• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die Zukunft des MINT-Lernens: digitale Lernumgebungen für den…

Dossier

Unterrichtsmaterial zum digitalen Lernen im MINT-Unterricht der Sekundarstufen Wie können digitale Medien im MINT-Unterricht pädagogisch und didaktisch sinnvoll eingesetzt werden, um positive Effekte auf die Lernprozesse von Schülerinnen und Schülern zu haben? Die hier gebündelten Unterrichtseinheiten für die Fächer Informatik, Mathematik und Physik zeigen beispielhaft auf, wie digitale Medien den MINT-Unterricht der Sekundarstufen bereichern können. Die Lernenden beschäftigen sich anhand von digitalen Lernumgebungen mit Themen wie der mathematischen Modellierung, Künstlicher Intelligenz, funktionalen Zusammenhängen oder Messunsicherheiten. Alle Unterrichtseinheiten verfügen über einen Stundenverlaufsplan, einen Link zur jeweiligen Lernumgebung und Kompetenz-Zuordnungen. Neben Fach-, Medien- und Sozialkompetenzen werden dabei auch zu erwerbende 21th-Century-Skills aufgeführt. Weiterhin weist jede Unterrichtseinheit im didaktisch-methodischen Kommentar digitale Kompetenzen aus, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen. Die Beiträge sind im Rahmen des von der Deutschen Telekom Stiftung geförderten Projekts "Die Zukunft des MINT-Lernens" entstanden. Das Dossier wird kontinuierlich um weitere Unterrichtseinheiten ergänzt. Über das Projekt "Die Zukunft des MINT-Lernens" Im Projekt "Die Zukunft des MINT-Lernens" entwickeln fünf Universitäten ( Humboldt-Universität zu Berlin , die Technische Universität Kaiserslautern , die Christian-Albrechts-Universität zu Kiel , die Universität Koblenz-Landau und die Universität Würzburg ) seit Herbst 2018 in einem Entwicklungsverbund gemeinsam Konzepte für einen guten MINT-Unterricht in der digitalen Welt . Diese werden in die Aus- und Fortbildung von MINT-Lehrkräften integriert sowie von Expertinnen und Experten aus Deutschland, Estland, den Niederlanden und Österreich unterstützt.

  • Fächerübergreifend
  • MINT: Mathematik, Informatik, Naturwissenschaften und Technik

Urbane Strukturen: Städte der Welt aus der Luft begreifen

Unterrichtseinheit

In der Unterrichtseinheit zu Stadtentwicklung und Stadtstrukturen lernen die Schülerinnen und Schüler, mit einem einfachen Analysewerkzeug der Fernerkundung aus einem digitalen Satellitenbild Ecken und Kanten abzuleiten und Aussagen in Bezug auf die räumlichen Strukturen von Städten zu formulieren. Diese Unterrichtseinheit beschäftigt sich mit den unterschiedlichen Strukturen von Städten in vier verschiedenen Kulturräumen der Erde. Das digitale Lernmodul ist so aufgebaut, dass die Schülerinnen und Schüler in einem ersten Teil mehr über die Entwicklung und innere Differenzierung von Städten in Mitteleuropa, den USA, Südamerika und den sozialistischen Staaten erfahren. Die Unterrichtseinheit entstand im Rahmen des Projekts Fernerkundung in Schulen (FIS) am Geographischen Institut der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Themenbereich Stadtentwicklung und Stadtstrukturen Ein zentrales Thema des Erdkundeunterrichts im Lehrplan der Jahrgangsstufen 10 bis 13 stellt der Bereich der Stadtentwicklung und Stadtstrukturen dar. Dieser Themenbereich umfasst auch die Frage, wie sich die Städte verschiedener Kulturräume unterscheiden und ob man sie anhand von Idealtypen beschreiben kann. Hiermit wird Bezug auf die nationalen Bildungsstandards genommen, in denen folgende zwei Kompetenzbereiche angesprochen werden: Sachkompetenz: Beschreibung der Genese städtischer Strukturen mit Bezug auf grundlegende Stadtentwicklungsmodelle Urteilskompetenz: Bewertung städtischer Veränderungsprozesse als Herausforderung und Chancen zukünftiger Stadtplanung. Ablauf Anhand von Schrägluftbildern und schematischen Illustrationen können sich die Schülerinnen und Schüler eigenständig über die kulturgenetische Entwicklung der ausgesuchten Stadtmodelle informieren. Im nächsten Schritt erfolgt der praktische Teil: Hier stehen den Schülerinnen und Schülern vier hochaufgelöste Echtfarben-Bilder des RapidEye-Satelliten zur Verfügung. Sie können diese Bilder mithilfe der so genannten "Edge Detection" (Kantendetektion) bearbeiten. So werden Kanten und Linien hervorgehoben, Flächen treten dagegen in den Hintergrund. Anhand der sich abzeichnenden Struktur können die Schülerinnen und Schüler das Wissen über die spezifische Stadtentwicklung und die innere Differenzierung der ausgesuchten Kulturräume anwenden und Gemeinsamkeiten wie Unterschiede zwischen Realität und Idealtyp feststellen. Die Lernumgebung zur Unterrichtseinheit "Städte der Welt" Hier finden Sie Hinweise zum Aufbau der Lernumgebung. Die Abbildungen veranschaulichen die Funktionen und interaktiven Übungen zum Themenfeld. Die Schülerinnen und Schüler beschreiben Stadtstrukturen. erörtern Stadtmodelle unterschiedlicher Kulturräume. orientieren sich mithilfe von Satellitenbildern räumlich. wenden die Bildbearbeitungsmethode der Kantendetektion an. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit "Urbane Strukturen" bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Computer nicht als reines Informations- und Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "StaedteWelt.exe" geöffnet. Unter anderen Betriebssystemen wird die Datei "StaedteWelt.html" in einem Webbrowser geöffnet. Hierfür wird der Adobe Flash Player ( kostenloser Download ) benötigt. Wichtig ist in beiden Fällen, dass die heruntergeladene Ordnerstruktur erhalten bleibt. Der jeweils aktivierte Bereich wird auf der unteren Leiste der Lernumgebung eingeblendet. Während der erste Teil einen Einblick in die Thematik liefert und eine übergeordnete Aufgabenstellung benennt, gliedert sich der Rest des Moduls in zwei Sequenzen: Der erste Teil bietet Hintergrundinformationen zum Thema. Im zweiten Teil werden die Schülerinnen und Schüler aktiv und wenden eigenständig Bildbearbeitungsmethoden zur Lösung von entsprechenden Aufgaben an. Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. Inhalte im Überblick Einleitung Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Nach dem Start des Lernmoduls sehen die Schülerinnen und Schüler den Einführungstext, der sie über den Inhalt und den Aufbau informiert. Im Hintergrund ist eine Aufnahme von der ISS der Erde bei Nacht zu sehen. Deutlich sichtbar sind die beleuchteten Flächen der Großstädte. Hintergrundwissen zu den Stadttypen Nachdem das Fenster weggeklickt wurde, erscheint eine Weltkarte, bei der vier Länder blau hervorgehoben sind (Abbildung 2). Klickt man mit der Maus in eines dieser Länder, so öffnet sich ein Fenster mit Hintergrundwissen zu den einzelnen Stadttypen. Die USA steht dabei für den US-amerikanischen, Deutschland für den mitteleuropäischen, Brasilien für den südamerikanischen und Russland für den Stadttypus der ehemaligen sozialistischen Länder. Die vier Informationsfenster sind so aufgebaut, dass in einem Eingangstext ein Überblick über den historischen Kontext und die markanten Merkmale des jeweiligen Stadttyps gegeben wird. So werden unter anderem beim US-amerikanischen Typus auf den Central Business Districht (CBD) und den schachbrettartigen Grundriss, beim südamerikanischen auf die Plaza und die ausgeprägte ethnische Segregation mit Elendsvierteln, beim mitteleuropäischen auf die Altstadt und die Widerspiegelung von Machtstrukturen wie feudale Schlossanlagen, beim sozialistischen wiederum auf Magistralen und Großwohnsiedlungen hingewiesen. Die Erläuterungen werden durch ein Schrägluftbild, eine Tabelle zur morphogenetischen, funktionalen und sozialen Gliederung, und ein schematisches Stadtmodell unterstützt. Ein Quiz (siehe Musterlösungen) fragt das Gelesene ab und beendet den ersten Teil der Lerneinheit. Anwendung der Kantendetektion Im zweiten Modulteil sollen die Schülerinnen und Schüler eine Methodik der Geographie, die Fernerkundung, anwenden. Es geht hier darum, vier Bilder des RapidEye-Satelliten zu bearbeiten, um verschiedene Aufgaben zu lösen. Zunächst sollen sich die Lernenden einen visuellen Eindruck verschaffen und die räumliche Struktur der abgebildeten Stadt beschreiben. Anschließend können sie die Filterfunktion anwenden. Diese nennt sich Edge Detection (Kantendetektion) und dient dazu, Ecken und Kanten auf einem Satellitenbild hervorzuheben. Aus einem Echtfarbenbild wird so ein Graustufenbild, bei dem Linienobjekte weiß und flächenhafte Objekte dunkel dargestellt werden. Dies erleichtert die Erkennung von Stadtstrukturen, die von Straßen, Gebäuden und Plätzen geprägt sind. D ie Schülerinnen und Schüler erläutern nun die Unterschiede im Vergleich zum ursprünglichen Satellitenbild. Abschließend erörtern sie, welche Stadt welchem Kulturraum angehören könnte und vergleichen ihr Ergebnis mit dem Idealtyp aus dem Hintergrundwissen. Welche Gemeinsamkeiten und Unterschiede könnte es geben? Im Bearbeitungsfenster (Abbildung 3) befinden sich die Satellitenbilder von Karlsruhe, Bratsk (Russland), New York und São Paolo am linken und die Filterfunktion am rechten Rand. Fährt man mit der Maus über eines der Bilder und "greift" es, kann man das Bild in das große Feld ziehen. Nach der Betrachtung klickt man auf "Bild filtern" und führt so die Edge Detection aus. Im Bereich "Berechnete Bilder" werden die Ergebnisse abgelegt. Ist der Speicher voll, müssen ältere Bilder gelöscht werden. Zusätzlich kann man das Echtfarbenbild und das gefilterte Bild gleichzeitig in das große Feld ziehen und mit "Bilder vergleichen" zwischen den beiden Bildern hin- und herwechseln. Abbildung 3 zeigt jeweils das Echtfarbenbild und das gefilterte Bild übereinandergelegt. Zunächst wird deutlich, dass die Satellitenbilder zwar eine vergleichsweise hohe räumliche Auflösung von 5 Metern besitzen, diese jedoch nicht ausreicht, um urbane Details wie kleinere Häuser erkennen zu können. Die Qualität ist ebenfalls unterschiedlich. So wirkt das Bild von São Paolo "unscharf". Dies liegt daran, dass zuvor schon ein Filter drüber laufen musste, um atmosphärische Störungen und Wolken zu entfernen. Ein bekanntes Problem in der Fernerkundung der Äquatorregionen.

  • Geographie / Jahreszeiten
  • Sekundarstufe I

Galvanische Zellen - Ermittlung einer Spannungsreihe

Unterrichtseinheit

Die hier vorgestellte Flash-Lernumgebung kann das Unterrichtsgespräch unterstützen oder als Grundlage für eine selbstständige Erarbeitung des Themas dienen.Das Programm zur Elektrochemie besteht aus zwei Teilen: Im ersten Abschnitt werden Aufbau und Funktion galvanischer Zellen am Beispiel des Zink-Kupfer-Elements verdeutlicht. Im zweiten Teil können aus einer vorgegebenen Auswahl von Halbzellen beliebige galvanische Zellen zusammengestellt, deren Spannungen virtuell gemessen und gespeichert werden. Im Auswertungsteil der Lernumgebung können die Schülerinnen und Schüler daraus selbstständig eine Spannungsreihe entwickeln.Mit der interaktiven Simulation können Schülerinnen und Schüler in einer selbstständigen Arbeitsphase im Computerraum der Schule oder auch am heimischen Rechner arbeiten - entweder im Rahmen einer Hausaufgabe, zur Wiederholung des im Unterricht Gelernten oder zur Prüfungsvorbereitung. Alternativ zu diesen Einsatzmöglichkeiten können Lehrerinnen und Lehrer mit ihrer Lerngruppe auch im Unterrichtsgespräch eine Spannungsreihe virtuell entwickeln (Beamer-Präsentation im Fachraum). Inhalte und Funktionen Die Entwicklung einer Spannungsreihe mithilfe der Lernumgebung wird hier Schritt für Schritt erläutert und per Screenshot dargestellt. Die Schülerinnen und Schüler sollen Aufbau und die Funktion galvanischer Zellen erkunden. mithilfe virtueller Experimente eine Spannungsreihe aufstellen. Thema Galvanische Zellen - Ermittlung einer Spannungsreihe Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Sekundarstufe II Zeitraum 1 Stunde Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Informationen zum Aufbau Im ersten Teil der Lernumgebung werden Aufbau und Funktion einer vorgegebenen galvanischen Zelle untersucht. Mit der Maus "entdeckt" man verschiedene Details. Beim Anklicken der verschiedenen sensitiven Flächen innerhalb der Apparatur wird jeweils ein kleines Informationsfenster eingeblendet (Abb. 1, Platzhalter bitte anklicken). Chemische Vorgänge Betätigt man im ersten Programmteil den Schalter (Ein/Aus), werden die chemischen Vorgänge an den Elektroden als Animation dargestellt (Abb. 2). Dazu muss das Multimeter zuvor auf "Strommessung" umgeschaltet werden. Die gemessene Stromstärke wird von dem Gerät angezeigt. Anhand der animierten Vorgänge an den Elektroden lassen sich die Begriffe Oxidation, Reduktion, Donator-Halbzelle, Akzeptor-Halbzelle und die Richtung des Stromflusses erläutern. Schaltet man das Multimeter auf die Spannungsmessung um, so werden an den Elektroden die Unterschiede im Lösungsbestreben beider Metalle in ihren Metallsalzlösungen und der daraus resultierende Elektronendruck veranschaulicht. Kombination der Halbzellen Der zweite Programmteil bietet eine virtuelle Experimentieroberfläche: Über den Button "Halbzellenauswahl" (Abb. 3) öffnet sich ein Fenster, in dem man vorgegebene Halbzellen auswählen kann (bitte Scrollbalken beachten). Durch die Bestätigung der Auswahl (OK-Button) werden die gewählten Halbzellen in der Apparatur dargestellt. Spannungsmessung Nach dem Betätigen des Schalters öffnet sich ein Ergebnisfenster (Abb. 4, Platzhalter bitte anklicken). Neben der aktuellen Versuchsnummer werden darin die Halbzellen-Kombination und die messbare Spannung des galvanischen Elements angezeigt. Reaktionen im Trickfilm Auf der Basis der angezeigten Spannung (Abb. 4) müssen die Lernenden die Frage nach der Donator-Halbzelle (unten im Ergebnisfenster) beantworten. Als Hilfestellung können sich Schülerinnen und Schüler die elektrochemischen Vorgänge per Klick auf den Button "Trickfilm" auf der Teilchenebene zeigen lassen (Abb. 5). Speichern der Messwerte Nachdem die Frage zur Donator-Halbzelle per Kick in die jeweilige Klickbox beantwortet ist, betätigt man den "merken?"-Button. Dadurch werden die Werte der aktuellen Messung im Programm für die spätere Auswertung gespeichert. Über die Messwertanzeige (Klick auf Messdaten, oben rechts) kann jederzeit überprüft werden, welche Halbzellen-Kombinationen bereits erfasst sind (Abb. 6). Aufstellung der Spannungsreihe Nach der Aufnahme aller gewünschten Messwerte wird im Bereich Auswertung eine Redox- beziehungsweise Spannungsreihe entwickelt. Unter dem Messdaten-Fenster (Abb. 7) können Halbzellen-Symbole eingeblendet werden (Klick auf "Symbole"). Diese sollen per "drag and drop" verschoben und entsprechend den Spannungsdifferenzen in der linken Skala positioniert werden. Die Halbzelle, die gegenüber sämtlichen anderen Halbzellen als Donator-Halbzelle wirkt, wird dem Wert Null zugeordnet. Dieser Hinweis wird den Schülerinnen und Schülern über die einblendbare Aufgabe mitgeteilt. Freie Texteingabe Abb. 8 zeigt eine abgeschlossene Auswertung. Die Spannungsabstände liest man an der Skala ab. Die "Spannungslineale" wurden über die Toolbox erzeugt, skaliert und positioniert. Damit wird der Spannungsabstand jeweils zwischen zwei Halbzellen (die gemessene Spannung im Messwert-Fenster) auch optisch veranschaulicht. Im Textfenster kann eine Beschreibung zur Spannungsreihe erstellt werden. Abschließend drucken die Lernenden die Bildschirmseite als Protokoll aus.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Unterrichtsprojekt: Sauberes Wasser für alle

