• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Merkur - Beobachtung des flinken Planeten

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Merkur steht die Beobachtung dieses Planeten im Mittelpunkt, der nur an wenigen Tagen eines Jahres mit dem bloßen Auge als auffälliges Objekt zu sehen ist.Die Beobachtung der Merkurphasen ist recht schwierig. Das Planetenscheibchen erscheint wesentlich kleiner als das der Venus und die Sichtbedingungen in Horizontnähe, in der sich Merkur in der Dämmerung aufhält, sind nicht die besten. Unter sehr günstigen Voraussetzungen - also bei kalter und klarer Luft - können Merkursichel und Halbmerkur jedoch bereits bei sechzigfacher Vergrößerung in einem guten Spektiv, wie es von Ornithologen verwendet wird, erkannt werden. Für die reizvolle Beobachtung des sich verändernden Erscheinungsbilds eines inneren Planeten um dessen untere Konjunktion herum ist jedoch Venus der Planet der Wahl und Merkur ein Objekt für Fortgeschrittene. Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software Simulationen durchgeführt und Sternkarten ausgedruckt werden.Visuell spektakulär ist die Beobachtung von Merkur - auch in größeren Amateurteleskopen - nicht. Aber alle Naturfreunde sind auch Sammler. Damit interessierte Schülerinnen und Schüler ihrer persönlichen Kollektion der mit eigenen Augen beobachteten Planeten den schwierigigen Merkur hinzufügen können, sollte man die seltene Gelegenheit einer guten Merkursichtbarkeit nicht ungenutzt verstreichen lassen. Allgemeine Hinweise zur Merkurbeobachtung Warum ist Merkur so selten zu sehen? Und wie entstehen die Merkurphasen? Wann und wo ist der flinke Planet am Himmel zu finden? Mythologie und Forschung Was haben Diebe und Handlungsreisende gemeinsam? Wie sieht die Oberfläche von Merkur aus? Warum ist es so schwierig, eine Sonde in eine Merkurumlaufbahn zu bringen? Die Schülerinnen und Schüler können Bewegung und Phasen des Merkur erklären und schulen ihr räumliches Vorstellungsvermögen. sehen Merkur mit eigenen Augen. erkennen und erklären die relativ schnelle Bewegung von Merkur am Himmel. lernen die charakteristischen Eigenschaften des Merkur und die NASA-Mission Messenger kennen. planen eine astronomische Beobachtung gemeinsam und erleben sie zusammen mit Mitschülern, Lehrpersonen, Eltern, Freundinnen oder Freunden. kennen und nutzen Planetarium-Software als Werkzeug zur Planung astronomischer Beobachtungen. Merkur umkreist die Sonne in einem mittleren Abstand von 58 Millionen Kilometern. Das entspricht etwa einem Drittel der Entfernung von der Erde zur Sonne. Die seltene Erscheinung des Planeten am Morgen- und Abendhimmel ist die Folge seiner Sonnennähe. Er ist nur nach Sonnenuntergang über dem westlichen Horizont oder vor Sonnenaufgang über dem östlichen Horizont zu sehen - allerdings selten länger als eine Stunde -, wenn er sich aus unserer Blickrichtung weit genug "seitlich" von der Sonne befindet. Aufgrund seiner horizontnahen Position bietet die visuelle Beobachtung des Planeten mit einem Teleskop meist einen enttäuschenden Anblick: Dunstschichten und Turbulenzen in der Atmosphäre sorgen dafür, dass Merkur unscharf erscheint und bei hohen Vergrößerungen sogar im Blickfeld "umhertanzt" und "amorph" wirkt. Die Phasen des Merkur sind - im Gegensatz zu denen der Venus - daher nur schwer zu beobachten. Zudem macht sich bemerkbar, dass der mit einem Durchmesser von 4.800 Kilometern kleinste Planet des Sonnensystems weiter von uns entfernt ist als die Venus, deren Sichelform bereits mit einem Feldstecher gut erkennbar ist. Abb. 1 zeigt ein Foto des Merkur von Jens Hackmann. Der innerhalb der Erdbahn kreisende Merkur "pendelt" von uns aus gesehen zwischen der größten westlichen und der größten östlichen Elongation hin und her (Abb. 2). Im Gegensatz zu Mars und den äußeren Planeten ist bei den inneren Planeten Merkur und Venus zwischen der unteren und der oberen Konjunktion zu unterscheiden. In den Zeiten um beide Konjunktionen herum befinden sich die inneren Planeten nahe bei der Sonne am Taghimmel und sind nicht zu beobachten (ähnlich der "Neumondsituation"). Ein Java-Applet von Rob Scharein veranschaulicht dynamisch die Entstehung der Phasen bei den inneren Planeten Venus und Merkur. Sonne, Erde und die Bewegung des inneren Planeten werden in der Aufsicht dargestellt. Zeitgleich sieht man - aus der Perspektive irdischer Beobachter - die Entwicklung der Phasen und die Veränderungen der Größe des Planetenscheibchens. Mit fast 50 Kilometern pro Sekunde weist Merkur die höchste mittlere Bahngeschwindigkeit aller Planeten auf. Seine Umlaufzeit beträgt 88 Tage. Die relativ zügige Bewegung des Planeten am Himmel, sein kurzes Erscheinen und das schnelle Verschwinden machten ihn nicht nur zum Götterboten der Griechen (Hermes) und Römer, sondern auch zum Schutzgott der Handlungsreisenden - und dem der Diebe, da er nach deren Gepflogenheit nur kurz auftaucht, um dann wieder zu verschwinden. Seine "Flüchtigkeit" am Himmel steht auch in Beziehung zu der lateinischen Bezeichnung für das bei Raumtemperatur flüssige Quecksilber, "mercurius". "Mercurius incognitus" Merkur gehört zu den am wenigsten erforschten Planeten. Nicht einmal 50 Prozent seiner Oberfläche sind kartiert. Die bisher bekannte Topographie geht auf den zweimaligen Vorbeiflug der Raumsonde Mariner 10 in der Mitte der siebziger Jahre zurück. Seine Oberfläche ist von Kratern übersäht und ähnelt der des Mondes (Abb. 3). In 58 Tagen dreht er sich einmal um die eigene Achse. In Kombination mit der Umlaufzeit von 88 Tagen ergibt sich daraus die Länge eines Merkurtages zu 176 Erdentagen. Da eine dichte Atmosphäre, die Temperaturunterschiede mildert, fehlt, herrschen auf Merkur die größten Temperaturunterschiede im gesamten Sonnensystem: Während die der Sonne abgewandte Seite des Planeten auf mehr als -180 Grad Celsius abkühlt, wurden auf der Tagesseite Temperaturen von über 400 Grad Celsius gemessen. Blei würde auf der Merkuroberfläche im Sonnenlicht wie Butter dahinschmelzen. Die Merkursonde Messenger Die im Jahr 2004 gestartete Raumsonde der NASA wird im März 2011 in eine Merkurumlaufbahn einschwenken und die gesamte Oberfläche des Planeten erforschen. Eine Sonde in eine Umlaufbahn des Merkur zu bringen ist kein einfaches Unterfangen: Die Gravitation der Sonne beschleunigt die Raumsonde nämlich enorm, während die Anziehung des Merkur nur sehr schwach ist. Daher wird Messenger über ein kompliziertes Manöver, das drei Vorbeiflüge an Merkur einschließt, in die Umlaufbahn des Planeten gebracht. Die ersten beiden Vorbeiflüge hat der Orbiter bereits hinter sich (beide im Jahr 2008), das dritte Rendezvous erfolgte im September 2009. Abb. 3 zeigt ein Foto, das beim ersten Messenger-Vorbeiflug aufgenommen wurde. Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse und deren Begleitumstände: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Ethologische Phänomene beim "Clicker-Training"

Unterrichtseinheit

"Click and Treat", so heißt eine moderne Methode der Tiererziehung. Sie basiert auf grundlegenden ethologischen Phänomenen, die in der Schule anschaulich und lebensnah erarbeitet oder vertieft werden können. Mithilfe von Informationen aus dem Internet bereiten die Lernenden ein Experiment zur Funktionsweise des Clicker-Trainings vor und führen es mit einem Hund durch.Clicker-Training wird seit einigen Jahren in der Hundeerziehung immer häufiger eingesetzt. Es basiert auf der Grundlage der operanten Konditionierung. Bekannt wurde es vor allem durch die amerikanische Zoologin Karen Pryor, die es im Delfin-Training (hier wird mit einer Hochfrequenzpfeife gearbeitet) einsetzte. Der Clicker, ein "Knackfrosch", der ein kurzes und charakteristisches Klick-Klackgeräusch erzeugt, wird als konditionierender (sekundärer) Bestärker eingesetzt. In der hier vorgestellten Unterrichtseinheit können die Prinzipien der Konditionierung auf das Beispiel "Pfote geben" übertragen und eventuell mithilfe eines Experiments zum "Zeigestock-Berühren" zum Clicker-Training im Unterricht handlungsorientiert nachvollzogen werden." Weiterführende Internet-Adressen helfen bei der Bearbeitung der Aufgabenblätter.Unterrichtliche Voraussetzung ist die Behandlung der klassischen und operanten Konditionierung. Am Beispiel des Clicker-Trainings können die Schülerinnen und Schüler einerseits theoretische Grundlagen (klassische und operante Konditionierung, positive Bestärkung, Lernen am Erfolg) vertiefen, andererseits können sie anhand eines praktischen Beispiels einen Versuch durchführen und auswerten. Infos zum Clicker-Training Durchführung eines Clicker-Trainings am Beispiel eines Hundes, der das Pfote-Geben lernt. Der Clicker "überbrückt" die Zeitspanne zwischen dem Ausüben des belohnten Verhaltens und dem Erhalt der Belohnung. Arbeits- und Informationsblätter Was ist "Click and Treat"? Entwicklung und Durchführung eines Clicker-Experiments und ein Informationsblatt für Lehrkräfte. Die Schülerinnen und Schüler sollen mithilfe von Internet-Recherchen die Methode des Clicker-Trainings kennen lernen. ihr Wissen über klassische und operante Konditionierung sowie sekundäre Bestärker am Clicker-Training anwenden. den Vorteil des Clicker-Trainings mit seinem sekundären Bestärker (und als gewaltfreie Erziehung) erkennen. ein eigenes Experiment mithilfe von Informationen aus dem Netz entwickeln und durchführen. die wissenschaftliche Arbeitsweise trainieren. Titel Ethologische Phänomene am Beispiel des Clicker-Trainings Autorin Andrea Mannebach Fach Biologie Zielgruppe Sek II Zeitraum 2 bis 3 Stunden Technische Vorausetzungen Pro Arbeitsgruppe ein PC mit Internetanschluss Sonstige Voraussetzungen Clicker und ein Hund zur Durchführung des Experiments Pryor, Karen Positiv bestärken - sanft erziehen: die verblüffende Methode, nicht nur für Hunde Kosmos, Stuttgart 1999 ISBN 3-440-07695-4 Pietralla, Martin Clickertraining für Hunde Kosmos, Stuttgart 2000 ISBN 3-440-08012-9 Das Tier, zum Beispiel der Hund, wird zunächst auf das Klicken konditioniert, indem er etwa 20 Mal nach einem Klick, also dem Klick-Klack-Geräusch, eine Belohnung (zum Beispiel ein Futterstück) erhält. Danach klickt (und belohnt) man nur noch für ein bestimmtes Verhalten des Hundes. Soll der Hund lernen die Pfote zu geben, streckt man ihm seine Hand entgegen. Er wird nun verschiedene Verhaltensweisen ausführen, zum Beispiel die Hand mit der Schnauze anstupsen, sich hinsetzen oder -legen, bellen, jaulen oder auch gar nichts tun. Aber irgendwann wird er auch die Hand mit der Pfote anstupsen. Genau in diesem Augenblick, wenn der Hund seine Pfote hebt, wird geklickt und danach erhält der Hund seine Belohnung. Streckt man die Hand wieder aus, wird der Hund wie zuvor verschiedene Verhaltensweisen ausführen. Sobald er erneut die Hand mit der Pfote berührt, klickt man wieder. Nach jedem Erfolg wird es schneller gehen. (Unser eigener Hund hat auf diese Weise innerhalb von fünf Minuten das Pfote geben gelernt.) Wieso wird der Clicker als "Brücke" zwischen Verhalten und Belohnung eingesetzt? Arbeitet man nur mit Belohnung, also mit einem primären Bestärker, sollte die Belohnung erfolgen, während das Verhalten ausgeübt wird. Dies würde allerdings schwierig, wenn der Hund ein Verhalten in einer bestimmten Distanz zum Trainer ausführen soll (zum Beispiel den Befehl "Sitz" in Entfernung ausführen). Das Clicker-Signal verbindet in diesen Fällen das gewünschte Verhalten mit der späteren Belohnung. Beim Training mit Delfinen wird dies sehr deutlich. So kann man bei Delfin-Dressuren beobachten, dass der Trainer zum Beispiel nach einem erfolgreichen Sprung sofort mit einer Hochfrequenz-Pfeife "bestätigt" und das Tier, das nicht in unmittelbarer Nähe ist, erst danach zum Trainer schwimmt und sich die Belohnung abholt. Die Belohnung erfolgt also nicht sofort unmittelbar nach dem Sprung, dafür aber der Pfiff (beim Clicker-Training das Klick-Geräusch) als sekundärer Bestärker. Ohne Pfeife müsste der Trainer sich ständig im Wasser aufhalten ;-). Aber auch wenn sich das Tier in der Nähe befindet, kann mit einem "Klick" der Zeitpunkt des richtigen Verhaltens sehr viel genauer "getroffen" werden als mit einem primären Bestärker. Das Klick-Geräusch ermöglicht darüber hinaus ein immer wiederkehrendes, gleichbleibendes Signal. Das Beispiel des Hundetrainings ist sehr lebensnah und kann von den Hundebesitzern unter den Schülerinnen und Schülern einfach nachvollzogen werden (die Lehrkraft, eine Schülerin oder ein Schüler können zu diesem Zweck ihren Hund mit in den Unterricht bringen). Der Aufbau eines entsprechenden Experiments ist sehr leicht möglich und kostengünstig (ein Clicker kostet nur wenige Euro). Die Lernenden können ihr Wissen auf andere Verhaltensweisen übertragen und somit das Wissen um ethologische Phänomene im Alltag einsetzen. Arbeitsblatt 1: Einarbeitung Inzwischen ist eine Vielzahl von wissenschaftlicher Literatur zum Clicker-Training vorhanden. Auch im Internet finden sich sehr ansprechende und informative Seiten, die im Unterricht von Schülerinnen und Schülern zur selbstständigen Erarbeitung genutzt werden können (siehe "Zusatzinformationen" auf der Startseite des Artikels). Diese Onlineressourcen finden die Lernenden auf den Arbeitsblättern. Das erste Arbeitsblatt dient der Erarbeitung des Themas Clicker-Training sowie dem Transfer der - zuvor erarbeiteten - theoretischen Grundlagen der operanten Konditionierung auf ein Praxisbeispiel. Hier ist insbesondere der Effekt des sekundären Bestärkers von Bedeutung und sollte von den Schülerinnen und Schülern erarbeitet werden. Arbeitsblatt 2: Entwicklung und Durchführung eines Clicker-Experiments Das zweite Arbeitsblatt dient der wissenschaftspropädeutischen, eigenständigen Entwicklung eines biologisch-ethologischen Versuchs mit seinen entsprechenden Rahmenbedingungen sowie der Anwendung des Clicker-Trainings auf die Praxis, das heißt der Erziehung eines Hundes zum Pfote-Geben mithilfe des Clicker-Trainings. Das Informationsblatt zeigt, wie ein von den Schülerinnen und Schülern entworfenes Experiment zum Clicker-Training sowie der entsprechende Beobachtungsbogen (siehe Arbeitsblatt 2) aussehen kann.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Bestimmung der Mondentfernung durch Triangulation

