellung von Peptidketten eingeführt. Die erste Darstellung zeigt die Quartärstruktur des nativen Proteins mit farblich differenzierten Untereinheiten und den Häm-Komplexen (raumfüllende Darstellung, siehe Abb. 3). Das folgende Modul reduziert die Polypeptidketten auf ihr Rückgrat. Erst jetzt wird die Lage der Häm-Gruppen (raumfüllende Darstellung) klar erkennbar (und der Vorteil der diversen "Struktursprachen" deutlich). Lassen Sie Ihre SchülerInnen durch die Drehung des Moleküls den zentralen Hohlraum entdecken, in dem der Hämoglobin-Ligand 2,3-Diphosphoglycerat (DPG) bindet und dabei über eine Änderung der Quartärstruktur die Sauerstoff-Affinität des Hämoglobins senkt (DPG stabilisiert die Konformation der Desoxy-Form, indem es die beiden beta-Ketten über ionische Wechselwirkungen miteinander vernetzt). DPG wird vom Körper in Höhenlagen gebildet, wo ein niedriger Sauerstoff-Partialdruck herrscht, und erleichtert dort die Abgabe von Sauerstoff an das atmende Gewebe. Im den beiden Folgemodulen sind die Polypeptidketten komplett ausgeblendet. Das zweite der beiden Module stellt die Atomsorten der Hämgruppe farbkodiert dar. Die Lagebeziehungen der vier "freischwebenden" Häm-Gruppen verdeutlicht die tetraedrische Symmetrie (dreiseitige Pyramide) des Moleküls. Bei der Analyse der Symmetrie erweist sich wiederum das Anfassen und Drehen der Strukturen als hilfreich. Es folgt die vergrößerte Darstellung einer einzelnen Hämgruppe in raumfüllender Ansicht sowie eine Darstellung in der "stick"-Struktur, in der die Komplexbindung des zentralen Eisenatoms über die Stickstoffatome der Porphyrin-Struktur erkennbar wird. Die Besetzung der fünften Koordinationsstelle durch ein Histidin-Stickstoff der Polypeptidkette ist noch nicht berücksichtigt. An die sechste Koordinationsstelle wird nun molekularer Sauerstoff gebunden. Dabei ist deutlich erkennbar, dass die Achse des Sauerstoffmoleküls nicht senkrecht auf die Ebene des Porphyrin-Ringes ausgerichtet ist (Abb. 4; siehe auch Abb. 5 der Hintergrundinformation zu den Eigenschaften der prosthetischen Gruppe). Nun geht es wieder vom Kleinen zum Großen: Das oxygenierte Häm wird wieder in die Globin-Kette eingefügt, zunächst in eine Rückgrat-, dann in eine raumfüllende Darstellung. Die beiden letzten Darstellung zum Thema "Sauerstoffbindung" zeigen ein weiteres Details der Häm-Einbettung in das Globin und der Sauerstoffbindung: Die Positionierung hydrophiler Teile des Häms an der Oberfläche und die Ausrichtung hydrophober Bereiche zum Proteininneren. Weiterhin kommt die Besetzung der fünften Koordinationsstelle durch das sogenannte "proximale Histidin" sowie die Lage des "distalen Histidins" über dem gebundenen Sauerstoff zur Darstellung. Mehr zur Bedeutung des distalen Histidins liefert der folgende Fachliche Kommentar. Die Chime-Darstellungen heben einige Strukturmerkmale des Hämoglobins hervor, die sich zu den biochemischen Funktionen der Proteins sehr schön in Beziehung setzen lassen, auf die die vorgestellte Applikation jedoch nicht explizit hinweist. Auf der folgenden Seite finden Sie die wichtigsten Infos zu den Hämoglobin-Eigenschaften, die sich in diesen Strukturdetails abbilden: Die Proteinumgebung definiert die katalytischen Eigenschaften Warum benutzt die Natur nicht die "nackten" Hämgruppen für die Sauerstofflogistik, sondern wickelt sie in komplexe Poypeptidketten ein? Zum einen sind es die vielfältigen allosterischen Wechselwirkungen der Globine mit diversen Liganden, über die die Eigenschaften der Sauerstoffbindung durch das Häm sinnreich modelliert und den jeweiligen biologischen Erfordernissen perfekt angepasst werden - von der DPG-Bindung (siehe oben) bis hin zur Kooperativität der Sauerstoffbindung an die vier Untereinheiten des Hämoglobins. Die wichtigsten dieser "Stellschrauben" werden in Schulbüchern ausreichend thematisiert. Unberücksichtigt bleibt jedoch meist ein viel allgemeineres und enorm wichtiges Grundprinzip der Molekularbiologie und Biochemie: Die katalytischen Eigenschaften jeder prosthetischen Gruppe und jeden aktiven Zentrums werden maßgeblich von der Proteinumgebung geprägt, in die sie eingebettet sind. Man vergegenwärtige sich, dass das Häm, das im Hämoglobin zur reversiblen Sauerstoffbindung eingesetzt wird, im Atmungskettenenzym Cytochrom c als Elektronenüberträger verwendet wird! Wie die Globinkette die speziellen Bindungseigenschaften des Häms beeinflusst, wird nachfolgend an zwei Struktureigenschaften hervorgehoben, die in den Chime-Darstellungen sehr gut deutlich werden. Erst das Globin gewährleistet eine reversible Häm-Oxygenierung Frei lösliche Hämgruppen mit einem komplexierten zweiwertigem Eisen-Ion könnten Sauerstoff nur für einen sehr kurzen Moment binden. Der Sauerstoff würde das zweiwertige Eisen schnell zu dreiwertigem Eisen oxidieren, das keinen Sauerstoff mehr binden kann. Ein Zwischenprodukt dieser Oxidation ist ein "Häm-Sauerstoff-Häm-Sandwich". Die Polypeptid-"Verpackung" der Hämgruppen verhindert dies und gewährleistet damit die Verwendbarkeit der Hämgruppen als Sauerstofftransporteure im Blut. Das letzte Modul zum Thema "Hämoglobin & Häm" verdeutlicht die Lage des Häms in seiner Bindungstasche, die die Bildung von Häm-Dimeren ausschließt. Kohlenmonoxid hat eine hohe Häm-Affinität Kohlenmonoxid ist für uns ein toxisches Gas, weil es die Sauerstoffbindungsstellen des Hämoglobins vergiftet: Seine Affinität zum Hämoglobin-Eisen übertrifft die des Sauerstoffs um das 200-fache. Aus diesem Grund kann schon ein niedriger Kohlenmonoxid-Partialdruck tödliche Folgen haben. Am "nackten" Häm sähe der Vergleich noch ungünstiger aus: Zu diesem hat Kohlenmonoxid eine 25.000 mal höhere Affinität als Sauerstoff. Eine Eigenschaft, die das Pigment als Sauerstoffträger völlig unbrauchbar machen würde, denn Kohlenmonoxid ist nicht nur ein Industriebgas, sondern wird auch vom Organismus selbst erzeugt (es entsteht bei diversen katabolen Stoffwechselreakrtionen und dient auch als Botenstoff, zum Beispiel als bei der Regulation der glatten Gefäßmuskulatur). Unter normalen Umständen ist etwa ein Prozent unseres Hämoglobins mit endogen produziertem Kohlenmonoxid blockiert. Sterische Hinderung der Kohlenmonoxid-Bindung Ohne die Reduktion der Kohlenmonoxid-Affinität um das 125-fache könnte wir mit unserem Blutfarbstoff kaum leben. Aber wie schafft die Polpeptidkette dieses Kunststück? Die Natur greift an der Geometrie der Komplexierung von Sauerstoff und Kohlenmonoxid an. Während die Achse des Sauerstoffmoleküls bei der Bindung an das Eisenatom einen 120 Grad-Winkel zur Häm-Ebene bildet, steht die Achse des Kohlenmonoxid-Moleküls - bei freiem Zugang zum Häm - exakt senkrecht auf dessen Ebene. Diesen optimalen Bindungswinkel verbaut die Polypeptidkette dem Kohlenmonoxid, indem es ihm in der Häm-Bindungstasche des Globins einen sperrigen Histidin-Rest in den Weg stellt (sterische Hinderung), der den Sauerstoff nicht weiter stört. Die Position des distalen Histidins wird in dem vorletzten Modul zum Thema "Hämoglobin & Häm" sehr schön deutlich (Abb. 5). Im unteren Bereich des Bildausschnitts ist das proximale Histidin zu erkennen. Das freie Elektronenpaar des Stickstoffatoms im Histidinring besetzt eine der Koordinationsstellen des Eisenions. Die Darstellungen zum Thema "Sekundärstrukturen" stellen die Architektur der alpha-Helix in den Mittelpunkt. Die Darstellung ihrer Wechselwirkungen beschränkt sich auf die intrahelikalen Wasserstoffbrücken, die der Helix ihre Stabilität verleihen. Einzelne Darstellungen bereiten bereits das nächste Thema "Wechselwirkungen der alpha-Helix" vor, das die Interaktionen der Seitengruppen mit der wässerigen Umgebung und dem hydrophoben Proteinkern aufbereitet. Das erste Modul zeigt die Rückgrat-Struktur einer Globinkette (Tertiärstruktur) mit oxygeniertem Häm. Die alpha-helikalen Strukturabschnitte, die den Großteil des Moleküls bilden, sind farblich hervor gehoben (Abb. 6). Es folgt eine Farbvariante der ersten Darstellung ("Regenbogen-Färbung"). Die nächste Abbildung stellt eine neue "Struktursprache" der Biochemiker vor: alpha-helikale Bereiche werden von der Rückgrat-Struktur "luftschlangenartig" hervorgehoben. Diese Darstellungsform ist bei Molekularbiologen sehr beliebt, da sie bei der Analyse von Proteinstrukturen - unter anderem bei der Identifizierung von Domänen - sehr hilfreich ist. Zudem lassen sich anhand wiederholt auftretender "Sekundärstrukturmotive" Homologien und Analogien der Proteinevolution analysieren. Eine der alpha-Helices wird in ihrem Tertiärstrukturkontext (komplette räumliche Struktur einer Polypeptidkette) hervorgehoben. Dieser Kontext ist für die weitere Betrachtung wichtig (siehe "Wechselwirkungen der alpha-Helix"), da man an ihm erkennt, dass sich diese Helix an der Oberfläche des Globins befindet und sowohl mit dem wässerigen Milieu als auch mit dem Proteininneren Kontakt hat. Die Tertiärstrukturebene wird nun verlassen und auf die individuelle alpha-Helix (Sekundärstruktur) heruntergezoomt. Diese Helix wird nun in zwei andere Struktursprachen übersetzt. Zunächst in die Rückgrat-Darstellung der Polypeptidkette und schließlich in die "stick"-Darstellung ihrer Aminosäurebausteine. Das Folgemodul lässt die "driving force" der alpha-Helix-Struktur erkennen: Alle hydrophilen Teile des Polypeptid-Rückgrats (die Carbonyl-Sauerstoffatome und die Wasserstoffatome des Peptidbindungs-Stickstoff) bilden Wasserstoffbrücken miteinander. Diese vielen schwachen Wechselwirkungen verleihen der Helix ihre Stabilität. Die "Sättigung" der hydrophilen Rückgratbereiche mit hydrophilen Wechselwirkungen prädestiniert die Helix zu einem in hydrophoben Umgebungen oft verwendeten Strukturmotiv, sei es im hydrophoben Kern von Proteinen (siehe Hydrophobizität, Polarität & Ladungen") oder in Membranprotein-Abschnitten, die der Lipidphase ausgesetzt sind. Die nächste Darstellung macht deutlich, dass die Seitenketten der Aminosäuren einer Helix wie die Stufen einer Wendeltreppe immer nach außen zeigen. Besonders deutlich wird