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema sauberes Wasser werden ausgehend von einer kleinen Lernplattform gezielt kindgerechte Webseiten zur Lösung der gebotenen Arbeitsaufträge besucht. 71 Prozent der Erdoberfläche sind mit Wasser bedeckt, und es kehrt in einem ewigen Kreislauf immer wieder zu uns zurück. Oberflächlich gesehen könnte es danach für alle Menschen auf der Erde genug Wasser geben. Leider ist nur ein Bruchteil des Wasservorkommens trinkbares Süßwasser, das sich immer mehr Menschen teilen müssen. Außerdem ist der weltweite Handel mit riesigen Wasserverschiebungen verbunden. Wir kaufen Produkte, für deren Herstellung viel Wasser benötigt wird, sehr oft in Ländern, in denen sowieso schon Wasserknappheit herrscht. Damit verschärfen wir dort die Wasserkrise, während es uns selbst immer besser geht. Es muss weltweit für eine gerechtere Verteilung des Trinkwassers gesorgt werden - und zwar nicht nur durch die Sensibilisierung für den Kauf von lokalen Produkten, sondern gelegentlich auch durch Direkthilfe in den betroffenen Gebieten durch Spenden. Diese fächerübergreifende interaktive Lerneinheit bietet die Plattform für eine Internetrecherche, von der aus gezielt kindgerechte Webseiten zur Lösung der Arbeitsaufträge besucht werden. Interaktive Übungen sowie Puzzles und Spiele am Computer und herkömmliche Arbeitsblätter runden die Arbeit ab. Zur theoretischen und virtuellen Aufarbeitung des Themas ist das Internet ein ideales Medium. Es gibt eine Reihe kindgerechter Seiten, die den Kindern Gelegenheit zum selbstständigen Erforschen geben. Hintergrundinformationen Wissenswerte Informationen rund um das Themenfeld Wasser und virtuelles Wasser sind hier zusammengestellt. Lernumgebung und Projektablauf Hier erfahren Sie mehr über den Aufbau der interaktiven Lernumgebung und erhalten Hinweise zur Planung der Projektarbeit. Hinweise zum Arbeitsmaterial Die interaktive Lernumgebung bietet eine Fülle von Informationsquellen und Übungen. Die dazu gehörenden Arbeitsblätter stehen hier zum Download bereit. Fachkompetenz Die Schülerinnen und Schüler können Informationen über die Lebensverhältnisse von Kindern und ihren Familien in vertrauten und fremden Ländern und Kulturen aus bereitgestellten Informationsquellen entnehmen und verarbeiten. Meldungen und Bildmaterial zu aktuellen Ereignissen in vertrauten und fremden Ländern und Kulturen aus den Tagesmedien entnehmen. bei Lösungsvorschlägen zu problematischen Lebensverhältnissen in fremden Ländern und Kulturen deren Wertorientierungen berücksichtigen. eine leicht überschaubare Entwicklungsmaßnahme als eher nachhaltig oder eher nicht nachhaltig beurteilen. Beispiele naturräumlicher Nutzung als eher nachhaltig oder eher nicht nachhaltig beurteilen. bei Entwicklungsmaßnahmen und naturräumlicher Nutzung unterschiedliche Interessen erkennen und beurteilen. aus der Kenntnis schwieriger Lebensverhältnisse von Kindern bei uns und in anderen Ländern und Kulturen ein Gefühl der Solidarität entwickeln. umweltbewusstes Verhalten im eigenen Umfeld als Beitrag zur Zukunftsvorsorge darstellen. trotz der Schwierigkeiten, problematische Lebensverhältnisse bei uns und in anderen Ländern zu ändern, Lösungsmöglichkeiten erfinden und ausprobieren. Aktionen zur Lösung von Entwicklungsproblemen vorschlagen und begründen und sind bereit, sich daran zu beteiligen. Aktionen zur Lösung von Umweltproblemen vorschlagen und begründen und sind bereit, sich daran zu beteiligen. Medienkompetenz Die Schülerinnen und Schüler können gezielte Recherchen im Internet durchführen und das Netz als Informationsquelle nutzen. eine interaktive Lerneinheit am PC bearbeiten und dabei das Prinzip der Verlinkung anwenden. ein interaktives Memo lösen. interaktive Übung durchführen (Hot Potatoes: Quiz, Zuordnungsübungen, Kreuzworträtsel). Sozialkompetenz Die Schülerinnen und Schüler können aus der Kenntnis schwieriger Lebensverhältnisse von Kindern bei uns und in anderen Ländern und Kulturen ein Gefühl der Solidarität entwickeln. sich über ein für die Schule eventuell passendes Hilfsprojekt einigen. Absprachen zur Benutzung der PC-Arbeitsplätze treffen. sich als Partner über die Reihenfolge der Aufgaben einigen. sich gegenseitig helfen. *in Auszügen entnommen aus: Orientierungsrahmen für den Lernbereich Globale Entwicklung 4.1 Grundschule: Sachunterricht und weitere Fächer, Seite 94 ff. Lernschwerpunkte Die Schülerinnen und Schüler kennen die Einteilung Salzwasser, Süßwasser, Trinkwasser. wissen, dass der größte Anteil in ihrem Körper Wasser ist. wissen, wie Flüssigkeit ausgeschieden wird und dass die ausgeschiedene Flüssigkeit ersetzt werden muss. wissen, dass wir ohne Wasser nicht leben können. wissen, dass auch Tiere und Pflanzen Wasser brauchen. kennen die Aggregatzustände des Wassers. kennen den Wasserkreislauf. wissen, wofür wir Wasser verbrauchen und wer weltweit am meisten Wasser verbraucht. wissen, dass Wasser gereinigt werden muss, und wie das geht. können ein Experiment zur Wasserreinigung durchführen. wissen, dass es verstecktes (virtuelles) Wasser bei der Herstellung von Produkten gibt. kennen den Begriff Wasserfußabdruck und finden eine Lösung, ihn zu verkleinern. haben einen Überblick über Länder mit Wassermangel. kennen Länder, die dringend Hilfe brauchen, und auch die Gründe dafür. kennen die Organisation Welthungerhilfe und ihre wichtigsten Ziele. kennen den Begriff "Hilfe zur Selbsthilfe". kennen den Begriff WASH und wissen, warum sauberes Trinkwasser und sanitäre Hygiene wichtig sind. kennen Hilfsaktionen der Welthungerhilfe und wählen die für ihre eigene Schule günstigste aus. kennen vielfältige Verben zum Element Wasser. kennen eine Wassergeschichte und ordnen ihren Verlauf chronologisch. erfinden einen eigenen Schluss zu einer Geschichte. erkennen Rechtschreibschwierigkeiten in einem Text (Diktattext). können zusammengesetzte Nomen mit "Wasser" bilden. kennen gegensätzliche Adjektive zum Element Wasser und können sie in Sätzen anwenden. kennen das Wort Wasser in verschiedenen Sprachen. Das Menschenrecht auf Zugang zu sauberem Wasser Viele Millionen Menschen haben heutzutage immer noch keinen Zugang zu sauberem Wasser. Die Welthungerhilfe ruft gemeinsam mit anderen Organisationen dazu auf, unser Möglichstes zu tun, damit allen Menschen dieser Erde sauberes Trinkwasser zur Verfügung steht. Wasser ist unser wichtigstes Lebensmittel, aber in vielen Teilen der Welt ist Trinkwasser knapp. Für diese Regionen ist noch ein anderer, bisher kaum beachteter Aspekt sehr wichtig: der Verbrauch von virtuellem Wasser. Virtuelles Wasser Virtuelles Wasser ist die Wassermenge, die zur Produktion von Gegenständen oder Lebensmitteln nötig, aber im Endprodukt nicht mehr zu finden ist. So verbergen sich etwa in einem T-Shirt 2.700 Liter virtuelles Wasser, und um ein Kilogramm Reis zu ernten, benötigt man 3.400 Liter Wasser. Der durchschnittliche direkte Wasserverbrauch beträgt in Deutschland derzeit pro Kopf und Tag etwa 126 Liter und ist damit leicht gesunken. Dazu kommen allerdings noch etwa 4.000 Liter an virtuellem Wasser. Weltweiter Wasser-Handel Problematisch dabei ist, dass wir dieses Wasser nicht aus eigenen Beständen nehmen, sondern durch den weltweiten Handel den größten Anteil davon importieren - und zwar vornehmlich aus Gebieten, die durch Dürreperioden sowieso mit Wasserknappheit zu kämpfen haben. Während wir also unsere Ressourcen schonen, lassen wir es uns auf Kosten anderer gut gehen, die oft lange Wege zurücklegen müssen, um zu Trinkwasser zu gelangen und denen sanitäre Einrichtungen fehlen. Dadurch sind Infektionskrankheiten und Epidemien vorprogrammiert. Hilfe zur Selbsthilfe Diese Regionen sind auf Hilfe von außen angewiesen, die in kleinem Rahmen auch Kinder leisten können, wenn sie sich etwa an schulischen Aktionen, die auf Anregung der Welthungerhilfe durchgeführt werden, beteiligen. Hilfe von außen bedeutet aber nicht Wasser und Lebensmittelspenden, sondern Hilfe zur Selbsthilfe: Die Menschen in den Zielländern sollen in die Lage versetzt werden, Brunnen und Pumpstationen zu bauen, Wasser bei Überfluss zu lagern und durch verbesserte Bildungsmöglichkeiten Einsicht in den Zusammenhang von Hygiene und Gesundheit gewinnen. Struktur Die interaktive Lerneinheit besteht neben der Eingangsseite aus vier weiteren Hauptseiten (Wasser-Infos, Wasser-Sprache, Wasser international, Experimente, Spiel und Spaß), einer Unterseite mit einer Kontrollmöglichkeit, sechs intern verlinkten interaktiven Übungen (Hot Potatoes-Übungen, Quiz) und 35 externen Links. Die Arbeit mit der Lernumgebung Die Arbeitsanweisungen auf vielen Arbeitsblättern beziehen sich jeweils auf direkt aufrufbare Internetseiten, was natürlich einen Internetzugang voraussetzt. Diese Arbeitsblätter sind besonders gekennzeichnet (durch ein Computer-Icon), auch auf den Deckblättern. Die internen Links dagegen können offline bearbeitet werden. Die Arbeitsblätter 1 bis 13 und die dazu gehörende Seite der interaktiven Lernumgebung (Wasser-Infos) sollten der Reihenfolge nach bearbeitet werden, da sie das Thema sukzessive entwickeln. Eine Ausnahme ist Arbeitsblatt 8: Die Aussaat der Kresse sollte als Einstieg mit der gesamten Klasse vorgenommen werden. Das Messen des benutzten Wassers kann täglich durch ein anderes Kind geschehen, das dann auch das Ergebnis bekannt gibt. Die restlichen Arbeitsblätter können je nach Neigung bearbeitet werden. Infrastruktur Organisation des Unterrichts und Zeitraum der Arbeit hängen von der Anzahl der jeweils vorhandenen PC-Arbeitsplätze ab und davon, ob sie in einem Netzwerk gemeinsamen Zugang zum Internet haben. Sinnvoll hat sich auf jeden Fall Partnerarbeit erwiesen, da sich zum einen so die Zahl der eventuell auf einen Computer wartenden Kinder halbiert und zum anderen die Partnerkinder sich gegenseitig unterstützen können. Als zusätzliches Angebot können im Bedarfsfall weitere Arbeitsblätter zur Verfügung gestellt werden, die die in der Lerneinheit angesprochenen Themen vertiefen: beispielsweise Sachbücher zum Thema anschauen, weitere Wasser-Wörter suchen, Partnerdiktat oder eine eigene Wasser-Geschichte schreiben. Integration von Sach- und Fachthemen Als Fachlehrkraft haben Sie aber auch die Möglichkeit, nur die Sachthemen zu behandeln und die Fächer Deutsch und Kunst auszuklammern, wenn der fächerübergreifende Ansatz aus stundenplantechnischen Gründen nicht oder nur sehr schwer durchführbar ist. Vorschläge aus der Klasse aufgreifen Wichtig ist außerdem die Organisation des Unterrichtsablaufs. Absprachen bezüglich der Computer-Nutzung müssen getroffen werden, da nicht alle Kinder gleichzeitig am Rechner sitzen können. Dabei sollten Vorschläge der Kinder aufgegriffen werden, weil sie erfahrungsgemäß die Einhaltung eigener Vorschläge auch selbst überprüfen. Außerdem ist festzulegen, ob die Arbeit als Partner- oder Gruppenarbeit erfolgen soll und eine entsprechende Einteilung vorzunehmen (freie Wahl, Zufallsprinzip durch Ziehen von Kärtchen oder von der Lehrkraft bestimmt). Kinder als Computer-Experten Es hat sich zudem bewährt, "Computer-Experten" zu wählen, die bei Schwierigkeiten mit dem Medium als erste Ansprechpartner fungieren sollen. So können die Kinder viele Fragen unter sich klären und selbstständig arbeiten. Selbstständig lernen Die Kinder sollten an offene Unterrichtsformen gewöhnt sein. Kenntnisse im Umgang mit dem Internet sind nicht unbedingt nötig, da die Links direkt über die Lerneinheit angesteuert werden und keine Internetadressen eingegeben werden müssen. Erklären sollte man auf jeden Fall, dass die Rückkehr auf den heimischen Rechner über den Rückwärtspfeil des Browsers erfolgt. Erfolgskontrolle Jedes Kind heftet seine fertigen Arbeitsblätter und gelösten Aufgaben in einem Hefter ab, der nach Abschluss des Projekts eingesammelt und von der Lehrerin oder vom Lehrer überprüft werden kann. Einführung Hier befindet sich eine kurze Einführung in die Arbeit mit der Lernumgebung. Die Kinder können auch zwischendurch davon Gebrauch machen, um sich Dinge ins Gedächtnis zu rufen. Wasser als Grundlagen des Lebens Die Kinder erfahren, dass die Erde der einzige bisher bekannte Planet ist, auf dem es Leben gibt, was daran liegt, dass wir Wasser haben, denn dies ist für das Leben unabdingbar. Der größte Teil unseres Planeten besteht zwar aus Wasser, aber nur ein geringes Maß davon ist auch trinkbar. Sie lernen, dass auch unser Körper zu einem Großteil aus Wasser besteht, dass wir Wasser verlieren und es dem Körper wieder zuführen müssen. Aber nicht nur wir Menschen brauchen Wasser, sondern auch Pflanzen und Tiere. Die Kinder bekommen einen Überblick über die Aggregatzustände des Wassers (fest, flüssig, gasförmig) und wiederholen den sicher schon bekannten Kreislauf des Wassers (vorgegebene Sätze werden in der richtigen Reihenfolge geordnet, die Abbildung und Informationen aus dem Internet helfen dabei) und informieren sich noch einmal über den Wasserverbrauch in Haushalten weltweit. Sie erfahren, wie man Wasser reinigt, und bauen sich ihren eigenen Wasserfilter. Hier ist es aus Raumgründen wohl angebracht, den Filter gemeinsam zu bauen und das Experiment gemeinsam durchzuführen. Virtuelles Wasser als Phänomen kennen lernen Die Kinder werten ihr Experiment mit der Kresse aus und erfahren, dass in der Pflanze verstecktes Wasser vorhanden ist und lernen den Begriff "virtuelles Wasser" kennen. Am Beispiel von Äthiopien, Kenia und der Sahelzone erfahren sie, wie diese Gebiete unter Wassermangel leiden. Der Schritt zur Einsicht, dass jeder Mensch das Recht auf sauberes Wasser hat, ist danach nicht mehr groß. Die Schülerinnen und Schüler erfahren, dass Hilfe allein nicht genügt, sondern dass Hilfe zur Selbsthilfe geboten ist, die beispielsweise die Welthungerhilfe mit ihren Projekten gibt. Das Ziel dieser Hilfe auf lange Sicht ist, als Helfer überflüssig zu werden. Die Kinder lernen das Projekt "WASH" kennen. Hier können die Kinder mit einem interaktiven Lückentext und zwei interaktiven Kreuzworträtseln das anstehende Diktat zusätzlich üben. Sie hören sich im Internet eine Wasser-Geschichte an, ordnen vorgegebene Orte aus der Geschichte in chronologischer Reihenfolge und erfinden einen eigenen Schluss. Das Gedicht von James Krüss, das sie aus dem Internet abschreiben (Arbeitsblatt 19) und in Arbeitsteilung auswendig lernen, beschreibt auf lyrische Weise den Kreislauf des Wassers. Die Kinder lernen das Wort Wasser in verschiedenen Sprachen kennen: Englisch, Französisch, Spanisch, Italienisch, Polnisch, Portugiesisch, Türkisch. Im Internet können sie sich die Wörter nicht nur ansehen, sondern auch die Aussprache üben und anschließend in zwei Zuordnungsübungen ihr Wissen überprüfen. Das interaktive Quiz wurde bestückt mit Fragen der Welthungerhilfe rund um das Thema Wasser. Hier findet zum Teil eine Wiederholung der bearbeiteten Problematik in spielerischer Form statt. Das Quiz zu den Wassergeräuschen fordert genaues Hinhören. Hier wäre es angebracht mit Kopfhörern zu arbeiten, um Nebengeräusche auszuschließen. Das Wassermemo ist eine Konzentrationsübung und kann entweder zwischendurch zur Lockerung oder zum Schluss als Belohnung durchgeführt werden. Das Eiswürfel-Experiment sollte zu Hause durchgeführt werden, weil es in der Schule schwierig wird, für alle zum richtigen Zeitpunkt Eiswürfel bereit zu halten. Die Kinder sollten aber in der Schule die Möglichkeit bekommen, sich die Internetseite zum Experiment anzusehen und zu notieren, was gebraucht wird, weil unter Umständen nicht alle Kinder zu Hause über Internetzugang verfügen. Der Wasserfußabdruck (Arbeitsblatt 9), Wassermangel 1 (Arbeitsblatt 10) Die Kinder befassen sich mit dem Begriff "Wasserfußabdruck", indem sie aufspüren, aus welchen Ländern die Produkte stammen, die sie zu Hause vorfinden. Bei einem Vergleich untereinander wird deutlich, dass die meisten Produkte nicht in Deutschland selbst produziert, sondern importiert werden. Da oft aus Ländern importiert wird, die sowieso unter Wasserarmut leiden, (Arbeitsblatt 10) erschließt sich ihnen das soziale Problem der ungerechten Nutzung unserer Wasserressourcen.