Unterrichtseinheit

Schülerinnen und Schüler aus Südafrika, Griechenland und Deutschland fotografierten zur selben Zeit Mond, Jupiter und Saturn. Nachdem die Bilder über das Internet ausgetauscht worden waren, wurde die Mondparallaxe bestimmt und die Entfernung des Mondes von der Erde berechnet. Eine günstige Stellung des Mondes wurde genutzt, um in Kooperation mit Schulen in fernen Ländern die Mondentfernung zu bestimmen. Dazu wurde der Winkelabstand Jupiter-Saturn mit einem Jakobsstab gemessen. Der Winkelabstand des Mondes wurde mithilfe von Fotografien bestimmt, die zeitgleich an verschiedenen Orten (Neumünster, Thessaloniki, Johannesburg) aufgenommen, digital bearbeitet und ausgewertet wurden. Aus den ermittelten Werten wurde mithilfe des Sinussatzes die Entfernung der Erde zum Mond mit 372.500 Kilometern bestimmt. Der Literaturwert für die mittlere Entfernung beträgt 384.401 Kilometer. Das hier vorgestellte anspruchsvolle Projekt eignet sich für Astronomie-Arbeitsgemeinschaften und wurde vom Autor im Rahmen des SINUS-Programms in Schleswig-Holstein durchgeführt. Die Auswertung der Messdaten gelingt im Mathematik-Unterricht der 10. Klasse (Sinussatz). Das Thema ist Teil des Unterrichts zur Gravitation in Jahrgangstufe 11 (Mechanik). Die Aufgabe "Bestimme die Entfernung des Mondes" ist schnell formuliert, lässt sich aber nur mit relativ großem Aufwand lösen. Sie erfordert neben vielfältigem Wissen aus verschiedenen Gebieten auch handwerkliche und organisatorische Fähigkeiten und Fertigkeiten Vorbereitung und Softwaretipps Hinweise für die Suche nach Beobachtungspartnern und Tipps zur Softwarenutzung bei der Auswahl des Beobachtungstermins und der Bildbearbeitung Grundlagen und Winkelmessungen Geometrische Grundlagen und praktische Vorschläge zur Durchführung der Winkelmessungen Ergebnisse Vorschläge zur Auswertung der Fotografien und zur Berechnung der Entfernung von der Erde zum Mond Die Schülerinnen und Schüler sollen Kenntnisse über die Positionen und Bewegungen der Körper im Sonnensystem erwerben. ein ziemlich großes Dreieck vermessen. Fotografie für Messzwecke einsetzen lernen. verschiedene Winkelmessverfahren kennen lernen. Thema Messung der Mondentfernung durch Triangulation Autor Bernd Huhn Fach Physik, Astronomie Zielgruppe Astronomie-AGs, Schülerinnen und Schüler ab Klasse 10 Zeitraum Das komplette Projekt dauert sicher mehrere Monate. Wenn man auf vorhandene Fotos zurückgreift, geht es schneller, es verliert aber einen Teil seines Reizes. Technische Voraussetzungen "klassischer" Fotoapparat oder Digitalkamera, Stativ, Drahtauslöser, Winkelmessscheibe, Geodreieck, Kompass, Wasserwaage, Knetgummi, dünner Stab (z.B. Schaschlikspieß), Schiebelehre, doppelseitiges Klebeband, Globus, Telefon- und E-Mail-Anschluss Software, Literatur Bildbearbeitungsprogramm (Corel Photo-Paint, GIMP oder vergleichbare Software), Astronomie-Software wie KStars, XEphem (beide kostenlos), SkyMap, Skyplot oder Tabellenwerke, zum Beispiel das Kosmos Himmelsjahr (Franckh-Kosmos Verlags-GmbH) oder Ahnerts Kalender für Sternfreunde (Spektrum der Wissenschaft Verlagsgesellschaft) Keller, Hans-Ulrich Kosmos Himmelsjahr, Franckh-Kosmos Verlags-GmbH, erscheint jährlich; alle wichtigen Infos zu Sonne, Mond und Sternen, den Planeten, Finsternissen und sonstigen Himmelsschauspielen sowie den "Monatsthemen" mit aktuellen und interessanten Beiträgen. Neckel, Thorsten; Montenbruck, Oliver Ahnerts Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft mbH, erscheint jährlich; in den Monatsübersichten wird unter anderem dargestellt, welchen Planeten und hellen Sternen der Mond begegnet und wie die Sichtbarkeitsbedingungen der Planeten sind. Soffel, Michael ; Müller, Jürgen Lasermessungen der Monddistanz, Sterne und Weltraum 7/1997, Seiten 646-651; Die Autoren erläutern das Messverfahren und stellen weit reichende Folgerungen dar, die man aus dem auf wenige Zentimeter genauen Messergebnis ziehen kann. Zimmermann, Otto Astronomisches Praktikum, Spektrum der Wissenschaft Verlag GmbH, ISBN 3-8274-1336-2 (2003); hier werden weitere Methoden zur Messung der Mondentfernung beschrieben (Erdschattendurchmesser auf dem Mond ,Änderung der Mondgröße mit der Höhe, parallaktische Libration, Sternbedeckungen durch den Mond) Gut geeignet für die Triangulation ist eine Kombination von Beobachtungsstandorten mit einer großen Differenz der geographischen Breiten und einer kleinen Differenz der geographischen Längen. Die erste Bedingung sichert eine große Basislänge, die zweite sorgt dafür, dass die fotografierte Himmelsgegend etwa zur gleichen Zeit an beiden Standorten möglichst hoch über dem Horizont steht. Wenn sich ein Standort in Deutschland befindet, sollte der zweite also idealerweise im Süden Afrikas liegen. Auch das östliche Südamerika kommt in Frage. Aufgeschlossene Kolleginnen und Kollegen findet man durch Nachfragen bei den deutschen Auslandsschulen: Bundesverwaltungsamt: Schulverzeichnis Auf der Website des BVA finden Sie das Schulverzeichnis der Zentralstelle für das Auslandsschulwesen. Für die vorbereitenden Verabredungen und den Austausch der Ergebnisse reicht der Kontakt per E-Mail. Zum Zeitpunkt der Aufnahmen selbst ist eine Telefonverbindung nützlich: Wenn der Himmel nur teilweise klar ist und "Wolkenlöcher" genutzt werden müssen, können kurzfristige Absprachen gewährleisten, dass die Aufnahmen möglichst zeitgleich entstehen. Alternativ können dafür auch Chat-Rooms genutzt werden. Für die Aufnahme muss sich der Mond in möglichst geringem Winkelabstand zu zwei hellen und sehr viel weiter entfernten Objekten am Himmel befinden. Günstig dafür ist eine Konjunktion von mindestens zwei der Planeten Venus, Mars, Jupiter und Saturn; der Mond sollte zwischen ihnen stehen. Die Mondphase ist nicht entscheidend; ein zunehmender Mond ist allerdings zu bevorzugen, wenn jüngere Schülerinnen und Schüler mitarbeiten sollen, da er vor Mitternacht kulminiert. Einen geeigneten Zeitpunkt findet man durch systematische Suche in entsprechenden Tabellenbüchern (Kosmos Himmeljahr, Ahnerts Astronomisches Jahrbuch) oder durch Verwendung eines Astronomieprogramms, das ein Planetarium simulieren kann: KStars Diese Software unterliegt der GNU General Public License (GPL) und steht kostenfrei zur Verfügung. XEphem Auf der Website des Clear Sky Institute ist auch dieses Programm kostenlos erhältlich. Skyplot Informationen und Bestellmöglichkeit zur Software auf der Website des Autors Frank P. Thielen. Skyplot ist für 30 € zu haben. SkyMap Die kommerzielle Software ist in der Lite-Version für etwa 37 € und in der Pro-Version für etwa 100 € zu haben. In dem hier beschriebenen Projekt wurden die beiden Planeten Jupiter und Saturn als "Fixpunkte" verwendet. Besser wäre natürlich die Verwendung von Sternen, weil sie der Forderung, unendlich weit entfernte Fixpunkte zu sein, besser entsprechen. Allerdings müssen die Sterne relativ dicht nebeneinander und nahe der Ekliptik stehen und auch noch hell genug sein. Gute Gelegenheiten für Aufnahmen mit Fixsternen bieten totale Mondfinsternisse. Der dann nur schwach beleuchtete Mond überstrahlt auch die schwächeren Sterne in seiner Umgebung nicht. Allerdings bietet sich diese Gelegenheit seltener, wodurch man mehr von günstigen Beobachtungsbedingungen abhängig ist. Probeaufnahmen In dem hier vorgestellten Projekt wurde eine klassische Kamera benutzt, natürlich kann auch eine Digitalkamera verwendet werden. Probeaufnahmen vor dem Aufnahmetermin sind anzuraten. Die Qualität der Aufnahmen sollte immer am Negativ oder an der Rohdatei beurteilt werden. Bildverwackelungen können durch die Nutzung eines Stativs und eines Drahtauslösers vermieden werden. Eine Nachführung ist nicht nötig. Für die spätere Auswertung der Fotos ist es wichtig, die Aufnahmezeitpunkte und die verwendete Zonenzeit zu notieren! Der Winkelabstand Jupiter-Saturn betrug bei unseren Messungen etwa 10 Grad. Dabei ist eine Brennweite von 15 Zentimetern beim Kleinbildformat 24 Millimeter mal 36 Millimeter optimal. Die Auflösung von Standardfilmen reicht völlig, unabhängig davon, ob Farb- oder Schwarz-Weiß-Filme verwendet werden. Verschiedene Belichtungszeiten bei jedem Aufnahmezeitpunkt Die Belichtungszeit soll so gewählt werden, dass die im Vergleich zum Mond lichtschwachen Planeten (oder Sterne) gerade sicher zu erkennen und der Mond nicht unnötig überbelichtet wird. Der Mondrand sollte auf den Bildern noch gut erkennbar sein. Belichtungszeiten zwischen 0,1 und 10 Sekunden sollten bei mittlerer Blende passen. Die Zeiten sind allerdings stark von den aktuellen Dunstverhältnissen und der lokalen Lichtverschmutzung abhängig. Daher ist es sinnvoll, zu jedem Aufnahmezeitpunkt immer mehrere Aufnahmen mit unterschiedlichen Belichtungszeiten zu machen. Lichtschwache und lichtstarke Objekte auf einem Bild? Wie in der Astronomie üblich, werden die Bildnegative bearbeitet, also dunkle Objekte vor hellem Hintergrund. Wenn die punktförmigen Objekte - zwei Planeten oder Sterne - auf den Fotografien sicher abgebildet sind, der Mondrand aber unscharf dargestellt ist, nutzt man ein Bildbearbeitungsprogramm um für die Auswertung der Bilder einen scharfen Mondrand zu erzeugen, ohne dabei die lichtschwachen Objekte zu verlieren. Dabei geht man in zwei Schritten vor. Retusche der lichtschwachen Planeten Zunächst werden die zentralen Pixel der Planetenbilder bei hoher Vergrößerung schwarz eingefärbt. Es reichen Quadrate von vier oder neun retuschierten Bildpunkten. Abb. 1 (Platzhalter bitte anklicken) zeigt ein Beispiel: S-01-03-1 zeigt das stark vergrößerte digitalisierte Bild des Planeten Jupiter aus der linken unteren Ecke des Bildes S-01-03. Darunter sieht man in s-01-03-2 das retuschierte Jupiterbild mit neun zentralen schwarzen Pixeln. Noch wichtiger ist die Retusche beim relativ schwachen Bild des Saturns rechts im oberen Drittel des Bildes S-01-03. Benutzt wurde das Programm Corel Photo-Paint, Version 6.0. "Scharfstellen" des Mondes Im zweiten Schritt wird die Helligkeit des gesamten Bildes angehoben und der Kontrast so verstärkt, dass der "echte" Mondrand scharf erscheint. Das ist dann der Fall, wenn der Mond hellgrau vor weißem Hintergrund erscheint und das Mondbild bei einer weiteren Anhebung der Helligkeit nicht mehr kleiner wird (Abb. 2, Platzhalter bitte anklicken). Mithilfe der Vorschaufunktion von Corel Photo-Paint lässt sich dies gut beurteilen. Anschließend kann der Kontrast des Bildes weiter erhöht werden, bis die Abbildung schwarze scharfe Objekte vor weißem Hintergrund zeigt. Alternativ zu kommerzieller Software kann auch das kostenfreie Bildbearbeitungsprogramm GIMP verwendet werden: Zwei Punkte A und B auf der Erde und der Mittelpunkt M des Mondes bilden ein Dreieck (Abb. 3). Die Längen der Strecken AM beziehungsweise BM sind gesucht. Um sie zu ermitteln, müssen wir drei Stücke dieses Dreiecks messen, ohne die Erde zu verlassen. Eines dieser Stücke muss eine Seitenlänge sein, dafür kommt nur die Länge der Strecke AB in Frage. Zwei Winkel sind also noch zu messen. Da die Messgenauigkeit der gesuchten Längen sehr empfindlich von dem Winkel pi mit dem Scheitelpunkt M abhängt, ist es unerlässlich, diesen direkt zu messen und ihn nicht etwa aus der Differenz 180 Grad - Winkel BAM - Winkel MBA zu errechnen, denn kleine relative Fehler bei den Messungen der Winkel BAM und MBA hätten einen großen relativen Fehler für den Wert von pi zur Folge. Leider können wir uns nicht auf den Mond begeben und von dort einfach die beiden Punkte A und B auf der Erde anpeilen. Wir können pi aber auch auf der Erde messen, denn er ist gleich der Winkeldifferenz der Richtungen, in denen der Mond von den beiden Punkten A und B aus gesehen erscheint, also gleich dem Winkel zwischen BM und der Parallele zu AM durch B. Er heißt daher auch Parallaxenwinkel (Abb. 3). Einer der beiden weiteren Winkel - BAM oder MBA - muss außerdem gemessen werden. Die Genauigkeit dieser Messung ist unkritisch für die Genauigkeit des Ergebnisses, besonders wenn der Wert des Winkels nahe 90 Grad liegt. Mithilfe des Sinussatzes ergeben sich die gesuchten Längen der Seiten MA oder MB. Um die Entfernung des Mondmittelpunktes vom Erdmittelpunkt und nicht von einem Punkt der Erdoberfläche zu erhalten, wäre weiterer Aufwand nötig. Dies erscheint angesichts der erzielbaren Messgenauigkeit jedoch nicht sinnvoll. Das Vorgehen sollte für Schülerinnen und Schüler, die gerade den Sinussatz am ebenen Dreieck verstanden haben, gut nachvollziehbar sein. Jüngere Schülerinnen und Schüler können die Anwendung des Sinussatzes möglicherweise durch eine Dreieckskonstruktion ersetzen, die aber sehr präzise sein muss, da der Parallaxenwinkel naturgemäß recht klein ist. Kenntnisse über astronomische Koordinatensysteme oder sphärische Trigonometrie sind nicht nötig. Es sollte Wert darauf gelegt werden, alle Schritte durch manuelle Tätigkeiten an einem räumlichen Modell (Globus mit aufgesetztem Horizontsystem, Mond in einiger Entfernung davon) zu veranschaulichen. Hinweise zur Aufnahme der Fotos Wir haben den Parallaxenwinkel pi auf fotografischem Weg gemessen. Ideal für die Auswertung ist ein Paar von zwei Aufnahmen des Mondes und der Hintergrundobjekte - hier Jupiter und Saturn -, die an den beiden Positionen A und B exakt zum gleichen Zeitpunkt gemacht werden. Wenn merklich Zeit zwischen den Aufnahmen liegt, weil zum Beispiel die Bewölkung an den Aufnahmestandorten dies erzwingt, könnte das Ergebnis durch die Bewegung des Mondes vor dem Hintergrund (etwa 15 Grad in 24 Stunden) verfälscht werden. Sollte diese Gefahr bestehen, so fotografiert man an einem oder an beiden Standorten mehrfach zu verschiedenen Zeitpunkten, etwa in jedem geeigneten Wolkenloch, und rekonstruiert dann jeweils die Position des Mondes für einen vereinbarten Zeitpunkt aus diesen Aufnahmeserien durch eine lineare Interpolation. Auswertung der Fotos Legt man zwei zeitgleich entstandene Bilder von den Standorten A und B so übereinander, dass die beiden Planetenbilder aufeinander liegen, so sind die Mondbilder gegeneinander verschoben. Diese Verschiebung kann man in den Parallaxenwinkel pi umrechnen, wenn man einen passenden Umrechnungsfaktor hat. Man erhält ihn aus einer Messung des Winkelabstandes delta der beiden Hintergrundobjekte am Himmel und dem Abstand ihrer Abbilder auf den auszuwertenden Fotos. Der Parallaxenwinkel ergibt sich dann per Dreisatz. Zur Kontrolle des Verfahrens kann man damit den Winkeldurchmesser des Mondes bestimmen: er muss etwa 0,5 Grad betragen. Messung des Winkels zwischen den Planeten Für die Messung des Winkels delta zwischen den Planeten Jupiter und Saturn haben wir in unserem Projekt einen improvisierten "Jakobsstab" benutzt (Abb. 4). Er besteht aus Stativmaterial und Längenmessgeräten aus der Physik-Sammlung. Das Durchblicksloch sollte möglichst klein sein. Man schaut durch die Öffnung und verschiebt die Markierungen auf dem Querstab so lange, bis die Peilung zu den Planeten passt. Dann lässt sich der Winkel delta messen beziehungsweise errechnen. Diese Winkelmessung sollte etwa zeitgleich mit den fotografischen Aufnahmen erfolgen. Messung von Azimut- und Höhenwinkel zum Aufnahmezeitpunkt Während wir zur Messung des Parallaxenwinkels pi mindestens zwei zeitgleich aufgenommene Fotografien von verschiedenen Standorten benötigen, kann der zweite Winkel im Dreieck an nur einem der Beobachtungsorte, zum Beispiel am Punkt A, ermittelt werden. Dazu bestimmt man die Position des Mondes im Horizontsystem (Azimut- und Höhenwinkel) zum Aufnahmezeitpunkt. Daraus lässt sich später der Winkel zwischen den Verbindungslinien zum Mond und zum zweiten Standort B mithilfe eines Globus ermitteln. Das kann man so machen: Man legt eine ebene, leichte und dünne Platte, zum Beispiel eine Winkelmessscheibe, wie sie für Schülerübungen in der Optik verwendet wird, horizontal ausgerichtet (Wasserwaage, Dosenlibelle, Untertasse voll Wasser ... ) auf eine feste Unterlage und markiert darauf mithilfe eines Kompasses die Nord-Süd-Richtung. Dabei muss unbedingt die lokale Missweisung beachtet werden, besonders wenn ein Partner im südlichen Afrika beteiligt ist. Dort erreicht nämlich die Missweisung auf Grund einer geomagnetischen Anomalie beträchtliche Werte. Durch ein Lot vom Himmelspol auf den Horizont oder mithilfe einer Landkarte und Landmarken am Horizont lässt sich das Ergebnis überprüfen. Nun befestigt man mit Knetgummi auf dieser Linie das Ende eines dünnen Stäbchens, zum Beispiel einen Schaschlik-Spieß, und richtet das Stäbchen genau auf den Mond, sodass es im Mondlicht keinen Schatten mehr wirft. Dann kann man den Höhenwinkel eta und den Azimutwinkel gamma mit einem Geodreieck messen (Abb. 5). Diese Messung muss man für jeden Aufnahmezeitpunkt wiederholen und protokollieren. Natürlich kann man für die Messungen von Azimut und Höhe auch einen vertikal stehenden Schattenstab benutzen. Dann lässt sich der Azimutwinkel direkt auf der Winkelmessscheibe ablesen. Der Höhenwinkel muss aus der Schattenlänge und der Stablänge berechnet oder an einem Faden von der Stabspitze zum Ende des Stabschattens abgelesen werden. Auch einen Theodolithen kann man verwenden, wenn man damit einen hinreichend großen Höhenwinkel messen kann. Rekonstruktion der Richtungen und Winkelmessung am Globus In einem letzten Schritt wird nun mit doppelseitigem Klebeband die Platte mit der Vorrichtung zur Bestimmung von Höhen- und Azimutwinkel auf einem Globus am Aufnahmeort A angeklebt. Auf den Ort A fällt der Fußpunkt A' des Stäbchens. Dann liegt die Platte in der Tangentialebene an den Globus in A, also in der Horizontebene von A (Abb. 6). Natürlich muss auch die Nord-Süd-Linie die Tangente an den Längenkreis durch A bilden. Wenn nun Azimut- und Höhenwinkel noch oder wieder passend eingestellt sind, so wird die Position des Mondes relativ zum Globus bei der Aufnahme reproduziert. Eine große "Schiebelehre" wird nun so angelegt, dass die Spitzen ihres "Schnabels" auf den Punkten A und B liegen. Ihre Kante bildet mit dem Stäbchen den gesuchten Winkel alpha, der nun mit einem Geodreieck gemessen werden kann (Abb. 7). Nicht notwendig, aber sehr sinnvoll ist es, auch am Ort B den Azimut- und den Höhenwinkel zum Aufnahmezeitpunkt zu messen und die Richtung zum Mond von Punkt B aus ebenfalls auf dem Globus zu rekonstruieren. Wenn diese Richtungen dann sehr voneinander abweichen, ist irgendwo ein Fehler passiert. Wir haben auf diese Weise die große Kompassmissweisung in Johannesburg "entdeckt". Bestimmung von Azimut- und Höhenwinkel aus Tabellendaten Falls Azimut- und Höhenwinkel nicht messbar sind, kann man sie aus Tabellenwerten der Mondephemeriden, der geographischen Breite und der Sternzeit des Aufnahmeortes rekonstruieren. Das gelingt - wenn auch etwas mühsam - mit den Formeln der sphärischen Geometrie. Zwar nicht so genau, aber anschaulicher und für Schülerinnen und Schüler nicht nur manuell begreifbarer, ist ein Kartonmodell. Abb. 8 zeigt die Mondposition (rotes Kügelchen) im Horizontsystem von Thessaloniki am 12. November 2000 um 20:00 Uhr Weltzeit. Dazu wurde auf der Horizontebene zunächst ein Sektor der Äquatorebene um den Winkel von 90 Grad minus geographische Breite gegenüber der Horizontebene geneigt aufgeklebt. Auf der Äquatorebene sind aus gelbem Karton zwei orthogonal zueinander stehende Sektoren für den Stundenwinkel und die Deklination des Mondes befestigt. Die Deklination des Mondes (hier 18 Grad) erhält man aus einem astronomischen Jahrbuch (Kosmos Himmelsjahr, Ahnerts Astronomisches Jahrbuch), ebenso die Rektaszension (hier 4 h 08 min). Der Stundenwinkel ergibt sich dann aus der Beziehung Stundenwinkel = Sternzeit - Rektaszension. Mit der Sternzeit 1 h 01 min, die man ebenfalls einem Jahrbuch entnimmt und auf den Aufnahmeort und -zeitpunkt umrechnet, erhält man den Stundenwinkel von -3 h 07 min, wie in Abb. 8 näherungsweise abzulesen ist. Mit einem Geodreieck misst man nun Azimut- und Höhenwinkel im Horizontsystem. Das Kartonmodell kann man anstelle der Winkelmessscheibe mit dem Schaschlikstäbchen zur Auswertung auch direkt auf den Globus kleben. Prinzipiell macht man dabei allerdings einen kleinen Fehler: Die Angaben für Deklination und Rektaszension beziehen sich auf einen Beobachter im Erdmittelpunkt, während das Kartonmodell auf der Erdoberfläche sitzt. Der so ermittelte Winkel BAM wird also entsprechend verfälscht. Der Fehler dürfte aber angesichts der begrenzten Genauigkeit des Modells zu vernachlässigen sein. Die Länge der Dreiecksseite AB, das heißt die Entfernung zwischen den Beobachtungspunkten wird, wie in Abb. 7 gezeigt, mit einer großen Schiebelehre auf einem Globus ausgemessen und mithilfe des Globus-Maßstabes berechnet. Die Entfernung BM ergibt sich nun leicht aus dem Sinussatz: Es ist sinnvoll, an dieser Stelle weitere Werte für pi, alpha und die Länge von AB in die Berechnung der Mondentfernung einzusetzen und die Auswirkungen auf das Ergebnis zu diskutieren. Dabei sollte sich als kritische Größe der Parallaxenwinkel herausstellen. Beobachtungsnacht Um sicher auswertbares Fotomaterial zu erhalten, wurde die Begegnung des Mondes mit den Planeten Jupiter und Saturn im Abstand von vier Wochen in zwei Vollmondnächten dokumentiert. Am 12. November 2000 standen neun Kollegen in Brasilien, Südafrika, Griechenland und Deutschland mit ihren Schülerinnen und Schülern bereit, um den Mond und die beiden Planeten zu fotografieren. Allerdings spielte das Wetter nur in Thessaloniki und Johannesburg mit: Lediglich Max Ruf (Deutsche Schule Johannesburg) und Wolfgang Hofbauer (Deutsche Schule Thessaloniki) gelangen auswertbare Aufnahmen. Die folgenden vier Abbildungen zeigen je zwei Bilder von diesen Standorten. Das jeweils erste zeigt die Originalaufnahme mit den ergänzten Aufnahmedaten. In der jeweils zweiten Abbildung ist das digitalisierte Foto mit einem Bildbearbeitungsprogramm zu einer Schwarz-Weiß-Grafik verarbeitet worden. Der Grauton, bei dem die Entscheidung zwischen Schwarz und Weiß liegt, wurde dazu so gewählt, dass der Mondrand optimal zu erkennen ist. Damit die Planeten Jupiter und Saturn bei der Bildbearbeitung nicht verloren gingen, wurden diese vorher retuschiert. Winkelabstand und geographische Koordinaten Den Winkelabstand Jupiter-Saturn hat Max Ruf in Johannesburg zu delta = 10,5° gemessen. Die geographischen Koordinaten der Aufnahmeorte sind: Johannesburg: 26° 12' südlicher Breite, 28° 06' östlicher Länge Thessaloniki: 40° 36' nördlicher Breite, 23° 06' östlicher Länge Bilder aus Johannesburg Bilder aus Thessaloniki Bestimmung der Mondparallaxe am Bildschirm Abb. 13 zeigt eine Montage, in der die beiden Aufnahmen aus Abb. 10 und Abb. 12 so gedreht und zentrisch gestreckt wurden, dass die Verbindungsstrecken Jupiter-Saturn horizontal liegen und gleich lang sind. Nun können die Schülerinnen und Schüler die Mondparallaxe am Bildschirm mit der folgenden Anleitung ermitteln: Markiere auf dem Monitor mit einem abwaschbaren Folienschreiber die Positionen von Jupiter, Saturn und Mond aus der oberen Aufnahme. Verändere nicht die Position deines Kopfes! Schiebe das zweite Bild mithilfe der Scroll-Leiste auf dem Bildschirm in die Position, in der Jupiter und Saturn auf "ihren" Markierungen liegen. Zeichne den "zweiten Mond" auf den Bildschirm. Wenn die Scroll-Funktion zu grob arbeitet, kopiere das Bild zuerst auf eine leere neue Seite eines Webseiten-Editors oder eines Bildbearbeitungsprogramms. Verfahre dann so, wie oben beschrieben. Bestimme auf dem Bildschirm den Abstand Jupiter-Saturn und den Abstand der Mondbilder. Der Abstand Jupiter-Saturn entspricht einem Winkelabstand von [ ... ] Grad. Berechne per Dreisatz den Winkelabstand pi der beiden Mondbilder. Bestimmung der Mondparallaxe mithilfe von Ausdrucken Alternativ zu der beschriebenen Bestimmung der Mondparallaxe am Bildschirm können Ausdrucke der Bilder durch die entsprechende Funktion des Druckprogramms auf den gleichen Abstand Jupiter-Saturn gebracht werden. Man kann dazu auch einen Fotokopierer verwenden. Ein Bild wird auf eine Folie kopiert oder per Hand übertragen. Dann wird die Folie auf das zweite Bild gelegt und die Mondparallaxe wie zuvor beschrieben bestimmt. In der Physik-AG der IKS Neumünster haben wir die beiden Fotos vom 12. November 2000 aus Thessaloniki und Johannesburg ausgedruckt und übereinander gelegt. Jupiter und Saturn hatten dort einen Abstand von 171 Millimetern. Die beiden Mondpositionen lagen 18 Millimeter voneinander entfernt. Daraus ergab sich ein Parallaxenwinkel von pi = 10,5° (18 / 171) = 1,1°. Am großen Globus aus dem Erdkunde-Fachraum haben wir als nächstes die Richtung zum Mond von Thessaloniki aus mithilfe der Winkelmessscheibe rekonstruiert (Abb. 14a) und den Winkel Johannesburg-Thessaloniki-Mond zu 103 Grad gemessen. Gleichzeitig ergab sich der Abstand Johannesburg-Thessaloniki zu 36,4 Zentimetern bei einem Globusdurchmesser von 63,2 Zentimetern (Abb. 14b). Mit dem Erddurchmesser von 12.740 Kilometern konnten wir die wahre Entfernung JT Johannesburg-Thessaloniki errechnen: 12.740 km (36,4 / 63,2) = 7.340 km Um den Sinussatz anwenden zu können, benötigten wir noch den Winkel Mond-Johannesburg-Thessaloniki. Er betrug 180° - 103° - 1,1° = 75,9°. Nun konnten wir alles in den Sinussatz einsetzen und erhielten die Entfernung TM Thessaloniki-Mond: (sin 75,9° / sin 1,1°) 7.340 km = 372.500 km. Fertig (Abb. 15)! Später haben wir erfahren, dass der von uns benutzte Messwert von 85 Grad für den Azimutwinkel um 10 Grad zu groß war. Er beträgt nur 75 Grad. Dadurch muss mit einem kleineren Basiswinkel gerechnet werden. Da dieser nahe bei 90 Grad liegt, wo die Sinuskurve nur eine geringe Steigung hat, wirkt sich dieser Fehler aber kaum auf das Ergebnis aus. Der Mond liegt zwar - in astronomischen Maßstäben - vor unserer Haustür. Dennoch ist die in Zahlen gefasste Entfernung nicht mehr anschaulich. Hilfreicher sind für die Veranschaulichung sind grafische Darstellungen, wie zum Beispiel die folgenden, die uns der Amateur-Astronom Thomas Borowski freundlicherweise zur Verfügung gestellt hat:

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II

Die Bestimmung der Hubble-Konstanten

Unterrichtseinheit

Unser Universum expandiert. Die Fluchtgeschwindigkeiten der Galaxien erscheinen uns um so größer, je tiefer sie von der Erde aus betrachtet in Raum und Zeit zurück liegen. Die Expansionsrate des Raumes wird durch die Hubble-Konstante beschrieben.Schülerinnen und Schüler können sich mithilfe des Simulationsprogramms ?HubLab? als Kosmologinnen und Kosmologen betätigen und den Wert der Hubble-Konstanten selbst bestimmen. Diese Unterrichtseinheit kann gut in eine Reihe zum Thema Kosmologie eingebettet werden, die zum Beipsiel mit dem Thema Entwicklung eines Sterns und dem Hertzsprung-Russel-Diagramm begonnen wurde. Sie beleuchtet sowohl Aspekte der Simulation als auch der Auswertung mithilfe eines Tabellenkalkulationsprogramms. Fachlicher Hintergrund und Materialien Kurze Infos zum Bohrschen Atommodell und zur Rotverschiebung von Spektrallinien. Alle Arbeitsmaterialien können Sie hier einzeln herunterladen. Die Schülerinnen und Schüler sollen lernen, dass das Weltall expandiert, und zwar um so schneller, je weiter man an seine Grenze blickt. erkennen, dass sich das Weltall in der Vergangenheit schneller ausgedehnt hat als es dies heute tut. begreifen, dass ein Blick an den Rand des Universums auch ein Blick in die Vergangenheit ist, weil das Licht, welches uns heute von dort erreicht, bereits Jahrmillionen unterwegs war und uns von der Natur des Universums vor langer Zeit berichtet. Bohrsches Atommodell und Fraunhofersche Linien Im Physikunterricht ist neben der thermischen Emission von Licht auch die Emission und Absorption von Licht angeregter Atome im Bohrschen Atommodell besprochen worden. Das reicht, um zum Beispiel die Fraunhoferschen Linien im Sonnenspektrum zu erklären. Diese führen zu der Erkenntnis, dass die Sonne offensichtlich keine anderen Materialien enthält, als die uns bekannten, weil sich in ihrer Spektralanalyse nur die uns bekannten Elemente wiederfinden. Dies lässt vermuten, dass das Universum überall gleich aufgebaut ist. Pfiffige SchülerInnen sollten einwenden, dass die Sonne für eine derart universelle Aussage möglicherweise nicht repräsentativ sei und fragen, ob sich dieselben Absorptionslinien auch in weiter entfernten Sternen finden würden. Rotverschiebung von Spektrallinien Genau dies kann mit dem Simulationsprogramm "HubLab" untersucht werden. Dabei stellt sich heraus, dass die Spektralinien eine auf dem Doppler-Effekt basierende Rotverschiebung zeigen. Und diese ist um so größer, je weiter die betrachteten Objekte von der Erde entfernt sind. Dies führt zur Frage nach der Expansionsrate des Raumes und damit direkt zur Hubble-Konstanten. Eine Simulation ist niemals ein Ersatz für ein Experiment. Aber wo kein Experiment möglich ist, ist eine Simulation besser als ein trockenes Lehrbuch. "HubLab" ist die Simulation eines lichtstarken Teleskops mit einem angeschlossenem Spektrometer, welches vom Department of Physics des Gettysburg College in Pasadena (USA) entwickelt wurde. Das Programm ist kostenlos samt Handbüchern aus dem Netz herunterzuladen (siehe Internetadressen). Eine umfangreiche und detaillierte deutschsprachige Handlungsanweisungen mit Screenshots - von der Vorbereitung des virtuellen Teleskops über die Aufnahme der Messwerte bis hin zur Auswertung mit einem Tabellenkalkulationsprogramm im Unterricht - finden Sie in dem Dokument "hublab_tutorial.pdf". Das Handout führt zudem in die Theorie der Rotverschiebung ein. Astronomie. Paetec Verlag, 2001. ISBN 3-89517-798-9. Helmut Zimmermann, Alfred Weigert: Lexikon der Astronomie. Spektrum Verlag 1999. ISBN 3-8274-0575-0. A. Unsöld, B. Baschek: Der neue Kosmos. Springer Verlag 1999. ISBN 3-540-64165-3.

  • Physik / Astronomie
  • Sekundarstufe II

Schwarze Löcher – rätselhafte Phänomene in den Tiefen des Universums

Unterrichtseinheit

Mit der Verleihung des Physik-Nobelpreises 2020 für den Nachweis der Existenz des supermassereichen Schwarzen Loches Sagittarius A* im Zentrum der Milchstraße an Reinhard Genzel, Andrea Ghez und Roger Penrose rückte die extrem aufwendige Erforschung des Universums einmal mehr in den Fokus der Öffentlichkeit. Die vorliegende Unterrichtseinheit hat zum Ziel, Schülerinnen und Schülern der gymnasialen Oberstufe ein schwieriges und sehr komplexes Thema – ohne die im Detail dafür notwendige, aber im Schulunterricht nicht mögliche höhere Mathematik – näherzubringen. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Erkenntnisse von Albert Einstein, die er mit seiner Allgemeinen Relativitätstheorie (ART) im Jahr 1915 veröffentlichte, hatten die Existenz Schwarzer Löcher als natürliche Konsequenz der Raum-Zeit-Krümmung prognostiziert. Der laut der Königlich Schwedischen Akademie der Wissenschaften bisher überzeugendste Beweis für ein superschweres Schwarzes Loch mit einer Masse von rund vier Millionen Sonnenmassen im Zentrum der Milchstraße war die Bestätigung für jahrzehntelange akribische Forschung und Auswertung immenser Datenmengen mit den heute den Astrophysikern zur Verfügung stehenden technischen Möglichkeiten. Der im Laufe von Milliarden von Jahren entstandene heute bekannte Kosmos hat aufgrund seiner ständig fortschreitenden Ausdehnung eine Größe von 1023 km überschritten und enthält Milliarden von Galaxien und Sternen. Den Lernenden wird zunächst mithilfe von Animationen, erläuternden Videos und Schaubildern die Entwicklung von Sternen und deren weiterer Verlauf in ihrem Lebenszyklus vorgestellt. So anschaulich wie möglich werden dann die Vorgänge besprochen, die ein Riesenstern auf seinem Weg über eine Supernova hin zum Schwarzen Loch nimmt. Die nur eingeschränkt zu verstehenden Fakten der ART Einsteins werden mithilfe von Videos und Animationen verständlich gemacht, bevor mit den Möglichkeiten der gymnasialen Oberstufenmathematik Begriffe wie Ereignishorizont und Schwarzschild-Radius eingeführt und hergeleitet werden. Der Nachweis von Schwarzen Löchern am Beispiel von Sagittarius A* wird anhand von Schaubildern im Arbeitsblatt 2 vorgestellt, erläutert und durch Berechnungen (Übungsaufgaben) verfestigt. Zudem wird die Bedeutung von Gravitationswellen und deren Messung als weiterer Nachweis für Schwarze Löcher besprochen. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier Die Forschung der Nobelpreisträger im Unterricht . Schwarze Löcher – rätselhafte Phänomene in den Tiefen des Universums Schwarze Löcher gehören noch immer zu den größten Rätseln des Universums, wenngleich ihre Existenz mit weltweit verbundenen Teleskopen immer besser nachgewiesen werden kann – wie etwa im Jahr 2019 durch eine radioteleskopische Aufnahme des mit 6,6 Milliarden Sonnenmassen gigantischen Schwarzen Loches M87* im Zentrum der Galaxie M87. Man weiß heute, dass Schwarze Löcher aus dem Tod eines Riesensterns entstehen können. Man vermutet Milliarden davon im Universum und es stellen sich Fragen: Was passiert genau in den Schwarzen Löchern? Wieviel Materie können Schwarze Löcher verschlingen? Wird unser Universum eines Tages komplett von Schwarzen Löchern verschlungen? Haben Schwarze Löcher Auswirkungen auf unser irdisches Leben? Wie verändern Schwarze Löcher das Universum? Handelt es sich bei allen dunklen Himmelskörpern um Schwarze Löcher? Neue Theorien tauchen auf, die mit naturwissenschaftlichen Methoden untersucht werden müssen, ob sie denn schlüssig sind und somit einen weiteren Schritt nach vorne bedeuten oder wieder verworfen werden müssen. Undurchschaubare Schwarze Löcher und ihre Wirkungen auf Raum und Zeit werden noch lange Ansporn sein für kreative Wissenschaftlerinnen und Wissenschaftler und ihren Forschungsdrang! Vorkenntnisse Wichtig für ein grobes Verständnis sind das Newton'sche Gravitationsgesetz sowie die Kepler'schen Gesetze. Beide sollten im Rahmen des gymnasialen Physikunterrichts hinreichend besprochen sein, damit zum einen die mathematisch gut nachvollziehbaren Berechnungen zum Ereignishorizont und dem Schwarzschild-Radius durchgeführt werden können und zum anderen die daraus resultierenden Berechnungen zur Größe und Masse von Schwarzen Löchern. Didaktische und methodische Analyse Schwarze Löcher waren bis in die späten 1960er Jahre nur für Mathematikerinnen und Mathematiker sowie theoretische Physikerinnen und Physiker von Bedeutung, weil kein Weg zu ihrer Beobachtung vorstellbar schien. Zudem hielt man es für unwahrscheinlich, dass es Objekte mit einer derart unvorstellbar großen Dichte geben könnte. Auch der Name "black hole" oder "Schwarzes Loch" wurde erst Ende der 1960er Jahre geprägt. Zu einem Umdenken kam es, als erste astronomische Objekte im Röntgenlicht sowie ein extremer Strahlungsausstoß sogenannter Quasare nachgewiesen werden konnte. Der britische Physiker Stephen Hawking (1942–2018) konnte in den 1980er Jahren zeigen, dass in der Umgebung verschiedener Schwarzer Löcher physikalische Effekte auftreten konnten, bei denen Strahlung nach außen abgegeben werden kann – völlig widersprüchlich zum ursprünglichen Bild des Schwarzen Loches. Bis in die 1990er Jahre konnten einige Kandidaten für stellare Schwarze Löcher von nur wenigen Sonnenmassen in Doppelsternsystemen gefunden werden – ein Nachweis für supermassive Schwarze Löcher im Zentrum vieler Galaxien stand noch aus. Dies war der Auslöser für den Astrophysiker Reinhard Genzel und die Astrophysikerin Andrea Ghez, das Zentrum unserer Milchstraße genau zu untersuchen. In jahrelangen Forschungen fanden sie – übereinstimmend – die Bahnen mehrerer Sterne, die sich auf elliptischen Bahnen um ein Zentrum drehen. Als besonders interessant stellte sich der innerste Stern, mit S2 bezeichnet, heraus. Er brauchte nur 16 Jahre für einen Umlauf; die von den Forschenden beobachteten Bahnparameter ließen nur einen Schluss zu – im Zentrum unserer Milchstraße muss sich ein supermassereiches Schwarzes Loch (Sagittarius A*) mit einer Masse von rund vier Millionen Sonnenmassen befinden. Der mithilfe von weltweit zusammengeschlossenen riesigen Teleskopen gefundene Nachweis ist ein Meilenstein der Astrophysik und hat durch die Verleihung des Nobelpreises für Physik im Jahr 2020 für weltweites Aufsehen gesorgt. Noch nicht völlig eindeutig ist, welche Rolle die Schwarzen Löcher in der Kosmologie einnehmen. Ein großes Problem ist, wie Schwarze Löcher so schnell entstehen und in so kurzer Zeit solche gigantischen Materiemengen ansammeln konnten. Sind die supermassereichen Schwarzen Löcher vielleicht die "Geburtshelfer" für Galaxien? Viele Fragen, die auf Antworten warten. Die hinter all diesen Fragen und bisherigen Erkenntnissen steckende Physik ist aufgrund der dafür notwendigen Mathematik äußerst kompliziert und im gymnasialen Unterricht nicht anwendbar. Dennoch ist die Allgemeine Relativitätstheorie eine Theorie der klassischen Physik und macht es möglich, mit Gesetzmäßigkeiten wie dem Gravitationsgesetz von Newton und den Kepler'schen Gesetzen Berechnungen durchzuführen und damit ein grobes, aber ausreichendes Verständnis für den Aufbau und die Funktion Schwarzer Löcher zu erhalten. Zudem können durch relativ einfache Gleichungen die Schwarzschild-Radien für die Sonne und die Erde berechnen werden – die geringen Beträge zeigen uns, welche unvorstellbaren Kräfte herrschen müssten, damit auch diese beiden Himmelskörper zu Schwarzen Löchern zusammengekrümmt würden. Am Beispiel von Sagittarius A* kann man schließlich nachvollziehen, welche Größen und Massen sich für Schwarze Löcher ergeben können, wenn man das Sonnensystem verlässt und in das 26.000 Lichtjahre entfernte Zentrum der Milchstraße vorstößt. Die genannten Beispiele und Berechnungen zeigen den Lernenden unter anderem, um welche Größenordnungen es geht, wenn man vom Universum spricht. Schülerinnen und Schüler sollen mit dieser Unterrichtseinheit zu Schwarzen Löchern auch animiert werden, darüber nachzudenken, welche Rolle wir Menschen auf unserer Erde in diesem gigantischen Kosmos spielen. Fachkompetenz Die Schülerinnen und Schüler können Entstehung, Aufbau und Wirkungsweise von Schwarzen Löchern beschreiben. kennen die Forschungsarbeit der beteiligten Astrophysiker, die zum Nachweis eines Schwarzen Loches geführt haben. können die physikalischen Gesetzmäßigkeiten Schwarzer Löcher herleiten und entsprechende Berechnungen ausführen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbstständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Apps auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern, Freundinnen und Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Profitgier oder Gemeinsinn – Sollte ein Impfstoff kostenlos sein?