dieses wichtige Strukturprinzip, wenn man die Helix in eine Position bringt, in der man in Richtung ihrer Längsachse blickt. Während sich die Darstellungen zum Thema "Sekundärstrukturen" vor allem mit dem allgemeinen Architekturprinzip der alpha-Helix und den intrahelikalen Wasserstoffbrücken beschäftigten, veranschaulichen die Module dieses Abschnitts die Wechselwirkungen der helikalen Aminosäurereste mit dem hydrophilen Medium und dem hydrophoben Proteinkern. Die erste Darstellung zeigt das raumfüllende Kalottenmodell eines "Grenzflächenhelix"-Abschnitts. Farblich hervorgehoben sind die Stickstoff- und Sauerstoffatome der Seitengruppen und des Rückgrats. Beim Drehen und Wenden der Helix ist zu erkennen, dass es sich um eine "amphiphile Helix" handelt, d.h., dass auf einer Seite hydrophobe Reste, auf der anderen dagegen hydrophile Reste (erkennbar an den Heteroatomen) aus der Achse hervorragen. Diese Eigenschaft spiegelt die Anpassung der Aminosäuresequenz (Primärstruktur) an ihre räumliche Position im Tertiärstrukturkontext wider: Die hydrophobe Seite der Helix geht mit dem hydrophoben Proteinkern hydrophobe (van-der-Waals-)Wechselwirkungen ein und stabilisiert so die Tertiärstruktur des Proteins. Die hydrophile Seite bildet dagegen Wasserstoffbrücken mit den Wassermolekülen der Umgebung. Dieses Hydratwasser trägt dazu bei, das Protein in Lösung zu halten. Deutlicher wird dieses Prinzip in der zweiten Darstellung, die die Heteroatome des Rückgrats ausblendet. Die beiden folgenden Module zeigen dieselbe Darstellung, nur bereits entsprechend den jeweiligen Textinformationen räumlich ausgerichtet. So zeigt zum Beispiel der Blick entlang der Helixachse noch einmal deutlich deren amphipatischen Charakter (Abb. 7): Sämtliche Heteroatome der Seitenketten befinden sich in dieser Ansicht auf der rechten Seite. Die Chime-Darstellungen analysieren die Wechselwirkungen eines Globin-Molekül mit der Umgebung. Die "take home message" diese Abschnittes bildet das allgemeine Strukturprinzip löslicher Proteine: Innen hydrophob (Stabilisierung der Tertiärstruktur über van-der-Waals-Wechselwirkungen), außen hydrophil (Bindung von Hydratwasser über Wasserstoffbrücken). Die erste Darstellung zeigt die farbkodierte Verteilung hydrophober, polarer und geladener Aminosäuren auf der Globin-Oberfläche sowie die Sauerstoffatome von einem Teil des Hydratwassers. Beim Drehen des Proteins treten hydrophile und hydrophobe Oberflächenabschnitte deutlich hervor. Während die hydrophilen Bereiche mit dem Lösungsmittel Wasserstoffbrücken bilden und das Protein in Lösung halten, stabilisieren die hydrophoben Bereiche über hydrophobe Protein-Protein-Wechselwirkungen zwischen den vier Globinen eines Hämoglobin-Moleküls dessen Quartärstruktur (native Struktur eines aus mehreren Proteinuntereinheiten aufgebauten Proteinkomplexes). Der folgende Schnitt macht die Anatomie des Globins - stellvertretend für alle löslichen Proteine - deutlich. Während der Kern durch die Wechselwirkungen hydrophober Seitengruppen stabilisiert wird, ist die dem Medium ausgesetzte Oberfläche mit hydrophilen Resten gespickt. Dieses Strukturprinzip wir mithilfe von weiteren Schnittebenen verdeutlicht, die zunächst immer tiefer in das (hydrophobe) Proteininnere vordringen, um sich danach wieder seiner (hydrophilen) Oberfläche nähern (Abb. 8). Wie falten sich Proteine? Die Analyse der Strukturdarstellungen des Globins bietet sich als Ansatzpunkt für weiterführende Fragen zur Proteinstruktur an: Wie finden die linearen Aminosäureketten im lebenden Plasma ihre komplexe dreidimensionale Struktur? Und warum findet dieser Prozess in Zellen mit so hoher Effizienz, im Reagenzglas aber nur mit sehr niedrigen Ausbeuten statt? Vorhersage von Proteinstrukturen Vom Architekturprinzip der "Packung" einer Polypeptidkette lässt sich leicht der Bogen zur "driving force" ihrer Selbstfaltung schlagen. Der Selbsfaltungsprozess einer Polypeptidkette in ihre native dreidimensionale Struktur wird von ihrer Primärstruktur - also der linearen Abfolge ihrer Aminosäuresequenz - definiert. Dieser Strukturcode ist von Molekularbiologen bis heute noch nicht soweit entschlüsselt worden, dass anhand jeder Sequenz exakte Strukturvorhersagen getroffen werden können (falls das überhaupt möglich ist). In einigen Fällen lassen sich jedoch schon ganz passable Wahrscheinlichkeiten berechnen. All diese Vorhersagen basieren auf einer Bestimmung der thermodynamisch günstigsten Faltung. Das ist zum Beispiel bei einem löslichen Protein (wie vom Globin-Typ) diejenige, die über eine große Anzahl hydrophober Wechselwirkungen im Inneren und hydrophiler Wechselwirkungsmöglichkeiten an der Oberfläche verfügt. Eine gigantische Rechenaufgabe, da im Prinzip die Interaktion eines jeden Aminosäurerestes mit jedem anderen Rest analysiert werden müsste. Die Forscher schränken den Rechenaufwand jedoch erheblich ein, indem zunächst Sekundärstruktur-Wahrscheinlichkeiten analysiert werden. Auch Sequenz-Vergleiche mit Proteinen, deren Struktur bereits durch Röntgenstrukturanalysen eindeutig geklärt ist, erweisen sich als hilfreich: Die Natur verwendet nämlich beim Proteindesign sehr gerne bewährte Proteindomänen (das heißt durch Sekundärstrukturen stabilisierte globuläre Proteinabschnitte, die meist von einem Exon kodiert werden) immer wieder. Aus einem begrenzten Domänen-Repertoire hat die Natur so im Laufe der Evolution eine Vielzahl verschiedener Proteine mit vielfältigen Funktionen "zusammengepuzzelt". "Assisted Self Assembly" Das auf den bekannten Renaturierungsversuchen von Anfinsen basierende Dogma von der "Selbstfaltung" der Proteine ist seit der Entdeckung der Rolle der "Chaperone" nicht gerade ins Wanken geraten, musste jedoch vom "Self Assembly" zum "Assisted Self Assembly" modifiziert werden. Schnell hatte man erkannt, dass die in vitro beobachteten Selbsfaltungsraten viel zu niedrig sind, um eine Zelle funktionstüchtig zu halten. Zahlreiche Proteine zeigen im Reagenzglas sogar überhaupt keine Neigung, nach einer sanften Denaturierung in ihre native Struktur zurück zu finden. Der Grund dafür ist, dass jede Zelle über ein ganzes Arsenal von Chaperonen verfügt - "molekularen Anstandsdamen" - die mittlerweile auch Einzug in die Schulbuchliteratur gehalten haben. Diese Anstandsdamen (die selbst Proteine sind) erkennen "unordentlich" gefaltete Polypeptidketten, die noch keine stabilen Sekundärstrukturen oder noch keine stabile Tertiärstruktur gefunden haben. Als Symptome solcher unvollständigen oder Fehlfaltungen "fahnden" die Chaperone nach hydrophoben Resten, die an der Oberfläche falsch gefalteter Polypeptidketten exponiert werden. Chaperone entfalten diese unbrauchbaren Gebilde unter Energieverbrauch und verhelfen Ihnen somit zu einer neuen Chance, sich richtig zu falten. Sie "bugsieren" damit den Faltungsweg der Polypeptidketten sicher in die Richtung der thermodynamisch günstigsten Konformation, die in der Regel der nativen Proteinstruktur entspricht. Ursache der Sichelzellenanämie ist der Austausch eines einzigen Nukleotids im beta-Hämoglobinketten-Gen, wodurch die hydrophile Aminosäure Glutamat gegen die hydropobe Aminosäure Valin ersetzt wird. Mit fatalen Folgen: Der ausgetauschte Glutamatrest befindet sich nämlich an der Oberfläche des Proteins. Die Exposition des hydrophoben Restes setzt die Löslichkeit de Proteins vor allem im desoxygenierten Zustand stark herab und kann so die Polymerisation des Hämoglobins zu langen und unlöslichen Filamenten auslösen. Die erste Darstellung zeigt die Position des Valins auf der Oberfläche des oxygenierten Sichelzellen-Hämoglobins. Der so erzeugte "hydrophobe Fleck" ist weiß hervorgehoben. Die Desoxygenierung des Moleküls ist mit einer Konformationsänderung der Quartärstruktur verbunden, die einen zusätzlichen hydrophoben Bereich an die Oberfläche befördert (Abb. 9). Dieser ist auch beim "normalen" Hämoglobin vorhanden, wo er keinen negativen Effekt zeigt. Im Verbund mit dem neu hinzu gekommenen Valin-Rest verleiht er dem Molekül jedoch das Potenzial zur Polymerisation, sobald die Desoxy-Form eine kritische Konzentration überschreitet. Das nächste Modul zeigt den ersten Schritt der Polymerisation, die Dimerisierung zweier Moleküle über hydrophobe Wechselwirkungen (Abb. 10). Die an der Polymerisation beteiligten hydrophoben Reste und ihre Wechselwirkung wird erst dann deutlich, wenn die raumfüllende Darstellung durch die Rückgrate der Polypetidketten ersetzt wird. Die letzte Chime-Projektion zeigt eine Vergrößerung der Kontaktstellen. Die für die Sichelzellenanämie charakteristischen sichelförmigen Erythrozyten sind fragiler als ihre "Wildtyp"-Pendants, was die anämische Symptomatik verursacht. Die exponierten hydrophoben Reste wirken wie "hydrophile Lego-Noppen" oder "sticky patches", über die die Proteine zu langen Filamenten polymerisieren und so den Erythrocyten eine sichelförmige Gestalt aufzwingen. Die Sichelzellen sind im Gegensatz zu den geschmeidig-biegsamen normalen Erythrozyten nicht mehr deformierbar und verstopfen unter Sauerstoffmangelbedingungen (Höhenaufhalte, Flugreisen, Narkosen) zunächst kleine und schließlich größere Gefäße, was dann lebensbedrohliche Komplikationen verursacht. Im homozygoten Zustand führte die Krankheit noch vor kurzem im frühen Kindesalter zum Tode. Heterozygote zeigen eine deutlich abgeschwächte Symptomatik. Die Krankheit kommt fast nur bei Afrikanern vor, die aus zentralafrikanischen Regionen mit hohen Malariavorkommen stammen. In einigen Regionen tragen fast 40 Prozent der dortigen Bevölkerung das "defekte" Gen. Die Ursache dafür liegt darin, dass das Sichelzellen-Hämoglobin den Malaria-Erregern Schwierigkeiten bereitet: Heterozygote sind gegen den Malaria-Erreger besser geschützt und haben daher gegenüber den homozygot "Gesunden" einen Selektionsvorteil. Dies zeigt deutlich, wie schmal der Grat zwischen "gesund" und "krank", "nützlich" und "schädlich", sein kann und wie wichtig die genetische Vielfalt des Genpools einer Spezies für dessen