  • Technik / Sache & Technik / Biologie / Ernährung und Gesundheit / Natur und Umwelt / Ernährung & Gesundheit / Gesundheitsschutz / Pflege, Therapie, Medizin
  • Primarstufe, Sekundarstufe I, Sekundarstufe II, Spezieller Förderbedarf, Berufliche Bildung

Die Erfindung des Computers – Zuses Z3

Unterrichtseinheit

Vor 100 Jahren – am 22. Juni 1910 – wurde Konrad Zuse geboren. Das Zuse-Jahr 2010 soll dieses Jubiläum gebührend ehren. In dieser Unterrichtseinheit erhalten Schülerinnen und Schüler Einblicke in die Erfindung des Computers durch Konrad Zuse und in die Funktionsweise seines ersten Rechners - den Z3.Was sind Dualzahlen und warum rechnen Computer mit ihnen? Wie funktioniert binäre Logik und was sind logische Gatter? Wie arbeitete Konrad Zuses Z3? Die Antworten auf diese Fragen können Schülerinnen und Schüler mit einer zum Zuse-Jahr 2010 entwickelten Lernumgebung finden. Die dynamischen Arbeitsblätter enthalten interaktive Übungen und Veranschaulichungen, die mit LogiFlash erstellt wurden. Dieser Logiksimulator für die Darstellung von digitalen Schaltungen wurde am Lehrstuhl für Technische Informatik der Johann Wolfgang Goethe-Universität Frankfurt am Main entwickelt und steht kostenfrei zur Verfügung. Würdigung der Leistung Konrad Zuses Die hier vorgestellte Lernumgebung kann im Rahmen des Lehrplans genutzt werden. Konzipiert wurde sie vom Autor aber insbesondere zur Würdigung von Konrad Zuse (1910-1995) im Zuse-Jahr 2010. Hier bietet sich ihr Einsatz im Rahmen eingeschobener Unterrichtsstunden an (eine Doppelstunde sollte reichen). Im Verlauf des Unterrichtsgesprächs kann ferner auf die Begriffe Verarbeitungsbreite (Bit) und Speichergröße (Bit und Byte) eingegangen werden. Einführung der Lernumgebung per Beamer Schülerinnen und Schüler der Klasse 7 sind den Einsatz interaktiver Arbeitsblätter oft noch nicht gewohnt. Daher sollte der Umgang damit zunächst von der Lehrperson per Beamer gezeigt werden. Insbesondere der Umgang mit den interaktiven LogiFlash-Simulationen kann so demonstriert werden. Hinweise zu den Übungen Ein Hinweis auf die Notwendigkeit einer korrekten Zahleneingabe bei den Übungen führt zu erhöhter Konzentration und damit zu weniger Frusterlebnissen. Diese entstehen, wenn Fragen inhaltlich richtig, aber formal fehlerhaft (zum Beispiel durch Leerstellen) in die Arbeitsblätter eingegeben werden. Die Angaben werden dann als falsch bewertet. Auch Partnerarbeiten zwischen Schülerinnen und Schülern mit guten Deutschkenntnissen und Lernenden, denen die deutsche Sprache schwer fällt (Integrationskinder), kann zur Vermeidung von Frusterlebnissen beitragen. Aufbau und Inhalte der Lernumgebung Die Themen der Lernumgebung werden kurz vorgestellt. Screenshots zeigen Ausschnitte aus den interaktiven Übungen. Green IT Von der Erfindung des Computers kann ein Bogen geschlagen werden zum heutigen rasanten Wachstum der Datenströme im Internet, die einen signifikanten Beitrag zum Kohlenstoffdioxidausstoß leisten werden, wenn die Energieeffizienz der heutigen Technologie nicht stark verbessert wird. "Green IT" ist das Schlagwort. Computer Gestern - Heute - Morgen: "Green IT" In Zeiten drastisch wachsender Datenströme muss die Nutzung von Informations- und Kommunikationstechnologie umwelt- und ressourcenschonend gestaltet werden. Die Schülerinnen und Schüler sollen im Lernbereich "Computer verstehen: Daten und Strukturen" den grundlegenden Aufbau eines Computers kennen (Hardware, Prozessor, Bus, Speicher). das Blockschaltbild eines Computers verstehen. das Prinzip "Eingabe - Verarbeitung - Ausgabe" verstehen. die Auswirkungen der Rechentechnik aus historischer Sicht bewerten. ein Modell für Informatiksysteme kennenlernen. im Wahlpflichtbereich "Computer Gestern - Heute - Morgen" die Leistung eines Rechners anhand verschiedener Kriterien beurteilen können. die Lernumgebung für das Fach Mathematik zur Prüfungsvorbereitung zum Thema Stellenwertsysteme (Klasse 10) nutzen. Thema Die Erfindung des Computers - Zuses Z3 Autor Jens Tiburski Fächer Informatik, Mathematik (Stellenwertsysteme) Zielgruppe ab Klasse 7 (Informatik), Klasse 10 (Mathematik) Zeitraum 1-2 Stunden Technische Voraussetzungen Computer in ausreichender Zahl (Einzel- oder Partnerarbeit); aktiviertes Java-Script, Flash Player Zuerst werden die Schülerinnen und Schüler darauf aufmerksam gemacht, dass die Rechenmaschinen vor der Erfindung des Computers noch mechanisch funktionierten. Doch selbst herausragende Konstruktionen demonstrierten lediglich die Unmöglichkeit, analytische Maschinen von hoher Komplexität technisch zu verwirklichen. Das macht die Genialität Zuses deutlich, der mit zwei revolutionären Ideen die Entwicklung des modernen Computers ermöglichte: Durch den Vergleich mit Anlagen aus der Nachrichtentechnik kam er zu dem Schluss, dass Rechenmaschinen ebenfalls elektronisch funktionieren müssten - durch den Einsatz von Relais als Schalter. Da Relais nur zwei Schaltzustände kennen - High und Low - erkannte Zuse, dass Rechenmaschinen auf dem Dualsystem basieren müssten. Boolesche Logik Also stellte er seine Experimente mit mechanischen Rechenmaschinen ein (der Zuse Z1 war noch ein mechanischer Rechner) und arbeitete an der Umsetzung der Rechenregeln für Dualzahlen mittels logischer Operatoren. Dass es die Boolesche Logik schon gab, wusste Konrad Zuse nicht. Er entwickelte jedoch unabhängig dieselben Schlussfolgerungen. Die interaktiven Arbeitsmaterialien der Unterrichtseinheit beginnen mit der Erforschung der Rechenregeln für das Dualsystem (also das Zahlensystem auf der Basis 2). Nach grundsätzlichen Erläuterungen haben die Schülerinnen und Schüler die Möglichkeit, ihr erworbenes Wissen in interaktiven Aufgabenstellungen zu testen. Nach der Konvertierung von Dezimalzahlen in Dualzahlen (Abb. 1, Platzhalter bitte anklicken) und umgekehrt sind Additions- sowie eine Multiplikationsaufgabe zu lösen. Die Lernumgebung gibt den Schülerinnen und Schülern Rückmeldungen zum Erfolg ihrer Bemühungen. Den nächsten inhaltlichen Schwerpunkt bildet das Verständnis sogenannter logischer Gatter. Es wird gezeigt, wie solche Gatter aufgebaut sind und welche Funktion sie erfüllen. Dabei beschränkt sich die Lernumgebung auf die wesentlichen Gatter: And-Gatter Or-Gatter Xor-Gatter Nand-Gatter Nor-Gatter Xnor-Gatter Interaktive Übungen Mithilfe von Flash-Simulationen logischer Schaltungen (erstellt mit LogiFlash ) können die Schülerinnen und Schüler die Erklärungen nachvollziehen und eigene Überlegungen visualisieren. Das Kapitel enthält interaktive Übungen zu Wahrheitstabellen logischer Gatter. In verschiedenen Aufgaben können die Schülerinnen und Schüler Wahrheitstabellen vorgegebener Gatter erkunden sowie Gatter anhand ihres Verhaltens zuordnen. Abb. 2 zeigt ein Beispiel: In der Übung muss die Wahrheitstabelle ermittelt und dem entsprechenden Gatter zugeordnet werden. Danach werden - mithilfe der Gatter - die Rechenregeln für Dualzahlen digital umgesetzt. Der 1-Bit-Addierer bildet die Grundlage für das Verständnis des Zusammenhangs zwischen Rechenregeln und logischen Gattern. Wenn dieses Funktionsprinzip verstanden wurde, geht es mit dem 8-Bit-Addierer weiter. Hier liegt der Schwerpunkt auf der Weitergabe des Übertrags. Es kann zwar nur der Übertrag 1 entstehen, aber dieser muss gegebenenfalls über mehrere Stellen weitergegeben werden. Die sich daraus ergebenden Überlegungen zum Einsatz verschiedener Gatter führen auf eine schon recht komplexe Schaltung mit einer Vielzahl von Gattern, die - zur optischen Abgrenzung - in verschiedenen Reihen angeordnet sind (Abb. 3, Platzhalter bitte anklicken). Dieser 8-Bit-Addierer ist nun das eigentliche Rechenwerk des Z3. Es wird an dieser Stelle darauf hingewiesen, dass es sich um ein stark vereinfachtes Modell des Rechenwerks von Konrad Zuse handelt. Im Gegensatz zu Konrad Zuses Rechner wird unser Rechenwerk nun aber noch mit Wandlern zur Ein- und Ausgabe von Dezimalziffern ausgestattet: Dezimal-Dual-Wandler Dieser Wandler basiert komplett auf Or-Gattern, die dafür sorgen, dass eingegebene Dezimalziffern über die Lampen am Ausgang als Dualzahlen weitergegeben werden. Dual-Dezimal-Wandler Dieser Wandler verwendet zwei Gattertypen, das And-Gatter und das Nor-Gatter. Das jeweilige And-Gatter testet die gesetzten richtigen Bits, während das Nor-Gatter falsch gesetzte Bits "herausfiltert". So wird zum Beispiel die Lampe mit der Nummer 7 nur dann auf High-Level gesetzt, wenn die Bits 1, 2 und 3 aktiviert sind und gleichzeitig die Bits 4 und 5 deaktiviert sind (Abb. 4). Wenn man nun den 8-Bit-Addierer mit zwei Dezimal-Dual-Wandlern zur Eingabe von Dezimalziffern und einem Dual-Dezimal-Wandler zur Anzeige der Ergebnisse in Dezimalform ausstattet, erhält man einen einfachen Rechner, der zwei Dezimalziffern addiert und das Ergebnis anzeigt. Der Informationsfluss kann dabei anhand der türkis eingefärbten Hervorhebungen von den Schülerinnen und Schüler nachvollzogen werden, sodass das Funktionsprinzip deutlich wird (Abb. 5) Die Schaltung in Abb. 5 wirkt auf den ersten Blick sicher verwirrend. Deshalb wird dieser Rechner nun modular umgestaltet. Die Hauptbaugruppen werden in Module zusammengefasst. Dann erfolgt die Verdrahtung und man erhält ein Funktionsschema, das wesentlich übersichtlicher wirkt als das vollständige Modell. Dass es sich jedoch um dieselben Schaltungen handelt, kann man durch das Anklicken des Lupen-Symbols sehen. Das Lupensymbol erscheint, wenn Sie den Cursor über die linke oder rechte untere Ecke (4-Bit-Addierer) der Module führen (siehe roter Kreis in Abb. 6). Aufgaben Im letzten Übungsteil sollen die Schülerinnen und Schüler ihr erworbenes Wissen über die logischen Schaltungen testen. Drei vorgegebene Schaltungen sind zu komplettieren: 1-Bit-Addierer Die beiden passenden Logik-Gatter sollen an die richtigen Stellen gezogen und die Schaltungen korrekt verdrahten werden. Per Klick auf das Fragezeichen-Symbol lassen sich Tipps aufrufen. Der Test-Button prüft die Schaltung - das kann bei umfangreichen Schaltungen einige Sekunden dauern - und gibt dann das Ergebnis in Form einer Messagebox aus. 4-Bit-Addierer Neben den vier 1-Bit-Addierern muss die Weiterleitung des Übertrags fehlerfrei funktionieren. Die Aufgabe besteht in der korrekten Verdrahtung der logischen Gatter der Übertragsweiterleitung. Modul-Rechner Der letzte Schaltplan beinhaltet zwei Dezimal-Dualwandler, einen 4-Bit-Addierer sowie einen Dual-Dezimal-Wandler. Die Aufgabe ist es nun, die fertigen Module richtig zu verdrahten, sodass der Modul-Rechner fehlerfrei funktioniert. Im Themenbereich "Computer Gestern - Heute - Morgen" bietet sich ein Ausblick auf die Bestrebungen an, die Nutzung von Informationstechnik (IT) beziehungsweise aller Informations- und Kommunikationstechnologie umwelt- und ressourcenschonend zu gestalten. Dies betrifft die Produktion der Komponenten (Energieeinsatz, Materialien, Produktionsmittel). das Design der Systeme (Energieverbrauch im Betrieb). die Entsorgung oder das Recycling der Geräte. Der letztgenannte Aspekt schließt insbesondere die Schadstoffthematik mit ein, also ob schädliche Stoffe in der Produktion anfallen oder ob Gifte wie Blei oder Brom im Endprodukt enthalten sind und bei dessen Betrieb oder Entsorgung freigesetzt werden. Der Begriff Green IT umfasst auch die Energieeinsparung durch die Nutzung von Informations- und Kommunikationstechnologie. So kann zum Beispiel der Ersatz von Dienstreisen durch Videokonferenzen zur Energie- und Emissionsreduzierung beitragen. Der Verband der Elektrotechnik Elektronik Informationstechnik e.V. (VDE) hat im Jahr 2009 eine Green-IT-Studie veröffentlicht, die "Aspekte der Reduzierung des Energieverbrauchs und der Verbesserung der Energieeffizienz in Kommunikationsnetzwerken" darstellt. Angesichts des dramatisch ansteigenden Datenverkehrs muss, so die Studie, dem damit zusammenhängenden Energieverbrauch aus Umweltgesichtspunkten (Kohlenstoffdioxidausstoß) - aber auch im Hinblick auf die Betriebskosten für Netzbetreiber und private Kunden - entschieden gegengesteuert werden. Nur wenn Forschung und Entwicklung einen essenziellen Beitrag zur Verbesserung der Energieeffizienz der Informations- und Kommunikationstechnologie leiste, sei das Wachstum des Internets ohne einen signifikanten Beitrag zum Kohlenstoffdioxidausstoß möglich. Auch dies gehört zum Erbe Konrad Zuses … Interessierte Lehrkräfte können die nicht ganz günstige Studie (250 Euro) direkt beim VDE bestellen: VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Stresemannallee 15 60596 Frankfurt am Main Kontakt: itg@vde.com

  • Mathematik / Rechnen & Logik / Informatik / Wirtschaftsinformatik / Computer, Internet & Co.
  • Sekundarstufe I