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit zum Thema "Impfstoff-Verteilung" konfrontiert die Schülerinnen und Schüler mit einer aktuellen und höchst strittigen Frage, die letztlich die Basis unseres gesellschaftlichen Zusammenlebens und die Frage unserer Wirtschaftsordnung berührt. Da es bis heute keine wirksamen Arzneimittel gegen Corona-Erkrankungen gibt, liegt die gesamte Hoffnung der Menschheit auf der Immunisierung der Menschen durch einen Impfstoff. Glücklicherweise gelang es einigen Pharmaunternehmen auf der Welt, solche Impfstoffe zu entwickeln und dies sogar in kürzester Zeit. Allerdings stehen nun Politik und Öffentlichkeit vor dem Dilemma, Regeln zu definieren, wer solche Impfungen erhält und in welcher Reihenfolge. Das Problem wird dadurch verschärft, dass der Impfstoff von Privatunternehmen entwickelt wurde, die ihr Produkte nun weltweit zum Verkauf anbieten. Da anfangs von den Impfstoffen – die Produktionskapazitäten müssen ja erst aufgebaut werden – nur geringe Mengen produziert werden können, entbrennt ein weltweiter Verteilungskampf, bei dem die Zuteilung von Impfstoff augenscheinlich nicht von gesundheitlicher Notwendigkeit, sondern von wirtschaftlicher Stärke und vorhandener Kaufkraft bestimmt wird. Die Lernenden erarbeiten sich hierzu eine persönliche Meinung und vertreten diese im Diskurs. Die Unterrichtseinheit ist komplett für Fernunterricht ausgelegt, kann aber auch im Klassen- oder EDV-Raum realisiert werden. Das Thema "Impfstoff-Verteilung" im Unterricht Nur wenige Krisen haben unser Leben, unsere Lebensentwürfe und unsere Sicherheit seit den Weltkriegen so stark in Frage gestellt wie die aktuelle Corona-Pandemie. Unser normaler Alltag wurde binnen Tagen völlig verändert. Alle Hoffnungen ruhen einzig und allein auf der Immunisierung der Bevölkerung mit Hilfe eines Impfstoffes. Da es sich dabei, zumindest anfänglich, um ein höchst knappes Gut handelt, rückt seine Verteilung nicht nur in das Zentrum der öffentlichen Diskussion, sie ist für einzelne Menschen auch eine Frage von Leben und Tod. Die Unterrichtseinheit konfrontiert die Schülerinnen und Schüler mit diesem Dilemma von Öffentlichkeit, Politik und Wirtschaft, um sie zu einer Meinungsbildung und deren Artikulation zu bewegen. Vorkenntnisse Digitale Grundkenntnisse von Lernenden und Lehrkräften sind hilfreich, sind aber nicht unbedingt notwendig, da das Posten auf einer digitalen Pinnwand oder das Ausfüllen eines Online-Tests keine besonderen EDV-Kenntnisse erfordert. Didaktische Analyse Die Schülerinnen und Schüler sollen erkennen, in welchem komplexen Wirkungszusammenhang gesundheitspolitische Entscheidungen getroffen werden müssen. Darüber hinaus sollen sie auch persönliche Werthaltungen zu diesem Entscheidungsdilemma entwickeln und zumindest im Kosmos der Klasse öffentlich vertreten. Methodische Analyse Die Unterrichtseinheit kann vollständig online stattfinden. Die Lernenden müssen lediglich über Internetanschluss und Endgeräte verfügen. Unabhängig davon kann die Einheit auch im Präsenz-Unterricht stattfinden. Die gesamte Aktivität der Lernenden wird über eine einzige digitale Pinnwand (zum Beispiel Padlet) gesteuert, auf der sich die Arbeitsaufträge und Hintergrundinfos befinden, alle Ergebnisse eingestellt werden und auf der auch die Kommunikation und Kollaboration der Schülerinnen und Schüler erfolgt. Ergänzt wird die digitale Pinnwand durch zwei Online-Abfragen, eine Videoplattform für die Diskussion der Arbeitsgruppen und die Erstellung von Videos mithilfe eines Handys oder einer Videoplattform. Die Lernergebnisse werden von den Schülerinnen und Schüler eigenständig in einem "digitalen Klassenzimmer" entwickelt. Die eigenständige Recherche zu Beginn der Unterrichtseinheit ermöglicht es den Lernenden, die Ergebnisse sowie ihre persönliche Meinung vollständig selbstständig zu entwickeln. Fachkompetenz Die Schülerinnen und Schüler informieren sich über das Wesen von Patenten. sammeln die Vor- und Nachteile von Patenten bei der Impfstoffforschung. beurteilen die Konsequenzen der Aufhebung des Patentschutzes für die Produktion und Verteilung des Corona-Impfstoffs. Medienkompetenz Die Schülerinnen und Schüler recherchieren und analysieren Informationen im Internet. kooperieren online auf digitalen Pinnwänden. führen Videokonferenzen durch. Sozialkompetenz Die Schülerinnen und Schüler recherchieren, entscheiden und präsentieren im Team. verständigen sich auf eine gemeinsame Erklärung von wirtschaftlichen Wirkungszusammenhängen bei der Entwicklung von Impfstoffen.

  • Politik / WiSo / SoWi / Religion / Ethik / Wirtschaft
  • Sekundarstufe II, Berufliche Bildung

Rätsel: Ausflug in das Weltall

Kopiervorlage

Das Rätsel "Ausflug in das Weltall" für die Grundschule nimmt die Lernenden mit auf eine spannende Reise in den Weltraum und ferne Galaxien, indem sie auf einem Arbeitsblatt fächerübergreifend Begriffe rund um Außerirdische, Planeten und Astronauten suchen.Dieses Arbeitsblatt zum Thema Weltall ist fächerübergreifend in der Grundschule einsetzbar und kann als Kopiervorlage spontan in einer Randstunde, vor den Ferien oder auch im Vertretungsunterricht dabei helfen, den Unterricht ohne große Vorbereitung sinnvoll zu gestalten. Das Unterrichtsmaterial eignet sich sowohl für den Sachunterricht im Rahmen von "Sache und Technik" oder "Ich und meine Welt" als auch im Fach Sprache in "Lesen und Schreiben". Viele Schülerinnen und Schüler der Klassen 2 bis 4 sind vom Weltraum, Planeten und fernen Galaxien begeistert. Zu gerne würden sie selbst den Mond, den Mars oder auch andere fremde Himmelskörper im Sonnensystem entdecken und erforschen oder natürlich auch mal Außerirdische kennenlernen. Auch wenn eine Begegnung mit kleinen grünen Männchen wohl ein Traum bleiben wird, mit diesem Arbeitsblatt können die Kinder der Grundschule zumindest für einen kurzen Moment mal in die Rolle eines Astronauten schlüpfen, indem sie ein spannendes Rätsel lösen: Angeregt durch unterschiedlich lange Definitionen suchen sie nach Begriffen rund um das gesamte Universum, um schließlich einen anderen Ausdruck für einen Ausflug in das Weltall als Lösungswort herauszubekommen. In einer stillen Einzelarbeit oder auch gemeinsam in Partnerarbeit sind die Schülerinnen und Schüler dabei zum Beispiel gefordert, ein unbekanntes Flugobjekt zu benennen oder ihr Wissen über die Umlaufbahn der Planeten um die Sonne anzuwenden. Das Material motiviert und aktiviert demnach nicht nur durch das ansprechende Thema Kosmos, sondern zusätzlich auch durch Rätseln und Tüfteln. Das Quiz fördert kognitive Kompetenzen und bereitet spielerisch in Form einer naturwissenschaftlichen Grundbildung auf den Unterricht der Sekundarstufe vor. Lösungen zur Selbstkontrolle ermöglichen den Lernenden, dass sie sich der Aufgabe eigenverantwortlich zum Beispiel auch zu Hause oder in der Freiarbeit widmen können.

  • Fächerübergreifend
  • Primarstufe

Das Elisabethanische Weltbild in Shakespeares "Macbeth" und "Ein…

Fachartikel
5,99 €

Dieser Fachartikel fasst das Elisabethanische Weltbild zusammen und bietet auf zwei Grafiken eine Übersicht zum Elisabethanischen Weltbild in Shakespeares "Macbeth" sowie "Ein Sommernachtstraum". Das elisabethanische Zeitalter (zur Regierungszeit von Königin Elisabeth I., 1558–1603) war eine Epoche tiefgreifender sozialer und kultureller Veränderungen ; das Weltbild der Elisabethaner war aber trotz des Beginns der Renaissance immer noch stark von mittelalterlichen Traditionen geprägt: Die Zeitgenossen Shakespeares waren der Auffassung, dass es "eine universale Ordnung gibt, in der alle gegenwärtigen und vergangenen Phänomene ihren Platz haben und die sowohl materielle als auch geistige Wesenheiten umfasst." (Suerbaum 2001: 87) Die Einheit des Universums stammt aus Gott, der die Welt aus dem Chaos heraus geschaffen und ihr ein bestimmtes Ordnungsprinzip zugrunde gelegt hat. Dieses Ordnungsprinzip bezeichneten die Elisabethaner als frame of order . Ordnung kann in unterschiedlichen Bereichen ihren Niederschlag finden, wie zum Beispiel in der Hierarchie der Lebewesen oder der Liebe und Loyalität, die Kinder ihren Eltern schuldig sind. Aber auch der feste Lauf der Planeten und die Reihenfolge der Tages- und Jahreszeiten sind Hinweise für eine bestehende Ordnung. Der gesamte Kosmos ist eine Hierarchie, in der alle Kreaturen nach dem Prinzip der Rangstufung ( degree ) ihren Platz haben. "Für die Art und Weise der Ordnung nach degree werden vor allem die Bilder der Stufenleiter oder der Treppe – ladder , scale of degree – und der Kette des Seins – chain of being – verwandt." (Suerbaum 2001: 88) In der Seinskette erfolgt eine Einordnung jedes Wesens durch Unter- und Überordnung . Es lassen sich vier Bereiche unterscheiden: "Auf der untersten Ebene steht das Reich der Mineralien, deren einzige Grundeigenschaft die Existenz ist (Leitbeispiel: Fels). Auf der nächsten Stufe stehen die Wesen des Vegetable Kingdom (Leitbeispiel: der Baum), bei denen zum Sein noch das Leben tritt. Die Angehörigen des Animal Kingdom (Leitbeispiel: das Pferd) haben Gefühl und Bewegung als zusätzliche Qualitäten. Beim Menschen im nächst höheren, dem rationalen Bereich treten Verstand und Seele hinzu." (Suerbaum 2001: 89f.) Im Gegensatz zu den meisten anderen Kreaturen lebt der Mensch in einer Gesellschaft und wird dadurch zum Ordnungswesen schlechthin, da ihm die Gesellschaft seine Rangstufung in einer Reihe von Hierarchien zuweist, abhängig von seinem sozialen Stand und seinem Berufs-, Familien- oder Vermögensstand . Welcher Platz dem Einzelwesen in der Ordnung zukommt, beruht auf dem Prinzip der Verschiedenheit. Zu diesem Prinzip gehört das komplementäre Prinzip der Analogie, welches ermöglicht, dass die endlose Zahl der degrees eine Ordnung bildet: "Alle Kreaturen sind einander ähnlich. Der Grad ihrer Verwandtschaft mit anderen Wesen bestimmt – zusammen mit dem spezifischen Unterschied – ihre Seinsposition. Die Ordnung ist also auch ein System von Analogien und correspondences , von Übereinstimmungen der Bau- und Funktionsweise verschiedener Schöpfungsteile." (Suerbaum 2001: 90) Als Beispiel für analoges Denken dienen zum Beispiel oft der Körper mit seiner organischen Ordnung und der Staat als 'politischer Körper' ( body politic ); eine beliebte Metapher der elisabethanischen Zeit für Korrespondenzen ist der Spiegel: Die Welt besteht aus Spiegeln und benachbarte Kreaturen spiegeln einander. Eine Störung dieser Ordnung, im Himmel wie auf Erden hat Chaos zur Folge. Hauptstörfaktor ist der Mensch mit seinen Schwächen, denn durch seinen Sündenfall wurde "die Ordnung […] erschüttert und ein Element der Unsicherheit und Unbeständigkeit ( mutability ) in sie hineingetragen." (Suerbaum 2001: 99) Wird die vorgegebene Hierarchie missachtet, kann es zu Störungen in (a) der menschlichen Natur (Psyche), (b) der Natur/des Kosmos und/oder (c) des gesellschaftlichen/politischen/sozialen Lebens kommen. "Die elisabethanische Psychologie geht von einer Hierarchie der Seelenvermögen aus, an deren Spitze die Vernunft steht. Die Sinneseindrücke (impressions, fancies), die den psychischen Mechanismus auslösen, müssen nach dem Durchgang durch die Phantasie (fantasy, imagination) erst der Kontrolle durch die Vernunft (reason, judgement) unterworfen werden, die zwischen gut und böse unterscheidet, ehe es zu einem das Gute begehrenden Willensentschluss (will, persuasion) kommen kann, der auf die Leidenschaften (desires, blood) wirkt und eine zweckmäßige Handlung herbeiführt. Diese Ordnung kann jedoch umgestoßen werden, wenn die Phantasie unter Ausschaltung der Vernunft und des Willens unmittelbar auf die Leidenschaften der Begierde wirkt und von ihnen fehlgeleitete Handlungen herbeiführt." (Franke 2003: 164) Die Natur wurde zu Shakespeares Zeit als Instrument Gottes angesehen, als "a visible expression of God's intentions". (Emunds 1983: 53) Zuwiderhandlung gegen die göttliche Ordnung kommt in kosmischem Chaos zum Ausdruck, wie zum Beispiel durch Gewitter, Umkehrung der Rangordnung unter den Tieren oder aufkommende Dunkelheit am Tage. Ebenso kann auch die gesellschaftliche Ordnung aus den Fugen geraten, was sich in politischen Unruhen oder Kriegen äußert.