Überleben ist: Genetische "Randgruppen" können an bestimmten Orten - oder zu bestimmten Zeiten! - für das Überleben der Art eine unvorhersehbare Bedeutung erlangen. Um die Moleküle der Applikation im Browser interaktiv betrachten zu können, muss der kostenlose Molekülbetrachter Chime der Firma Symyx installiert werden. Wenn dies erfolgt ist, "berühren" sie die Moleküle mit dem Mauszeiger. Wenn Sie die Maus dann bei gedrückter linker Taste bewegen, können Sie die Moleküle beliebig drehen und wenden und so von allen Blickwinkeln aus untersuchen. Um die Entfernung zum Objekt zu ändern, müssen Sie die Shift-Taste (Hochstell-Taste) gleichzeitig mit der linken Maustaste drücken. Dann kann mittels "Vor- und Zurückbewegungen" der Maus der Abstand zum Objekt variiert werden. Wenn Sie den Mauszeiger in einem Molekülfenster platzieren und mit der rechten Taste klicken, erscheint das Chime-Menü mit weiteren Funktionen. Hier können Sie zum Beispiel die Rotation der Moleküle ausschalten. Durch das Anklicken von Buttons der Hämoglobin-Lernumgebung werden die verschiedenen 3D-Darstellungen aufgerufen. Wenn Sie ein Bild bereits geladen haben und dann einen anderen Button anklicken, kann es zu Fehlern kommen. Zwar wird dann das gewünschte Molekül gezeigt, seine Darstellung entspricht dann jedoch nicht der eigentlich vorgesehen "Struktursprache". So kann zum Beispiel eine Polypeptidkette als "stick"-Struktur visualisiert werden, während die Programmierung an dieser Stelle eigentlich die Darstellung eines farbkodierten Kalottenmodells vorgesehen hat. Wenn dies passiert (oder Sie den Verdacht haben, dass dem so ist), können Sie die Seite in einem neuen Browserfenster öffnen und die gewünschte Abbildung neu laden. Alternativ kann es auch helfen, zunächst über den "Zurück-Button" des Browsers zur Übersichtseite der Hämoglobinseite zu gehen und die gewünschte Applikation erneut anzusteuern. Dynamische Arbeitsblätter sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flash-basierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Schülerinnen und Schüler sollen die ATP-Synthase als Beispiel eines Enzyms kennen lernen. den Aufbau der ATP-Synthase kennen lernen. ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend erschließen. die Möglichkeiten des Molekülbetrachters Jmol kennen und den Umgang mit dem Werkzeug lernen. am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms beschreiben. Thema ATP-Synthase - Synthese von Energieäquivalenten Autor Dr. Matthias Nolte, Dr. Thomas Engel, Dr. André Diesel, Florian Thierfeldt Fach Biologie, Chemie Zielgruppe Jahrgangsstufe 11 Zeitraum 2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit) oder Präsentationsrechner mit Beamer; Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download), Flash-Player , Quicktime-Player Struktur-Funktions-Beziehungen werden durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als ?Leitplanken? bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. ?Informations-Popups? und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:457078) Hier können Sie Kontakt mit Herrn Dr. Engel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:700245) Hier können Sie Kontakt mit Herrn Dr. Diesel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes. Weitere Materialien und Anregungen zum Unterricht finden Sie auch auf seiner Homepage www.scientific-beginner.de . (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:450955) Hier können Sie Kontakt mit Herrn Thierfeldt aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Die Schülerinnen und Schüler sollen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer verstehen. eine Sequenz aus einer Datenbank abrufen können. mit einem einfachen Visualisierungsprogramm wie RasMol umgehen können. die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen können. grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen erarbeiten. Struktur-Funktionsbeziehungen begreifen und erklären können. Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben können. Thema Proteinmodelle aus dem Internet - Beispiel Insulin Autorin Prof. Dr. Susanne Bickel Fächer Biologie, Chemie Zielgruppe Jahrgangsstufe 12/13 Zeitraum etwa 6 Stunden mit abschließender Präsentation Technische Voraussetzungen Rechner mit Internetzugang in ausreichender Zahl (Partner- oder Kleingruppenarbeit), (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:458232) (kostenloser Download aus dem Internet) Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:463298) Die Fotosynthese ist einer der bedeutungsvollsten biologischen Prozesse auf der Erde. Grüne Pflanzen wandeln Lichtenergie in chemische Energie um und speichern sie in Form energiereicher Moleküle. Diese werden dann in weiteren Stoffwechselprozessen als Energielieferanten für die Synthese von Kohlenhydraten aus den energiearmen Stoffen Kohlenstoffdioxid und Wasser verwendet. In diesem Prozess wird der für viele Lebewesen notwendige molekulare Sauerstoff gebildet. Die Fotosynthese gliedert sich somit in eine Lichtreaktion (Absorption von Lichtenergie, deren chemische Fixierung und Sauerstoffbildung) und in die lichtunabhängige Dunkelreaktion (Synthese von Glukose aus Kohlenstoffdioxid und Wasser). Die Schülerinnen und Schüler sollen die Teilreaktionen der Lichtreaktion mithilfe der Animation kennenlernen und protokollieren. die an der Reaktion beteiligten Biomoleküle und ihre Lokalisierung - innerhalb oder außerhalb der Thylakoidmembran - kennenlernen. Zusammenhänge formulieren (Kopplung der Fotosysteme) und eine Gesamtbilanz der Reaktion aufstellen. Thema Die Lichtreaktion der Fotosynthese Autor Dr. Ralf-Peter Schmitz Fach Biologie Zielgruppe Sekundarstufe II Zeitraum 1-2 Stunden für die selbstständige Erarbeitung (Einzel- oder Partnerarbeit); flexibel beim Einsatz zur Unterstützung des Unterrichtsgesprächs Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Die Lernenden nutzen die Flash-Animation im Computerraum der Schule in Einzel- oder Partnerarbeit oder auch am heimischen Rechner (Hausaufgabe, Wiederholung). Ihre Ergebnisse können sie den Mitschülerinnen und Mitschülern im Rahmen eines kleinen Vortrags vorstellen. Den Ablauf der Lichtreaktion beschreiben sie dabei mithilfe der per Beamer projizierten Animation. Alternativ zur Nutzung der Animation im Computerraum kann sie nach einem zunächst "computerfreien" Unterricht der Lehrkraft auch dazu dienen, die Lichtreaktion zusammenzufassen und das Unterrichtsgespräch im Fachraum zu unterstützen. Inhalte und Funktionen der Animation Die Teilschritte der Lichtreaktion werden visualisiert. Arbeitsaufträge und Hintergrundinformationen ermöglichen eine selbstständige Erarbeitung des Themas. Die Schülerinnen und Schüler sollen grundlegendes Wissen über den 3D-Aufbau der Rotationsmaschine ATP-Synthase erwerben (Tertiär und Quartärstruktur). prinzipielle Struktur-Funktionsbeziehungen begreifen und erklären können. die wichtigsten Mechanismen der Zelle, chemische Energie in Bewegung umzuwandeln, kennen lernen. Proteinkomplexe in ihrer Eigenschaft als Motoren begreifen. Anwendungsmöglichkeiten für Nanomotoren kennen lernen und selber Ideen entwickeln. die Natur als Vorbild für technische Umsetzungen begreifen und dadurch ein Grundverständnis für die Bionik entwickeln. Utopien und unwissenschaftliche Presseberichte analysieren und auf ihren sachlichen Gehalt reduzieren lernen. Thema Nanomotoren in Natur und Technik Autorin Prof. Dr. Susanne Bickel Fach Biologie Zielgruppe Sek II, Leistungskurs, Projektunterricht zur Biotechnologie Zeitraum 4-5 Stunden Technische Voraussetzungen Rechner mit der Möglichkeit, Filme abzuspielen (zum Beispiel RealPlayer oder Quicktime Player , kostenlose Downloads), in ausreichender Anzahl (Partnerarbeit, Kleingruppen) Planung Nanomotoren in Natur und Technik

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

ATP-Synthase – Synthese von Energieäquivalenten

Unterrichtseinheit

In dieser Unterrichtseinheit für den Biologie- und Chemie-Unterricht beschäftigen sich die Schülerinnen und Schüler mit der ATP-Synthase. Die Regeneration des zentralen zellulären Energieträgers wird zum überwiegenden Teil von der ATP-Synthase gewährleistet. Die hier vorgestellte Lernumgebung ermöglicht Schülerinnen und Schülern eine aktiv-forschende Auseinandersetzung mit der Funktionsweise dieses komplexen Enzyms. In der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" kommen dynamische Arbeitsblätter zum Einsatz. Dies sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen auch dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flashbasierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Struktur-Funktions-Beziehungen werden in der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als "Leitplanken" bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. "Informations-Popups" und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Die Schülerinnen und Schüler lernen die ATP-Synthase als Beispiel eines Enzyms kennen. lernen den Aufbau der ATP-Synthase kennen. erschließen ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend. lernen die Möglichkeiten des Molekülbetrachters Jmol kennen und lernen den Umgang mit dem Werkzeug. beschreiben am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms. Räumliche Vorstellung als Verständnisvoraussetzung Das Vorstellungsvermögen von Schülerinnen und Schülern in Bezug auf die dreidimensionale Struktur von Enzymen ist meist schwach ausgeprägt. In Schulbüchern werden die Lernenden häufig mit "flachen" und schematischen Darstellungen konfrontiert. Moderne Lehrwerke enthalten zwar schon dreidimensional wirkende Grafiken, die mit einer Molekülbetrachter-Software erzeugt wurden. Dennoch haben die Jugendlichen oft große Schwierigkeiten, sich den Aufbau von Enzymen vorzustellen. Das führt häufig zu Verständnisproblemen oder auch falschen Vorstellungen über den Aufbau und die Funktionsweise der Biokatalysatoren. Die Kenntnis der dreidimensionalen Strukturen ist jedoch die Voraussetzung für ein tieferes Verständnis der Natur der Enzyme, ihrer Funktionen, der Interaktion zwischen Enzym und Substrat und vor allem der engen Beziehung zwischen Struktur und Funktion. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Werden die interaktiven Applets zusammen mit Texten, Grafiken und Animationen in HTML-Seiten eingebettet, entsteht eine neue Form von Arbeitsmaterial - das dynamische Arbeitsblatt. Der Vorteil: Interaktive Materialien, Aufgaben und Hilfen stehen in einem Medium auf einen Blick zur Verfügung! Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot von einem der Arbeitsblätter zur ATP-Synthase. Hinweise zu dynamischen Arbeitsblättern mit interaktiven 3D-Molekülen und deren Einsatz im Biologie- oder Chemieunterricht finden Sie in dem Übersichtsartikel "Dynamische Arbeitsblätter mit 3D-Molekülen" . Struktur von Enzymen - ein schwer zu vermittelndes Thema Im Anschluss an die Behandlung von Glykolyse, Citratzyklus und Atmungskette integriert die hier vorgestellte Lernumgebung das zu Beginn des Themenbereichs "Stoffwechsel" erarbeitete Wissen über den Aufbau und die Funktion von Enzymen. Im Sinne eines Spiralcurriculums werden früher gelernte Grundlagen auf aktuelle Lerninhalte angewandt, wiederholt und eingeübt. Im Rahmen der funktionellen Vielfalt der Proteine lernen Schülerinnen und Schüler Enzyme als Biokatalysatoren kennen. Dabei bleibt deren Funktionsweise jedoch häufig unklar. Die Bildung eines Enzymsubstratkomplexes wird mit einer Schlüssel-Schloss-Analogie vermittelt. Diese vereinfachende Darstellung ist zwar einleuchtend, führt jedoch auch dazu, dass den Lernenden die Komplexität der Enzyme nicht bewusst wird. Sie haben daher Schwierigkeiten sich anschaulich vorzustellen, dass für jede biochemische Reaktion in der Zelle ein spezialisiertes Enzym zur Verfügung steht. Es fällt ihnen schwer, Strukturen von Enzymen mit deren Funktionen im Stoffwechsel in Zusammenhang zu bringen. Die ATP-Synthase - meist nur eine "Black Box" Im Themenbereich "Stoffwechsel" wird auch die Gewinnung von Energieäquivalenten in Form von ATP durch das Enzym ATP-Synthase angesprochen. Dies wird zumeist als Faktum präsentiert. Die Lernenden erfahren, dass das Enzym den Transport von Protonen (entlang ihres Konzentrationsgefälles) mit der Bildung von ATP aus ADP und anorganischem Phosphat koppelt. Dies wird in der Regel mithilfe "flacher" und statischer Darstellungen vereinfacht visualisiert. Ziel der 3D-Materialien: Zusammenspiel von Struktur und Funktion Für die in den Bildungsstandards geforderte Auseinandersetzung mit Struktur-Eigenschaftsbeziehungen in der Biologie bietet sich die Untersuchung von Proteinstrukturen eigentlich geradezu an. Das Problem: Mit "klassischen" Materialien verläuft das Unterfangen meist unbefriedigend. Häufig werden die molekularen Strukturen und deren Funktion im Unterricht auch unabhängig voneinander betrachtet, ohne den engen Zusammenhang zu thematisieren. Die hier vorgestellte Lernumgebung soll Abhilfe schaffen und die Lernenden am Beispiel der ATP-Synthase exemplarisch und anschaulich an die Untersuchung von Struktur-Funktions-Beziehungen heranführen. Die Lernumgebung der Unterrichtseinheit besteht aus HTML-Seiten, die mit gängigen Browsern betrachtet werden können. Die darin eingebetteten Darstellungen der Moleküle sind als Java-Applikationen plattformunabhängig. Die einzige Bedingung für ihre Nutzung ist, dass auf Ihrem Computer das kostenfreie Plugin Java Runtime Environment installiert ist. Für die verschiedenen Animationen benötigen Sie den ebenfalls kostenfreien Flash- oder Quicktime-Player. Eine Lenkung der Aufmerksamkeit der Schülerinnen und Schüler erfolgt bereits durch den formalen Aufbau der Arbeitsblätter. Jede Seite richtet den Blick auf einen anderen Aspekt der ATP-Synthase (Lokalisierung, F0- beziehungsweise F1-Struktur und -Funktion, Stator). Die vorgegebenen Beobachtungsaufträge sorgen dafür, dass den Lernenden die wesentlichen Informationen nicht entgehen. Die Arbeitsaufträge im unteren Feld sind durch Piktogramme als Beobachtungsaufgaben (Auge) und Schreibaufgaben (Stift) gekennzeichnet. Die eigenständige Entdeckungsreise der Schülerinnen und Schüler in den Struktur-Funktionszusammenhang der ATP-Synthase wird durch Zusatzinformationen (Popups) unterstützt. Sie beinhalten weitere nützliche Informationen, wie zum Beispiel zum Aufbau von ATP (Abb. 2, Platzhalter bitte anklicken) oder zum Modell des Protonentransports durch die Membran. Diese Informationsboxen können durch einen Klick auf die "i"-Piktogramme aufgerufen werden. Auf den dynamischen Arbeitsblättern zum molekularen Aufbau der F0- und F1-Struktur finden sich Buttons und Arbeitsaufträge "für Experten". Diese ermöglichen eine Binnendifferenzierung. Betrachtet wird hier die Verteilung hydrophiler und hydrophober Aminosäurereste im F1- und F0-Komlex. Dabei lässt sich sehr schön der Unterschied zwischen den transmembranen und den außerhalb der Membran liegenden Bereichen erkennen und thematisieren. Abb. 3 zeigt zwei Ansichten des F0-Komplexes. Hydrophile Aminosäuren sind rot, hydrophobe grün dargestellt. Die linke Teilabbildung zeigt den dem Intermembranraum zugewandten Teil des F0-Komplexes, während die rechte Teilabbildung einen Blick auf die der Lipidphase der Membran zugewendeten Proteinoberflächen zeigt. Abb. 4 zeigt den "Grundzustand" des F1-Komplexes in der Lernumgebung (linke Teilabbildung) sowie den F1-Komplex nach Aktivierung der Funktion "Hydrophobe und hydrophile Bereiche" (rechte Teilabbildung). Diese allgemeine Thematik wurde bereits bei der Besprechung des Membranaufbaus und des Membrantransports erwähnt. An dieser Stelle kann sie eindrucksvoll wiederholt beziehungsweise angewendet werden. Nach der Bearbeitung von Glykolyse, Citratzyklus und Atmungskette wird die ATP-Synthase als die "Maschine" vorgestellt, die den Protonengradienten über der inneren Mitochondrienmembran für die Synthese von ATP nutzt. Dabei werden pro gebildetem ATP drei Protonen durch die Membran befördert, um ein ATP-Molekül zu generieren (dies gilt für Bakterien, siehe Tabelle unten). Zum Einstieg wird per Beamer eine Animation präsentiert, die eine rotierende ATP-Synthase "in Aktion" zeigt (Abb. 5, Platzhalter bitte anklicken). Die Animation wurde von der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge) entwickelt. Eine kleine Version des Films befindet sich auch in der Lernumgebung. Für den Impuls per Beamerpräsentation sollte aber das größere Format verwendet werden, das im Internet zur Verfügung steht (siehe unten). Die Dynamik der Darstellung weckt das Interesse der Lernenden, eine Analyse der Abläufe ist jedoch (noch) nicht möglich. Das Interesse der Schülerinnen und Schüler kann durch folgende Daten weiter angefacht werden: Die ATP-Umsatzrate liegt in Bakterienzellen bei bis zu 2.500.000 Molekülen pro Sekunde! Ein Mensch setzt pro Tag (in Ruhe) etwa 70 Kilogramm ATP um. Der menschliche Körper enthält (bei einem Gewicht von etwa 70 Kilogramm) nur 50 bis 200 Gramm ATP, das nach dem Verbrauch überwiegend durch die ATP-Synthase regeneriert wird. Nach diesen Impulsen fordert die Lehrperson die Schülerinnen und Schüler auf, sich einzeln oder in Partnerarbeit mithilfe der dynamischen Arbeitsblätter den Aufbau und die Funktion der ATP-Synthase soweit zu erschließen, dass sie im Anschluss daran erklären können, was in der gezeigten Animation dargestellt ist: The rotary mechanism of mitochondrial ATP synthase Animation aus der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge). Infos und weitere Animationen finden Sie hier . Kapitel Die dynamischen Arbeitsblätter sollen das Augenmerk der Lernenden auf den Zusammenhang zwischen Struktur und Funktion der ATP-Synthase richten. Das komplexe Molekül wird dabei in seine Bauteile (F0, F1, Stator) "zerlegt". Die Lernumgebung gliedert sich in folgende Kapitel: Lokalisierung Hier wird die Lokalisierung der ATP-Synthase als integrales Membranprotein der inneren Mitochondrienmembran dargestellt. Die Lage des Enzyms in Bezug auf den durch die Atmungskette aufgebauten Protonengradienten wird thematisiert. (Die Lernumgebung beschränkt sich exemplarisch auf die ATP-Synthase und deren Orientierung in der Mitochondrienmembran. Die Lokalisierung des Enzyms in Bakterien und Chloroplasten kann bei Bedarf im Anschluss an die Bearbeitung der Lernumgebung erfolgen.) F0-Struktur Die Schülerinnen und Schüler machen sich hier mit dem Aufbau der Transmembraneinheit der ATP-Synthase vertraut. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet und interpretiert werden. F0-Funktion Die Lernenden erkunden das auf der Hypothese des deutschen Biophysikers Wolfgang Junge basierende Modell des Protonentransports durch die Membran. Die Vorgänge werden durch eine Flash-Animation dynamisch dargestellt. F1-Struktur Die Schülerinnen und Schüler untersuchen den Aufbau der "Kopf"-Struktur der ATP-Synthase. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet, interpretiert und mit der Verteilung im F0-Komplex verglichen werden. F1-Funktion Hier werden die Vorgänge bei der Synthese von ATP aus ADP und Phosphat in der Kopf-Struktur der ATP-Synthase untersucht und durch Videosequenzen dynamisch dargestellt (Quelle der Filme: ATP Synthase Group, MRC Dunn Human Nutrition Unit, Cambridge). Stator - Struktur und Funktion Die Lernenden setzen sich mit der Funktion der Verbindung zwischen Membran- und Kopfteil auseinander und setzen ihre bisherigen Erkenntnisse zu einem Gesamtbild der ATP-Synthase-Funktion zusammen. Der größte Teil des ATP wird bei Tieren, Pflanzen und den meisten Bakterien durch ATP-Synthasen gebildet. Ihr Aufbau unterscheidet sich in den verschiedenen Organismen in Details. Wie in der folgenden Tabelle zu erkennen, variiert zum Beispiel die Zahl der F0c-Untereinheiten und die Zahl der pro gebildetem ATP transportierten Protonen. ATP-Synthasen Anzahl der F0c-Peptide Protonen pro ATP Bakterien (Escherichia coli) 12 4 Mitochondrien (Hefe) 10 3,3 Chloroplasten (Spinat) 14 4,7 Das Grundprinzip der Struktur und der Funktion der ATP-Synthasen ist jedoch bei allen Organismen dasselbe. Alle in den dynamischen Arbeitsblättern dargestellten Moleküle zeigen den Aufbau der ATP-Synthase des Darmbakteriums Escherichia coli. Der Modellorganismus wurde und wird von den ATP-Synthase-Forschern intensiv untersucht. Das animierte Funktionsmodell in dem Kapitel "F0-Funktion", das die Be- und Entladung von F0c-Untereinheiten mit Protonen zeigt (Abb. 6), gibt ebenfalls die Verhältnisse bei Escherichia coli wider. Die Aminosäuren ASP 61 und ARG 210 sind die funktionellen Aminosäuren der ATP-Synthase des Bakteriums. In der ATP-Synthase von Mitochondrien und Chloroplasten übernimmt die ebenfalls saure Aminosäure Glutaminsäure (GLU) die Funktion der Asparaginsäure (ASP). In einem letzten Informations-Popup der Lernumgebung wird unter der Überschrift "Nur ein Modell" darauf hingewiesen, dass die dargestellte Funktionsweise der ATP-Synthase ein Modell ist, das den derzeitigen Stand der Forschung widerspiegelt. Es ist wichtig, die Schülerinnen und Schüler darauf hinzuweisen, dass der Mechanismus der ATP-Synthese noch nicht vollständig geklärt ist und dass sie sich hier in "Grenzgebieten" der aktuellen Forschung bewegen. Je nach Zeitreserve und Interesse der Lerngruppe können die noch offenen Fragen angesprochen werden. Zudem bietet sich hier eine allgemeine Diskussion über die Bedeutung und die Aussagekraft von Modellen in den Naturwissenschaften an. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Dünnschichtchromatographie - Farbstoffe, Schmerztabletten

Unterrichtseinheit

Die hier vorgestellten spielerischen Versuche zur Auftrennung gängiger Faserstift-Farben und die folgende wissenschaftlich exakte Identifizierung von Inhaltsstoffen gängiger Schmerztabletten mithilfe von Referenzsubstanzen sind der Garant für eine hohe Motivation der Lernenden. Modellierungen mit Excel veranschaulichen den Begriff des multiplikativen Gleichgewichts bei der Chromatographie.Die Experimente zur Chromatographie verdeutlichen die Bedeutung der Trennmethode und geben Denkanstöße zu anderen Themenbereichen - bis hin zur DNA-Analyse oder dem Nachweis von toxischen Verunreinigungen oder Fremdsubstanzen in Modedrogen. Vor den praktischen Übungen werden mit einem Tabellenkalkulationsprogramm (hier Excel) die Verteilungsvorgänge bei der Dünnschichtchromatographie (Austauschvorgänge zwischen mobiler und fester Phase) mathematisch modelliert und grafisch dargestellt. Die Lernenden verstehen die Verteilungsvorgänge mithilfe des Computers als ?Zeichen- und Rechenknecht?. In der Unterrichtseinheit verbinden sich somit am Computer entwickelte Modellvorstellungen mit greifbaren Versuchsergebnissen. 1. Stunde: Chromatographie - eine revolutionäre Technik Allgemeine Hinweise zur Dünnschichtchromatographie 2. Stunde: Mathematische Simulation der multiplikativen Verteilung Mit Excel-Dateien wird die multiplikative Verteilung von zwei zu trennenden Stoffen berechnet und in Diagrammform dargestellt. 3. Stunde: Chromatographie von Farbstoffgemischen Einstieg in die Chromatographie-Praxis: Hier finden Sie Hinweise zur Durchführung, Ergebnisbeispiele und eine ausführliche Versuchsanleitung für die Lernenden. 4. Stunde: Chromatographie von Schmerzmitteln Die Schülerinnen und Schüler analysieren die Bestandteile eines Schmerzmittels und nutzen das Internet, um die Medikamenten-Marke zu bestimmen. Weitere Versuchsvorschläge und Anregungen Experimente zur Trennung von Pflanzenfarbstoffen Die Schülerinnen und Schüler sollen die Verteilung von Farbstoffen mithilfe einer vorgegebenen Excel-Datei bei unterschiedlichen Verteilungskoeffizienten simulieren und die Auswirkungen an der Excel-Grafik ablesen. an einigen Beispielen die zugrunde liegende Excel-Rechenanweisungen zur Konzentrationsberechnung nachvollziehen. experimentell sauber arbeiten und Versuchsprotokolle führen können. in einem Versuch zur Trennung von Farbstoffgemischen erleben, dass die Dünnschichtchromatographie überraschende Ergebnisse liefert. in einem Versuch zur Trennung von Schmerzmitteln die Komponenten einer Schmerztablette identifizieren und mithilfe von Internetrecherchen einem Markennamen zuordnen oder die Auswahl der in Frage kommenden Produkte eingrenzen. weitere Versuche durchführen (Trennung von Paprika-, Curry- und Blattfarbstoffen). Das Wort "Chromatographie" (aus dem Griechischen) bedeutet "mit Farbe schreiben" (chroma = Farbe, graphein = schreiben). In der Chemie fasst man unter diesem Begriff keine Maltechnik, sondern eine Reihe von Techniken zur analytischen Trennung von Stoffen zusammen: Papier-, Dünnschicht-, Gaschromatographie und noch weitere moderne Methoden. Die Chromatographie war und ist für die Naturstoff- und Biochemie von sehr großer Bedeutung, da man mit ihr Stoffgemische sehr leicht trennen und die Bestandteile identifizieren kann. Erwin Chargaff hat zum Beispiel mithilfe chromatographischer Techniken einen wesentlichen Beitrag zur Strukturaufklärung der DNA geleistet. In modernen Labors werden Chromatographien automatisiert durchgeführt und per Computer ausgewertet. Feste Phase Bei der Dünnschicht-Chromatographie benutzt man eine feste Phase auf einem Trägermaterial (Alufolie, Plastikfolie oder Glasplatte), an der die zu untersuchenden Stoffe getrennt werden. Die feste Phase kann zum Beispiel Cellulose, Aluminiumoxid oder Kieselgel sein. Sie ist sehr fein und gleichmäßig auf dem Trägermaterial verteilt. Mobile Phase: Das Laufmittel Die flüssige Phase bewegt sich durch Kapillarkräfte durch die feste Phase und transportiert dabei die Stoffe des Substanzgemisches. Auftragung der Substanzproben Auf die Dünnschichtchromatographie-Folie trägt man mithilfe einer Kapillare die Proben punktförmig entlang einer Startlinie auf und lässt sie eintrocknen. Nach dem Auftragen der Proben stellt man die Folie aufrecht in einen Chromatographie-Tank, der gerade soviel von der mobilen (flüssigen) Phase enthält, dass die Startlinie mit den aufgetragenen Proben einen halben Zentimeter oberhalb des Flüssigkeitsspiegels liegt. Durch Kapillarkräfte beginnt die mobile Phase durch die feste Phase zu wandern und zieht dabei die Substanzproben mit sich. Während der Chromatographie stellt sich entlang der Laufstrecke ständig ein neues Gleichgewicht ein zwischen der Lösung des Stoffes (in der mobilen Phase) und der Adsorption des Stoffes (an die stationäre Phase). Nimmt man die Folie aus dem Gefäß und trocknet sie, so befindet sich der "Fleck" jeder Komponente der Probe auf einer ganz bestimmten Höhe des Chromatogramms (wobei sich die Farbstoffmengen der mobilen und der stationären Phase nach der Trocknung der Folie an jedem Ort jeweils addieren). Die Trennung kommt dadurch zustande, dass sich die Substanzen verschieden gut in der mobilen Phase lösen und weitertransportiert werden. verschieden fest an die feste Phase angelagern (Adsorption). Der Rf-Wert Je besser sich eine Substanz im wandernden Lösungsmittel löst und je kleiner ihre Affinität zum Trägermaterial ist, desto schneller und weiter wird sie mit dem Lösungsmittel wandern. Daraus ergibt sich als eine charakteristische Größe der Rf-Wert ("Ratio of front") der Substanz (Wanderungsstrecke der Substanz / gesamte Wanderungsstrecke des Lösungsmittels). Der maximale Rf-Wert beträgt somit 1, meist liegt er deutlich darunter. Er hängt von der chemischen Struktur der Substanz, vom Trägermaterial und vom Lösungsmittelgemisch ab (Kammmersättigung und konstante Versuchstemperatur werden vorausgesetzt). Jonas Hostettler vom Departement Chemie der Universität Basel hat ein kleines Simulationsprogramm entwickelt und für die Veröffentlichung zur Verfügung gestellt. Es eignet sich sehr gut als Ergänzung zu den eher trockenen Erklärungen der Vorgänge bei der multiplen Verteilung (Beamerpräsentation, Nutzung am heimischen Rechner oder im Computerraum). In dem ZIP-Ordner "dc_simulation_verteilung" (siehe unten) finden Sie die Datei "Verteilung.htm", mit der Sie das Programm per Mausklick starten (Abb. 1, Platzhalter bitte anklicken). Weisen Sie Ihre Schülerinnen und Schülern darauf hin, dass in den Reagenzgläsern die untere (grüne) Phase der stationären Phase, die obere (blaugrüne) Phase der mobilen Phase, also dem Fließ- oder Laufmittel, entspricht. Um die Simulation starten zu können, müssen für die beiden zu trennenden Stoffe Verteilungskoeffizienten (v) Werte eintragen werden. Mit dem Wert für "i" geben Sie die Zahl der im ersten Schritt zu simulierenden Trennschritte vor. Durch den Klick auf "Rechne!" wird dann das multiplikative Gleichgewicht für eine entsprechende Zahl von Reagenzgläsern berechnet. Die Konzentrationen der Stoffe werden als Balkendiagramme dargestellt. Dabei werden leider nur die Konzentrationen in der mobilen Phase (grün) berücksichtigt. Durch Klick auf "i+1" wird jeweils ein weiterer Trennschritt berechnet. (Aus programmiertechnischen Gründen startet die Software bei i-Werten, die größer sind als eins, jeweils beim "letzten" Trennschritt.) Die Excel-Dateien können zur Unterstützung des Unterrichtsgespräches eingesetzt werden. Dazu sind lediglich ein Präsentationsrechner und ein Beamer erforderlich. Machen Sie sich mit den Simulationen vor der Verwendung im Unterricht vertraut. Verwenden Sie am besten die Verteilungskoeffizienten 0,5 für den roten und blauen Farbstoff - hier werden die Zahlenreihen am verständlichsten. Die Funktionen und Eigenschaften der beiden Excel-Simulationen werden in den folgenden Abschnitten dargestellt. Darstellung der multiplikativen Verteilung Mit der Datei "1_multiplikative_verteilung_5_schritte.xls" (Abb. 2, Platzhalter bitte anklicken) wird eine Stofftrennung (rechnerisch) mit nur fünf Trennschritten simuliert: Die Konzentrationen eines roten und eines blauen Farbstoffs in der mobilen und der stationären Phase werden rechnerisch und grafisch dargestellt. Die Konzentrationen und die Verteilungskoeffizienten der Stoffe (rote Zahlen = roter Farbstoff, blaue Zahlen = blauer Farbstoff) lassen sich ändern. Die Ergebnisse werden jeweils in