Simulation: Ostsee der Zukunft

Unterrichtseinheit

Mithilfe von Simulationen versuchen Wissenschaftlerinnen und Wissenschaftler, Aussagen über zukünftige Ereignisse in komplexen Systemen zu machen. In dieser Lernumgebung können an einem Simulationsmodell Zukunftsszenarien für den Zustand der Ostsee, eines unserer heimischen Meere, erkundet werden. Wie wirken sich menschliche Aktivitäten auf die Ostsee und ihre Organismen aus und was bedeutet dies wiederum für die Nutzung dieses Meeres in Zukunft? Inhaltliches Hauptziel dieser Unterrichtseinheit ist es, Prozesse und Zusammenhänge der wichtigsten Veränderungen der Ostsee (Erwärmung, Eutrophierung, Versauerung und Entsalzung) und deren Auswirkungen auf repräsentative Organismen des Ökosystems (Flohkrebse, Blasentang und Epiphyten) zu vermitteln. Diese Prozesse können mithilfe eines Simulationsmodells von den Lernenden untersucht werden. Ein weiteres Ziel ist es, die daraus resultierenden Herausforderungen für das Ökosystem und für die Gesellschaft (Wasserqualität, Fischerei, Tourismus) zu verstehen und zu diskutieren. Die Materialien wurden an der Kieler Forschungswerkstatt im Rahmen des Kiel Science Outreach Campus in Zusammenarbeit von Wissenschaftlerinnen und Wissenschaftlern aus den Bereichen Meeresökologie, Medienpsychologie und Fachdidaktik entwickelt. Zur Webseite der Simulation und zu den Materialien gelangen Sie über den Link am Ende dieser Seite. Um einen authentischen Einblick in die Wissenschaft zu geben, basiert das Modell einer Computersimulation auf echten wissenschaftlichen Daten. Es ist ratsam, vor dem Einsatz der Simulation die einzelnen Prozesse der Veränderungen (Erwärmung, Versauerung, Eutrophierung und Salzgehaltsunterschiede) mit ihren Auswirkungen auf das Ökosystem Ostsee inhaltlich zu behandeln, da in der Simulation (zumindest im zweiten Schritt) diese vier Veränderungen inklusive ihrer gegenseitigen Abhängigkeiten gleichzeitig untersucht werden. Darüber hinaus werden auf Grundlage der veränderten Variablen direkt mögliche Auswirkungen auf das Gesamtsystem (Wasserqualität, Fischerei und Tourismus) gezeigt. Zur Vermeidung von Desorientierung und um eine kognitive Überlastung zu vermeiden, bearbeiten die Schülerinnen und Schüler ein begleitendes Skript, in dem sie die Ergebnisse ihrer Arbeit zusammenfassen. Diese Aufgaben stehen sowohl als digitales (eingebettet in die Website der Simulation) als auch analoges Format zur Verfügung. Um den Lernenden eine eigenständige Bearbeitung auch ohne Anleitungen der Lehrkraft zu ermöglichen, steht auf der Website unter dem Reiter "Anleitung" eine Schritt-für-Schritt-Erklärung zur Verfügung. Zunächst müssen sich die Lernenden kurze informative Audiodateien zu jeder Variable (= Veränderungen und Organismen) der Simulation anhören, bevor der interaktive Modus aktiviert wird. Dadurch wird ein grundlegender und gleicher Informationsstand gewährleistet. Danach können sie in einem interaktiven Modus selbstbestimmt mit der Simulation interagieren. Die Benutzeroberfläche ermöglicht es, die verschiedenen Veränderungen durch Bewegen eines Schiebereglers einzustellen und zu manipulieren. Die Lernenden können in Echtzeit beobachten, wie sich die von ihnen vorgenommenen Änderungen auf die Populationen der drei Organismen auswirkt. Um das Lernen mit der multidimensionalen Struktur der Simulation zu unterstützen, wurden Elemente wie Toolboxen mit Informationen über jede Veränderung und die verschiedenen Organismen implementiert. Die Schülerinnen und Schüler lernen zu Beginn anhand des (digitalen) Skripts mithilfe von Texten, Abbildungen und Videos die einzelnen Variablen der Simulation kennen. Anschließend sollen sie einzelne Veränderungen der Ostsee in unterschiedlichen Ausprägungen simulieren und die Auswirkungen auf die Organismen beobachten, beschreiben und erklären. Die Auswirkungen auf die Organismen werden dabei direkt in Wechselwirkung dargestellt. Das bedeutet, dass auch indirekte Auswirkungen sichtbar sind. Zum Beispiel führt ein geringerer Salzgehalt zu einer geringeren Population von Flohkrebsen (direkte Auswirkung), was wiederum zu einer Zunahme von Epiphyten führt und sich somit negativ auf die Entwicklung von Blasentang auswirkt (indirekte Auswirkungen). Anschließend müssen die Lernenden mehrere Parameter gleichzeitig verändern und die Auswirkungen auf der Ebene der Organismen untersuchen und beschreiben. Weitere Auswirkungen können mit einem dreistufigen Smiley-System am unteren Rand des Bildschirms gleichzeitig beobachtet werden. Auf diese Weise werden die Wechselwirkungen und Zusammenhänge der verschiedenen Veränderungen und Organismen mit zunehmender Komplexität erforscht. Schließlich diskutierten die Lernenden in ihrer Gruppe die Auswirkungen auf der systemischen Ebene und diskutieren mögliche Maßnahmen zum Schutz der Ostsee. Die Simulation "Ostsee der Zukunft" kann aufgrund der ausführlichen Erläuterungen auch ohne weitere ökologische Vorkenntnisse verwendet werden. In diesem Fall ist es jedoch ratsam, die Lernenden zu einer aufmerksamen Lektüre der erklärenden Informationen aufzufordern. Ansonsten wird unter Umständen ein systemisches Verständnis der komplexen Zusammenhänge nicht erreicht. Für ein vertiefendes Verständnis der Auswirkungen anthropogener Einflüsse auf ein Ökosystem wird daher der Einsatz der Simulation als Vertiefung oder Transfer einer Unterrichtseinheit zum Thema Ökosystem Ostsee empfohlen. Besonders ratsam ist dabei die Behandlung der abiotischen und biotischen Faktoren im Ökosystem Ostsee. Die Unterrichtseinheit lässt sich vor allem in den Fachanforderungen der Sekundarstufe II des Fachs Biologie im Themenbereich Ökologie einordnen. Ein Einsatz ist auch im Fach Geografie am Ende der Sekundarstufe I im Themenbereich Ozeane möglich. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigCompEdu Modell) Die Nutzung der browserbasierten Lernumgebung stellt keine besonderen technischen Anforderungen an die Lehrkraft. Die Lernumgebung sollte allerdings im Vorfeld hinsichtlich der Vorkenntnisse und Fähigkeiten der Lernenden – auch solcher mit besonderen Bedürfnissen – reflektiert (5.1) und gegebenenfalls mit Unterrichtselementen ergänzt werden, die eine Teilhabe aller ermöglicht. Der Einsatz dieser Lernumgebung sollte unter Berücksichtigung der Lerngruppe in eine entsprechende thematische Einheit (Ökosysteme, Anthropozän, Nachhaltigkeit, Meer, ...) eingebettet werden (2.1). Bei der geplanten Nutzung der Simulation im Rahmen einer Gruppenarbeit stellt die Unterstützung gemeinschaftlichen/kollaborativen Lernens in Gruppen (3.3) einen wichtigen Aspekt dar, um allen Teilnehmenden Lernfortschritte zu ermöglichen. Je nach konkretem Einsatz der Simulation in offeneren Kontexten – wie zum Beispiel flipped classroom oder Projektarbeit – ist selbstgesteuertes Lernen (3.4) erforderlich beziehungsweise muss ermöglicht werden. Eine aktive Einbindung der Lernenden (5.3) wird über die Kontextsetzung eines tatsächlich existenten und stärker zu werden drohenden Umweltproblems in der Ostsee erreicht. Bei der Erarbeitung von Handlungsoptionen müssen die Lernenden dabei begleitet werden, ihr in der Lernumgebung erworbenes Wissen auf komplexe Zusammenhänge anzuwenden. Fachkompetenz Die Schülerinnen und Schüler beschreiben verschiedene anthropogene Einflüsse auf das Ökosystem Ostsee. nennen drei Organismengruppen der Ostsee und deren Eigenschaften. verwenden und interpretieren aus einer modellhaften Simulation gewonnene Daten. können verschiedene Auswirkungen anthropogener Einflüsse auf die Ostsee erklären. entwickeln und bewerten Handlungsoptionen für den Schutz der Ostsee. Medienkompetenz Die Schülerinnen und Schüler analysieren Informationen und Daten, interpretieren und bewerten sie kritisch. bewerten und nutzen digitale Lernmöglichkeiten. nutzen digitale Medien (hier: eine Simulation) für die Meinungsbildung und Entscheidungsfindung. 21st Century Skills Die Schülerinnen und Schüler eignen sich themenorientiert disziplinäres und interdisziplinäres Wissen zum systemischen Verständnis eines komplexen Problems an. treffen Vorhersagen auf Grundlage einer digitalen Simulation. wenden erworbenes Wissen auf ein "epochaltypisches Schlüsselproblem" (die Auswirkung anthropogener Veränderungen von Ökosystemen auf die Lebensgrundlagen) an. erlangen/festigen Teilkompetenzen des kritischen Denkens. entwickeln in Co-Agency mit Lehrpersonen mögliche Handlungsoptionen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Geographie / Jahreszeiten
  • Sekundarstufe II

Ökosystem Wald: kleiner Käfer, großer Schädling

Unterrichtseinheit

Diese Unterrichtseinheit zum Ökosystem Wald befasst sich mit dem Einfluss von Bergkiefernkäfern auf das Waldökosystem in Nordamerika. Im Rahmen des Klimawandels und der damit einhergehenden Prozesse kommt es auch zu gravierenden Veränderungen in den Ökosystemen. West- und Nordamerika zählen zum natürlichen Verbreitungsgebiet des Bergkiefernkäfers, jedoch breitet er sich in den letzten Jahren auch in die borealen Wälder Kanadas aus. Insbesondere wärmere Sommer und mildere Winter begünstigen die Ausbreitung und massenhafte Vermehrung der Käfer. Mithilfe von hyperspektralen Satellitenbildern und daraus abgeleiteten Vegetationsindizes erhalten die Schülerinnen und Schüler einen Überblick über die Möglichkeiten zur Erfassung von Käferschäden. Diese Erkenntnisse werden mit Hintergrundwissen zu den Themen hyperspektrale Fernerkundung, Interaktion zwischen Käfer und Baum sowie grundlegendes Wissen über Aufbau und Funktion der Sprossachse ergänzt. Das Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Einordnung in den Lehrplan Der Lehrplan Biologie für die Sekundarstufe I sieht in Nordrhein-Westfalen das Inhaltsfeld "Energiefluss und Stoffkreisläufe" mit dem Bereich "Erkundung und Beschreibung eines ausgewählten Biotops (Produzenten, Konsumenten, Destruenten)" sowie das Inhaltsfeld "Angepasstheit von Pflanzen und Tieren an die Jahreszeiten" mit dem Bereich "Entwicklung exemplarischer Vertreter der Wirbeltierklassen und eines Vertreters der Gliedertiere" vor. Die Betrachtung von Wäldern aus Satellitenperspektive bietet sich innerhalb dieses Themenkomplexes besonders an, da anhand der Bilder anschaulich gezeigt werden kann, wie großflächige Vegetationsmuster unter dem Einfluss auch der kleinsten sichtbaren Lebewesen stehen und von ihnen beeinflusst werden. Die eingesetzte Methodik der zeitlichen Veränderung eines Vegetationsindexes orientiert sich dabei stark an tatsächlich in der Wissenschaft eingesetzten Techniken. Zudem wird in diesem Zusammenhang im Lehrplan Biologie die Nutzung digitaler Medien explizit gefordert. Sie sollen bei der Planung, Durchführung und Auswertung von Experimenten sowie bei der Darstellung und der Simulation fachlicher Sachverhalte ebenso eingesetzt werden wie bei der Suche nach Informationen, der Präsentation und der Kommunikation von Überlegungen und Ergebnissen. Zielsetzung Das Ziel der Unterrichtseinheit "Ökosystem Wald: kleiner Käfer, großer Schädling" besteht darin, grundlegende Funktionen und Zusammenhänge im Waldökosystem und durch den Klimawandel induzierte Veränderungen zu verstehen. Ferner schult die Unterrichtseinheit den Umgang mit abstrakten Darstellungen (Satellitenbild) von bekannten Landschaftseinheiten. Inhalte und Einsatz im Unterricht Hier erhalten Sie Hinweise zum Aufbau der Lernumgebung "Ökosystem Wald: kleiner Käfer, großer Schädling". Die Abbildungen veranschaulichen die Funktionen und die interaktiven Übungen zu den Themenfeldern "invasive Arten" und "Waldökosystem". Die Schülerinnen und Schüler interpretieren hyperspektrale Satellitenbilder und leiten aus ihnen den Befall mit Bergkiefernkäfern ab. beschreiben den Einfluss von Bergkiefernkäfern auf das Waldökosystem. bekommen ein Verständnis für die Zusammenhänge zwischen Klimawandel, Käferbefall und Abwehrmechanismen der Bäume. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit "Okösystem Wald: kleiner Käfer, großer Schädling" bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Computer nicht als reines Informations- und Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "Kleiner_Käfer_großer_Schädling.exe" gestartet. Unter anderen Betriebssystemen wird die Datei "Kleiner_Käfer_großer_Schädling.html" in einem Webbrowser geöffnet. Hierfür wird der Adobe Flash Player benötigt. Wichtig ist in beiden Fällen, dass die heruntergeladene Ordnerstruktur erhalten bleibt. Der jeweils aktivierte Bereich wird auf der unteren Leiste der Lernumgebung eingeblendet (Abbildung 1). Während der erste Teil einen Einblick in die Thematik liefert und eine übergeordnete Aufgabenstellung benennt, gliedert sich der Rest des Moduls in zwei Sequenzen: Der erste Teil bietet Hintergrundinformationen zum Thema "Ökosystem Wald". Im zweiten Teil werden die Schüler aktiv und wenden eigenständig Bildbearbeitungsmethoden zur Lösung von entsprechenden Aufgaben an. Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. Inhalte im Überblick 1. Einleitung Nach dem Start des Lernmoduls sehen die Schülerinnen und Schüler einen Einführungskasten, der kurz in das Thema "Invasive Arten" einleitet und den Aufbau der Lernsequenz erklärt. Das Bild zeigt deutlich die Schäden, die der Bergkiefernkäfer in Colorado (USA) verursacht hat. Der erste Teil des Lernmoduls legt als Hintergrundwissen die Grundlagen für die spätere Arbeit mit den Satellitenbildern im zweiten Modulteil. In diesem Teil werden grundlegende Inhalte vermittelt, wie zum Beispiel der Unterschied zwischen multispektralen Satellitenbildern - sie enthalten nur wenige Kanäle, die bestimmte Spektralbereiche repräsentieren - und hyperspektralen Bildern, die weit über hundert verschiedene Kanäle umfassen können. So ist es mit der hyperspektralen Fernerkundung beispielsweise möglich, den Wasser- und Chlorophyllgehalts in Blättern aus dem All zu bestimmen. Nach dieser Einführung in die Fernerkundung erhalten die Schülerinnen und Schüler einen Überblick über die Lebensgewohnheiten und die systematische Einordnung des Bergkiefernkäfers. Ferner wird der Aufbau der Sprossachse von Nadelbäumen kurz erklärt. Dies ist wichtig, da die Schülerinnen und Schüler nur so nachvollziehen können, warum ein Käferbefall zum Absterben des Baumes führt. Im zweiten Modulteil stehen den Schülerinnen und Schülern mehrere Einzelbilder zur Verfügung, die verschiedene Kanäle repräsentieren. Die aufgenommenen Szenen zeigen das Gebiet rund um den Grand Lake (Rocky Mountain National Park Colorado USA). Die Bilder stammen vom amerikanischen Satellitensensor Hyperion EO-1. Ein Pixel deckt 90 qm ab; man kann also nicht viel erkennen. Erst durch die Berechnung des Vegetationsindex NDVI wird deutlich, wo gesunde Pflanzen zu finden sind: Besonders hohe NDVI-Werte deuten auf einen guten Gesundheitszustand der Vegetation hin. Durch den Käferbefall vertrocknen die Bäume und sterben sukzessive ab. Dieser Prozess geht mit einer Abnahme des Chlorophyllgehalts und somit des NDVI einher. Diese Veränderungen lassen sich gut im Satellitenbild erkennen. Es stehen insgesamt zwei EO-1 Hyperion-Bilder mit jeweils zwei Kanälen für das Jahr 2004 und 2012 zur Verfügung. Die Schülerinnen und Schüler sollen sich in einem ersten Schritt mit den ungewöhnlichen Aufnahmen vertraut machen. In einem zweiten Schritt sollen sie die NDVI-Werte innerhalb der Waldgebiete berechnen und vergleichen. Dazu können sie die Differenz zwischen den beiden NDVI-Bildern (2004 und 2012) berechnen. Abschließend können sie Waldgebiete identifizieren, in denen sich der NDVI-Wert signifikant verändert hat (weiße Flächen). Die Schülerinnen und Schüler können so relativ einfach vom Käfer befallene Flächen ausmachen und quantifizieren. Ziel ist es, dass sie lernen, die im Differenzbild enthaltenen abstrakten Informationen einem konkreten Prozess (Käferbefall) zuzuordnen. Haben die Schülerinnen und Schüler die Veränderungsdetektion durchgeführt und die gestellten Aufgaben beantwortet, können sie durch Beantworten der Fragen im zweiten Quiz die Bearbeitung des Moduls abschließen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