  • Englisch
  • Sekundarstufe II

Venus - Beobachtung der Phasen unseres Nachbarn

Unterrichtseinheit

Der Wechsel der Venusphasen und die Metamorphose vom Abend- zum Morgenstern bieten ein astronomisches Lehrstück und schulen das räumliche Verständnis. "Sie loderte silbern, entsandte verfliegende Strahlen, brannte in Zacken, und eine längere Flamme schien gleich der Spitze eines Speeres obenauf ihr zu stehen" - so beschreibt Thomas Mann (1875-1955) die Erscheinung der Venus am Himmel über Kanaan in dem Roman "Joseph und seine Brüder". Nach Sonne und Mond ist unser Nachbarplanet das hellste Objekt am Himmel, aber nicht zu jeder Zeit: Bedingt durch die innerhalb der Erdbahn gelegene Umlaufbahn zeigt Venus verschiedene Phasen (Vollvenus, Halbvenus, Neuvenus) und dabei eine erhebliche Veränderung des scheinbaren Durchmessers. Zum Zeitpunkt ihres größten Glanzes erscheint Venus als breite Sichel. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Beobachtung ohne optische Hilfsmittel Eine Beobachtung der Venus über einen längeren Zeitraum, insbesondere die "Metamorphose" vom Morgenstern zum Abendstern - bietet ein schönes astronomisches Lehrstück. Schülerinnen und Schüler können die Dynamik des Sonnensystems dabei ganz ohne optische Hilfsmittel erleben. Sie verstehen den Wandel vom Abend- zum Morgenstern als Projektion eines einfachen Manövers an die Himmelskugel: Venus überholt die Erde auf der "Innenbahn". Ausführliche Hinweise zur Beobachtung und Dokumentation von Planetenbewegungen über einen längeren Zeitraum finden Sie in dem Beitrag zur Allgemeine Hinweise zur Planetenbeobachtung . Beobachtung der Venusphasen Mit dem bloßen Auge sind im Laufe von Wochen und Monaten lediglich deutliche Veränderungen der Venushelligkeit erkennbar. Das zugrunde liegende Zusammenspiel von Venusgröße und -phase offenbart sich allerdings erst beim Blick durch optische Hilfsmittel. Wenn Sie keinen Zugriff auf ein Amateurteleskop haben, bietet sich ein Besuch in der nächsten Volkssternwarte an. Falls Sie Hobby-Ornithologen im Kollegium oder Freundeskreis haben: Auch mit einem guten Spektiv lassen sich die Phasen der Venus beobachten. Die schlanke Sichel der erdnahen Venus ist sogar schon mit einem guten Feldstecher (10-fache Vergrößerung) erkennbar. Besonders Scharfsichtigen soll dies sogar mit bloßem Auge gelingen - darauf bezieht sich möglicherweise auch Thomas Manns Beschreibung. Auf den Spuren von Galileo Galilei und Simon Marius Auch ohne die Einbettung in ein längeres Beobachtungsprojekt lohnt es sich, die Schülerinnen und Schüler einen Blick auf die Sichelform des strahlenden Planeten werfen zu lassen. Dabei wandeln sie in den Fußstapfen bedeutender Vorgänger: Galileo Galilei (1564-1642) und der weniger bekannte deutsche Astronom Simon Marius (1573-1624) entdeckten 1610 mit den ersten Fernrohren nahezu zeitgleich die Venusphasen - eine Beobachtung, die zum Sturz des geozentrischen und zur Untermauerung des heliozentrischen Weltbildes beitrug. Entstehung der Venusphasen Geometrische Betrachtungen zur Perspektive unseres Blicks auf die Venus veranschaulichen die Entstehung der Venusphasen. Die Erforschung des Planeten Die Atmosphäre gleicht einem heißen Ozean, der eine dämmrige und von erstarrten Lavaflüssen geprägte Landschaft bedeckt. Die Schülerinnen und Schüler sollen Bewegung und Phasen der Venus durch die Bahngeometrie erklären können und ihr räumliches Vorstellungsvermögen schulen. erläutern können, warum die Entdeckung der Venusphasen durch Galileo Galilei (1564-1642) und Simon Marius (1573-1624) das heliozentrische Weltbild unterstützte. die schon in der Dämmerung strahlende Venus mit eigenen Augen betrachten und - wenn möglich - mithilfe geeigneter optischer Instrumente die Sichelform des Planeten beobachten. die charakteristischen Eigenschaften der Venusatmosphäre und -oberfläche kennen lernen und den Planeten nicht nur als Lichtpunkt betrachten, sondern in ihm eine fremde Welt erkennen. eine astronomische Beobachtung gemeinsam planen und zusammen mit Mitschülern, Lehrpersonen, Eltern, Freundinnen oder Freunden erleben. Planetarium-Software als Werkzeug zur Planung astronomischer Beobachtungen kennen und nutzen lernen. Thema Beobachtung der Venus Autor Dr. André Diesel Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Sekundarstufe I und II Zeitraum variabel: vom einmaligen Beobachtungsabend bis hin zur Dokumentation der Venusbahn über Wochen oder Monate Technische Voraussetzungen Beobachtung mit dem bloßen Auge oder einem guten Feldstecher (dieser ermöglicht zumindest die Betrachtung der schmalen Venussichel); Spektive (40-60-fache Vergrößerung) und kleine Amateurteleskope lassen alle Venusphasen erkennen. Software Planetarium-Software zur Vorbereitung (Beamerpräsentation) oder zum Ausdrucken von Himmelskarten, zum Beispiel Stellarium (kostenfreier Download) Untere und Obere Konjunktion Die innerhalb der Erdbahn kreisende Venus "pendelt" von uns aus gesehen zwischen der größten westlichen und der größten östlichen Elongation hin und her (Abb. 1). Im Gegensatz zu Mars und den äußeren Planeten ist bei Venus und Merkur zwischen der unteren und der oberen Konjunktion zu unterscheiden. In den Zeiten um beide Konjunktionen befinden sich die inneren Planeten nahe bei der Sonne am Taghimmel und sind nicht zu beobachten (ähnlich der "Neumondsituation"). Zum Zeitpunkt der unteren Konjunktion ist Venus etwa 40 Millionen Kilometer von der Erde entfernt, zum Zeitpunkt der oberen Konjunktion etwa 150 Millionen Kilometer. Daraus ergeben sich die deutlichen Änderungen des scheinbaren Durchmessers des Planetenscheibchens an unserer Himmelskugel. Venustransite Wenn sich Merkur oder Venus zum Zeitpunkt der unteren Konjunktion genau zwischen Erde und Sonne befinden, ist ein so genannter Transit zu beobachten: Der Planet wandert als schwarzes Scheibchen über die Sonnenscheibe. Aufgrund der nicht ganz identischen Bahnebenen der Planeten geschieht dies jedoch nur selten (aus demselben Grund haben wir auch nicht bei jedem Neumond eine Sonnenfinsternis). Abb. 2 zeigt den Venustransit von 2004, aufgenommen von einer Schülergruppe am Gymnasium Isernhagen (Niedersachsen). Der nächste Venustransit am 6. Juni 2012 ist, wenn die Sonne in Mitteleuropa aufgeht, schon fast beendet. Der nächste Merkurtransit am 09. Mai 2016 kann dagegen vollständig beobachtet werden. Solche Beobachtungen sind nur mit geeigneten Schutzbrillen und Instrumenten möglich! Phasen der Venus Im Gegensatz zu den anderen Planeten zeigen Venus und Merkur aufgrund ihrer innerhalb der Erdbahn liegenden Bewegung um die Sonne Phasen: Etwa während der größten östlichen Elongation (siehe Abb. 1) ist eine abnehmende Halbvenus als auffälliger Abendstern zu beobachten. Um den Zeitpunkt der größten westlichen Elongation ist eine zunehmende Halbvenus als Morgenstern zu sehen. Vor oder nach der unteren Konjunktion erscheint Venus (kurz nach Sonnenuntergang beziehungsweise kurz vor Sonnenaufgang) als große, aber sehr schmale Sichel. Um die obere Konjunktion herum erscheint das Planetenscheibchen dagegen voll beleuchtet, aber sehr klein und ist dadurch in der Dämmerung sehr unauffällig. Durch das Zusammenspiel von Entfernung und Beleuchtung (Phase) des Planeten kommen die großen Helligkeitsschwankungen der Venus zustande. An einem bestimmten Punkt zwischen unterer und oberer Konjunktion erstrahlt Venus in ihrem größten Glanz. Zu diesem Zeitpunkt sind 28 Prozent der uns zugewandten Seite des Planeten beleuchtet (Venus erscheint dann als breite Sichel). Abb. 3 zeigt die Entwicklung der abnehmenden Venus bis hin zur scharfen Sichelform. Die Aufnahmen stammen von Jens Hackmann. Weitere Astronomie-Fotos finden Sie auf seiner Homepage: Java-Applet zur Entstehung der Venusphasen Ein Java-Applet von Rob Scharein veranschaulicht dynamisch die Entstehung der Phasen bei den inneren Planeten Venus und Merkur. Sonne, Erde und die Bewegung des inneren Planeten werden in der Aufsicht dargestellt. Zeitgleich sieht man - aus der Perspektive irdischer Beobachter - die Entwicklung der Phasen und die Veränderungen der Größe des Planetenscheibchens. Java-Applet "Phases of the inner planets" (Astronomy and Physics Simulations) Klicken Sie auf der Website von Rob Scharein unter "Solar system explorer" auf das Saturn-Icon vor "Phases of the inner planets". Venus benötigt für die Umrundung der Sonne 243 Tage und um sich einmal um sich selbst zu drehen 225 Tage. Der Drehsinn der Eigenrotation ist bei ihr - als einzigem Planeten - retrograd: Die Sonne geht also im Westen auf und im Osten unter. Daraus ergibt sich, dass auf der Venusoberfläche alle 117 Tage die Sonne aufgeht. Die Ursache für die retrograde Rotation ist nicht bekannt - möglicherweise war hier eine Kollision im Spiel. Ein "Venuszyklus" am Erdhimmel dauert länger als ein Venusjahr, da sich die Erde während eines Venusjahrs ja auch weiterbewegt: Von Neuvenus zu Neuvenus vergehen 584 Erdentage. Undurchdringliche Wolkenschicht Venus wird von dichten Wolken eingehüllt, die Teleskopen den Blick auf die Oberfläche verwehren und den Planeten als "Billardkugel" erscheinen lassen. Abb. 4 zeigt ein Venus-Portrait, aufgenommen von der NASA-Sonde Mariner 10. Die dichte Wolkendecke sorgte vor der Ära der Raumsonden für vielfältige Spekulationen. So vermutete man unter den Wolken eine Landschaft, die der der "Urerde" vor 200 Millionen Jahren entsprechen sollte, bedeckt von dampfenden Dschungeln, durch die saurierähnliche Geschöpfe stapfen sollten. Die Wolkendecke macht Venus nicht nur geheimnisvoll, sondern sorgt auch für den strahlenden Glanz des Planeten an unserem Himmel: Drei Viertel des Sonnenlichtes werden von den Wolken reflektiert. Planet im Fieber Als 1970 erstmals eine russische Raumsonde auf der Nachtseite des Planeten landete (Venera 7), meldete sie eine Temperatur von 475 Grad Celsius und den enormen Druck von 90 Erdatmosphären - das entspricht etwa dem Druck in 900 Metern Wassertiefe. Zwei Jahre später schickte eine weitere russische Sonde ähnliche Werte von der Tagesseite. Unter den dampfdruckkesselartigen Bedingungen verhält sich die Atmosphäre wie ein heißer Ozean, der die Temperaturunterschiede zwischen Tag- und Nachtseite ausgleicht. Die Zusammensetzung der Atmosphäre - 96 Prozent Kohlenstoffdioxid! - macht Venus zur perfekten Strahlungsfalle, die den Planeten in ein Dauerfieber versetzt. Der Treibhauseffekt wird noch verstärkt von Wasserdampfspuren und den Wolken aus 80-prozentiger Schwefelsäure, die die von der Oberfläche reflektierte Strahlung nicht in den Weltraum entkommen lassen. Der Schwefel wurde ursprünglich durch vulkanische Aktivitäten in Form von Schwefeldioxid ausgestoßen. Turbulente Atmosphäre Die amerikanischen Pionier-Sonden erkundeten in den siebziger Jahren die Zusammensetzung der Venusatmosphäre. Die von der Erde aus sichtbaren Wolken befinden sich etwa 65 Kilometer über der Oberfläche und werden von heftigen Winden (350 Kilometer pro Stunde) in nur vier Tagen um den gesamten Planeten gejagt. Wenige Kilometer darunter gehen die Wolken in eine gelbliche Dunstschicht über, die möglicherweise aus Schwefelsäuretröpfchen besteht. Etwa 50 Kilometer über der Oberfläche findet sich die dichteste Wolkenschicht. Aus ihr fällt ständig saurer Regen, der jedoch verdampft bevor er die Oberfläche erreicht. Auf dieser sind die Winde eher schwach (wenige Stundenkilometer). Die 2005 gestartete ESA-Sonde Venus Express umkreist den Planeten und erforscht dessen Atmosphäre und Klima genauer. Abb. 5 zeigt ein Wirbelsturmsystem, das von der Sonde fotografiert wurde. Blitzgewitter und dämmrige Tage Unterhalb der Wolken erzeugen zahlreiche Blitze ein verschwommenes Glühen - dass es dabei heftig grollen muss, kann man sich vorstellen. Nur ein Prozent des Sonnenlichts erreicht die Venusoberfläche. Hier ist es immer dämmrig, etwa wie an einem wolkenverhangenen Tag auf der Erde. Eine junge vulkanische Landschaft Die ersten Fotos der Oberfläche machten russische Raumsonden in den siebziger Jahren. Viele Bilder finden Sie auf der Website von Don P. Mitchell (siehe unten). Eine systematische Untersuchung der Oberfläche erfolgte durch die NASA-Sonde Magellan in den Jahren 1989 bis 1994. Die Sonde umkreiste den Planeten und durchdrang mit ihrem Radarauge die dichte Wolkendecke. Aus den gewonnenen Daten wurde eine detaillierte Karte erstellt, die 98 Prozent der Venusoberfläche erfasst. Von erstarrten Lavaströmen bedeckte Ebenen prägen weite Teile des Planeten. Es gibt aber auch Hochebenen, Gebirge und Vulkane. Der Computer kann aus den Radardaten dreidimensionale Reliefs berechnen und aus jeder gewünschten Perspektive darstellen. Abb. 6 zeigt ein solches Bild von Maat Mons, dem mit acht Kilometern höchsten Vulkan der Venus. 85 Prozent der Planetenoberfläche scheinen vor erst 500-800 Millionen Jahren aus einer gigantischen Lavaflut hervorgegangen zu sein, die das Vorgängerrelief kilometerdick bedeckte. Globaler Katastrophenzyklus oder langsames Ausklingen des Vulkanismus? Die von der Erde bekannte Plattentektonik gibt es auf der Venus nicht. Einige Wissenschaftler vermuten daher, dass die vulkanische Freisetzung von Wärme auf der Venus nicht - wie auf der Erde - kontinuierlich erfolgt. Sie glauben, dass Venus ihren geologischen Wärmehaushalt über einen periodischen Vulkanismus reguliert, der in heftigen Schüben ausbricht und dabei die Oberfläche des Planeten rundum erneuert. Andere Wissenschaftler favorisieren dagegen ein langsames Ausklingen der vulkanischen Aktivitäten während der letzten zwei Milliarden Jahre. Beide Hypothesen erklären, warum Einschlagkrater von Meteoriten auf der Venusoberfläche nicht älter als etwa 750 Millionen Jahre sind. Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse und deren Begleitumstände: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Saturn - einen Blick auf den Ringplaneten vergisst man nicht