einer Grafik ("Multiple Verteilung - stationäre und mobile Phase") dargestellt, die sich den eingegeben Werten automatisch anpasst. In der Spalte B steht "GG" für die Einstellung des Gleichgewichtes, der nach rechts gerichtete Pfeil für das "Vorrücken" der Fließmittelfront. Variation der Verteilungskoeffizienten In den Feldern L2 und L4 (siehe Abb. 3) können die Verteilungskoeffizienten geändert werden (Werte zwischen 0 und 1). Experimentieren Sie mit verschiedenen Werten. Diese Felder geben an, zu welchen Anteilen die beiden Stoffe in die mobile Phase übergehen: In Feld D6 steht dann der Anteil roten Farbstoffs, der in die mobile Phase übergeht (0,25 entspricht 25 Prozent), im Feld G6 der Anteil roten Farbstoffs, den die stationäre Phase in dem jeweiligen Schritt absorbiert (1 - 0,25 = 0,75; also 75 Prozent). Um den Inhalt der Felder D6 und G6 brauchen Sie sich nicht zu kümmern - ihre Werte richten sich nach der Eingabe in L2 und L4 (Vorgabe der Verteilungskoeffizienten). Stoffmengen In den Feldern E2 und E4 (Abb. 3) können die Stoffmengen variiert werden. Werte unter zehn liefern im Graphen zu flache Kurven und werden nicht angenommen. Wie werden die Berechnungen durchgeführt? Die gelb unterlegten Felder (siehe Abb. 4 und Abb. 5) enthalten die Stoffmengen der mobilen Phase, die blau unterlegten enthalten die absorbierten Anteile der stationären Phase. Vor dem Weiterwandern der mobilen Phase, also hinter der Fließmittelfront, findet eine Gleichgewichtseinstellung statt (Abb. 4). Nach der Gleichgewichtseinstellung wandert die mobile Phase weiter - zunächst ohne erneute Gleichgewichtseinstellung (Abb. 5). Danach findet wieder eine Gleichgewichtseinstellung statt und das Fließmittel wandert wieder eine Zelle weiter - und so geht es weiter, bis fünf Trennschritte simuliert sind. Ganz unten in der Tabelle (Zeile 48 und 49, siehe Abb. 2) werden die Stoffmengen der stationären und der mobilen Phase für jeden Farbstoff und jede Zelle addiert. Diese Werte erscheinen in der Grafik. Natürlich sind fünf Trennschritte noch zu wenig, um eine scharfe Trennung der Farbstoffe zu simulieren. Dies ist mit der zweiten Excel-Datei möglich (2_multiplikative_verteilung_stat _mobil_10_schritte.xls), die zehn Trennschritte simuliert (Abb. 6, Platzhalter bitte anklicken). Dabei werden die Verteilungen in der stationären und mobilen Phase - im Unterschied zur ersten Simulation - zusammengefasst. Dies ist im Vergleich zur ersten Simulation ein Vorteil: dort müssen bei der Betrachtung der Trennschritte die Stoffmengen der mobilen und der stationären Phase jeweils addiert werden. Wieder gilt: Rote Zahlen gelten für den roten, blaue für den blauen Farbstoff. Wie funktioniert diese "Zusammenfassung" der Stoffmengen in der stationären und mobilen Phase? Betrachten wir in Abb. 7 das oval markierte Feld E14. Wir wollen gerade die Teilchenmengen berechnen, die im dritten Trennschritt anfallen. E14 wird mit zwei Teilchenmengen "versorgt": Von der Zelle davor kommt der Anteil an Substanz hinzu, der in ihr in die mobile Phase übergegangen ist ("C12*D6", also das Produkt der Werte aus den Zellen C12 und D6) und weitertransportiert wird (grüner Pfeil). Zusätzlich kommt der Inhalt der Zelle hinzu, der von der stationären Phase festgehalten (E12*G6) und nicht weiter transportiert wird (roter Pfeil). Für eine detaillierte und mehr schrittweise Betrachtung der Einzelvorgänge ist die Excel-Datei mit den fünf Schritten geeigneter - besonders für jüngere Lernende. Erfahrungsgemäß verstehen Schülerinnen und Schüler des Gymnasiums (ab Klasse 10) die gekoppelten Vorgänge in der Excel-Simulation mit zehn Schritten gut - zumal das zweite Excel-Arbeitblatt auch noch eine Grafik zeigt, die nur fünf Trennschritte darstellt (in Abb. 6 nicht dargestellt): man erkennt im Vergleich mit dem oberen Diagramm (zehn Trennschritte) deutlich den Unterschied, der sich mit der steigenden Zahl der Trennschritte einstellt. Hier noch zwei wichtige Hinweise: Sie können sich bei geöffneter Excel-Datei die verwendeten Formeln anzeigen lassen. Klicken Sie auf "Extras", "Formelüberwachung", "Formelüberwachungsmodus". Der "Klick-Rückweg" führt zur normalen Tabellendarstellung zurück. Beim Schließen der Excel-Datei sollten die vorgenommenen Änderungen nicht gespeichert werden (Abb. 8). So bleibt der Originalzustand der Simulationen erhalten. Im Rahmen einer Projektarbeit können die Schülerinnen und Schüler - je nach Interesse und Fähigkeiten - in selbständiger Arbeit das mathematische Modell zur multiplikativen Verteilung mit einer objekt-orientierten Programmiersprache wir zum Beispiel Visual Basic "automatisieren". So lassen sich über Hundert Trennschritte in einer "Schleife" berechnen. Die Diagramme der Auftrennung werden so erheblich klarer und aussagekräftiger. Mit der Dünnschichtchromatographie kann man Farbstoffgemische auftrennen und zeigen, dass eine scheinbar einfarbige Lösung oder die Farbe eines Faserschreibers oft aus vielen Einzelkomponenten unterschiedlicher Farbe besteht. Die Auftrennung verschiedenfarbiger Faserschreiber liefert - abhängig von der Herstellerfirma und der Farbe - optisch eindrucksvolle Resultate. Dabei kann zum Beispiel untersucht werden, welcher Herstellerfirma ein Faserschreiber zuzuordnen ist. Abb. 9 zeigt einige Ergebnisse aus Schülerversuchen. Die Betrachtung der getrockneten Chromatogramme unter langwelligem UV-Licht (UV-Lampe nicht auf die Augen richten beziehungsweise in die Lampe hineinsehen, im Idealfall Schutzbrillen verwenden!) zeigt - je nach Fabrikat und Farbe - schwach fluoreszierende Zusatzstoffe, die im Tageslicht die Brillanz der Farben erhöhen. Bereitgestellt werden müssen die Dünnschichtchromatographie-Folien (siehe "dc_versuch_1_farbstoffe.pdf"), Trennkammern mit Deckeln, eine Flasche mit vorbereitetem Fließmittel, ein Trichter, weiche Bleistifte (zur Markierung der Folien) und eventuell eine UV-Lampe mit umschaltbarem Wellenlängenbereich. Das verwendete Laufmittel enthält Acetonitril (siehe "dc_versuch_1_farbstoffe.pdf"). Es liefert in kurzer Zeit sehr gute Trennerfolge und ist für Schülerversuche noch zugelassen. Führen Sie den Versuch nur in einem gut ziehenden Abzug durch. Nach der Chromatographie wird Fließmittel aus den Gefäßen durch einen Trichter ins Vorratsgefäß zurückgegeben. Die Filter werden seitlich an die Gefäße gestellt und unter dem Abzug getrocknet. Achten Sie bei längerer Lagerung des Laufmittels auf den pH-Wert - er sollte bei etwa 7,0 liegen. Farbstifte bringen die Schülerinnen und Schüler mit. Achten Sie jedoch darauf, dass keine Permanentstifte verwendet werden. Als Lehrkräfte müssen wir bei den weiteren Versuchen dieser Unterrichtseinheit immer wieder auf die exakten Vorbereitungen zurückgreifen und uns darauf verlassen können, dass die Schülerinnen und Schüler selbstständig die Folien vorbereiten, die Stoffe auftragen und die Trennung sorgfältig durchführen können. Achten Sie bei diesem ersten Versuch daher besonders auf folgende Punkte: Sind alle Folien ordnungsgemäß vorbereitet? Sind auf den Folien Farbe und Fabrikat der Farbstifte vermerkt? Sind die Folien mit dem Namen der Arbeitsgruppe beschriftet? Weiß jede Arbeitsgruppe, welches Gefäß und welche Folie zu ihr gehört? Werden die Farbtupfer nicht zu dick aufgebracht? Zu viel Farbstoff führt zu verschmierten Flecken, daher gilt: Weniger ist mehr! Beim Auftragen der Proben lieber mehrmals tüpfeln - Proben dabei zwischendurch trocknen lassen. Lassen die Schülerinnen und Schüler die Folie einfach in die Chromatographiekammer fallen? Tauchen die Farbtupfer nicht in das Fließmittel ein? Vergleichen die Lernenden die Trennergebnisse mit anderen Arbeitsgruppen? Nach dem spielerischen Einsteig wird nun eine anspruchsvollere Aufgabe wissenschaftlich exakt bearbeitet. Die Datei "dc_versuch 2_schmerzmittel.pdf" (siehe unten) liefert neben einer Liste mit den benötigten Materialien eine genaue Versuchsvorschrift - von der Vorbereitung der Folie bis hin zur Auswertung der Ergebnisse unter UV-Licht (Abb. 10). Zeigen Sie den Schülerinnen und Schülern vor Versuchsbeginn die weißen Substanzen in Reinform (Acetylsalicylsäure, Coffein, Paracetamol; Sie benötigen diese Stoffe bei der Chromatoghraphie auch als Referenzsubstanzen). Sie werden gleich die Problematik erkennen, dass weiße (oder farblose) Stoffe auf dem weißen Folienbelag bei Tageslicht nicht sichtbar sind. Bei der Frage nach Möglichkeiten zum Nachweis "unsichtbarer" Substanzen können die Schülerinnen und Schüler - spätestens nach dem Hinweis auf die Geldscheinprüfung - die Begriffe UV-Licht oder Fluoreszenz ins Spiel bringen. Bitte halten Sie die vorgegebenen Stoff- und Lösungsmittelmengen ein - sie sind erprobt (siehe "dc_versuch 2_schmerzmittel.pdf"). Aspirin (Acetylsalicylsäure) in methanolischer Lösung sollte nicht zu lange aufbewahrt werden oder gar mit Luftfeuchtigkeit in Kontakt kommen. Es findet eine langsame Hydrolyse beziehungsweise Umesterung statt. Die entstehende Salicylsäure erzeugt im Chromatogramm oberhalb des Aspirins einen diffusen, blau fluoreszierenden Fleck, der sehr störend ist. Verwenden Sie daher nur frisch zubereitete Aspirinlösungen. Verwenden Sie als Analysenprobe möglichst Schmerztabletten, die entweder alle drei Vergleichssubstanzen oder mindestens zwei davon enthalten. Führen Sie den Versuch nur unter einem gut ziehenden Abzug durch und beachten Sie die Brennbarkeit der Lösungsmittel! Die Markierung der Lösungsmittelfront muss sofort nach der Entnahme der Folie aus dem Chromatographiegefäß erfolgen, sonst ist sie nicht mehr eindeutig erkennbar. Betrachten Sie nur völlig trockene Folien unter UV-Licht. Richten Sie die Lampe nie auf Augen. Weisen Sie die Schülerinnen und Schüler dauf hin, nie in die Lampe zu blicken (im Idealfall Schutzbrillen verwenden). Bei der Betrachtung der Folien unter UV-Licht (254 nm) fluoresziert die weiße Trägersubstanz durch ihren Fluoreszensfarbstoff grünlich. Farblose Substanzen, die nicht fluoreszieren, schwächen die Fluoreszens des Trägermaterials und machen sich als "dunkle Flecken" bemerkbar. Die Schülerinnen und Schüler umfahren diese Flecken der aufgetrennten Substanzen vorsichtig mit einem weichen Bleistift. Besonders intensive Flecke werden schraffiert. Dabei ist darauf zu achten, dass die weiße Schicht der Folie nicht beschädigt wird. Achten Sie auch darauf, dass die Gruppen ihre Markierungen bei Tageslicht kontrollieren und noch einmal mit dem Erscheinungsbild unter UV-Licht vergleichen, bevor sie die Lampe verlassen: Wurde auch kein Fleck vergessen? Wurden besonders intensive Flecken schraffiert? Dies sind die Voraussetzung für klare Aussagen: Was sind die Rf-Werte für die Referenzsubstanzen Aspirin, Coffein und Paracetamol? Welche "Flecke" mit gleichem Rf-Wert sieht man bei der Schmerzmittelprobe? Abb. 11 zeigt das Ergebnis der Auswertung eines Schülerversuchs (a: Ergebnis unter UV-Licht; b: beschriftete Originalfolie). Die Schülerinnen und Schüler zeigen sich überrascht, wenn zum Beispiel bei einer Gruppe ein "Fleck" auftaucht, der keiner Referenzsubstanz zugeordnet werden kann. Eine "heimliche" Zugabe von 100 mg Ibuprofen zur Lösung der Analysenprobe liefert einen solchen "Rätselfleck", der zu weiterführenden Überlegungen anregen und die Bedeutung der Chromatographie als einfache Methode zum Aufspüren von Verunreinigungen verdeutlichen soll: Um welchen Stoff (welche Verunreinigung) kann es sich handeln? Welche wirksamen (rezeptfreien) Substanzen zur Schmerzbekämpfung gibt es sonst noch? Wie könnte man die unbekannte Substanz identifizieren? Die Schülerinnen und Schüler können die Aufgabe erhalten, die Zusammensetzung gängiger Schmerztabletten im Internet zu recherchieren und zumindest eine Auswahl der für die Zuordnung ihrer Probe in Frage kommenden Präparate zu erstellen. Erfahrungsgemäß erweisen sie sich dabei als sehr findig! Die Schülerinnen und Schüler sollen nun auf der Basis ihrer experimentellen Erfahrungen die benötigten Geräte selbst zusammenstellen (Hilfestellung durch die Lehrkraft), die Chemikalien und Proben besorgen und den Versuch eigenverantwortlich durchführen und auswerten. Die Anleitungen zu den folgenden drei Experimenten (Trennung von Paprika-, Curry- und Blattfarbstoffen) sind daher nicht mehr so ausführlich. Gegebenenfalls können die Lernenden auch noch weitere Anleitungen recherchieren und Experimente durchführen. Beachten Sie bei den hier vorgeschlagenen Pflanzenfarbstoff-Chromatographien folgende Punkte: Frische Ausgangsmaterialien Besonders beim Paprikapulver ist darauf zu achten, dass es frisch ist und nicht längere Zeit Luft und Licht ausgesetzt wurde. Feuergefährliches Fließmittel Besondere Vorsicht ist bei der Entwicklung der Chromatogramme geboten. Dies sollte nur im gut ziehenden Abzug erfolgen. Verwenden Sie hier keine offenen Flammen, keine heißen Gegenstände und keine Handys (Fotoblitz)! Um die Entzündung feuergefährlicher Lösungsmittel auszuschließen, fotografieren Sie die Chromatogramme nie unter dem Abzug. Lichtempfindliche Substanzen Die Entwicklung der Chromatogramme findet sowieso im Abzug statt - daher dürfte Licht- oder gar Sonneneinstrahlung dabei kein Thema sein. Nach dem Trocknen sollten die Chromatogramme lichtgeschützt aufbewahrt werden. Paprikafarbstoffe Abb. 12 zeigt ein Chromatogramm von Paprika-Farbstoffen. Je nach Paprikasorte können auch weniger Banden erzielt werden. Die hier verwendeten Paprika-Früchte stammten aus Ungarn. Curry- beziehungsweise Curcuma-Farbstoffe Bei der chromatographischen Analyse von Curcuma sollten sich fünf Flecke ergeben: drei gelbe (Rf-Werte 0,17, 0,29 und 0,46) und zwei blau fluoreszierende (Rf-Werte 0,25 und 0,54). Bei Currypulver erhält man mindestens einen intensiv orangefarbigen Fleck und drei gelbe Flecke mit kleineren Rf-Werten. Die aufgetrennten Blattfarbstoffe (Abb. 13) unterscheiden sich farblich teilweise nur durch Nuancen: Carotine (goldgelb) Phaeophytin (olivgrün) Chlorophyll a (blaugrün) Chlorophyll b (gelbgrün) Lutein (graugelb) Violaxanthin (gelb) Neoxanthin (gelb) Im Unterricht kann die Dünnschichtchromatographie auch als Möglichkeit zum Nachweis von Verunreinigungen beziehungsweise Fremdsubstanzen bei illegalen Modedrogen wie Exstacy oder Speed thematisiert werden - mit dem ausdrücklichen Hinweis, dass diese toxischen Fremdsubstanzen oft einen beträchtlichen Anteil der Droge ausmachen, teils absichtlich zugegeben werden und andere bei der Herstellung unvermeidbar als Nebenprodukte entstehen, die weder bekannt noch toxikologisch geprüft sind. Die Abnehmerinnen und Konsumenten der Drogen sind daher Versuchskaninchen, um deren Gesundheit und die Spätfolgen (Krebs, cerebrale Effekte, persönlichkeitsverändernde Wirkungen) sich niemand kümmert. Die Vermeidung oder Beseitigung gesundheitsschädlicher Nebenprodukte hätte Zeit-, Substanz- und damit Einnahmeverluste der "Produzenten", Dealerinnen und Dealer zur Folge. "Cash" ist deren Maxime, das erhebliche gesundheitliche und psychische "Restrisiko" tragen allein die Abnehmer und Konsumentinnen. Dieser Aspekt ist als Übergang oder Anknüpfungspunkt zu einer fachübergreifenden Unterrichtseinheit zum Thema "Suchtstoffe und Drogen" gut geeignet.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Diabetes – Grundlagen der Krankheit

Unterrichtseinheit

Schülerinnen und Schüler sollen sich im Rahmen des Themas Diabetes mit der Wirkung von Hormonen, mit Peptidhormonen, Signalkaskaden und Immunreaktionen auseinandersetzen. Dabei helfen Recherchen im vorgegebenen Material und im Internet, entweder auf vorgegebenen Webseiten oder mithilfe von Suchmaschinen.Die Unterrichtseinheit soll den Lernenden die Ursachen für eine Diabetes-Erkrankung näher bringen und das Grundverständnis für den Umgang mit einer solchen Behinderung wecken. Diabetiker müssen ihren Blutzuckerspiegel ständig beobachten und einstellen. Das ist aufgrund der heutigen maßgeschneiderten Insuline mit langer oder kurzer Wirkzeit sehr viel leichter als früher. Die Vielfalt der möglichen Ursachen für Altersdiabetes wird deutlich, wenn man das Prinzip einer Signalkaskade verstanden hat und weiß, dass kein Bausteinchen der Signalkette fehlen darf. Die Schülerinnen und Schüler erlangen Kompetenzen im inhaltlichen, methodischen und sozialen Bereich.Voraussetzung für die Durchführung dieser Unterrichtseinheit ist die grundsätzliche Kenntnis der Hormonwirkung, der Wechselwirkung zwischen Enzym und Substrat (Spezifität der Bindungsstelle) sowie des Zuckerstoffwechsels. Unterrichtsverlauf und Materialien In arbeitsteiliger Partnerarbeit beschäftigen sich die Lernenden mit verschiedenen Diabetes-Themen. Ihre Ergebnisse präsentieren sie den Mitschülerinnen und Mitschülern. Die Schülerinnen und Schüler wissen, dass Diabetes mellitus eine Stoffwechselerkrankung ist, die verschiedene Ursachen haben kann und können diese Ursachen benennen können die Regelung des Blutzuckerspiegels und das Zusammenwirken von Insulin und Glucagon durch einen einfachen Regelkreis darstellen können das Prinzip der Signalkaskade auf den Insulinrezeptor anwenden können den Zusammenhang zwischen Autoimmunreaktion und Diabetes Typ I mithilfe einer Immunantwort skizzieren. können die Fortschritte in der heutigen Diabetes-Forschung benennen und maßgeschneiderte Insuline und ihre Wirkungen beschreiben. können im Internet Kriterien geleitet recherchieren und die wesentlichen Punkte ihrer Recherche verschriftlichen. können recherchierte Materialien adressatenbezogen aufbereiten und anderen vortragen. Einstieg Als motivierender Einstieg in die Thematik eignet sich zum Beispiel ein Video aus der Mediathek des Deutschen Diabeteszentrums in Düsseldorf. Dort sind auch Fallbeispiele integriert. Die Videos stehen online zur Verfügung: Deutsches Diabeteszentrum (DDZ), Düsseldorf Auf der DDZ-Webseite finden Sie Videosequenzen (Presse und Öffentlichkeit / Mediathek / Videos) zu verschiedenen Diabetes-Themen. Partner- oder Gruppenarbeit Nach dem Einstieg empfehle ich Partnerarbeit zur inhaltlichen Recherche, wobei die Arbeitsblätter als Aufgabenstellungen für fünf Gruppen geeignet sind. In größeren Kursen können die Arbeitsblätter auch redundant bearbeitet werden. Alternativ ist auch Gruppenarbeit möglich, wobei sich außer der Beschäftigung mit den Faktoren, die den Blutzuckerspiegel beeinflussen, eine Gruppe mit Autoimunreaktionen, eine mit der Hormonwirkung und eine mit dem Insulinrezeptor und der Signalkaskade beschäftigen kann. Auch weitere Einteilungen sind je nach Vorwissen und Leistungsfähigkeit der Schülerinnen und Schüler denkbar. Schülervorträge Die Ergebnisse werden didaktisch aufbereitet und zu Schülervorträgen verwendet. Ausführliche Hinweise zum Unterrichtsverlauf finden Sie in dem Verlaufsplan, Diabetes ? Grundlagen der Krankheit (Pop-up) der Unterrichtseinheit. Bickel, H. et al. Natura Oberstufe, Neurobiologie und Verhalten (1997), Ernst Klett Verlag Stuttgart; Seite 62 bis 69. Bickel, H. et al. Natura: Biologie f. Gymnasien Band 3b, 12. und 13. Schuljahr NRW (2001), Ernst Klett Verlag Stuttgart; Seite 284 bis 293. Bickel, S., Krull, H.-P., Wedershoven, B. Natura Schwerpunktvorhaben 3b NRW (2002) Ernst Klett Verlag Stuttgart; Seite 85 bis 96. Beyer, I. et al. Natura Biologie für Gymnasien, Oberstufe (2005) Ernst Klett Verlag Stuttgart; Seite 260 bis 265. Kattmann, U. Glucose im Fließgleichgewicht, Unterricht Biologie 158 (1990), Friedrich-Verlag Velber, Seite 32 ff. Ruppert, W. Insulin - vom Molekül zum Menschen, Unterricht Biologie 229 (1997), Friedrich-Verlag Velber, Seite 44 ff. Zürcher, S. Insulin und der Glucose-Stoffwechsel - Diabetes mellitus, Unterricht Biologie 331 (2008), Friedrich-Verlag Velber, Seite 22 ff. Conrad B, Weidmann E, Trucco G, Rudert WA, Behboo R, Ricordi C, Rodriquez-Rilo H, Finegold D, Trucco M. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology; Nature, 1994 Sep 22;371(6495):351-5. Über diesen Link gelangen Sie zurück zur Startseite der Unterrichtseinheit "Diabetes - Grundlagen der Krankheit".

  • Biologie
  • Sekundarstufe II

Warum ist "Kerrygold"-Butter so weich?