Meer-Strom

Unterrichtseinheit

In diesem Lernmodul lernen die Schülerinnen und Schüler einige Möglichkeiten zur Stromerzeugung aus dem Meer kennen und lösen dazu verschiedene Aufgabenstellungen.Alle, die schon einmal mit den Füßen in der Meeresbrandung standen, konnten die Kraft der Wellen spüren. Obwohl ein Großteil der Erdoberfläche von Meer bedeckt ist, wird diese Energiequelle bisher nur in geringem Umfang zur Stromerzeugung genutzt. Viele Ideen befinden sich noch im Forschungs- und Entwicklungsstadium. In diesem interaktiven Lernmodul können sich die Schülerinnen und Schüler anhand verschiedener Beispiele kritisch mit dem Meer als regenerative Energiequelle auseinander setzen. Selbstgesteuertes Lernen Das didaktische Konzept fokussiert eine weitgehend selbstständige Erarbeitung der Inhalte. Der hohe Grad an Interaktivität und die multimediale Aufbereitung der Themen regen zum Nachforschen an. Grafische Elemente können per Drag & Drop so positioniert werden, dass dadurch inhaltliche Aussagen entstehen, zum Beispiel bei der Positionierung von Meereskraftwerken auf einer Weltkarte. Arbeitsergebnisse können in einem virtuellen Rucksack verstaut und später an geeigneter Stelle wieder ausgepackt werden. So werden Inhalte wiederholt und vertieft. Bei Bedarf können eigene Inhalte (Texte und Bilder) einfach eingefügt werden. Anpassung an individuelle Anforderungen Beim Beenden der Lerneinheit bietet das Modul die Möglichkeit, die Arbeitsergebnisse zu speichern. So kann zu einem späteren Zeitpunkt die Beschäftigung an der gleichen Stelle wieder aufgenommen werden. Dies ist nicht nur für Lernende, sondern auch für Lehrkräfte interessant: Die Option, eigene Aufgabentexte und andere digitale Materialien einzufügen, abzuspeichern und den Lernenden zur Verfügung zu stellen, ermöglicht die Erstellung individualisierter Lernmodule. Inhalte des Lernmoduls Auf dieser Seite finden Sie detaillierte Informationen zu den Inhalten des Lernmoduls. Screenshots geben einen Eindruck von der grafischen Oberfläche. Nutzung im Unterricht Hier finden Sie Hinweise zur Nutzung des Lernmoduls. Was muss an Vorbereitung stattfinden? Wie kann die Beschäftigung mit dem Lernmodul organisiert werden? Fachkompetenz Die Schülerinnen und Schüler lernen verschiedene Möglichkeiten zur Energiegewinnung aus dem Meer kennen. werden sich über das Funktionsprinzip eines Osmosekraftwerks klar. betrachten Meeresströmungskraftwerke im Vergleich zu Windkraftanlagen. setzen sich mit der Problematik von Gezeitenkraftwerken auseinander. Medienkompetenz Die Schülerinnen und Schüler bedienen eine interaktive Lernumgebung. entnehmen Informationen zur Thematik aus einem Text, verstehen wesentliche Aussagen und geben sie in eigenen Texten wieder. Zu Beginn des Lernmoduls werden bildliche Impressionen angeboten, die die Nutzer auf sich wirken lassen sollen (Abb. 1, zur Vergrößerung anklicken). Insgesamt stehen sieben Bilder zur Verfügung. Durch Anklicken der kleinen Bilder am unteren Ende der Seite können diese vergrößert werden. Themen sind beispielsweise Tidenhub, Wasserpegel, globale Meeresströmungen und Stauwerke. In einer Textbox sollen die Gedanken, die beim Betrachten in den Sinn kommen, festgehalten werden. Diese Textbox kann durch Klick auf die rechte Maustaste im virtuellen Rucksack gespeichert und zum Abschluss des Lernmoduls erneut aufgerufen werden. Diese Seite stellt mithilfe von Infotexten und Abbildungen verschiedene Typen von Meereskraftwerken vor (Abb. 2). Zum Überprüfen des Textverständnisses sollen die Lernenden anschließend per Mausklick entscheiden, ob die Aussagen in einer Textbox richtig oder falsch sind. Als Auswertung werden zu den jeweiligen Antworten Kommentare als Feedback eingeblendet. Den unterschiedlichen Salzgradienten zwischen Süß- und Salzwasser nutzen Osmosekraftwerke, um damit eine Turbine anzutreiben (Abb. 3). In einer Grafik wird die Funktionsweise eines Osmosekraftwerkes vereinfacht dargestellt. Der Arbeitsauftrag dazu lautet, die Beschriftung dieser Grafik per Drag & Drop richtig zuzuordnen. Ein Infotext hilft dabei. Das "Oyster" genannte Wellenkraftwerk vor der Küste Schottlands hat seinen Namen aufgrund des Klappmechanismus erhalten, der an eine Muschelschale erinnert (Abb. 4). Die Schülerinnen und Schüler sollen sich mit möglichen Vor- und Nachteilen dieser Form der Energiegewinnung auseinander setzen und ihre Antworten in eine Texbox eintragen. Die nächsten beiden Kapitel des Lernmoduls thematisieren zwei schwimmende Konstruktionen: einmal das Wellenkraftwerk "Pelamis", nach dem griechischen Wort für Seeschlange, und der Wellendrache, englisch "Wave Dragon" genannt (Abb. 5). Mit ihrem eigenen Worten sollen die Lernenden jeweils die Funktionsweise dieser beiden Wellenkraftwerke in einer Textbox erläutern. Abbildungen und Fotos dienen zur Illustration. Manche Meeresströmungskraftwerke sind mit ihren Rotoren denen von Windkraftanlagen gar nicht unähnlich. Im Beispiel wird das Kraftwerk "Seaflow" vorgestellt, das vor der Küste von Südengland steht (Abb. 6). Der Arbeitsauftrag fordert die Lernenden dazu auf, Wind- und Meeresströmungskraftwerke im Vergleich zu betrachten. Ein weiteres Beispiel für Energiegewinnung aus dem Meer sind Gezeitenkraftwerke. Diese nutzen die Änderung der Strömungsrichtung des Wassers bei Ebbe und Flut an Flussmündungen (Abb. 7). In dem Arbeitsauftrag sollen sich die Lernenden mit den Umweltauswirkungen dieser Staudamm-Bauwerke auseinandersetzen. Im letzten Kapitel können die Schülerinnen und Schüler noch einmal die verschiedenen Kraftwerkstypen der vorangegangenen Kapitel aufgreifen und ihr erworbenes Wissen anwenden (Abb. 8). Sie sollen auf einer Weltkarte verschiedene Meereskraftwerke positionieren und ihre Wahl anschließend begründen können. Ausführbares Programm Zur Nutzung des Lernmoduls müssen Sie die Datei "zukunft-der-energie.exe" (siehe Startseite dieser Unterrichtseinheit) kostenlos heruntergeladen und installieren. Bei der Installation wird ein neues Icon auf Ihrem Desktop angelegt: Wissenschaftsjahr 2010 - Die Zukunft der Energie. Durch Doppelklick auf dieses Icon erscheint eine Auswahl mehrerer Lernmodule. Zum Starten des entsprechenden Lernmoduls klicken Sie bitte auf die zugehörige Grafik. Internetzugang notwendig Die installierte Software bietet Ihnen den Zugang zu verschiedenen Lernmodulen. Zum Starten eines Lernmoduls benötigt diese Software allerdings Daten aus dem Internet. Das Programm "kennt" die Adresse, Sie müssen nur sicherstellen, dass Ihr Computer Internetzugang hat. Vorteil dieser Methode ist, dass Sie immer auf die aktuellste Version des Lernmoduls zugreifen. Überblick verschaffen Zunächst sollten Sie sich selbst mit dem Lernmodul vertraut machen. Dazu bietet Ihnen das Lernmodul eine integrierte Hilfe-Funktion. Ein sogenannter "Schnelleinstieg" (siehe Abb. 9) zeigt alle zur Verfügung stehenden Funktionen. Da alle Lernmaterialien und Aufgabenstellungen in dem Lernmodul integriert sind, wird Ihr Einstieg voraussichtlich nicht viel Zeit benötigen. Mögliche Individualisierung Bitte beachten Sie, dass Sie eigene Texte und Bilder einbinden können. Damit bietet Ihnen das Lernmodul die Möglichkeit, individuelle Aufgabenstellungen zu integrieren. Unter dem Menüpunkt "Funktionen" oder über einen Klick auf die rechte Maustaste können Sie eine Notiz (in Textform), eine Tabelle oder ein Medienelement (in der Regel ein Bild) einfügen. Interessant ist in diesem Zusammenhang die Möglichkeit, die individualisierte Version der Lernumgebung abzuspeichern. Die zugehörige Datei mit der Endung ".wj2010" kann auf einem beliebigen Datenträger gespeichert, kopiert und verteilt werden. Ihre Schülerinnen und Schüler können nach dem Starten des Lernmoduls über die Funktion "Öffnen" die spezielle Version der Lernumgebung einlesen. Präsentieren oder Entdecken Natürlich sollten Sie den Lernenden zunächst die Möglichkeit geben, sich mit der Bedienung der Plattform vertraut zu machen. Es bietet sich an, anhand einer Beamer-Präsentation die wichtigsten Funktionen zu erläutern. Sie können aber auch Ihren Schülerinnen und Schülern den Auftrag geben, sich mit dem "Schnelleinstieg" zu beschäftigen und ihnen etwas Zeit geben, sich selbst mit der Umgebung vertraut zu machen. Zahlreiche Hilfestellungen Bei der Erarbeitung neuer Inhalte tauchen immer wieder Begriffe auf, die für viele Lernende erklärungsbedürftig sind. Daher sind viele Begriffe mit Zusatzinformationen hinterlegt, die beim Anklicken erscheinen. Zusätzlich bietet ein integriertes Lexikon Erläuterungen zu zahlreichen Themen. Das Lernmodul ist so konzipiert, dass Ihre Schülerinnen und Schüler selbstständig die Seiten bearbeiten können. Auf jeder Seite gibt es spezifische Aufgaben und gegebenenfalls zugehörige Hilfestellungen. Bei Bedarf kann im Internet recherchiert werden. Abspeichern Das bearbeitete Lernmodul kann jederzeit gespeichert werden. Dabei bietet es sich an, dass die Schülerinnen und Schüler eine für sie oder ihre Gruppe individuelle Datei-Bezeichnung auswählen, zum Beispiel "michael_schmidt_meerstrom.wj2010". Dadurch wird einerseits gewährleistet, dass nicht durch versehentliches Vertauschen von Dateien Inhalte verloren gehen. Andererseits haben Sie dadurch die Möglichkeit, detaillierte Einsicht in die Arbeitsergebnisse zu erhalten. Präsentieren Insbesondere wenn das Lernmodul in Gruppen bearbeitet wurde, bietet es sich an, dass jede Gruppe ihre Arbeitsergebnisse vorstellt. Dazu kann entweder per Beamer die relevante Seite projiziert werden. Die Lernumgebung bietet aber auch die Möglichkeit, den Bildschirminhalt auszudrucken.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Was ist multimediales Lernen?

Fachartikel
5,99 €

Vor dem Hintergrund klassischer und moderner lernpsychologischer Theorien beschreibt dieser Artikel die Grundlagen des multimedialen Lernens und gibt Lehrkräften Hinweise, worauf sie bei der Gestaltung multimedialer Lernformate achten sollten. Einführung Die rapide Entwicklung der Digitalisierung hat Lehrkräften unzählige Wege eröffnet, Lerninhalte zu gestalten und Lernenden bereitzustellen. Neben den bewährten analogen Medien wie Schulbüchern, Tafel, Arbeitsblättern etc. können wir heute auf zahlreiche digitale Werkzeuge wie Animationen, interaktive Elemente, Soundeffekte etc. zugreifen, mit denen Lerninhalte anschaulicher vermittelt werden können. Integriert man unterschiedliche Medien in den Unterricht, so spricht man von einer multimedialen Lernumgebung, die sich meist positiv auf den Lernprozess auswirkt. Was ist multimediales Lernen? In Lehr- und Lernkontexten wird der Begriff Multimedialität auf die Kombination zwischen visuellen und verbalen Darstellungsweisen bezogen (Scheiter, Richter und Renkl 2018: 32). Man geht davon aus, dass Lernende in multimedialen Lernumgebungen Informationen durch mehrere Sinne aufnehmen und sie in bildlicher und akustisch-sprachlicher Form gleichzeitig verarbeiten. Diese Art des Lernens aus Wörtern und Bildern bezeichnet Meyer (2014: 1) als multimediales Lernen; eine Lernform, die die Verarbeitung größerer Informationsmengen, den Aufbau vielfältiger Wissensrepräsentationen und die wirksamere Steuerung von Lernprozessen verspricht (Schmidt-Borcherding 2020: 63, Meyer 2022: 145). Doch stellt sich dieser positive Effekt automatisch ein? Um die Vorteile multimedialer Lernumgebungen optimal zu nutzen, bedarf es eines grundlegenden Verständnisses der Funktionsweise des Gedächtnisses und der kognitiven Informationsverarbeitungsprozesse, denn multimediale Lernumgebungen sind nur wirksam, wenn sie so konstruiert werden, dass sie der Arbeitsweise des Gehirns gerecht werden (Seifert 2023). Im Folgenden werden vier wichtige Modelle beschrieben, die dieses Grundverständnis ermöglichen. Das Dreispeichermodell Ein bewährtes Modell, das die Entwicklung multimedialer Lerntheorien angestoßen hat, ist das Dreispeichermodell von Atkinson und Shiffrin (1968). Demnach verfügt das Gedächtnis über drei Subsysteme: das sensorische Register , mit dem äußere Reize wahrgenommen werden; das Kurzzeit- oder Arbeitsgedächtnis , in dem Informationen zwischengespeichert und durch Abruf bestehender Gedächtnisinhalte weiterverarbeitet werden; und das Langzeitgedächtnis , welches „anders als die beiden anderen Gedächtnisstrukturen eine unbegrenzte Kapazität für die Speicherung von Informationen aufweist“ (Scheiter, Richter und Renkl 2018: 34). Lehrkräfte können dieses Modell nutzen, um die drei Phasen der Informationsverarbeitung und -speicherung zu verstehen und multimediale Lerninhalte so zu gestalten, dass diese Prozesse bestmöglich ablaufen. So ist es beispielsweise ratsam, klare und strukturierte Präsentationstechniken zu verwenden, um die Fülle äußerer Reize zu beschränken oder die Informationsverarbeitung durch Wiederholungstechniken zu unterstützen. Auch Assoziationstechniken wirken sich positiv auf die Speicherung von Informationen aus. Theorie der dualen Kodierung Paivio (1986) entwickelte ein Modell, das die mentale Informationsrepräsentation im Gedächtnis näher erklärt. Nach ihm können Informationen über zwei Kanäle verarbeitet werden: einen verbalen Kanal , der sprachliche Informationen verarbeitet; und einen nicht-verbalen Kanal , der sensorische, episodische, räumliche und emotionale Informationen in Form von Bildern verarbeitet (Clark und Paivio 1991: 151f.). Beide Kanäle können zwar unabhängig voneinander funktionieren, aber wenn Informationen durch beide Kanäle gleichzeitig verarbeitet werden, entsteht eine doppelte mentale Repräsentation im Gedächtnis , das heißt dieselben Informationen werden sprachlich und bildhaft gespeichert. Eine solche doppelte Kodierung ermöglicht ein besseres Verständnis und eine langfristige Speicherung (Schmidt-Bocherding 2020: 64). Diese Erkenntnis steht im Zentrum moderner multimedialer Lerntheorien und verdeutlicht Lehrkräften, wie wichtig es ist, Lerninhalte doppelt-kodiert, das heißt in bildlicher und sprachlicher Form, darzubieten. Theorie der kognitiven Belastung Chandler und Sweller (1991) haben herausgefunden, dass jeder Reiz, der ins Arbeitsgedächtnis gelangt, eine gewisse kognitive Belastung hervorruft (Sweller 2004: 12). Wenn die Belastungsintensität zu hoch ist, kommt es zur Überforderung und Informationen können nicht zu mentalen Repräsentationen für die dauerhafte Speicherung verarbeitet werden. Wenn äußere Reize beispielsweise nur in sprachlicher Form wahrgenommen werden, erbringt das Arbeitsgedächtnis eine höhere Leistung, um eine passende visuelle Repräsentation zu erzeugen (Chandler und Sweller 1991: 295f.). Nach diesem Modell können Lehrkräfte Einfluss auf den Lernprozess nehmen, indem sie beispielsweise unerwünschte Informationen und Reize reduzieren (ISB-Arbeitskreis Mediendidaktik 2023), doppelt-kodiertes Input anbieten und den Abruf von Wissensbeständen mithilfe von Vorwissensaktivierungsmethoden unterstützen. Kognitive Theorie des multimedialen Lernens Die vorherigen Ansätze verbindet Mayer (2014, 2022) in seiner Theorie des multimedialen Lernens. Er stimmt damit überein, dass verbal und bildlich kodierte Informationen die kognitive Belastung verringern und somit besser gespeichert werden. Er setzt sich jedoch genauer mit den Verarbeitungsmechanismen des Arbeitsgedächtnisses auseinander und verweist auf vier wichtige Prozesse: Aufmerksamkeitssteuerung, Selektion, Organisation und Integration (Mayer 2014: 50). Klicken Sie auf die Plus-Zeichen der Abbildung, um eine Beschreibung der Phasen des Modells zu erhalten:

  • Fächerübergreifend
  • Sekundarstufe II, Sekundarstufe I, Berufliche Bildung, Primarstufe

WiLM@ – Schreiben im Mathematikunterricht

Fachartikel

"Ich schreibe es dir mal auf, dann verstehst du es!" – Dieser Beitrag beschreibt eine internetbasierte Lernumgebung zum Schreiben im Mathematikunterricht der Grundschule und erläutert deren didaktischen Hintergrund. "Ich bin fertig!", "Ich hab' die Lösung!" - Wie oft hört man solche oder ähnlich klingende Äußerungen von Schülerinnen und Schülern, die den Auftrag zum Lösen einer Aufgabe erhalten haben. Meist wird aus diesen Lösungen allerdings nicht ersichtlich, in welcher Weise die Lernenden auf das Ergebnis gekommen sind. Diese "schwer zugängliche Gedankenwelt" (Kuntze/ Prediger) bleibt den Lehrkräften und auch den Mitschülerinnen und Mitschülern oft unerschlossen. Doch gerade das Verschriftlichen des eigenen Lösungswegs enthält neben der Annäherung an das Thema auch die Möglichkeit einer vertiefenden Auseinandersetzung und Verarbeitung der mathematischen Inhalte. Zudem werden die individuellen Gedankengänge der Schülerinnen und Schüler auch für die Lehrperson und die Mitschülerinnen und Mitschüler transparenter. In diesem Artikel wird die für das Schreiben im Mathematikunterricht entwickelte Lernumgebung WiLM@ (Wiki-basierte Lernumgebung zum kooperativen Lernen im Mathematikunterricht der Primarstufe) vorgestellt. Inhaltsaspekte von WiLM@ Zahlreiche Interaktionsmöglichkeiten Die Lernumgebung WiLM@ hält viele Interaktionsmöglichkeiten zwischen den beteiligten Schülerinnen und Schülern bereit, die hier mit Bezug auf Koch/Oesterreicher genauer charakterisiert werden soll. Diese unterscheiden in ihrem linguistischen Ansatz Mündlichkeit und Schriftlichkeit in zwei Dimensionen - in eine konzeptionelle und eine mediale (Koch/Oesterreicher 1985). WilM@ lässt sich daher in eine konzeptionell-mündliche und medial-schriftliche Kommunikationsform einordnen. Aspekte der schriftlich-grafischen Kommunikation Da eine mündliche Interaktion zwischen den Schülerinnen und Schülern mit WiLM@ nicht möglich ist, wird eine schriftlich-grafische Kommunikation erforderlich. Diese Kommunikation kann zeitgleich (synchron) oder zeitversetzt (asynchron) geschehen. Werden Aufgaben gleichzeitig bearbeitet, so liegt eine synchrone Kommunikation vor. Die Schülerinnen und Schüler können im Whiteboardfenster die Entstehung einer Lösung zeitgleich verfolgen, an ihr weiterarbeiten und bei Bedarf mit dem Kommentarfeld über die Tastatur Ideen und Gedanken "quasi - synchron" veröffentlichen. Beziehen sich die Kinder auf eine zeitlich zurückliegende Lösung, die in der Datenbank abgespeichert ist, kann von einer asynchronen Kommunikationsform gesprochen werden. Diese zum Teil synchrone, zum Teil asynchrone Kommunikationsform unterstützt kooperatives Lernen im Unterricht. Aktivität und Oeuvre Durch die schriftliche Fixierung von Gedanken und Ideen der Schülerinnen und Schüler verändert sich der Status der Lösungen und macht sie gleichsam angreifbar und verhandelbar. Bruner spricht von "Externalisierung" und meint damit eine "... Aktivität, in welcher (kollektive) Gedanken, Ideen und Absichten eine äußere Gestalt annehmen..." (Bruner, 1996). Richtet man den Blick stärker auf den Prozess der Herstellung eines gemeinsamen Werkes, das eine "äußere Gestalt annimmt", so begegnet man dem Begriff des "Oeuvre" (Bruner, 1996). Ein Oeuvre ist damit stärker auf die Veröffentlichung und die Rezeption hin angelegt. WiLM@ ist in drei Öffentlichkeitsbereiche unterteilt, die im folgenden Abschnitt erläutert werden. Es bleibt dabei den Kindern überlassen, im welchem Bereich sie sich aufhalten. Gestaffelte Veröffentlichung Innerhalb des "privaten Bereichs" arbeiten die Schülerinnen und Schüler alleine in einem "geschützten Raum" an der Entstehung einer Lösung und haben die Möglichkeit, ihre bisher erstellten Inhalte einer bestimmten Gruppe von Mitschülerinnen und -schülern zu zeigen. In diesem zweiten Öffentlichkeitsbereich können die Kinder gemeinsam alternative Bearbeitungsweisen (weiter-) entwickeln. In einem dritten Schritt kann eine Lösung "für alle sichtbar" werden und erreicht die höchste Öffentlichkeitsstufe. Eine besondere Funktion, die mit der Entwicklung von WiLM@ entstand, ist die Möglichkeit der Dokumentation von Lösungsprozessen. Mit Hilfe eines Scrollbalkens am Arbeitsblatt lassen sich entstandene Lösungen wie in einem Film ansehen. So lässt sich die Entstehung einer Lösung zeitlich versetzt nachvollziehen.