Unterrichtseinheit

In der Unterrichtseinheit "Saturn" nehmen die Lernenden den Ringplaneten unter Beobachtung. Die Observation der Saturnringe mit eigenen Augen hinterlässt einen bleibenden Eindruck. Auch der außergewöhnliche Mond Titan kann mit einfachen Mitteln gesichtet werden. Ein Blick auf den Gasriesen lohnt sich besonders während der Monate um die jährlichen Oppositionen. Mit dem Erscheinungsbild des Saturn und seines eindrucksvollen Ringssystems sind wir bestens vertraut: Im Internet und in Fernsehsendungen begegnen uns immer wieder Bilder der Raumsonden Voyager und Cassini. Und trotzdem löst der Blick mit dem eigenen Auge auf das Original - auch in vergleichsweise kleinen Amateurgeräten - Verwunderung, Überraschung und Faszination aus. Zur Vorbereitung und Auswertung von Saturn-Beobachtungen steht eine ganze Palette digitaler Werkzeuge kostenfrei zur Verfügung. Der fachliche Hintergrund kann mithilfe von Internetrecherchen und interaktiven Online-Anwendungen im Computerraum oder am heimischen Rechner abwechslungsreich und auch spielerisch vertieft werden. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Die Beschäftigung mit dem Thema Saturn kann im Rahmen einer Astronomie AG oder des Differenzierungsunterrichts methodisch und inhaltlich sehr vielseitig gestaltet werden: Neben Internetrecherchen und der Nutzung des Rechners als Werkzeug gilt es die positiven Effekte eines gemeinsamen Naturerlebnisses mitzunehmen. Inhaltlich spannt sich der Bogen von den Beobachtungen und Zeichnungen Galileo Galileis (1564-1642) und Christiaan Huygens' (1629-1695) bis hin zur Landung einer Sonde auf der Oberfläche des Saturnmonds Titan im Jahr 2005 und den Ergebnissen der Cassini-Mission. Beobachtung der Saturnringe Was sieht man von den Ringen mit welcher Ausrüstung? Wie entstehen die verschiedenen Ringstellungen? Welche Ausstattung benötigt man für fotografische Dokumentationen? Der Saturnmond Titan Titan ist bereits mit leichtem Gerät sichtbar. Er ist der einzige Mond des Sonnensystems mit einer Atmosphäre. Dies macht ihn zum Spekulationsobjekt der Exobiologie. Virtuelle Exkursionen Mit Online-Anwendungen von ZDF und NASA können Schülerinnen und Schüler das Saturnsystem virtuell erkunden. Eigene Beobachtungen werden mit Stellarium vorbereitet. Die Schülerinnen und Schüler beobachten gemeinsam den Abendhimmel und finden mithilfe einer Aufsuchkarte (Planetariumsoftware) den Planeten Saturn. sehen mithilfe eines Spektivs (wie es zum Beispiel Hobby-Ornithologen verwenden) oder eines Amateurteleskops (Schulteleskop, Volkssternwarte) das Ringsystem des Planeten mit eigenen Augen. verstehen die Entwicklung der Ringöffnung im Laufe eines Saturnjahres und schulen so ihr räumliches Vorstellungsvermögen. identifizieren den Saturnmond Titan am Himmel und lernen die Ergebnisse der Huygens-Mission kennen. wissen, was Galileo Galilei (1564-1642) und Christiaan Huygens (1629-1695) mit den Teleskopen ihrer Zeit gesehen und wie sie ihre Beobachtungen interpretiert haben. informieren sich mithilfe von Internetrecherchen und interaktiven Online-Anwendungen über Saturn und Titan, seinen größten Mond. lernen Stellarium und Bildbearbeitungssoftware als Werkzeuge zur Vorbereitung kennen und nutzen diese. Zudem erlernen sie die Dokumentation und Auswertung astronomischer Beobachtungen. Der Besuch einer Volkssternwarte lohnt sich! Betrachtet man den gelblich leuchtenden Saturn in einem fest montierten Fernglas bei 15-facher Vergrößerung, kann man bei entsprechender Ringstellung bereits eine elliptische Form erkennen. Im Jahr der Veröffentlichung dieses Artikels hat sich sich dieser Effekt allerdings nicht eingestellt, denn zur Zeit der Opposition im Jahr 2010 beträgt die Ringöffnung nur 3,2 Prozent. Bei 40-facher bis 60-facher Vergrößerung sieht Saturn dann daher wie ein "Durchmesser-Symbol" aus - das Ringsystem erscheint als Strich. Dieser Anblick lässt sich bereits mit einem guten Spektiv erzielen, wie es von Hobby-Ornithologen verwendet wird. Eine Volkssternwarte in Ihrer Nähe finden Sie mithilfe des German Astronomical Directory: German Astronomical Directory (GAD) Hier finden Sie eine Zusammenstellung astronomischer Vereine, Sternwarten und Planetarien von David Przewozny. Geringe Ringöffnung Eine "Kantstellung" der Ringe macht sich durch eine relativ geringe Leuchtkraft des Planeten in diesem Jahr bemerkbar: Bei maximal geöffneten Ringen reflektieren diese 1,5 Mal soviel Licht wie das Planetenscheibchen selbst, das im Jahr 2010 mehr oder weniger auf sich allein gestellt ist. Bei weit geöffneten Ringen ist die Cassini-Teilung mit Amateurteleskopen, wie sie Schul- oder Volkssternwarten zur Verfügung stehen, unter sehr guten Bedingungen zu erkennen (150- bis 200-fache Vergrößerung). Abb. 1 zeigt eine Aufnahme des Saturns von Thomas Borowski mit einem Amateurteleskop (Februar 2009, 150 Millimeter Fernrohröffnung, 4.800 Millimeter Brennweite). Zum Zeitpunkt der Aufnahme präsentierte uns Saturn sein Ringsystem in "Kantstellung". Form und Atmosphäre Eine Kantstellung der Ringe begünstigt die Wahrnehmung der abgeplatteten Gestalt des Planeten (siehe Abb. 1). Diese ist eine Folge der Kombination aus geringer mittlerer Dichte (in Wasser würde Saturn schwimmen) und schneller Rotation (ein Saturntag dauert weniger als elf Stunden). Der Äquatordurchmesser beträgt 120.000 Kilometer, der Poldurchmesser nur 108.000 Kilometer. Wolkenbänder sind in kleineren Amateurgeräten (ohne Bildbearbeitung) nicht zu erkennen. Das heißt aber nicht, dass es in der Saturnatmosphäre ruhig zugeht - hier treten Windgeschwindigkeiten von 1.800 Kilometern pro Stunde auf! Das Ringsystem des Saturns ist um etwa 27 Grad zur Bahnebene des Planeten geneigt. Da die Ringe "raumfest" sind, präsentieren sie sich uns während einer Sonnenumrundung des Planeten - die etwa dreißig Erdenjahre in Anspruch nimmt - aus ganz unterschiedlichen Perspektiven. Dies wird durch die Fotoserie in Abb. 2 deutlich. Die Bilder zeigen verschiedene Ringstellungen, die das Hubble-Weltraumteleskop in den Jahren 1996 bis 2000 aufgenommen hat. Die verschiedenen Etappen, über die ein kompletter Ringzyklus verläuft, werden in der folgenden Aufzählung kurz skizziert. Etwa alle 15 Jahre schließen sich dabei die Ringe, sodass wir von der Erde aus auf ihre "Kante" blicken. Für eine kurze Zeit scheinen Sie dann zu verschwinden. Der Wechsel der Ringstellungen verläuft über folgende Etappen: Der Planet wendet uns seine Südhalbkugel maximal zu. Seine Ringe sind maximal geöffnet. Etwa 7,5 Jahre später blicken wir auf die Ebene der Ringe, die dann nur als Strich erscheinen und für kurze Zeit verschwinden. Nach weiteren etwa 7,5 Jahren wendet uns der der Planet seine Nordhalbkugel maximal zu, und die Ringe erscheinen wiederum weit geöffnet. In den nächsten Jahren schließen sich die Ringe für uns wieder, bis wir nach 7,5 Jahren wiederum ihre Kante betrachten. Danach öffnen sie sich und nach dreißig Jahren ist ein "Ringzyklus" vollendet: Saturn wendet uns wieder seine Südhalbkugel bei maximal geöffneten Ringen zu. Dokumentation der Eigenbewegung des Planeten Mit einer einfachen Digitalkamera und einer kostenfreien Bildbearbeitungssoftware können Schülerinnen und Schüler die Eigenbewegung des Planeten vor dem Fixsternhimmel dokumentieren. Abb. 3 (Platzhalter bitte anklicken) zeigt ein mögliches Teilergebnis: Drei Einzelbilder (in diesem Beispiel erstellt mit einer Planetarium-Software) wurden zu einem Bild addiert, das drei Positionen des Saturns unterhalb des Sternbilds Löwe zeigt (Simulation für das Jahr 2009). Durch eine entsprechende Fotoserie lässt sich eine Spur erzeugen, die die Bewegung des Planeten über mehrere Wochen oder Monate zeigt. Praktische Hinweise zur Bedienung der Digitalkamera und eine kurze Anleitung, wie aus den Einzelfotos die Spur des Saturns mit der kostenfreien Software Fitswork rekonstruiert werden kann, finden Sie in dem folgenden Beitrag: Saturn-Portraits Wer Gelegenheit hat, mit einem Schulteleskop oder in Zusammenarbeit mit einer Volkssternwarte Saturn bei 150- bis 200-facher Vergrößerung zu fotografieren oder zu filmen, kann die kostenfreie Software RegiStax nutzen, um aus einer Vielzahl von Einzelbildern ein optimiertes Summenbild zu berechnen. Dieses bringt Einzelheiten zum Vorschein, die beim Blick durch das Teleskop nur andeutungsweise oder gar nicht erkennbar sind. Abb. 4 (Platzhalter bitte anklicken) zeigt ein in RegiStax geladenes Einzelfoto des Planeten. Nach dem Abschluss des so genannten "Stacking" ("Stapeln" von Bildern) sind die Cassini-Teilung sowie Wolkenbänder deutlich erkennbar (Abb. 5). Eine ausführliche Beschreibung der entsprechenden Arbeitschritte mit Screenshots finden Sie in diesem Artikel: Das gute alte Zeichnen trainiert wie kaum eine andere Übung die naturwissenschaftliche Grundfertigkeit des genauen Beobachtens. Das Zeichnen zwingt uns, wirklich genau hinzusehen und ermöglicht die Wahrnehmung vieler Details, die dem in der Regel flüchtigen ersten Blick fast immer entgehen. Zeichenstunden am Teleskop Lernende auf den Spuren Galileis: Objekte werden studiert und die naturwissenschaftlichen Grundtechniken des genauen Beobachtens und Protokollierens geübt. Im Rahmen der Beschäftigung mit dem Thema Saturn sollten die Schülerinnen und Schüler auch die Meilensteine der Saturnforschung kennen lernen und insbesondere wissen, was Galileo Galilei (1564-1642) und Christiaan Huygens (1629-1695) mit den Teleskopen ihrer Zeit gesehen und wie sie ihre Beobachtungen interpretiert haben. Informationen dazu bieten die folgenden Internetseiten: astronomy2009.org: Darstellung der Venusphasen von Galileo Galilei Die Darstellung von 1623 zeigt Saturn, Jupiter, Mars und die Phasen der Venus (aus: Il saggiatore, In Roma, appresso Giacomo Mascardi). Galilei deutete die Ringe als "Henkel". Astrolexikon: Die Erforschung des Saturn Meilensteine in der Saturnforschung; hier finden Sie unter anderem eine Skizze von Christiaan Huygens, der als erster die Natur der Saturnringe verstand. Titan ist schon in einem lichtstarken Feldstecher als leicht rötlicher Begleiter des Ringplaneten zu sehen. Mit einem Durchmesser von 5.150 Kilometern ist er nach dem Jupitermond Ganymed der zweitgrößte Mond im Sonnensystem. Auch die anderen größeren Saturnmonde, wie Dione und Rhea, sind für mittlere Amateurteleskope kein Problem. Insgesamt kennt man heute etwa 60 Saturntrabanten. Die Positionen der fünf hellsten Saturnmonde kann man über ein Applet auf der Webseite der Western Washington University für jeden gewünschten Zeitpunkt anzeigen lassen: Western Washington University Planetarium Das Java-Applet zeigt die Position der fünf größten Saturnmonde. Beachten Sie die verschiedenen Darstellungsmöglichkeiten („Direct view“, Inverted view“, „Mirror reversed“). Einzigartige Atmosphäre Titan ist der einzige Mond in unserem Sonnensystem, der eine dichte Atmosphäre besitzt. Auf seiner Oberfläche herrscht mit 1,5 bar ein höherer Druck als auf der Erde. Wie die Atmosphäre der Erde besteht die von Titan hauptsächlich aus Stickstoff. Der orangefarbene Nebel, der den Mond verhüllt (Abb. 6), enthält zudem einen interessanten Cocktail verschiedener organischer Verbindungen. Sauerstoff ist in der Atmosphäre praktisch nicht vorhanden. Da diese Bedingungen denen auf der Urerde ähneln könnten, ist Titan ein interessantes Spekulationsobjekt für die Exobiologen. Über erste Schritte einer "chemischen Evolution" wird Titan aufgrund der niedrigen Temperaturen (etwa -170 Grad Celsius) aber nicht hinausgekommen sein. Leben, wie wir es kennen, kann dort nicht existieren. Die Erkundung der Oberfläche Im Rahmen der Cassini-Huygens-Mission von NASA und ESA wurde im Januar 2005 der Lander Huygens auf der Titanoberfläche abgesetzt. Dieses Projekt gewährte erstmals einen Blick auf die Oberfläche des Mondes im sichtbaren Licht. Während des turbulenten Abstiegs an Fallschirmen gab der Dunst erst ab einer Höhe von 20 Kilometern den Blick frei auf eine vielfältig interpretierbare Landschaft mit küstenartigen Formationen, Abflussgräben, mäandrierenden Flusssystemen oder Dünenformationen. Bilder vom Landeplatz (Abb. 7) kommen uns "vertraut" vor: Die Ebene mit zahlreichen Brocken erinnert an die Marsoberfläche. Die Brocken auf dem Titan bestehen jedoch nicht aus Gestein, sondern - wie auch der Boden - aus gefrorenem Wasser und Kohlenwasserstoffen. Wie entstehen die Bilder? Abb. 7 zeigt ein nachbearbeitetes Foto vom Landeplatz der Huygens-Sonde - die Originaldaten lieferten lediglich Schwarzweiß-Bilder. Am Beispiel der Fotos von der Titanoberfläche kann der Frage nachgegangen werden, wie die Bilder aus den weit entfernten Winkeln des Sonnensystems entstehen und was sie eigentlich zeigen. Was ist "real", was "künstlerisch-spekulativ" und was durch die technische Bearbeitung aus den Daten zum Zwecke der Auswertung "herausgekitzelt" oder "überhöht"? Anregungen dazu finden Sie in dieser Unterrichtseinheit: Die reale Beobachtung kann durch virtuelle Exkursionen vor- oder auch nachbereitet werden. Lernende können dabei Informationen "tanken", die die Live-Begegnung mit Saturn und Titan bereichern. Für jüngere Schülerinnen und Schüler bietet sich dafür das virtuelle ZDF-Raumschiff Pegasus an. Abb. 8 zeigt einen Screenshot aus dem Cockpit mit Blick auf den Saturn. Informationen zu den Planeten und ihren Monden können über das "Infosystem" der Pegasus aufgerufen werden - Daten, Bilder und zum Teil auch Animationen (Abb. 9). Zudem informiert ein Sprecher über den jeweils anvisierten Himmelskörper. Anregungen zum Einsatz dieses Online-Angebots im Unterricht inklusive Arbeitsblatt finden Sie in dieser Unterrichtseinheit: Mit dem NASA-Simulator können sich ihre Schülerinnen und Schüler auf Planeten und Monde des Sonnensystem versetzen, zum Beispiel den Saturn auf dem Mond Mimas umrunden und dabei den Ringplaneten am Nachthimmel seines kleinen Mondes betrachten. Auch der ungewohnte Blick auf das Ringsystem "von oben" ist möglich (Abb. 10). Zudem kann man aus der Perspektive verschiedener Raumsonden (zum Beispiel Voyager, Cassini oder Deep Impact) Planeten und Monde betrachten. Datum, Uhrzeit und Blickwinkel beziehungsweise Größe der Objekte können frei gewählt werden. Maßanfertigung von Himmelskarten Stellarium ist ein ideales Werkzeug zur Vorbereitung astronomischer Beobachtungen. Mit der kostenfreien und plattformunabhängigen Software können Sie den Sternhimmel zu jeder Zeit an jedem Ort simulieren. Abb. 11 zeigt als Beispiel einen Blick auf den Kölner Abendhimmel am 22. März 2010 um etwa 21:00 Uhr in Richtung Südosten. Klicken Sie zur Vergrößerung des Ausschnitts die Himmelskarte an. Saturn hat seine Opposition erreicht und ist unterhalb des Löwe in dem eher unscheinbaren Sternbild Jungfrau nicht zu verfehlen. Stellarium als virtuelles Teleskop Das Online-Applet des Western Washington University Planetarium zur schnellen Bestimmung Position der Saturnmonde haben wir bereits vorgestellt (siehe Der Saturnmond Titan ). Zu diesem Zweck können Sie auch Stellarium verwenden, indem Sie sich "teleskopmäßig" an den Planeten heranzoomen (Abb. 12, Platzhalter bitte anklicken). Die Positionen der Monde können sich im Laufe einer Nacht deutlich ändern. (Allerdings kann Stellarium bei der Simulation der Mondbewegungen kleine Ungenauigkeiten zeigen.) Durch "Bedeckungen" und "Durchgänge" (Dione und Enceladus in Abb. 14) sind nicht immer alle Monde zu sehen. Die astronomischen Jahrbücher informieren über die Positionen von Planeten und Monden: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Jupiter und der Tanz der Galileischen Monde