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zur organischen Chemie nutzen die Lernenden ein Molekül-Zeichenprogramm, recherchieren im Internet und führen selbst entwickelte Experimente durch, um der chemischen Natur der streichweichen Butter auf die Spur zu kommen. Das mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnete Material, das sich für den Präsenz- und Distanzunterricht eignet, gibt es hier mit Musterlösungen und einer Handreichung für Lehrkräfte mit nur einem Klick zum Download.Die Unterrichtseinheit "Warum ist die 'Kerrygold'-Butter so weich?" ermöglicht, ausgehend von einer Alltagsfrage, wissenschaftspropädeutisches Arbeiten im Unterricht. Die Schülerinnen und Schüler lernen den Unterschied zwischen qualitativen und quantitativen Experimenten kennen. Inhaltlich stehen Ester und die elektrophile Addition im Mittelpunkt. Exkurse zu Butter-Farbstoffen und Iodzahl sind möglich. Die Unterrichtseinheit wurde mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnet. Didaktische Analyse Diese Unterrichtseinheit ermöglicht im Rahmen des Themas Butter die Behandlung von ganz verschiedenen Inhalten und Methoden der Chemie, die vielleicht auf den ersten Blick keinen fachsystematisch sinnvollen Zusammenhang versprechen. Wählt man den Zeitpunkt der Unterrichtseinheit jedoch geschickt, kann man die kontextgebundene Einführung neuer Inhalte und fachwissenschaftlicher Methoden mit integrierten Wiederholungen, zum Beispiel zur Vorbereitung auf das Abitur oder auch im Rahmen eines Projektunterrichts, sehr schön verknüpfen. Das Material untergliedert sich in acht Teile mit unterschiedlichen Arbeits- und Rechercheaufträgen für Schülerinnen und Schüler. Dabei kommen verschiedenste Sozialformen und Zugänge zum Tragen, die es ermöglichen, gruppenspezifisch zu differenzieren und in Präsenz oder Distanz zu unterrichten. Fachkompetenz Die Schülerinnen und Schüler erleben, wie sich aus einer einfachen Frage eine kleine Forschungsreihe entwickelt. können einen Strukturformel-Editor nutzen, um auf molekularer Ebene Antworten auf eine chemische Fragestellung zu finden. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet und wählen themenbezogene und aussagekräftige Informationen aus. können zwischen qualitativen und quantitativen Versuchen unterscheiden. Sozialkompetenz Die Schülerinnen und Schüler entwickeln gemeinsam ein Experiment.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Proteinmodelle aus dem Internet – Beispiel Insulin

Unterrichtseinheit

In dieser Unterrichtseinheit werden am Beispiel Insulin Proteindatenbanken und kostenlose Molekülbetrachter wie RasMol vorgestellt. Diese Datenbanken bieten die Möglichkeit, mithilfe des Computers Aspekte der Struktur-Funktionsbeziehung auf molekularer Ebene so anschaulich darzustellen, wie dies im Unterricht mit keinem anderen Hilfsmittel möglich ist.Möchte man die Raumstruktur eines Proteins in einem Molekülmodell darstellen, so benötigt man die Raumkoordinaten jedes einzelnen Atoms. Polypeptidsequenzen, für die diese Raumkoordinaten bereits bekannt sind, werden in der Regel in Datenbanken im Internet veröffentlicht. Von dort kann man sie auf den eigenen Rechner laden und als 3D-Molekülmodell visualisieren. Diese Unterrichtsheit zeigt am Beispiel des Insulins, wie am Rechner 3D-Molekülmodelle visualisiert werden können. In diesem Zusammenhang wird auch die Fragestellung nach dem Einsatz von Schweineinsulin und gentechnisch verändertem Insulin beim Menschen erörtert. Die Arbeit mit der Proteindatenbank schafft ein Bewusstsein dafür, wie wichtig das Internet als Drehscheibe für Biodaten und die freie Zugänglichkeit von Forschungsergebnissen für die tägliche Arbeit der weltweiten Wissenschaftsgemeinschaft ist. 3D-Computermodelle im Unterricht Der vollständige Weg von der Peptidsequenz zum dreidimensionalen Computermodell eines Proteins ist schwierig zu vermitteln, da sehr viele mathematische und physikalische Details in ihm stecken. Die räumliche Darstellung eines Proteins, zum Beispiel eines Stoffwechselenzyms oder eines Transportmoleküls wie des Sauerstoff bindenden Myoglobins, ist jedoch sehr wichtig für das Verständnis seiner Funktion. Dies soll auch der Lehrer-Online-Artikel Die dreidimensionale Hämoglobinstruktur verdeutlichen. Die räumliche Struktur von Substratbindungsstellen steht in direkter Beziehung zur Raumstruktur der Substrate (Schlüssel-Schloss-Prinzip) und damit zur Substratspezifität der Enzyme. Auch die Wirkung kompetitiver Hemmstoffe oder allosterischer Regulatoren können mithilfe einer interaktiven 3D-Struktur der Biomoleküle besser verdeutlicht werden, als dies durch andere Lehrmittel möglich ist. Arbeit mit Datenbanken im Biologie-Unterricht Die in den beiden Arbeitsblättern gestellten Aufgaben sollen zum einen dazu beitragen, die Wichtigkeit von Proteindatenbanken in der Hinsicht auf die Vergleichsmöglichkeiten (Zugehörigkeit eines Proteins zu einer "Proteinfamilie") von Sequenzen zu zeigen. Zum anderen soll die Medienkompetenz der Schülerinnen und Schüler - der Zugang zu einer Datenbank und der Umgang mit einem Visualisierungsprogramm - geschult werden. Die Arbeit mit Originaldaten, die Forscherinnen und Forscher im Internet veröffentlicht haben und die täglich von der weltweiten Wissenschaftsgemeinschaft genutzt werden, wirkt auf die Lernenden motivierend. Außerdem entwickeln sie ein Bewusstsein dafür, wie wichtig es für die modernen Biowissenschaften ist, dass Forschungsergebnisse frei zur Verfügung stehen und welche Rolle dabei das Internet spielt, das als Informationsquelle aus dem täglichen Forschungsbetrieb der Molekularbiologen nicht mehr wegzudenken ist. Unterrichtsverlauf "Proteinmodelle im Unterricht" Die Schülerinnen und Schüler sollten bereits Kenntnisse über Aminosäuren, den Aufbau der Peptidbindung, Primär- und Sekundärstrukturen sowie Wechselwirkungen zwischen den Peptidketten haben und mit dem Computer sicher umgehen können. Gegebenenfalls muss eine Einführung in RasMol und die Nutzung einer Datenbank eingebaut werden. Je nach Schwierigkeitsgrad des Unterrichts und der Vorbildung der Lernenden können die Methodik der Röntgenstrukturanalyse und der Kernmagnetischen Resonanz (NMR) genauer analysiert werden. Fachlicher Hintergrund Informationen zum Weg von der DNA-Sequenz bis zur Tertiärstruktur eines Proteins und Infos zu dem für die Visualisierung im Unterricht benötigten Molekülbetrachter RasMol Die Schülerinnen und Schüler verstehen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer. können eine Sequenz aus einer Datenbank abrufen. können mit einem einfachen Visualisierungsprogramm wie RasMol umgehen. können die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen. erarbeiten grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen. können Struktur-Funktionsbeziehungen begreifen und erklären. können Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben. Aus der durch die DNA-Sequenz definierten Primärstruktur des Proteins lassen sich Sekundärstrukturbereiche (Faltblätter, Helices, ungeordnete Schleifen) vorhersagen, die durch Wechselwirkungen zwischen den Peptidbindungen und den Seitenketten der Aminosäuren entstehen. Um aber eine Aussage über die - wie es im Fachjargon so schön heißt - Struktur-Funktionsbeziehungen machen zu können, zum Beispiel im Zusammenhang mit den Eigenschaften des katalytischen Zentrums eines Enzyms, benötigt man noch die 3D-Struktur des Proteins in Verbindung mit weiteren Daten, wie zum Beispiel der spezifischen Bindung von Substraten oder Hemmstoffen. Erst dann können Aussagen über die Proteinfunktion auf der molekularen Ebene gemacht werden. Zur Aufklärung der vollständigen räumlichen Anordnung einer nativen Polypeptidkette, seiner Tertiärstruktur, muss zunächst ein hochreiner Proteinkristall "gezüchtet" werden. Hat man ein geordnetes Proteinkristallgitter erreicht, kann dieses mithilfe der Röntgenstrukturanalyse untersucht werden. Die Röntgenstrahlen werden beim Durchtritt durch den Kristall (Wellenlänge im Ångström-Bereich, 1Å = 0,1 nm) gebeugt. Das entstehende Beugungsmuster wird entweder von einem elektronischen Detektor aufgefangen (Diffraktometer) oder mithilfe eines Films sichtbar gemacht. Durch ein mathematisches Verfahren (Fourier-Transformation) erhält man eine Elektronendichtekarte, aus der die Raumkoordinaten für jedes einzelne Atom im Kristall bestimmt werden können. Einfacher hat man es, wenn das Protein zu einer bereits bekannten Proteinfamilie gehört und eine starke Homologie zu einem Protein aufweist, dessen 3D-Struktur bereits aufgeklärt ist. Dann kann die Struktur des "neuen" Proteins durch eine Modellierung abgeleitet werden. Das Züchten von Proteinkristallen für die Röntgenstrukturanalyse ist keine triviale Angelegenheit. Um zum Erfolg zu kommen, wurden Proteinkristalle sogar schon im Weltraum gezüchtet, denn unter den Bedingungen der Schwerelosigkeit sind die Voraussetzungen für die Herstellung fehlerfreier Kristalle besonders günstig. Insbesondere Membranproteine lassen sich nur schwer kristallisieren. In solchen Fällen kann die Struktur eines Proteins mittels NMR auch in Lösung ermittelt werden. Hierbei ergibt sich jedoch keine eindeutige Struktur, da sich die Atome des Proteins in diesem Zustand bewegen (siehe "Zusatzinformationen" auf der Startseite des Artikels). Die Raumkoordinaten von Proteinen werden in Form langer Listen in Online-Datenbanken gespeichert. Von dort kann man sie als Textdateien auf den eigenen Rechner laden und mit einem geeigneten Programm visualisieren. Ein solches Programm ist zum Beispiel das im Internet für schulische Zwecke frei erhältliche RasMol. Die Software bietet die Möglichkeit, aus den Koordinatenangaben der Datenbank dreidimensionale Proteinmodelle zu erstellen, die man um ihre Achsen rotieren lassen oder mit der Maus anfassen und beliebig drehen und wenden kann. Auch ein "Hineinzoomen" in die Moleküle ist möglich. Mit RasMol können Proteine in verschiedenen Darstellungsformen visualisiert werden (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell). Heteroatome, Wasserstoffbrücken oder gebundene Wassermoleküle lassen sich oft anzeigen. Ein Nachteil des Programms ist, dass die Befehlssprache englisch ist und dass die Arbeit nur über die "Command line" läuft, die nicht sehr nutzerfreundlich ist. Empfehlenswert ist es, sich eine Liste der vom Programm erkannten Kommandos auszudrucken. Der vollständige Weg von der Peptidsequenz zum dreidimensionalen Computermodell eines Proteins ist schwierig zu vermitteln, da sehr viele mathematische und physikalische Details in ihm stecken. Die räumliche Darstellung eines Proteins, zum Beispiel eines Stoffwechselenzyms oder eines Transportmoleküls wie des Sauerstoff bindenden Myoglobins, ist jedoch sehr wichtig für das Verständnis seiner Funktion. Dies soll auch der Lehrer-Online-Artikel Die dreidimensionale Hämoglobinstruktur verdeutlichen. Die räumliche Struktur von Substratbindungsstellen steht in direkter Beziehung zur Raumstruktur der Substrate (Schlüssel-Schloss-Prinzip) und damit zur Substratspezifität der Enzyme. Auch die Wirkung kompetitiver Hemmstoffe oder allosterischer Regulatoren können mithilfe einer interaktiven 3D-Struktur der Biomoleküle besser verdeutlicht werden, als dies durch andere Lehrmittel möglich ist. Die in den beiden Arbeitsblättern gestellten Aufgaben sollen zum einen dazu beitragen, die Wichtigkeit von Proteindatenbanken in der Hinsicht auf die Vergleichsmöglichkeiten (Zugehörigkeit eines Proteins zu einer "Proteinfamilie") von Sequenzen zu zeigen. Zum anderen soll die Medienkompetenz der Schülerinnen und Schüler - der Zugang zu einer Datenbank und der Umgang mit einem Visualisierungsprogramm - geschult werden. Die Arbeit mit Originaldaten, die Forscherinnen und Forscher im Internet veröffentlicht haben und die täglich von der weltweiten Wissenschaftsgemeinschaft genutzt werden, wirkt auf die Lernenden motivierend. Außerdem entwickeln sie ein Bewusstsein dafür, wie wichtig es für die modernen Biowissenschaften ist, dass Forschungsergebnisse frei zur Verfügung stehen und welche Rolle dabei das Internet spielt, das als Informationsquelle aus dem täglichen Forschungsbetrieb der Molekularbiologen nicht mehr wegzudenken ist. Die Schülerinnen und Schüler sollten bereits Kenntnisse über Aminosäuren, den Aufbau der Peptidbindung, Primär- und Sekundärstrukturen sowie Wechselwirkungen zwischen den Peptidketten haben und mit dem Computer sicher umgehen können. Gegebenenfalls muss eine Einführung in RasMol und die Nutzung einer Datenbank eingebaut werden. Je nach Schwierigkeitsgrad des Unterrichts und der Vorbildung der Lernenden können die Methodik der Röntgenstrukturanalyse und der Kernmagnetischen Resonanz (NMR) genauer analysiert werden.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II
ANZEIGE