  • Mathematik / Rechnen & Logik
  • Primarstufe

Waffen im Kampf gegen AIDS

Unterrichtseinheit

Schülerinnen und Schüler lernen in dieser Unterrichtseinheit nicht nur den Lebenszyklus des Humanen Immundefizienz-Virus (HIV) kennen. Sie erfahren, wie die molekularbiologische Grundlagenforschung der strategischen Entwicklung neuer Wirkstoffe im Kampf gegen AIDS den Weg bahnt.Seit der Entdeckung des AIDS-Virus HIV im Jahre 1983 forschen Wissenschaftler auf der ganzen Welt an der Entwicklung von Medikamenten, die die Ausbreitung der AIDS-Pandemie verlangsamen. Im Wissen darum, dass das Virus sich schneller verändert als Medikamente oder Impfstoffe entwickelt werden können, liegt ein Schwerpunkt der bisherigen Erfolge darin, die Ausbreitung des Virus innerhalb eines infizierten Körpers zumindest zu verlangsamen. Retroviren wie das HI-Virus haben im Vergleich zu anderen Viren eine besondere Strategie, wenn es darum geht, ihre Erbinformation in das Genom der Wirtszelle zu integrieren und es dort vermehren zu lassen. Das Enzym Reverse Transkriptase spielt dabei eine zentrale Rolle und bietet somit einen wichtigen Ansatzpunkt für die Bekämpfung der Krankheit AIDS. Neue Hoffnungen der Wissenschaftler ruhen auf sogenannten Entry-Hemmern. Diese bekämpfen nicht mehr die Vermehrung der Viren in den befallenen Zellen, sondern sollen die Infektion neuer Wirtszellen im Körper verhindern. Die Bedrohung ist nicht gebannt! Der wissenschaftlich-medizinische Fortschritt hat eine Reihe antiviraler Präparate hervorgebracht, die HIV-Infizierten - wenn sie die Therapievorschriften sehr gewissenhaft beachten - bei passabler Lebensqualität eine recht hohe Lebenserwartung ermöglichen. Dies führt in der Gesellschaft jedoch dazu, dass AIDS, gerade auch bei Schülerinnen und Schülern, seinen Schrecken verloren zu haben scheint. Dennoch: Letztendlich ist AIDS nach wie vor eine Infektion mit tödlichem Ausgang. Reverse-Transkriptase-Hemmer und Entry-Inhibitoren Durch die Auseinandersetzung mit dem Infektions- und Vermehrungszyklus des HI-Virus kann das Problembewusstsein bei den Jungen und Mädchen geschärft werden. Durch eine intensive Beschäftigung mit dem Enzym Reverse Transkriptase erkennen sie nicht nur die Bedrohung, sondern bekommen auch einen Eindruck von der Vielfältigkeit der Spezialisierung in der Natur. Die Untersuchung der Wirkweise unterschiedlicher Reverse-Transkriptase-Hemmer führt die Lernenden an die aktuelle Arbeit der Forscherinnen und Forscher heran. Ein Bericht über einen neu gefundenen Entry-Inhibitor zeigt den Weg in die Zukunft der AIDS-Forschung auf und regt an, die Chancen des neuen Präparates beim Kampf gegen AIDS zu diskutieren. Struktur der Unterrichtseinheit Das vorliegende Arbeitsmaterial verteilt sich auf drei Module. Diese bauen inhaltlich aufeinander auf und können hintereinander abgearbeitet werden. Es ist aber auch möglich, alle Module einzeln und voneinander unabhängig im Unterricht einzusetzen. Modul 1: Vermehrungszyklus des HI-Virus Schülerinnen und Schüler gewinnen einen Einblick in den Vermehrungszyklus des HI-Virus. Durch die Erstellung eines Storyboards und die mögliche anschließende Verfilmung werden die gebotenen Informationen nicht nur passiv rezipiert, sondern aktiv aufgenommen und umgearbeitet. Durch die Kreativarbeit der Lernenden werden unterschiedliche Zugangskanäle angesprochen und aktiviert. Modul 2: Die Reverse Transkriptase und ihre Hemmung Hier begeben sich die Schülerinnen und Schüler auf die molekulare Ebene. Dynamische Folien mit integrierten Java-Applets geben ihnen die Möglichkeit, Struktur und Funktionen der Reversen Transkriptase zu erforschen und anschließend die Wirkung eines kompetitiven und eines nicht kompetitiven Hemmstoffes auf das Enzym zu untersuchen. Interaktive Molekülmodelle können dabei am Bildschirm gedreht und gewendet werden. Modul 3: AIDS-Virus mit stumpfem Stachel Das abschließende dritte Modul gibt anhand eines Radiobeitrags (Deutschlandradio, Dezember 2010) einen Ausblick auf die möglichen Entwicklungen in der AIDS-Therapie der kommenden Jahre. Der Beitrag regt als Audio- oder Textdatei zu einer abschließenden Diskussion über die Chancen aktueller und zukünftiger AIDS-Medikamente an. Wird AIDS schon bald "heilbar" sein? Direkt zu den Modulen Modul 1: Vermehrungszyklus des HI-Virus, Texterschließung Schülerinnen und Schüler erschließen den HIV-Vermehrungszyklus aus einem Text. Sie entwickeln Überschriften und fassen wichtige Passagen mit eigenen Worten zusammen. Modul 1: Storyboard und Animation Aufbauend auf die Textarbeit werden mit der Kreativtechnik "Storyboard" fachliche Inhalte intensiv reflektiert. Optional wird daraus eine kleine Animation realisiert. Modul 2: Die Reverse Transkriptase und ihre Hemmung Ausgehend von den molekularen Grundlagen werden Angriffsflächen der Viren identifiziert. So gerät die Reverse Transkriptase ins Visier der Lernenden. Modul 2: Lernumgebung "Reverse Transkriptase" Die Lernumgebung ermöglicht die Untersuchung von Struktur und Funktion sowie der Wechselwirkung des Enzyms mit einem kompetitiven und einem allosterischen Hemmstoff. Modul 3: AIDS-Virus mit stumpfem Stachel Aktuelle Zahlen belegen, dass AIDS längst nicht besiegt ist. Warum ist der Kampf gegen HIV so schwierig? Und wie können neuartige Medikamente wirken? Die Schülerinnen und Schüler sollen den Infektionsweg und den Vermehrungszyklus des HI-Virus kennenlernen. Möglichkeiten der Hemmung der HIV-Vermehrung erkennen und benennen können. die Reverse Transkriptase strukturell und funktional untersuchen. verschiedene Wege der Hemmung der Reversen Transkriptase verstehen. in der Diskussion über AIDS-Therapien einen eigenen Standpunkt entwickeln und begründet vertreten. Andocken und Eindringen in die Wirtszelle Der Vermehrungszyklus von Viren ist vielen Schülerinnen und Schülern schon am Ende der Sekundarstufe I bekannt. Sie wissen, dass Viren den Biosyntheseapparat ihrer Wirtszellen für die Vermehrung ihres Erbguts und zur Bildung viraler Proteine einspannen. Der Vermehrungszyklus des HI-Virus entspricht diesem Muster in großen Teilen. Das Virus dockt durch spezifische Interaktionen viraler Oberflächenproteine mit den Proteinen auf der Zellmembran an die Wirtszelle an. Daraufhin verschmilzt die Virusmembran mit der Zellmembran und das Capsid gelangt in das Zytoplasma. Die Visitenkarte der Retroviren: Reverse Transkription Innerhalb der Wirtszelle setzt das Capsid das virale Erbgut und eine Reihe viraler Proteine frei. Und hier beginnt die Besonderheit des HI-Virus und aller Retroviren. Das virale Protein Reverse Transkriptase erstellt aus dem Einzelstrang-RNA-Genom des Virus eine cDNA. (Eine "complementary DNA" ist eine DNA, die von der Reversen Transkriptase aus RNA gebildet wird.) Durch virale Integrasen wird das virale Genom in Form einer Doppelstrang-DNA in den Zellkern geschleust und in das Genom der Wirtszelle integriert. Vermehrung und Freisetzung Die weiteren Abläufe entsprechen dem üblichen viralen Schema: Die bei der Transkription im Zellkern gebildete virale Boten-RNA wird bei der Proteinbiosynthese translatiert. Die gebildeten viralen Proteine werden zusammen mit der RNA zu neuen Virus-Capsiden zusammengebaut und verlassen die Wirtszellen über Exocytose. Dabei nehmen sie einen Teil der mit viralen Proteinen bestückten Zellmembran als "Envelope" mit. Den gegenüber von DNA-Viren abgewandelten Vermehrungszyklus der Retroviren sollen sich die Schülerinnen und Schüler mithilfe eines Textes (hiv_vermehrunsgzyklus_schuelertext.pdf/rtf) erarbeiten. Folgende Punkte sollten vorab im Unterricht behandelt worden sein: Aufbau von Biomembranen: Lipiddoppelschichten mit Membranproteinen Aufbau des Immunsystems, zelluläre und humorale Abwehr Enzyme (Polymerasen, Proteasen) Nukleinsäuren, Proteinbiosynthese bei Eukaryoten Eigenschaften, Aufbau und Vermehrungszyklus von DNA-Viren; es ist zu empfehlen, zunächst den Vermehrungszyklus eines DNA-Virus zu behandeln, bevor Retroviren thematisiert werden. Der Arbeitsauftrag verlangt von den Lernenden eine Strukturierung des Textes, die Vergabe von Überschriften und eine kurze inhaltliche Zusammenfassung der Passagen. Die Ergebnisse werden vorgestellt und im Plenum diskutiert. Als Resultat sollte eine gemeinsame Beschreibung abgestimmt werden. In Modul 2 der Unterrichtseinheit soll der Text als Grundlage der Storyboard-Entwicklung zum Einsatz kommen. 1. Andocken an die Zielzelle Proteine in der Virushülle erkennen Andockstellen auf der Zelloberfläche. 2. Fusion der Membranen Wechselwirkungen zwischen den Membranproteinen bewirken die Fusion von der Virushülle mit der Zellmembran. 3. Entpacken der "Fracht" Die Proteinhülle des Viruspartikels wird im Zytoplasma der Zelle abgebaut. 4. Reverse Transkription Die in Form von Einzelstrang-RNA vorliegende virale Erbinformation wird im Zytoplasma mithilfe der Reversen Transkriptase in Doppelstrang-DNA umgeschrieben. 5. Integration Das Doppelstrang-DNA-Genom des HI-Virus wird in den Zellkern transportiert und mithilfe der Integrase in die zelluläre DNA eingebaut. 6. Transkription/Replikation Die zelluläre RNA-Polymerase stellt Kopien des viralen Genoms her. 7. Translation viraler Proteine Der zelluläre Transkriptionsapparat erzeugt die viralen Proteine. 8. Bearbeitung ("Prozessierung") der Proteine Die virale Protease zerlegt die primären Translationsprodukte in funktionsfähige Proteine. 9. Zusammenbau und Freisetzung Viruspartikel bauen sich "von selbst" zusammen und schnüren sich an der Plasmamembran, die virale Membranproteine enthält, nach außen ab. Ausgestattet mit dieser Hülle können sie mit der Membran weitere Wirtszellen verschmelzen und einen neuen Vermehrungszyklus einleiten. Planungshilfe aus den Disney-Studios Storyboards sind eine Erfindung der Disney-Studios und werden gerne in der Filmproduktion eingesetzt. Es handelt sich dabei um Visualisierungen von Drehbüchern. Handlungsverläufe einzelner Filmszenen werden skizzenhaft dargestellt. Storyboards sind stark ablauforientiert und vermitteln so einen ersten Eindruck für die spätere Umsetzung. Kommunikationsmittel und Kreativitätstechnik Storyboards sind in der Regel eine erste visuelle Umsetzung der narrativen Ideen aus einem Drehbuch, angereichert mit Gestaltungsideen (zum Beispiel Einstellungsgrößen, Blickwinkel und Perspektiven) für die bevorstehende Produktion. Es entstehen sequenzielle Bildfolgen, die als Grundlage für die Einstellungen während der eigentlichen Filmproduktion genutzt werden. Das Storyboard wird somit zur Denk- und Planungshilfe, die wie ein roter Faden durch die Handlung führt und alle Gestaltungselemente in sich aufnimmt. Es dient weiterhin als Kommunikationsmittel, mit dem Gedanken visuell mitgeteilt und ein Projektvorhaben konkretisiert werden kann. Storyboards können Lernprozesse strukturieren Ähnlich wie die Konzeptphase für einen neuen Film bedarf auch das schulische Lernen der Strukturierung. So bietet sich zum Beispiel die Storyboard-Technik als Ordnungsmittel an, um die Inhalte eines komplexen biologischen Prozesses wie dem HIV-Vermehrungszyklus zu sortieren. Neben der reinen Ordnung birgt die grafische Darstellung weitere Möglichkeiten, zum Beispiel das multisensorische Lernen. Freie Software zur Erstellung von Storyboards Es gibt eine Vielzahl kostenpflichtiger Programme, mit deren Hilfe Storyboards erstellt werden können. Zumeist handelt es sich um umfangreiche Software für Filmschaffende, die eine Storyboard-Funktion hat. Die folgenden Programme sind Freeware, können also kostenlos ausprobiert und im Unterricht eingesetzt werden. StoryBoard Pro Software Die Software von "Atomic Learning" wurde für Schülerinnen und Schüler, Studenten und "home movie maker" entwickelt. Directors Boards 2.0a Diese Software basiert auf dem professionellen Werkzeug “Notebook”. Sie ermöglicht die Erzeugung von AV-Formaten aus digitalen Scans, Illustrationen oder auch Fotos. Celtx - filmpädagogische Arbeit im Unterricht Lehrerinnen und Lehrer aus Nordrhein-Westfalen, die einen EDMOND-Zugang über ihr kommunales Medienzentrum haben, können sich die Inhalte des gesamten Sticks "Film und Schule NRW" als ZIP-Datei kostenlos über EDMOND auf einen Stick oder auf die Festplatte herunterladen. In dem Online-Medienkatalog Ihres Medienzentrums finden Sie diese Datei unter der Signatur 5553697 oder zum Beispiel unter dem Schlagwort "Filmanalyse". Die empfohlene Stickgröße beträgt vier Gigabyte. Film und Schule NRW Ein Programm zum Drehbuchschreiben, Erstellen von Storyboards und zur Strukturierung der Vorproduktion Texterschließungskompetenz und Kreativität Gerne werden zum besseren Verständnis im Unterricht Videosequenzen über das Eindringen des HI-Virus in die Wirtszelle und seine Vermehrung innerhalb der Zelle gezeigt. Die Erarbeitung des Vermehrungszyklus aus einem Text heraus ist eher unbeliebt, besonders dann, wenn dieser Text nicht illustriert ist. Eine Möglichkeit, die gleichzeitig die Texterschließungskompetenz der Schülerinnen und Schüler fördert, ihre Kreativität nutzt und eine gedankliche Eingruppierung der neu erlernten Inhalte in bekannte Wissensstrukturen unterstützt, ist die Anfertigung eines Storyboards. Die Aufgabe Nachdem die Lernenden den Text zur HIV-Vermehrung (hiv_vermehrunsgzyklus_schuelertext.pdf/rtf) gelesen und bearbeitet haben, erhalten sie die Aufgabe, die Abläufe an und in der Wirtszelle in Form eines Storyboards aufzubereiten (Partner- oder Gruppenarbeit). Hierzu erhalten sie eine Storyboard-Vorlage (vorlage_storyboard.pdf). Alternativ können sie auch mit einem geeigneten Programm (siehe oben) am Computer arbeiten. Aus den mit Buntstiften oder am Rechner skizzierten Szenen soll sich eine Bildfolge ergeben, die sich anschließend - theoretisch - auch verfilmen lassen könnte. Wichtige Details sind in den Skizzen heraus zu stellen. Fokussierungen sind als Regieanweisungen rechts in die Textzeilen zu schreiben. Gleiches gilt für Sprechertexte, die nicht einfach aus dem Text übernommen, sondern selbstständig formuliert werden sollen. Unabhängig von einer möglichen Umsetzung ist die Erstellung des Storyboards eine anspruchsvolle Aufgabe, die die Lernenden zur intensiven Reflexion über den darzustellenden Inhalt "zwingt" und ihre Kreativität herausfordert. Ein intensiver Verständnisprozess ist die Grundlage Ob das Storyboard anschließend verfilmt wird, liegt im Ermessen der Lehrperson. Ein solches Projekt würde die Textarbeit mit den Vorzügen eines Films verknüpfen. Da die Schülerinnen und Schüler den Film selbst erstellen, durchlaufen sie vorab einen intensiven Verständnisprozess. Die Durchführung ist natürlich abhängig vom Interesse der Schülerinnen und Schüler, der zur Verfügung stehenden Zeit und der technischen Ausstattung. Möglichkeiten der Umsetzung Es ist vorstellbar, dass ein Trickfilm mit Knete oder anderen Materialien erstellt wird. Die einzelnen Szenen können dann mit einer Digitalkamera oder einem Handy abgefilmt werden. Eine andere Möglichkeit wäre die Erstellung einer Trickfilm-Animation, zum Beispiel mit einem Präsentationsprogramm. Auch die Erstellung eines Activemovies mit der Software Active inspire für Activeboards ist denkbar. Hinweise zur Umsetzung naturwissenschaftlicher Modellvorstellungen in kleinen Animationen finden Sie in den folgenden Beiträgen: Animation chemischer Vorgänge - die Ionenbindung Schülerinnen und Schüler erstellen zur Festigung und Anwendung der im Unterricht erworbenen Kenntnisse eine kleine Animation. Podcasts im naturwissenschaftlichen Unterricht Hinweise und Tipps zum Einsatz und zur Produktion von Podcasts für den naturwissenschaftlichen Unterricht mit Beispielen. Arbeitsteilige Gruppenarbeit Je nach Größe der Lerngruppe bietet sich die arbeitsteilige Erstellung eines gemeinsamen Videos an. Dazu entwickeln Kleingruppen zu verschiedenen Passagen des Vermehrungszyklus Storyboards. Die arbeitsteilige Vorbereitung der Episoden bedarf einer sehr guten Zusammenarbeit der Gruppen während der Konzeption. Gruppenübergreifende Aspekte müssen abgestimmt und an den "Schnittstellen" saubere Übergänge gewährleistet sein. Logische oder stilistische Brüche müssen ausgeschlossen werden. Folgende Aufteilung der Arbeitsgruppen bietet sich an: Schritt 1-2 Andocken, Membranfusion Schritt 3-4 "Uncoating", Reverse Transkription Schritt 5-6 Integration, Transkription/Replikation Schritt 7-9 Translation, Prozessierung, Zusammenbau und Freisetzung der Viren Animationen im Netz Fertige und zum Teil professionelle Animationen aus dem Internet sollten kein Maßstab für die Entwicklung einer eigenen Animation sein. Nach der intensiven Beschäftigung mit dem Thema bei der Erstellung des Storyboards ist die Betrachtung anderer Umsetzungen jedoch in jedem Fall aufschlussreich. Die Schülerinnen und Schüler können zum Beispiel Schwächen des eigenen Konzepts erkennen, aber auch Unstimmigkeiten in anderen Animationen aufspüren. Von den zahlreichen Animationen zum Thema HIV lohnt die Vorführung eines Videos zum Abschluss des Themas in jedem Fall: YouTube: HIV Replikation Der Trickfilm des Pharma-Konzerns Boerhringer Ingelheim zeigt den Lebenszyklus des HI-Virus. Schülerinnen und Schüler entwickeln antivirale Strategien Nachdem die Abläufe einer HIV-Infektion und die Vermehrung der HI-Viren bekannt sind, stellt sich die Frage wie man die Infektion oder die Ausbreitung der HI-Viren im Körper verhindern oder zumindest verlangsamen kann. Lassen Sie Ihre Schülerinnen und Schüler einmal überlegen, wo sich auf der Basis molekularer Grundlagen Ansatzstellen für eine AIDS Therapie ergeben könnten. Sicherlich werden folgende Ziele genannt, an denen antivirale Hemmstoffe wirken können: Entry-Inhibitoren Sie verhindern, dass der HI-Virus mit der Zellmembran fusioniert, also dass er überhaupt in die Zelle eindringen kann. Reverse Transkriptase-Inhibitoren Sie verhindern die reverse Transkription der viralen RNA in eine DNA und so den Einbau des Virus-Genoms in die DNA der Wirtszelle. Integrase-Inhibitoren Sie verhindern den Einbau des Provirus in die Wirts-DNA. Protease-Inhibitoren Sie verhindern die Prozessierung der viralen Proteine und somit den Zusammenbau neuer Capside. Das Virus kann die Wirtszelle nicht mehr verlassen. Reverse Transkriptase im Unterrichtsfokus Aus den möglichen Angriffszielen antiviraler Wirkstoffe wird zunächst die Reverse Transkriptase für eine nähere Betrachtung herangezogen. In den zurzeit angewendeten Standard-Therapien kommen verschiedene Hemmstoffe dieses Enzyms zeitgleich zum Einsatz, um der Entwicklung von Resistenzen so weit wie möglich vorzubeugen. Die Reverse Transkriptase ist den Schülerinnen und Schülern inzwischen als besonderes virales Enzym bekannt, das virale Einzelstrang-RNA in eine Doppelstrang-DNA umschreibt. Aber wie funktioniert das? Wie ist die Reverse Transkriptase aufgebaut und wie ermöglicht sie die reverse Transkription? Zur Beantwortung dieser Fragen wurden für diese Unterrichtseinheit dynamische Folien mit 3D-Molekülen entwickelt. Sie erlauben den Lernenden, durch Drehen und Wenden dreidimensional modellierter Moleküle die Struktur des Enzyms im wörtlichen Sinn zu "begreifen". Die insgesamt sieben dynamischen HTML-Seiten zur Reversen Transkriptase ermöglichen die Untersuchung diverser Aspekte des Enzyms: Struktur und Funktion Bindung von zwei verschiedenen Hemmstoffen, die in der AIDS-Therapie eingesetzt werden Forschend-entdeckend lernen - per Beamer oder vor dem Computer Die sieben HTML-Seiten der Lernumgebung bauen inhaltlich aufeinander auf. Auf Aufgabenstellungen, wie sie in verwandten Lernumgebungen verwendet wurden ( Die Struktur der DNA - virtuelle Moleküle in 3D , ATP-Synthase ? Synthese von Energieäquivalenten , ?Quo vadis, Alken?? - die Markownikow-Regel ), wurde hier bewusst verzichtet. Dies erweitert das Spektrum der Einsatzmöglichkeiten und verschafft der Lehrperson Freiraum bei der Entscheidung für die Tiefe der Behandlung des Themas. Die dynamischen Folien können per Beamerpräsentation zur visuellen Unterstützung des Unterrichtsgesprächs genutzt werden. Hier kann - ohne die die Aufmerksamkeit leitenden Fragestellungen - der Fokus ganz individuell gesetzt werden. Alternativ können die Schülerinnen und Schüler am Computer und Einzel- oder Gruppenarbeit die Seiten unter einer von der Lehrperson vorgegebenen Fragestellung untersuchen. Sparsame Texte Um die selbstständige Arbeit mit den Materialien am Rechner zu unterstützen, wurden Textinformationen auf das Wesentliche beschränkt (Abb. 1). Weitere Informationen zum Einsatz der dynamischen Materialien finden Sie in dem folgenden Beitrag: Die dynamischen Folien sind in einer didaktischen Reihenfolge angeordnet. Nach dem Aufbau der Reversen Transkriptase aus zwei Untereinheiten werden die verschiedenen enzymatischen Funktionen dargestellt: Bindung des RNA-Einzelstrangs Ergänzung zum RNA-DNA-Hybridmolekül (Polymerase-Funktion) Abbau des RNA-Strangs (Nuklease-Funktion) Ergänzung des DNA-Einzelstrangs zum DNA-Doppelstrang (Polymerase-Funktion) Hemmstoffe Die weiteren Folien zeigen die Bindung von zwei verschiedenen Anti-AIDS-Wirkstoffen an das Enzym - einem kompetitiven und einem allosterischen Hemmstoff. Die Folien folgen in ihrer Reihung somit dem forschend-entwickelnden Gedankengang. Die Inhalte der Lernumgebung werden nachfolgend im Detail kommentiert. Auf der Startseite der Lernumgebung (Abb. 2, Platzhalter bitte anklicken) finden Sie eine Übersicht der Folien oder Seiten. Von hier aus kann jede Seite gezielt angesteuert werden. Über Navigationspfeile auf den Seiten (oben und unten rechts) kann auf die jeweils vorherige oder nachfolgende Folie gewechselt werden. Über das "Blatt"-Icon (oben rechts) gelangt man von jeder Folie zurück auf die Startseite (siehe Abb. 1 ). Das Enzym Reverse Transkriptase besteht aus zwei Untereinheiten (gelb und orange, Abb. 3 oben). Das funktionsfähige Protein liegt also in einer Quartärstruktur vor. Per Klick auf den Button "Sekundärstruktur" wechselt die Darstellung. Nun wird die Verteilung von ß-Faltblättern (gelb) und ?-Helices (magenta) im Enzym sichtbar (Abb. 3 unten). Das Molekül kann bei gedrückter linker Maustaste mit dem Mauszeiger "angefasst" und gedreht werden. Mit dem Scrollrad der Maus kann in die Struktur hinein- und herausgezoomt werden. Eine automatisierte Drehung des Moleküls erfolgt nach Anklicken des Buttons "Rotation". Polymerase und Nuklease Über das Steuerungsmenü von Folie 2 lassen sich die virale RNA und ein DNA Einzelstrang im Enzym anzeigen (Abb. 4) und ausblenden. (Natürlich ist in der Darstellung nur ein Bruchteil des viralen Genoms sichtbar.) Diese Funktionen können am Beamer dazu genutzt werden, während des Unterrichtsgesprächs die Bindung des RNA-Einzelstrangs (grün), die Bildung des DNA/RNA-Hybrids (Polymerase-Funktion) und den Abbau des RNA-Strangs (Nuklease-Funktion) zu simulieren. Aktive Zentren Ein Pop-up-Fenster (Abb. 5), das über einen Link in dem Textblock über dem Molekülmodell von Folie 2 geöffnet werden kann, zeigt die Lokalisation der Polymerase- und der Nuclease-Funktion in dem viralen Protein. Die beiden aktiven Zentren befinden sich an den gegenüberliegenden Enden der Bindungsfurche an der Proteinoberfläche. Doppelstrang-DNA Die Neusynthese eines zum DNA-Einzelstrang komplementären zweiten DNA-Strangs (beide blau) kann auf Folie 3 nachvollzogen werden. Die Starteinstellung des Applets zeigt einen DNA-Einzelstrang in der Bindungstasche des Enzyms. Per Klick auf "DNA-Doppelstrang" kann der zweite Polymeraseschritt des Enzyms simuliert werden. Auch auf den Folien 2 und 3 können Schülerinnen und Schüler zwischen der Darstellung im Kalottenmodell und der Sekundärstruktur wählen. Je nach Darstellungsart lassen sich so unterschiedliche strukturelle Zusammenhänge besser erkennen. In der Sekundärstruktur ist zum Beispiel sehr schön zu erkennen, wie das Enzym den DNA-Doppelstrang "im Griff" hat (Abb. 6). Es verdeutlicht den Lernenden, dass Enzyme keine plumpen Bauklötze sind, sondern ausgeklügelte Hochleistungs-Nanomaschinen. Das Nucleotid-Analoglon Tenofovir Die Bedeutung des Begriffs "Nucleotid-Analogon" wird den Schülerinnen und Schülern auf Folie 4 deutlich (Abb. 7). Hier stehen Tenofovir und Adenosinmonophosphat (AMP) nebeneinander. Ihr ähnlicher Aufbau lässt bereits vermuten, dass die Hemmung kompetitiv, also im Wettbewerb um den Bindungsplatz im aktiven Zentrum des Enzyms, stattfindet. Tenofovir wird nach der Aufnahme in die Zelle phosphoryliert und konkurriert mit den natürlichen Substraten um die Nukleotidbindungsstelle der Reversen Transkriptase. Eine genauere Betrachtung der Strukturformeln unterhalb der Applets führt auf die Spur des Wirkungsmechanismus: Die Verlängerung der Nukleotidketten erfolgt über die 3'-OH-Gruppe am Fünferring des Ribose-Bausteins. Tenofovir fehlt eine solche Gruppe. Daher verursacht es den Abbruch der Synthesereaktion. Bindung an das Enzym Folie 5 zeigt, wie tief Tenofovir in die Bindungstasche eindringt. In der transparenten Sekundärstrukturdarstellung (Abb. 8, oben) des Enzyms (gelb/orange) und der Draht-Darstellung der Nukleinsäure (blau) ist Tenofovir als Kalottenmodell im Standard-Farbschema der Elemente vollständig zu erkennen (Sauerstoff rot, Phosphor orange). Bei der Darstellung des Proteins als Kalottenmodell wird deutlich, wie tief der Hemmstoff in die Bindungstasche vordringt (Abb. 8, unten). Efavirenz Das HIV-Medikament Efavirenz wirkt nicht kompetitiv als Hemmstoff auf die Reverse Transkriptase. Ein Pop-up-Fenster (Abb. 9) von Folie 6 zeigt, dass der Hemmstoff keine strukturelle Ähnlichkeit mit den natürlichen Substraten der Reversen Transkriptase hat. Hemmung durch Strukturänderung Efavirenz bindet an einer Stelle außerhalb der aktiven Zentren des Enzyms. Seine Bindung verursacht eine Konformationsänderung der Reversen Transkriptase. Diese Strukturverschiebung sorgt dafür, dass der Zugang der Substrate zum aktiven Zentrum behindert und somit die Polymerase-Aktivität des Enzyms gehemmt ist. Dieser Effekt ist auf Folie 6 dargestellt (Abb. 10). Der Hemmstoff ist magentafarbig dargestellt. Übereinandergelegte Proteinketten Eine hilfreiche Methode der "Computerbiologie" ist das sogenannte Alignement dreidimensionaler Strukturen. Konformationsänderungen, die durch die Bindung eines Linganden - Substrat oder Hemmstoff - verursacht werden, treten dabei besonders deutlich hervor. Diese Möglichkeit wird auf Folie 7 genutzt (Abb. 11). Die rote Kette zeigt das Rückgrat der Reversen Transkriptase ohne Hemmstoff, die blaue Kette nach der Bindung des Hemmstoffs. Über die Buttons können beide Darstellungen einzeln aufgerufen oder weggeklickt werden. Kompetitive und nicht kompetitive Hemmung des gleichen Enzyms Die dynamischen Folien zur Reversen Transkriptase und ihren Hemmstoffen lassen sich nicht nur im Rahmen des Unterrichts zum Thema HIV einsetzen. Die Unterseiten zu Efavirenz und Tenofovir können schon früher im Bereich der Stoffwechselphysiologie eingesetzt werden. Es handelt sich um eindrucksvolle und gut erkennbare Beispiele für Enzymhemmungen. Kompetitive (Tenofovir) und nicht kompetitive (Efavirenz) Enzymhemmung können sehr gut gegenüber gestellt und voneinander abgegrenzt werden. Neben der guten Sichtbarkeit der Wirkprinzipien bieten diese Beispiele einen weiteren Vorteil: Sie sind für Schülerinnen und Schüler sicher interessanter als die häufig in Schulbüchern verwendeten Beispiele. Mit einer kleinen Hintergrundinformation, welche Bedeutung die Reverse Transkriptase für die Bekämpfung von AIDS hat, erscheinen die betrachteten Hemmstoffe gleich viel interessanter als eine gehemmte Succinatdehydrogenase. Hinzu kommt noch, dass beide Hemmungstypen am gleichen Enzym gezeigt werden können. Strukturebenen im Proteinaufbau Die erste Folie der Lernumgebung ( Abb. 3 ) bietet Schülerinnen und Schüler die Möglichkeit, ß-Faltblätter und ?-Helices dreidimensional erfahren zu können. Zwar werden die Sekundärstrukturelemente eines Proteins in ihrem Aufbau intensiv besprochen und gerne abgefragt. Häufig fällt es den Lernenden jedoch schwer, sich diese Strukturen vorzustellen. Durch das Drehen des interaktiven Makromoleküls am Monitor wird die Sekundärstruktur viel besser begreifbar. Gleiches gilt auch für die Quartärstruktur. Am Beispiel der Reversen Transkriptase sehen die Schülerinnen und Schüler direkt, was es bedeutet, wenn ein Enzym aus verschiedenen Untereinheiten aufgebaut ist. 3.000 Neuinfektionen pro Jahr in Deutschland Weltweit sind etwa 33 Millionen Menschen mit HIV-infiziert. Jedes Jahr sterben mehr als zwei Millionen an der Immunschwäche. In Deutschland begann sich HIV vermutlich Ende der 1970er Jahre auszubreiten. In Gruppen mit einem hohen Infektionsrisiko (homosexuelle Männer, Heroinabhängige) stieg die Zahl der Infizierten zunächst sehr schnell an. In der zweiten Hälfte der 1980er Jahre wurde dank verschiedener Maßnahmen in Hochrisikogruppen ein Rückgang der Neuinfektionen beobachtet. In den 1990er Jahren schwankte die Zahl der Neuinfektionen in Deutschland um etwa 2.000 pro Jahr. Zu Beginn des neuen Jahrtausends stieg sie wieder an und hat sich seit 2007 bei zurzeit etwa 3.000 Neudiagnosen pro Jahr stabilisiert (Epidemiologisches Bulletin des Robert Koch-Instituts zum Welt-AIDS-Tag 2009). 20 Prozent der Neuinfektionen durch heterosexuelle Kontakte Nach den aktuellen Schätzungen leben zurzeit in Deutschland etwa 70.000 HIV-Infizierte. Die Zahl der HIV-Neudiagnosen stieg sowohl bei homosexuellen Männern als auch bei Heterosexuellen im Jahr 2009 gegenüber dem Vorjahr um etwas mehr als drei Prozent (Epidemiologisches Bulletin des Robert Koch-Instituts vom 7. Juni 2010). Etwa 20 Prozent der HIV-Übertragungen erfolgen bei heterosexuellen Kontakten. Im Jahr 2010 starben in Deutschland etwa 550 Menschen an AIDS (Epidemiologisches Bulletin Robert Koch-Instituts vom 22. November 2010). Eigentlich ein Beispiel an Zuverlässigkeit: DNA-Polymerasen DNA-Polymerasen genießen zu Recht den Ruf als sehr verlässliche Enzyme. Sie arbeiten in einem hochsensiblen Bereich des Lebens: Fehler, die sie machen, können sich negativ auf unsere Nachfahren auswirken. Die bakterielle DNA-Polymerase hat zum Beispiel eine Fehlerquote von 10 -10 . Sie baut also nur eins von zehn Milliarden Nukleotiden falsch ein. Korrektursysteme senken diese Quote nochmals um den Faktor 10 3 . Ähnlich präzise gehen auch unsere eigene DNA-Polymerase und deren Korrekturlese-Assistenten zu Werke. Ihre Fehlerquoten liegen zwischen 10 -9 und 10 -10 . Pro Verdoppelung unseres Genoms (etwa 3.200 Millionen Basenpaare) kommt es also zu nur einer einzigen falschen Basenpaarung. Evolutionsmotor Reverse Transkriptase Die Reverse Transkriptase der HI-Viren arbeitet in einer völlig anderen Fehlerdimension: Etwa alle 2.000 Basenpaare baut sie ein falsches Nukleotid ein. Für uns wäre eine solche Quote fatal - für die HI-Viren ist sie die "Lebensversicherung" im Kampf gegen unser Immunsystem und der Motor für die Entwicklung von Resistenzen gegen Medikamente. HIV-Infizierte können bis zu zehn Millionen Viren am Tag produzieren. Zusammen mit dieser enormen Produktionsrate beschleunigt die Schludrigkeit der Reversen Transkriptase die Evolution der Viren. Sie verändern sich mit atemberaubender Geschwindigkeit. Nur eine Woche nach der Behandlung eines HIV-Infizierten mit einem bestimmten Wirkstoff bilden sich bereits Resistenzen aus. Wanted: Neuartige Wirkstoffe! Der schnellen Evolution der HI-Viren setzt die Medizin heute die "Hochaktive antiretrovirale Therapie", abgekürzt HAART, entgegen. Die Patienten erhalten dabei eine Kombination aus drei oder vier antiviralen Wirkstoffen. Die Therapie reduziert die Viruslast der Patienten erheblich und hält den Fortschritt der Symptomatik auf. Trotz dieser Erfolge ist die Entstehung resistenter Viren bei der Langzeittherapie ein großes Problem. Insbesondere Patienten, die sich nicht konsequent an die Einnahme der Medikamente halten, beschwören die Entstehung resistenter Viren herauf. Diese werden unter dem Selektionsdruck der Therapie zur dominanten Form und können übertragen werden. Bei jedem achten Patienten, der sich in Deutschland frisch mit HIV infiziert, ist heute die Wirksamkeit von mindestens einem HIV-Medikament eingeschränkt (HIV-Serokonverterstudie am Robert Koch-Institut, 2010). HAART verlängert zwar das Leben HIV-Infizierter. AIDS ist jedoch nach wie vor eine unheilbare und tödliche Infektion. Trotz aller Fortschritte besteht also weiterhin Bedarf an neuen und neuartigen Wirkstoffen. Bisherige AIDS-Medikamente greifen das Virus innerhalb der Wirtszelle an. Wissenschaftler der Medizinischen Hochschule Hannover und der Universität Ulm beschreiten nun einen neuen Weg. Sie wollen das Virus am Eindringen in die Immunzellen des Menschen hindern - sozusagen seinen "Stachel" unbrauchbar machen. Ihr Wirkstoff blockiert ein Protein der Virushülle, das bei der Fusion der viralen Membran mit der Wirtszellmembran eine entscheidende Rolle spielt. In einer Reportage berichtete das Deutschlandradio im Dezember 2010 über den möglichen neuen Wirkstoff und die Vorgehensweise der Forscherinnen und Forscher. Den Text stellen wir mit freundlicher Genehmigung des Deutschlandradios, des Journalisten Michael Engel und der beteiligten Wissenschaftler, Professor Reinhold Schmidt und Professor Wolf-Georg Forssmann, als Informationsblatt für die Schülerinnen und Schüler zur Verfügung (deutschlandradio_aids_mit_stumpfem_stachel.pdf/rtf). Streicht man den letzten Abschnitt des Nachrichtentextes, bietet der Artikel eine gute Möglichkeit darüber zu diskutieren, ob der Wirkstoff nach seiner Zulassung HIV "besiegen" kann. Wie wirkt VIR-576? Eine Entdeckung deutscher Forscher der Medizinischen Hochschule Hannover und der Universität Ulm - hat Ende 2010 für Furore gesorgt. Die Substanz VIR-576 blockiert das Fusionsprotein (gp41) in der Hülle des HI-Virus, das beim Angriff auf eine Zelle wie ein Enterhaken funktioniert. Dieser Enterhaken tritt in Aktion, nachdem ein Protein der Virushülle (gp120) an einen Rezeptor auf der Zelloberfläche (CD4) und dieser an einen Corezeptor (CCR5/CXCR4) der Zelle angedockt hat. Dieses Manöver kann man mit dem Andocken eines Shuttles an die Internationale Raumstation vergleichen: Beide Objekte sind schon einmal miteinander verbunden - aber die Schleuse ist noch nicht geöffnet. Das Virus schleust seine Fracht jedoch nicht durch ein Schott in die Zelle, sondern durch eine Verschmelzung der Virusmembran mit der Zellmembran. Genau diesen Schritt blockiert VIR-576 durch die Bindung an das virale das Fusionsprotein. Wie wurde die vielversprechende Substanz entdeckt? Die Geschichte von VIR-576 begann bereits in den 1990er Jahren. Blutfiltrat, das bei der Dialyse von Patienten mit Nierenversagen anfällt, enthält zahlreiche körpereigene Peptide. So wie der tropische Regenwald ein Schatz der Artenvielfalt ist, so ist das Blutfiltrat ein Reservoir für Millionen von Peptiden mit unbekannten bioaktiven Eigenschaften. Professor Wolf-Georg Forssmann und Professor Frank Kirchhoff hatten die Idee, in diesem körpereigenen Peptidpool nach HIV-Hemmstoffen zu fahnden. Und sie wurden fündig: Ein natürlich vorkommendes Peptid aus 20 Aminosäuren - das Fragment eines im Blut zirkulierenden Eiweißes - blockierte im Reagenzglas den Eintritt von HIV in die Wirtszellen. (Bei dem Eiweiß handelt es sich um ?-1-Antitrypsin. Es schützt Körpergewebe vor Enzymen, die an Entzündungen beteiligt sind. ?-1-Antitrypsin ist ein Protease-Hemmer.) Verbesserung der Wirksamkeit Von dem kostbaren Fundstück stellten die Wissenschaftler im Labor mehr als 600 Varianten her. Unter diesen fanden sie ein Peptid, das die antivirale Wirkung des Originals noch um das Hundertfache übertraf - VIR-576. Die Substanz wirkt nicht nur im Reagenzglas. Ende 2010 veröffentlichten Forscher der Medizinischen Hochschule Hannover und der Universität Ulm die Ergebnisse einer ersten klinischen Studie (18 Teilnehmer). VIR-576 konnte die Viruslast HIV-Infizierter in weniger als einer Woche um mehr als 90 Prozent (1,2 Logarithmusstufen) senken - das Virus hatte sich also kaum noch vermehren können. Allerdings: VIR-576 wird im Blut sehr schnell abgebaut. Deshalb musste es den Patienten per Dauerinfusion intravenös verbreicht werden. Der Weg zum einsatzfähigen Medikament ist also noch weit und wird einige Jahre in Anspruch nehmen. Doch schon heute weckt der neuartige Wirkstoff hohe Erwartungen und große Hoffnungen: VIR-576 bekämpft nicht - wie die meisten AIDS-Medikamente - die Vermehrungsschritte der HI-Viren in den Zellen, sondern greift die Viren außerhalb der Zellen an. Zudem ist der Wirkstoff der Abkömmling eines körpereigenen Blutproteins. Auf diese Eigenschaften führen Wissenschaftler die - im Vergleich zu herkömmlichen Wirkstoffen - sehr gute Verträglichkeit von VIR-576 zurück. Das HI-Virus entzieht sich durch seine atemberaubende Mutationsrate immer wieder der Wirkung von Medikamenten, indem es deren Angriffsziele - zum Beispiel die Protease oder die Reverse Transkriptase - verändert. Das Angriffsziel von VIR-576, der virale Enterhaken, verändert sich jedoch kaum. Vermutlich führen Mutationen hier sehr schnell zum Funktionsverlust. Somit wird es dem Virus hoffentlich schwer fallen, Resistenzen gegen VIR-576 zu entwickeln. Sieg über AIDS in Sicht? Sollte die Entwicklung von VIR-576 zum marktreifen Medikament von Erfolg gekrönt sein, ist AIDS aber keineswegs besiegt. Denn eine Heilung im eigentlichen Sinne wird auch mit dem neuen Wirkstoff nicht möglich sein. Nach einer Infektion kann das Virus nicht vernichtet, sondern nur in Schach gehalten werden.

  • Biologie
  • Sekundarstufe I, Sekundarstufe II

KooL ist cool

Fachartikel

Qualität braucht Innovation! – Daher werden im Modellversuch KooL die pädagogischen Potenziale von Medien zur Förderung sowohl selbstgesteuerten als auch kooperativen Lernens ausgelotet. Für die Ausbildung im Splitterberuf Glas werden didaktisch begründete Medienkonzepte entwickelt und in den Unterricht implementiert.Im Fokus des Modellversuchs der Bund-Länder-Kommission "KooL" (Kooperatives Lernen in webbasierten Lernumgebungen in der beruflichen Erstausbildung) stehen Medien nicht primär als Präsentationsmedien, sondern als interaktive Kommunikations- und Entwicklungsmedien. Der Umgang mit Medien ist für viele Schülerinnen und Schüler als Teil der digitalen Net-Generation selbstverständlich, während Lehrerinnen und Lehrer häufig printsozialisiert sind. Diese Kluft will KooL überwinden. Neben der Einführung einer Lernplattform werden vor allem Instrumente des Web 2.0 für Personal Broadcasting und Social Publishing im Unterrichtseinsatz erprobt. Sie ermöglichen den Lernenden, sich als autonome Medien-Akteure zu erleben und Wissen in kooperativen Lehr-Lernsettings im Diskurs zu erarbeiten.

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Informationstechnik / Pädagogik / Fächerübergreifend
  • Berufliche Bildung
ANZEIGE