Unterrichtseinheit

In diesem Beitrag stellen wir Ihnen vielfältige Möglichkeiten vor, sich mit faszinierenden und gut zu beobachtenden Objekten zu beschäftigen: Jupiter, dem größten Planeten unseres Sonnensystems, und seine vier Galileischen Monde. Beobachtungen des Gasriesen lohnen sich besonders während der Monate um die jährlichen Oppositionen.Vor 400 Jahren richtete Galileo Galilei (1564-1642) sein Fernglas auf den Himmel und sah wahrhaft Revolutionäres: Berge auf dem Mond, eine sichelförmige Venus und ein "Miniatur-Sonnensystem": Jupiter mit seinen vier Galileischen Monden, die ihre Positionen schon innerhalb weniger Stunden erkennbar verändern. Das einzige, was man benötigt, um dies mit eigenen Augen zu sehen, ist ein einfacher Feldstecher. Jupiter als Umlaufzentrum seiner vier Monde - dies können Schülerinnen und Schüler selbst entdecken, wenn sie an zwei oder mehr aufeinander folgenden Tagen den Fernglasanblick des Jupitersystems per Bleistift skizzieren. Vergleichen Sie die Ergebnisse Ihrer Klasse mit den 400 Jahre alten Skizzen von Galileo Galilei und stellen Sie den Lernenden Fotos der Raumsonden vor, die zeigen, welch bizarre Welten sich hintern den Lichtpünktchen der Jupitermonde verbergen. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Mehr zum Thema . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden.Der erste Tipp ist etwas für "Bildschirmsitzer" mit Hang zur Geschichte und auch als Schlechtwetterbeschäftigung hilfreich. Beim zweiten Vorschlag geht es unter anderem um mathematische Zusammenhänge und um die Möglichkeit, selbst etwas zu messen. Außerdem kommt das Fernrohr zum Einsatz und gute Augen sind nötig, um Details auf der Jupiterscheibe zu erkennen. Der dritte Tipp spricht die Hobbyfotografen an. Außerdem werden Fremdsprachenkenntnisse gebraucht, um Daten zu bekommen, die dann mathematisch ausgewertet werden können. Im vierten Themenkomplex erinnern wir an Galileo Galilei und an Johannes Kepler (1571-1630), was für die Physiklehrkräfte interessant ist. Schließlich wird auf besondere Jupiter-Ereignisse hingewiesen, die durch ein Fernrohr beobachtet werden und die für Überraschung sorgen können. Zum Beispiel dadurch, dass plötzlich ein Mond aus dem Schatten seitlich von Jupiter "aus dem Nichts" auftaucht. Jupiter über Padua gegen Ende 1609/Anfang 1610 Wie sah der Abendhimmel über Padua aus, als Galilei sein Fernrohr auf ihn richtete? Wo steht Jupiter im Jahr 2009? Jupiterbeobachtung - auch bei bedecktem Himmel Wie hell und wie groß erscheint uns Jupiter? Falls das Wetter nicht mitspielt, kann der visuelle Eindruck mit einem Foto und einem Fernrohr simuliert werden. Jupiter trifft den Mond Die Begegnung von Mond und Jupiter kann genutzt werden, um in Zusammenarbeit mit einer Partnerschule die Mondentfernung zu bestimmen. Der Tanz der Jupitermonde und "Wer sieht den Fleck?" Wandeln Sie mit Ihren Schülerinnen und Schülern in den Spuren Galileis: Beobachten Sie die Jupitermonde und ihre Bewegungen mit eigenen Augen. Die Schülerinnen und Schüler sollen mithilfe kostenfreier Planetarium-Software den Sternhimmel simulieren, auf den Galileo Galilei Ende 1609/Anfang 1610 sein Teleskop richtete. wissen, (ob und) wo Jupiter aktuell am Himmel zu finden ist. Größe und Helligkeit des Jupiterscheibchens kennen, mit den Begriffen scheinbare Helligkeit (Magnitude) und Winkelmaß (Bogensekunden, Bogenminuten) umgehen können und einfache Rechungen durchführen. die vier Galileischen Monde mit eigenen Augen sehen und ihre Bewegung im Abstand weiniger Stunden oder Tage erkennen. verstehen, welche wissenschaftsgeschichtliche Bedeutung die Entdeckung von Galilei hatte, dass Jupiter ein Umlauszentrum für andere Himmelskörper ist. Online-Rechner als Werkzeuge zur Vorhersage von Sonnen- und Mondfinsternissen im Jupitersystem kennen lernen und solche Ereignisse beobachten. Thema Jupiter und die Galileischen Monde Autor Dr. Olaf Fischer, Dr. André Diesel Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Klasse 5 bis Jahrgangsstufe 13 (je nach Thema und Vertiefung) Zeitraum variabel Technische Voraussetzungen Jupiter ist - zur rechten Zeit - mit bloßem Auge am Himmel nicht zu übersehen; für die Beobachtung der Monde: Feldstecher (zehnfache Vergrößerung, feste Montierung hilfreich); äquatoriale Wolkenbänder: Spektiv (40 bis 60-fache Vergrößerung); Mondschatten auf der Jupiterwolkendecke: Teleskop mit mindestens 15 bis 20 Zentimeter Öffnung; Beobachtungsvorbereitung: Präsentationsrechner mit Beamer (Planetarium-Software) und Internetanschluss (Onliner-Rechner für die Positionen der Jupitermonde) Software Planetarium Software, zum Beispiel Stellarium (kostenfrei) Vermutlich im September 1609 richtete Galileo Galilei erstmals sein Fernrohr gen Himmel und beobachtete damit zunächst den Mond. Nicht zu übersehen war jedoch auch Jupiter, der Ende 1609 in Opposition stand. Man kann vermuten, dass sein Anblick mit dazu beitrug, dass Galilei ein besseres Fernrohr entwickelte. Dieses entstand zum Jahresende und ermöglichte Galilei Anfang 1610 die folgenreiche Entdeckung, dass Jupiter ein Umlaufzentrum für andere Himmelskörper ist. Gängige Planetarium-Software, wie zum Beispiel Stellarium oder Cartes du Ciel (beide kostenfrei), erlauben die Darstellung des Sternhimmels zu beliebigen Zeiten an beliebigen Orten. Betrachten wir mit ihrer Hilfe den Himmel über Padua am 15. Januar im Jahr 1610. Abb. 1 (zur Vergrößerung anklicken) zeigt das Ergebnis. Der strahlende Jupiter dominierte damals den Sternenhimmel und befand sich in der auffälligen Region des Wintersechsecks mit seinen hellen Sternen (unter anderem Sirius, Rigel und Procyon). Sicher hat diese Region Galileis Blicke auf sich gezogen. Die Dominanz von Jupiter am Abendhimmel im Januar 1610 wurde dadurch unterstützt, dass die Ekliptik (die Schnittlinie der Bahnebene der Erde - und in etwa auch der anderen Planeten - mit der scheinbaren Himmelskugel) im Winter weit über den Horizont steht. Während der anderen Jahreszeiten verläuft sie deutlich flacher. Die Höhe der Ekliptik ist nicht nur von der Jahreszeit, sondern auch vom Beobachtungsort abhängig. 400 Jahre nach Galilei hatten zum Beispiel im September 2009 Beobachterinnen und Beobachter in Padua einen kleinen Vorteil gegenüber ihren Kolleginnen und Kollegen in Heidelberg, wenn sie Jupiter ins Visier nahmen: In südlichen Gefilden steht die Ekliptik zu dieser Jahreszeit nämlich etwas höher am Himmel und damit weiter weg von den horizontnahen Dunstschichten (Abb. 2, Platzhalter bitte anklicken). In der linken Teilabbildung steht Jupiter knapp unter der 20 Grad Linie, in der rechten knapp darüber. Über Heidelberg erreichte Jupiter im September 2009 jeweils um 21:00 Uhr in südöstlicher Richtung folgende Höhen: am 1. September 2009 etwa zwölf Grad, am 10. September 16 Grad, am 20. September 20 Grad und am 30. September 22 Grad. Die in Abb. 2 verwendeten Ausschnitte von Stellarium-Screenshots des südlichen Himmels können Sie hier auch in voller Größe und höherer Auflösung herunterladen: Winkeldurchmesser, Bogensekunde und Magnitude Wenn Jupiter, wie zu Zeiten von Galileis ersten Jupiterbeobachtungen, wieder nahe seiner Oppositionsstellung zur Sonne steht, verlangt er geradezu ein genaueres Hinsehen. Aufsuchkarten können mit der Software Stellarium ? ein virtuelles Planetarium für die Schule erstellt werden (Kartenbeispiel "heidelberg_15_sept_2009_21_uhr.jpg"). In ihrer Oppositionsstellung kommen die äußeren Planeten der Erde am nächsten und sind entsprechend hell und groß. Jupiter erreichte zum Beispiel im September 2009 eine scheinbare Helligkeit (Magnitude) von -2,8 und eine scheinbare Größe (Winkeldurchmesser) von 47 Bogensekunden. Von Jupiter empfangen wir mehr als dreimal soviel Licht ( x ) wie von Sirius, dem hellsten bei uns sichtbaren Stern (Magnitude = -1,5). Wer es nachrechnen möchte, der bestimme x in folgendem Zusammenhang: [-1,5 - (-2,8)] = -2,5 log( x ). Wikipedia: Scheinbare Helligkeit Die scheinbare Helligkeit oder Magnitude (kurz „mag“) gibt an, wie hell ein Himmelskörper einem Beobachter auf der Erde erscheint. Wikipedia: Bogensekunde Eine Bogensekunde ist eine Maßeinheit des Winkels. Sechzig Bogensekunden entsprechen einer Bogenminute, 60 Bogenminuten einem Grad. Vergleich mit einem Mondkrater Die scheinbare Größe der Vollmondscheibe beträgt etwa 31 Bogenminuten. Das Planetenscheibchen von Jupiter zeigte im September 2009 rund ein Vierzigstel des Monddurchmessers und erscheint damit im Fernrohr etwa so groß wie der Mondkrater Kopernikus. Findet jemand diesen Krater auf dem Mond? (Siehe Unterrichtseinheit Spaziergänge auf dem Mond , Spaziergang 3, Abb. 3.) Trockenübung am Teleskop Bei bedecktem Himmel müssen Sie auf die Demonstration der Jupiterscheibe nicht verzichten. Drucken Sie dazu einfach Abb. 3 so aus, dass das Jupiterscheibenbild einen Durchmesser von 2,5 Zentimetern hat (Skalierung der Bildgröße auf etwa 85 Prozent). Dieses Bild hängen Sie an einen Baum (beleuchten es gegebenenfalls) und beobachten es mit einem Fernrohr aus einem Abstand von etwa 110 Metern. Stimmt der Abstand? Wolkenbänder und Abplattung der Pole Abb. 3 zeigt Jupiter mit seinen Monden Io und Europa (Foto von Benjamin Kühne). Der Schatten von Io auf der Jupiteroberfläche verrät, wo die Sonne steht. Die beiden dunklen äquatornahen Wolkenbänder sind bereits mit kleinen astronomischen Teleskopen oder mit guten Spektiven, wie sie von Hobby-Ornithologen verwendet werden (ab 40-facher Vergrößerung), gut zu sehen. Ebenfalls gut zu erkennen ist in Abb. 3 auch die abgeplattete Form des Planeten: Durch die schnelle Rotation (am Äquator dauert eine Umdrehung weniger als zehn Stunden!) flacht der Gasriese etwas ab. Sein Äquatordurchmesser beträgt um 144.000 Kilometer, während der Poldurchmesser nur etwa 135.000 Kilometer umfasst. Monde und Sonnenfinsternisse auf Jupiter Die vier Galileischen Monde sind bereits mit dem Feldstecher erkennbar. Für die Beobachtung von Mondschatten auf den Jupiterwolken benötigt man jedoch schon Teleskope mit einer Öffnung von 15 bis 20 Zentimetern. Weitere Astrofotos von Benjamin Kühne finden Sie auf seiner Webseite: Nachtwolke.de Homepage von Benjamin Kühne. Hier finden Sie Fotos astronomischer Objekte und atmosphärischer Erscheinungen. Bestimmung der Scheibchengröße Die Größe der Jupiterscheibe kann man übrigens auf einfache Art und Weise selbst bestimmen. Dazu messe man mehrmals die Zeit, in der die Scheibe durch ein Fadenkreuz im Fernrohrsehfeld läuft und rechne das Zeitmaß in das Winkelmaß um: 360 Grad entsprechen 24 Stunden. (Dann wird ein Winkel von 15 Bogensekunden in einer Sekunde überstrichen. Den Unterschied zwischen Sternzeit und der uns zur Verfügung stehenden Sonnenzeit kann man hier vernachlässigen.) Zum Beispiel würde man bei einer mittleren Durchlaufzeit von 2,6 Sekunden (Mittelwert aus mehreren Messungen) für die Größe der Jupiterscheibe einen Winkeldurchmesser von 39 Bogensekunden erhalten. Auf der Ekliptik kommt es regelmäßig zu Begegnungen von Mond und Jupiter, so zum Beispiel am 2. September 2009 um 20:00 Uhr und am 30. September 2009 gegen 24:00 Uhr. Der fast volle Mond lief dann etwa zwei Grad nördlich an Jupiter vorbei - am 2. September bei etwa 7 Grad Höhe (um 21 Uhr etwa 15 Grad) und am 30. September 2009 bei etwa 21 Grad Höhe (Angaben für Heidelberg). Diese Beobachtungen verdeutlicht die Bahnbewegung des Mondes (von westlicher in östliche Richtung). Die Bewegung macht sich bereits innerhalb von zwei Stunden bemerkbar. Geeignete Beobachtungstermine für Mond-Jupiter-Rendezvous können Sie mithilfe von Planetariumssoftware oder der astronomischen Jahrbücher finden (siehe Mehr zum Thema ) Kooperation mit einer Partnerschule Die Begegnungen von Mond und Jupiter eröffnen auch die Möglichkeit, die Parallaxe des Monds zu bestimmen, das heißt den Unterschied des Winkelabstands zwischen Mond und Jupiter, wenn man diese von zwei verschiedenen Standorten auf der Erde betrachtet. Hier ist Zusammenarbeit mit Beobachtern an anderen, möglichst fern gelegenen Orten gefragt. Zeitgleich aufgenommene Fotos von Mond und Jupiter ermöglichen dann die Bestimmung der Mondparallaxe und der Mondentfernung. (Dabei ist die Belichtung so einzustellen, dass Mondstrukturen oder Sternbildkonstellationen die Bildorientierung ermöglichen.) Simulation mit Planetarium-Software Das Prinzip kann mithilfe von Planetarium-Software verdeutlicht oder das Verfahren. Abb. 4 (Stellarium-Screenshots, Platzhalter bitte anklicken) zeigt Jupiter und Mond am 2. September 2009 um 21:00 Uhr von Heidelberg (linke Teilabbildung) und von Windhoeck (Namibia) aus gesehen (rechte Teilabbildung). Die Mondparallaxe ist deutlich erkennbar (Abstandsunterschied Mond-Jupiter). Hinweis: Erfahrungen mit Stellarium zeigen, dass die Screenshots reale Fotografien nicht verlässlich ersetzen können! Die Plantarium-Software weist kleine Ungenauigkeiten auf, die eine große Wirkung bei der Durchführung der Berechnungen haben könnten. Veranschaulichung und ausführliche Informationen Das Prinzip der Parallaxe können Sie Ihren Schülerinnen und Schülern ganz einfach verdeutlichen: Strecken Sie einen Arm aus, halten Sie den Daumen hoch und kneifen einmal das rechte und einmal das linke Auge zu (der Daumen entspricht dem Mond, der Hintergrund den Fixsternen). Das Verfahren zur Bestimmung der Mondentfernung mithilfe der gewonnenen Daten wird in dem beiden folgenden Lehrer-Online-Beitrag ausführlich vorgestellt: Bestimmung der Mondentfernung durch Triangulation An Partnerschulen wird zur selben Zeit der Mond fotografiert und mithilfe des Sinussatzes die Entfernung Erde-Mond bestimmt (ab Klasse 10, AGs). Galileis "Sidereus Nuncius" Nachdem Galileo Galilei bemerkt hatte, dass es sich bei den "Sternen" nahe dem Jupiter um Objekte handelt, die ihn umlaufen (um ihn "herumtanzen"), gewann seine kopernikanische Weltsicht wohl ein sicheres Fundament. Seine Beobachtungen veröffentlichte er in dem berühmten Buch "Sidereus Nuncius" im Jahr 1610. Abb. 5 (Platzhalter bitte anklicken) zeigt einen Ausschnitt aus einer Seite des "Sternenboten" mit verschiedenen Positionen der Galileischen Monde, die wir heute Io, Europa, Ganymed und Kallisto nennen. Digitale Versionen des Buches und Handzeichnungen von Galilei, eingescannt und im Internet veröffentlicht, können Sie bequem am Rechner studieren: Bizarre Welten Die Raumsonde Voyager 1 startete 1977, flog 1979 an Jupiter vorbei und nahm - nebenbei - auch einige der Jupitermonde ins Visier. Statt der erwarteten merkur- und mondähnlichen, von Kratern übersäten Einöden übermittelte die Sonde atemberaubende Bilder bizarrer und völlig unterschiedlicher Welten. Für das größte Aufsehen sorgten zwei der Galileischen Monde, Io und Europa. Abb. 6 zeigt je zwei Bilder von der Oberfläche dieser Welten (links Io, rechts Europa). Schwefel und Eis Io ist der erste extraterrestrische Ort, an dem aktiver Vulkanismus beobachtet werden konnte. Abb. 6 (links) zeigt eine Eruption auf Io und einen Blick in die Caldera des Vulkans Tupan Patera, der Lava und ausgedehnte Schwefelfelder erkennen lässt. Einen ganz anderen Charakter zeigt der Mond Europa (Abb. 6, rechts), unter dessen zerfurchtem Eispanzer Planetologen einen Wasserozean vermuten. Die gigantischen Gezeitenkräfte von Jupiter sollen die nötige Reibungswärme erzeugen, die den Ozean nicht gefrieren lässt. Europa gilt als aussichtsreicher Kandidat für außerirdisches Leben in unserem Sonnensystem. Alle Fotos aus Abb. 6 wurden von der Raumsonde Galileo aufgenommen. Die Sonde wurde 1989 ins All geschossen und verglühte - nach erfolgreicher Mission - im Jahr 2003 in der Jupiteratmosphäre. Inzwischen sind insgesamt 63 Jupitermonde bekannt. Vorbereitung auf die Beobachtung Bevor Sie Ihre Schülerinnen und Schüler einen Blick durch das Fernglas oder das Teleskop auf die Monde werfen lassen (die stets nur als Lichtpünktchen erscheinen), sollten sich diese über die Galileischen Monde und ihre Eigenschaften informieren. Ausgestattet mit diesem Hintergrundwissen werden sie beim Blick durchs Fernglas mehr als nur visuelle Lichtpünktchen erkennen. Internetadressen mit interessanten Informationen, eindrucksvollen Bildern und Hinweisen auf die Sichtbarkeiten von Jupiter und seinen Monden finden Sie unter Mehr zum Thema . Berechnung der Jupitermasse Die Beobachtung der Galileischen Monde ist ein "Muss" - nicht nur im Internationalen Jahr der Astronomie 2009. Schon im Abstand von einigen Stunden kann bei genauem Hinsehen die Bewegung der Monde auch im kleinen Teleskop, Spektiv und sogar im Feldstecher wahrgenommen werden (die Umlaufzeit von Io, dem innersten Mond, beträgt etwa 42 Stunden). Hier bietet sich die Gelegenheit, die Physik aufzugreifen und an Johannes Kepler (1571-1630) zu erinnern. Heute wissen wir, dass das Dritte Keplersche Gesetz die Berechnung der Masse von Jupiter erlaubt, wenn wir nur die Umlaufzeit eines Mondes und die Größe seiner Bahnhalbachse kennen, zum Beispiel etwa 420.000 Kilometer für Io: Finsternisse, Durchgänge, Bedeckungen, Schattenwürfe Da die Umlaufbahnebene der Galileischen Monde nur sehr wenig gegenüber der Erdbahnebene verkippt ist, kommt es im Zuge ihrer Umläufe recht häufig zu besonderen "Treffen", deren Beobachtung sich lohnt. Besonders interessant sind die Finsternisereignisse. Zum einen verschwinden dabei Monde im Schatten von Jupiter ("Mondfinsternis"). Zum anderen werfen die Monde einen Schatten auf den Gasplaneten ("Sonnenfinsternis", Abb. 3 und Abb. 8). Während für die Beobachtung der Monde bereits ein Feldstecher genügt, benötigt man für die Beobachtung der Schatten auf den Jupiterwolken Teleskope mit einer Öffnung von mindestens 15 bis 20 Zentimetern. Auf der CalSky-Homepage finden Sie auch Informationen zur Sichtbarkeit des so genannten Großen Roten Flecks (GRF). Die Farbe des Flecks ist in den letzten Jahren weniger intensiv geworden. Kleine Amateurteleskope reichen daher für eine Beobachtung des Objekts nicht mehr aus. Abb. 8 zeigt eine Aufnahme des gigantischen Sturms, der schon vor 300 Jahren beobachtet wurde. Im rechten Teil des Fotos, aufgenommen von der Raumsonde Galileo, sind ein Jupitermond und sein Schatten auf der Wolkendecke zu sehen. Webseiten mit weiteren Informationen zu dem Wirbelsturm finden Sie unter Mehr zum Thema . Informationen zu den Transitzeiten des Großen Roten Flecks können Sie auf der Webseite "Sky & Telescope" nachlesen: Sky & Telescope: Transit Times of Jupiter's Great Red Spot Hier können Sie die Transitzeiten für bestimmte Tage berechnen oder auch eine Tabelle mit allen GRF-Transits des Jahres einsehen. Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse und deren Begleitumstände: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg), ISBN 978-3-938639-95-5 Keller Kosmos Himmelsjahr 2009, Kosmos Verlag, Stuttgart, ISBN 978-3-440-11350-9

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Mars - Beobachtung einer Planetenschleife

Unterrichtseinheit

Beobachtungen unseres äußeren Nachbarplaneten lohnen sich nur während der Monate um die Oppositionen, die etwa alle zwei Jahre und zwei Monate eintreten. Die Dokumentation einer Marsschleife ist eine reizvolle Aufgabe für ein kleines Beobachtungsprojekt.Die rötliche Färbung des Planeten fällt auch ungeübten Beobachterinnen und Beobachtern sofort auf. Sie ist besonders beeindruckend, wenn Mars noch nicht allzu hoch über dem Horizont steht. Der Grund dafür ist derselbe, der auch die Sonne oder den Mond beim Auf- und Untergang rötlich erscheinen lässt - kurzwellige Lichtanteile werden durch die Atmosphäre stärker gestreut als die langwelligen. Die Marsfarbe wird durch diesen Effekt aber nur verstärkt. Der allgegenwärtige eisenoxidhaltige Staub hat dem Planeten zu Recht den Beinamen des "Roten" eingebracht - "rostiger" Planet wäre ebenso zutreffend. Die linke Abbildung zeigt eine Aufnahme des Hubble-Weltraumteleskops und ein Marsfoto, das mit einem kleinen Amateurteleskop aufgenommen wurde. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur zum Thema Mars . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden.Kaum ein Planet hat die Fantasie der Menschen so sehr in Gang gesetzt wie Mars: Die "Entdeckung" der Marskanäle ist ein schönes Beispiel aus der Wissenschaftsgeschichte dafür, dass auch die Objektivität von Naturwissenschaftlern optischen Täuschungen und einer guten Portion Autosuggestion unterliegen kann. Aber auch für eine Massenhysterie ist Mars gut: Die 1938 am Holloween-Abend über das Radio ausgestrahlte fiktive Schilderung eines Marsmenschen-Überfalls soll in den USA eine Panik ausgelöst haben. UFO-Fans und Esoteriker sahen in einer von der Raumsonde Viking I im Jahr 1976 aufgenommen Gebirgsformation, die als "Marsgesicht" Berühmtheit erlangte, einen extraterrestrischen Monumentalbau, der es bis in die Kultserien "Akte X" und "Futurama" schaffte. Mars bietet also reichlich Stoff, um das Interesse der Schülerinnen und Schüler für Astronomie und Naturwissenschaften zu wecken. Obwohl den meisten von ihnen der eine oder andere Science-Fiction-Film zum Thema Mars bekannt sein dürfte, haben nur die wenigsten den Planeten bewusst mit eigenen Augen gesehen. Nutzen Sie also die nächste Marsopposition, um zusammen mit Ihren Schülerinnen und Schülern den faszinierenden Planeten näher kennen zu lernen und zu beobachten. Historisches und Histörchen Ob Götter, Marsmenschen, Kanäle oder andere Monumentalbauten - die Raumfahrt hat Jahrtausende alte Vorstellungen sowie Fiktionen aus dem 19. und 20. Jahrhundert beendet. Erforschung des "Rostigen Planeten" Mars-Orbiter, Landegeräte und mobile Rover übermittelten nicht nur wissenschaftliche Daten, sondern auch Bilder mit faszinierenden Mars-Impressionen und Landschaften. Der Mars - Oppositionen des Exzentrikers Die Entstehung von rückläufiger Bewegungen und Schleifen der äußeren Planeten und die Besonderheiten der Marsoppositionen werden erläutert. Beobachtung des Planeten Lernende können mit einfachen Hilfsmitteln eine Marsschleife dokumentieren und versuchen, mit einem Teleskop Oberflächenstrukturen zu erkennen. Dokumentation einer Marsschleife Vorschläge für Arbeitsmaterialien und Hinweise zur Verfolgung der Bewegung des Planeten Mars in dem Zeitraum um seine Opposition Die Schülerinnen und Schüler sollen Mythologie und Science Fiction zum Thema Mars kennen lernen. die Geschichte der Erforschung des Planeten überblicken - von der "Entdeckung" der Marskanäle bis hin zur Erforschung der Oberfläche durch NASA-Rover. Mars mit eigenen Augen sehen und in dem Lichtpunkt mithilfe der NASA- und ESA-Fotos eine fremde Welt erkennen. den Planeten durch ein Teleskop beobachten (Schul- oder Volkssternwarte) und versuchen, Oberflächendetails mithilfe eines "Onlinerechners" der Webseite CalSky zu benennen. verstehen, wie eine Marsschleife entsteht. die Bahn des Planeten über einige Monate verfolgen und mit einfachen Mitteln eine "Marsschleife" aufzeichnen. Thema Marsbeobachtung Autoren Dr. André Diesel, Peter Stinner Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Klasse 5 bis Jahrgangsstufe 13 (je nach Thema und Vertiefung) Zeitraum variabel, vom einmaligen Beobachtungsabend bis hin zur Dokumentation einer Marsschleife über mehrere Monate Technische Voraussetzungen Beobachtung mit bloßem Auge oder dem Amateurteleskop; für die fotografische Dokumentation der Planetenbewegung Bildbearbeitungssoftware, zum Beispiel Fitswork (kostenloser Download); Planetarium-Software zur Vorbereitung der Beobachtung, zum Beispiel Stellarium (kostenfrei) Traditionelle Rolle als Kriegsgott Mars fasziniert die Menschen schon seit Jahrtausenden. Im Altertum war der Planet bei vielen Völkern mit dem jeweiligen Kriegsgott verknüpft - Nergal im Zweistromland, Ares bei den Griechen und eben Mars bei den Römern. Ursache dafür dürfte seine auffällig orange-rote Färbung sein - verursacht durch den auf der Marsoberfläche allgegenwärtigen Eisenoxidstaub -, die schon dem bloßen Auge nicht entgeht. Die rote Farbe ist übrigens umso kräftiger, je tiefer der Planet am Himmel steht. Hoch über dem Horizont erscheint Mars eher orange bis gelblich. Ein weiteres Charakteristikum des Planeten sind die großen Helligkeitsunterschiede während seiner Oppositionen. In einigen Jahren kann er über mehrere Wochen sehr hell werden und sogar mit der Leuchtkraft von Jupiter konkurrieren, in anderen Jahren bleibt er relativ unscheinbar und in seiner Helligkeit etwa dem Polarstern vergleichbar. Sein Aufleuchten haben unsere Vorfahren möglicherweise als Symbol für entfesselte Feuersbrünste oder das Vergießen von Blut gedeutet. Wikipedia: Nergal Gottheit der sumerisch-akkadischen und der babylonischen und assyrischen Religion Wikipedia: Ares Griechischer Gott des Krieges, des Blutbades und Massakers Wikipedia: Mars Der Kriegsgott war neben Jupiter der wichtigste Gott der Römer. Schiaparellis "Canali" Aber auch in modernen Zeiten fasziniert Mars und entfesselte Fantasien. 1877 glaubte der Leiter der Mailänder Sternwarte, Giovanni Schiaparelli (1835-1910), mit dem Teleskop Marskanäle entdeckt zu haben - ein Effekt, der einer optischen Täuschung zuzuschreiben ist. Schiaparelli hielt die "Canali" für natürliche geradlinige Senken, durch die Wasser auf der Marsoberfläche fließen könnte. Eine ungenaue Übersetzung ins Englische ("canals" statt "channels") suggerierte jedoch die Entdeckung von Artefakten auf dem Mars. Schnell verbreitete sich so der Glaube an eine hochtechnisierte Marszivilisation, die in den hundert Kilometer breiten Kanälen das Schmelzwasser der Marspole in die gemäßigten Breiten leiten sollte, um die Anbaugebiete der Marsianer im Vegetationsgürtel des Planeten zu bewässern. Wikipedia: Marskanäle Die Kanäle wurden erstmals im Jahr 1877 beschrieben. Science Fiction Der Glaube an eine Marszivilisation war auch die Grundlage zahlreicher Werke des Science-Fiction-Genres. Spektakulär soll der Effekt eines Hörspiels von Orson Wells (1915-1985) gewesen sein, das auf dem Roman "War of the Worlds" von Herbert George Wells (1866-1946) basiert. Orson Wells' fiktive Radio-Reportage über eine Invasion bösartiger Marsianer wurde im Jahr 1938 am Halloween-Abend ausgestrahlt und soll an der Ostküste der USA eine Massenpanik ausgelöst haben (ob dies tatsächlich so war, ist heute allerdings umstritten). Vielen älteren Schülerinnen und Schülern dürfte die beklemmende Verfilmung des Stoffs von Steven Spielberg aus dem Jahr 2005 bekannt sein, ebenso die skurrile filmische Aufarbeitung von Tim Burton aus dem Jahr 1996, "Mars Attacks". Keine Kanäle, weder Zivilisation noch Vegetation Auch wenn man bereits in den dreißiger Jahren begann, die "Marskanäle" für das Ergebnis optischer Täuschungen zu halten - Gewissheit bekam man erst durch die Bilder der Raumsonde Mariner 4, die im Jahr 1965 an dem Planeten vorbei flog und deren Kameras den Mars erstmals aus der Nähe betrachteten. Zwar könnte die Wahrnehmung einiger "Canali" durch geomorphologische Großstrukturen erklärt werden, von dem ausgeklügelten Bewässerungssystem der Marsmenschen fand man jedoch keine Spur. Für die bis dahin mit Besuchern vom Mars in Verbindung gebrachten "Fliegenden Untertassen" mussten UFOlogen fortan andere Erklärungen finden. Aber auch von der bis dahin teilweise noch gehegten Vorstellung, der Planet könne von Moosen und Flechten bewachsen sein (dessen Vegetationsperioden die beobachteten Veränderungen auf der Oberfläche hätten erklären können), musste man sich endgültig verabschieden - Mars scheint ein toter Planet zu sein. Das Marsgesicht Auch wenn die Raumfahrt die menschliche Fantasie weitgehend auf den Boden der Tatsachen zurückholte, bot ein Foto der Raumsonde Viking I aus dem Jahr 1976 Anlass für ganz neue Spekulationen. Aus knapp 2.000 Kilometern Höhe nahm die Sonde beim Landeanflug eine Gebirgsformation auf, die als "Marsgesicht" berühmt wurde (Abb. 1). UFO-Fans erkannten darin das monumentale Artefakt einer außerirdischen Spezies. Das Marsgesicht wurde von diversen TV- und Kinoproduktionen aufgegriffen. In der Trickfilmserie "Futurama" bildet es zum Beispiel den Eingang zur marsianischen Unterwelt, in der Aliens hausen. Aufnahmen des NASA-Orbiters Mars Global Surveyor aus dem Jahre 2001 zeigen jedoch nichts anderes als eine verwitterte Felsformation und beendeten so auch diese Illusion. Durchmesser, Tageslänge, Neigung der Rotationsachse Der Durchmesser des Planeten ist mit etwa 6.800 Kilometern doppelt so groß wie der des Mondes, aber nur halb so groß wie der unserer Erde. Ein Marstag dauert nur 40 Minuten länger als ein irdischer Tag. Dies fanden schon Christian Huygens (1629-1695) und Giovanni Domenico Cassini (1625-1712) heraus, die die Rotationsdauer durch die Beobachtung von Oberflächendetails bestimmen konnten. Die Neigung der Rotationsachse (etwa 25 Grad) entspricht ungefähr derjenigen der Erdachse (23 Grad) und beschert dem Mars Sommer und Winter. Die marsianischen Jahreszeiten dauern allerdings doppelt so lange wie die unsrigen, da Mars für eine Runde um die Sonne etwa zwei Erdenjahre benötigt. Entfernung und Jahreslänge Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Ein Marsjahr dauert etwa 687 Tage (siderische Umlaufzeit). Alle 780 Tage wird er von der Erde überrundet (synodische Umlaufzeit). Zwischen den Marsoppositionen liegen also zwei Jahre, ein Monat und drei Wochen. "Furcht" und "Schrecken" begleiten den Kriegsgott Bei den beiden kleinen, etwas kartoffelförmigen Marsmonden handelt es sich möglicherweise um eingefangene Asteroiden. Standesgemäß wurden die Trabanten des Kriegsgotts auf die Namen Phobos und Deimos, Furcht und Schrecken, getauft. Während unser Mond groß genug ist, um die Rotationsachse der Erde zu stabilisieren (was ihrer Bewohnbarkeit sehr entgegen kommt), sind Phobos und Deimos dafür viel zu klein. Deshalb vollführt die Mars-Rotationsachse eine viel deutlichere Taumelbewegung als die der Erde. Die Marsatmosphäre besteht zu 95 Prozent aus Kohlenstoffdioxid. Der Atmosphärendruck beträgt am Boden weniger als ein Prozent des Luftdrucks der Erde. Flüssiges Wasser kann an der Oberfläche unter diesen Bedingungen - selbst oberhalb des Gefrierpunkts - nicht existieren. Die dünne Atmosphäre speichert kaum Wärme, sodass die Temperaturunterschiede zwischen Tag (bis zu 20 Grad Celsius in Äquatornähe) und Nacht (bis zu -85 Grad Celsius) beträchtlich sind. Die mittlere Temperatur liegt bei -55 Grad Celsius. Neben der gemäßigten Neigung der Rotationsachse trägt die Exzentrizität der Umlaufbahn zu einer deutlichen Ausprägung der Jahreszeiten mit dynamischen Vorgängen in der dünnen Atmosphäre bei. Im Marsfrühjahr können heftige Staubstürme große Teile des Planeten verhüllen. Durch die Verwehungen hellen Staubs in dunklere Gebiete kommt es zu jahreszeitlichen Veränderungen der Marsoberfläche, die im Teleskop beobachtet werden können. Die Veränderung der dunklen Schattierungen hielt man früher für eine mögliche Folge marsianischer Vegetationszyklen. Die Polkappen bestehen zum größten Teil aus gefrorenem Kohlenstoffdioxid, enthalten aber auch Wassereis. Sie "pulsieren" mit dem Wechsel der Jahreszeiten. Die Dicke der nördlichen Polkappe (1.000 Kilometer im Durchmesser) wird auf immerhin fünf Kilometer geschätzt. Abb. 2 zeigt eine Aufnahme des NASA-Orbiters Mars Global Surveyor. Die Suche nach Wasser Eine Hauptaufgabe der im Jahr 2008 etwas nördlich des Polarkreises gelandeten NASA-Sonde Phoenix war die Suche nach Spuren von Wasser. Fließspuren an der Oberfläche (trockene Flusstäler und Überschwemmungsgebiete) waren bereits vorher bekannt. Durch Gesteinsanalysen konnte bestätigt werden, dass der Mars einst wärmer und feuchter und somit seine Atmosphäre dichter gewesen sein muss. Abseits der Polkappen versteckt sich das Wassereis heute im Permafrostboden einige Meter unter der Marsoberfläche. In seiner nördlichen Position konnte Phoenix Wassereis jedoch schon wenige Zentimeter unter der Oberfläche nachweisen. Spuren von Leben hat man bisher nicht gefunden. Konjunktion und Opposition Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Dies ist auch die Ursache für die unterschiedliche Leuchtkraft des Planeten am Himmel während seiner Oppositionsstellung (Abb. 6). Etwa alle 15 Jahre kommt uns der Rote Planet besonders nah. Zuletzt war dies im Jahr 2003 der Fall - auf die nächste spektakuläre Marsopposition müssen wir also bis zum Jahr 2018 warten. Überholen wir Mars auf unserer Innenbahn, während er sich in seiner sonnenfernsten Position befindet (Aphel), dann bleibt er an unserem Himmel relativ unauffällig. Die maximale Oppositionsentfernung zur Erde liegt bei mehr als 100 Millionen Kilometern. Überholen wir Mars dagegen, wenn er sich in seiner sonnennächsten Position befindet (Perihel), kann sich ihm die Erde bis auf 56 Millionen Kilometer nähern. Abb. 7 (zur Vergrößerung bitte anklicken) gibt einen Überblick über die geometrischen Situationen der Marsoppositionen in den Jahren von 1999 bis 2022 sowie die jeweiligen scheinbaren Durchmesser des Marsscheibchens. Die Entfernungen Erde - Mars sind in Millionen Kilometern angegeben. Rückläufigkeit und Schleifen Um die Zeit der Opposition überholt die Erde einen äußeren Planeten "auf der Innenbahn". Beobachterinnen und Beobachter auf der Erde sehen den gleichen Effekt wie ein Läufer, der in der Stadionkurve auf der Innenbahn an einem Läufer auf der Außenbahn vorbeizieht. Während dieses Überholvorgangs bewegt sich der überholte Läufer auf der Außenbahn vom Läufer auf der Innenbahn aus gesehen vor dem Publikum auf der Kurventribüne kurzzeitig rückwärts. Übertragen auf die Bewegungen im Sonnensystem heißt dies, dass der äußere Planet sich während der Opposition von der Erde aus gesehen vor dem Fixsternhimmel rückwärts, das heißt von Ost nach West bewegt. Der Fixsternhimmel hat jetzt die Rolle des Publikums auf der Kurventribüne übernommen. Weil die Bahnebenen der Planeten geringfügig gegen die Erdbahn geneigt sind, erscheinen die Bahnen von Mars und den übrigen äußeren Planeten um die Zeit der Opposition herum als "Schleifen" an der Himmelskugel. Dies wird durch Abb. 8 und die folgenden Java-Applets veranschaulicht: Auffällige Oppositionsschleifen Weil Mars von allen äußeren Planeten der Erde am nächsten ist, fällt seine Oppositionsschleife am Sternhimmel deutlich größer aus als die von Jupiter und Saturn. Die Ausdehnung der Oppositionsschleife von Saturn erreichte zum Beispiel im Jahr 2010 nur etwa 30 Prozent derjenigen von Mars. Somit gilt als Fazit: Mars ist das ideale Objekt für die Beobachtung der Oppositionsschleife eines Planeten im Rahmen eines schulischen Projekts! Im Bereich Fachmedien finden Sie eine kurze Einführung in das einfach zu bedienende virtuelle Planetarium Stellarium . (Als ebenso hilfreich, aber etwas komplexer, erweist sich das Programm Cartes du Ciel ) Führen Sie nach dem Start von Stellarium den Mauszeiger in die linke untere Bildschirmecke. Danach öffnen sich die beiden Menüleisten links und unten (Abb. 9, zur Vergrößerung des Ausschnitts bitte anklicken). Per Mausklick auf das Uhrensymbol in der linken Leiste öffnet sich ein Dialogfenster, in das man Datum und Uhrzeit eingibt. Nach Klick auf das Lupensymbol in der linken Menüleiste gibt man den Namen "Mars" ein. Stellarium wählt jetzt den Himmelsausschnitt so, dass sich Mars genau im Zentrum befindet. Drehen am Scrollrad der Maus vergrößert oder verkleinert den dargestellten Himmelsauschnitt. So kann man leicht die Lage vom Mars relativ zum Horizont oder relativ zu markanten Sternbildern einschätzen. Was ist zu sehen? In einem 60 Millimeter Teleskop erscheint Mars lediglich als kleines, oranges Scheibchen. Ab etwa zehn Zentimetern Öffnung können unter günstigen Umständen helle und dunkle Bereiche der Oberfläche schemenhaft wahrgenommen werden. Auch Polkappen sind - je nach marsianischer Jahreszeit - zu sehen. Teleskope mit 15 bis 20 Zentimetern Öffnung lassen weitere Details erkennen. Christian Huygens beschrieb bereits im Jahr 1659 die "Große Syrte", ein dunkles, auffällig dreieckiges Wüstengebiet. Die Suche nach Oberflächendetails lohnt sich jedoch nur während weniger Monate um den Oppositionstermin herum. Abb. 10 zeigt eine Aufnahme des Planeten von Heinrich Kuypers, die im Rahmen einer Astronomie-AG mithilfe eines kleinen Amateurteleskops entstand. Dabei wurden viele Einzelbilder mit der kostenfreien Software RegiStax addiert. Das Foto zeigt Oberflächendetails somit deutlicher als der Blick durch das Okular des Teleskops. Übersichtskarte Die im Folgenden vorgestellten Arbeitsmaterialien wurden für die Dokumentation der Marsschleife im Jahr 2010 erstellt. Sie können bei künftigen Oppositionen als Anregung für die Zusammenstellung entsprechender Schülermaterialien dienen. Passende Sternkarten müssen dann für den jeweiligen Beobachtungszeitraum mit geeigneter Astronomie-Software, etwa GUIDE oder den kostenfreien Progeammen Cartes du Ciel und Stellarium , erstellt werden. Die mit der Software GUIDE 8.0 erzeugte Übersichtskarte (uebersichtskarte.jpg) zeigt den Ost- und Südhimmel mitsamt Horizont, wie er sich Beobachterinnen und Beobachtern in Deutschland am 15. Februar 2010 um 21:00 Uhr darstellte. Der aufgehellte Bereich in der rechten Bildhälfte entspricht der Milchstraße. Den Himmelsanblick einer solchen Karte findet man - bei gleicher Horizontlage - 15 Tage später schon eine Stunde früher oder 15 Tage früher erst eine Stunde später vor. Anhand des Ausdrucks einer solchen Karte können sich die Schülerinnen und Schüler grob am Sternhimmel orientieren. Wichtig ist, dass sie die Sternbilder, durch die sich Mars während des gewählten Beobachtungszeitraums bewegen wird, eindeutig identifizieren können. Negativ-Übersichtskarte Die Grafik der Datei "uebersichtskarte_negativ.jpg" ist die Negativ-Darstellung der Karte "uebersichtskarte.jpg". Der Himmelshintergrund ist weiß gehalten, die Sterne sind als schwarze Kreise dargestellt. Ihre Helligkeit wird durch die verschieden großen Kreisdurchmesser veranschaulicht. Solche Negativ-Sternkarten eignen sich gut für handschriftliche Einträge und Ergänzungen. Detailkarten Nach etwas Übung in der Orientierung am Himmel genügen den Schülerinnen und Schülern für weitere Beobachtungen dann die vergrößerten Ausschnittkarten, zum Beispiel "detailkarte.jpg" oder "detailkarte_negativ.jpg" (Abb. 12; zur Vergrößerung des Ausschnitts bitte anklicken). Letztere Karte liegt auch mit dem Gradnetz des äquatorialen Himmelskoordinatensystems vor ("detailkarte_negativ_gradnetz.jpg"). Händische Einträge in die Himmelskarten In allen Karten fehlt der am Sternhimmel nicht ortsfeste Mars. Er ist jedoch in der betrachteten Himmelsgegend bei einer "durchschnittlichen" Opposition ein auffälliges Objekt und deshalb leicht aufzufinden. Aufgabe der Schülerinnen und Schüler ist es nun, an möglichst vielen klaren Abenden während der Beobachtungsmonate (in dem hier vorgestellten Beispiel Januar bis April 2010) nach dem Planeten Mars Ausschau zu halten, ihn am Himmel aufzufinden, seine Position relativ zu den umgebenden Sternen nach Augenmaß zu ermitteln, um diese Marspositionen dann nebst Datum in der Detailkarte (Negativdarstellung) festzuhalten. Durch Einbeziehen des Koordinatenrasters in der Detailkarte kann eine ordentliche Genauigkeit bei der Bestimmung der Positionen erzielt werden. Brauchbares Wetter vorausgesetzt, sollte man im Laufe einiger Wochen viele unterschiedliche Marspositionen beobachten und dokumentieren können. Man wird zuerst die retrograde (rückläufige) Bewegung erkennen, dann den scheinbaren Stillstand, dem danach die normale prograde Bewegung von Westen nach Osten folgt. Abb. 13 (Grafik zur Vergrößerung des Ausschnitts bitte anklicken) zeigt den mit der Software GUIDE 8.0 erzeugten Verlauf der Marsbewegung um dessen Opposition (Beobachtungsbeispiel Oktober 2009 bis Mai 2010). Technikbegeisterte Schülerinnen und Schüler werden eher an der fotografischen Dokumentation der Marsbewegung interessiert sein. Unter Verwendung der kostenlosen Software Fitswork kann man aus Fotografien einfacher Digitalkameras Planetenbahnen am Sternhimmel rekonstruieren und nebenbei Grundlagen der digitalen Bildbearbeitung erlernen. Das dieser Technik zugrunde liegende Vorgehen wird ausführlich beschrieben in dem Beitrag zur Allgemeine Hinweise zur Planetenbeobachtung . Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse, deren Begleitumstände sowie über die Sichtbarkeiten der Planeten: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE