• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die Zukunft des MINT-Lernens: digitale Lernumgebungen für den…

Dossier

Unterrichtsmaterial zum digitalen Lernen im MINT-Unterricht der Sekundarstufen Wie können digitale Medien im MINT-Unterricht pädagogisch und didaktisch sinnvoll eingesetzt werden, um positive Effekte auf die Lernprozesse von Schülerinnen und Schülern zu haben? Die hier gebündelten Unterrichtseinheiten für die Fächer Informatik, Mathematik und Physik zeigen beispielhaft auf, wie digitale Medien den MINT-Unterricht der Sekundarstufen bereichern können. Die Lernenden beschäftigen sich anhand von digitalen Lernumgebungen mit Themen wie der mathematischen Modellierung, Künstlicher Intelligenz, funktionalen Zusammenhängen oder Messunsicherheiten. Alle Unterrichtseinheiten verfügen über einen Stundenverlaufsplan, einen Link zur jeweiligen Lernumgebung und Kompetenz-Zuordnungen. Neben Fach-, Medien- und Sozialkompetenzen werden dabei auch zu erwerbende 21th-Century-Skills aufgeführt. Weiterhin weist jede Unterrichtseinheit im didaktisch-methodischen Kommentar digitale Kompetenzen aus, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen. Die Beiträge sind im Rahmen des von der Deutschen Telekom Stiftung geförderten Projekts "Die Zukunft des MINT-Lernens" entstanden. Das Dossier wird kontinuierlich um weitere Unterrichtseinheiten ergänzt. Über das Projekt "Die Zukunft des MINT-Lernens" Im Projekt "Die Zukunft des MINT-Lernens" entwickeln fünf Universitäten ( Humboldt-Universität zu Berlin , die Technische Universität Kaiserslautern , die Christian-Albrechts-Universität zu Kiel , die Universität Koblenz-Landau und die Universität Würzburg ) seit Herbst 2018 in einem Entwicklungsverbund gemeinsam Konzepte für einen guten MINT-Unterricht in der digitalen Welt . Diese werden in die Aus- und Fortbildung von MINT-Lehrkräften integriert sowie von Expertinnen und Experten aus Deutschland, Estland, den Niederlanden und Österreich unterstützt.

  • Fächerübergreifend
  • MINT: Mathematik, Informatik, Naturwissenschaften und Technik

Urbane Strukturen: Städte der Welt aus der Luft begreifen

Unterrichtseinheit

In der Unterrichtseinheit zu Stadtentwicklung und Stadtstrukturen lernen die Schülerinnen und Schüler, mit einem einfachen Analysewerkzeug der Fernerkundung aus einem digitalen Satellitenbild Ecken und Kanten abzuleiten und Aussagen in Bezug auf die räumlichen Strukturen von Städten zu formulieren. Diese Unterrichtseinheit beschäftigt sich mit den unterschiedlichen Strukturen von Städten in vier verschiedenen Kulturräumen der Erde. Das digitale Lernmodul ist so aufgebaut, dass die Schülerinnen und Schüler in einem ersten Teil mehr über die Entwicklung und innere Differenzierung von Städten in Mitteleuropa, den USA, Südamerika und den sozialistischen Staaten erfahren. Die Unterrichtseinheit entstand im Rahmen des Projekts Fernerkundung in Schulen (FIS) am Geographischen Institut der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Themenbereich Stadtentwicklung und Stadtstrukturen Ein zentrales Thema des Erdkundeunterrichts im Lehrplan der Jahrgangsstufen 10 bis 13 stellt der Bereich der Stadtentwicklung und Stadtstrukturen dar. Dieser Themenbereich umfasst auch die Frage, wie sich die Städte verschiedener Kulturräume unterscheiden und ob man sie anhand von Idealtypen beschreiben kann. Hiermit wird Bezug auf die nationalen Bildungsstandards genommen, in denen folgende zwei Kompetenzbereiche angesprochen werden: Sachkompetenz: Beschreibung der Genese städtischer Strukturen mit Bezug auf grundlegende Stadtentwicklungsmodelle Urteilskompetenz: Bewertung städtischer Veränderungsprozesse als Herausforderung und Chancen zukünftiger Stadtplanung. Ablauf Anhand von Schrägluftbildern und schematischen Illustrationen können sich die Schülerinnen und Schüler eigenständig über die kulturgenetische Entwicklung der ausgesuchten Stadtmodelle informieren. Im nächsten Schritt erfolgt der praktische Teil: Hier stehen den Schülerinnen und Schülern vier hochaufgelöste Echtfarben-Bilder des RapidEye-Satelliten zur Verfügung. Sie können diese Bilder mithilfe der so genannten "Edge Detection" (Kantendetektion) bearbeiten. So werden Kanten und Linien hervorgehoben, Flächen treten dagegen in den Hintergrund. Anhand der sich abzeichnenden Struktur können die Schülerinnen und Schüler das Wissen über die spezifische Stadtentwicklung und die innere Differenzierung der ausgesuchten Kulturräume anwenden und Gemeinsamkeiten wie Unterschiede zwischen Realität und Idealtyp feststellen. Die Lernumgebung zur Unterrichtseinheit "Städte der Welt" Hier finden Sie Hinweise zum Aufbau der Lernumgebung. Die Abbildungen veranschaulichen die Funktionen und interaktiven Übungen zum Themenfeld. Die Schülerinnen und Schüler beschreiben Stadtstrukturen. erörtern Stadtmodelle unterschiedlicher Kulturräume. orientieren sich mithilfe von Satellitenbildern räumlich. wenden die Bildbearbeitungsmethode der Kantendetektion an. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit "Urbane Strukturen" bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Computer nicht als reines Informations- und Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "StaedteWelt.exe" geöffnet. Unter anderen Betriebssystemen wird die Datei "StaedteWelt.html" in einem Webbrowser geöffnet. Hierfür wird der Adobe Flash Player ( kostenloser Download ) benötigt. Wichtig ist in beiden Fällen, dass die heruntergeladene Ordnerstruktur erhalten bleibt. Der jeweils aktivierte Bereich wird auf der unteren Leiste der Lernumgebung eingeblendet. Während der erste Teil einen Einblick in die Thematik liefert und eine übergeordnete Aufgabenstellung benennt, gliedert sich der Rest des Moduls in zwei Sequenzen: Der erste Teil bietet Hintergrundinformationen zum Thema. Im zweiten Teil werden die Schülerinnen und Schüler aktiv und wenden eigenständig Bildbearbeitungsmethoden zur Lösung von entsprechenden Aufgaben an. Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. Inhalte im Überblick Einleitung Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Nach dem Start des Lernmoduls sehen die Schülerinnen und Schüler den Einführungstext, der sie über den Inhalt und den Aufbau informiert. Im Hintergrund ist eine Aufnahme von der ISS der Erde bei Nacht zu sehen. Deutlich sichtbar sind die beleuchteten Flächen der Großstädte. Hintergrundwissen zu den Stadttypen Nachdem das Fenster weggeklickt wurde, erscheint eine Weltkarte, bei der vier Länder blau hervorgehoben sind (Abbildung 2). Klickt man mit der Maus in eines dieser Länder, so öffnet sich ein Fenster mit Hintergrundwissen zu den einzelnen Stadttypen. Die USA steht dabei für den US-amerikanischen, Deutschland für den mitteleuropäischen, Brasilien für den südamerikanischen und Russland für den Stadttypus der ehemaligen sozialistischen Länder. Die vier Informationsfenster sind so aufgebaut, dass in einem Eingangstext ein Überblick über den historischen Kontext und die markanten Merkmale des jeweiligen Stadttyps gegeben wird. So werden unter anderem beim US-amerikanischen Typus auf den Central Business Districht (CBD) und den schachbrettartigen Grundriss, beim südamerikanischen auf die Plaza und die ausgeprägte ethnische Segregation mit Elendsvierteln, beim mitteleuropäischen auf die Altstadt und die Widerspiegelung von Machtstrukturen wie feudale Schlossanlagen, beim sozialistischen wiederum auf Magistralen und Großwohnsiedlungen hingewiesen. Die Erläuterungen werden durch ein Schrägluftbild, eine Tabelle zur morphogenetischen, funktionalen und sozialen Gliederung, und ein schematisches Stadtmodell unterstützt. Ein Quiz (siehe Musterlösungen) fragt das Gelesene ab und beendet den ersten Teil der Lerneinheit. Anwendung der Kantendetektion Im zweiten Modulteil sollen die Schülerinnen und Schüler eine Methodik der Geographie, die Fernerkundung, anwenden. Es geht hier darum, vier Bilder des RapidEye-Satelliten zu bearbeiten, um verschiedene Aufgaben zu lösen. Zunächst sollen sich die Lernenden einen visuellen Eindruck verschaffen und die räumliche Struktur der abgebildeten Stadt beschreiben. Anschließend können sie die Filterfunktion anwenden. Diese nennt sich Edge Detection (Kantendetektion) und dient dazu, Ecken und Kanten auf einem Satellitenbild hervorzuheben. Aus einem Echtfarbenbild wird so ein Graustufenbild, bei dem Linienobjekte weiß und flächenhafte Objekte dunkel dargestellt werden. Dies erleichtert die Erkennung von Stadtstrukturen, die von Straßen, Gebäuden und Plätzen geprägt sind. D ie Schülerinnen und Schüler erläutern nun die Unterschiede im Vergleich zum ursprünglichen Satellitenbild. Abschließend erörtern sie, welche Stadt welchem Kulturraum angehören könnte und vergleichen ihr Ergebnis mit dem Idealtyp aus dem Hintergrundwissen. Welche Gemeinsamkeiten und Unterschiede könnte es geben? Im Bearbeitungsfenster (Abbildung 3) befinden sich die Satellitenbilder von Karlsruhe, Bratsk (Russland), New York und São Paolo am linken und die Filterfunktion am rechten Rand. Fährt man mit der Maus über eines der Bilder und "greift" es, kann man das Bild in das große Feld ziehen. Nach der Betrachtung klickt man auf "Bild filtern" und führt so die Edge Detection aus. Im Bereich "Berechnete Bilder" werden die Ergebnisse abgelegt. Ist der Speicher voll, müssen ältere Bilder gelöscht werden. Zusätzlich kann man das Echtfarbenbild und das gefilterte Bild gleichzeitig in das große Feld ziehen und mit "Bilder vergleichen" zwischen den beiden Bildern hin- und herwechseln. Abbildung 3 zeigt jeweils das Echtfarbenbild und das gefilterte Bild übereinandergelegt. Zunächst wird deutlich, dass die Satellitenbilder zwar eine vergleichsweise hohe räumliche Auflösung von 5 Metern besitzen, diese jedoch nicht ausreicht, um urbane Details wie kleinere Häuser erkennen zu können. Die Qualität ist ebenfalls unterschiedlich. So wirkt das Bild von São Paolo "unscharf". Dies liegt daran, dass zuvor schon ein Filter drüber laufen musste, um atmosphärische Störungen und Wolken zu entfernen. Ein bekanntes Problem in der Fernerkundung der Äquatorregionen.

  • Geographie / Jahreszeiten
  • Sekundarstufe I

Galvanische Zellen - Ermittlung einer Spannungsreihe

Unterrichtseinheit

Die hier vorgestellte Flash-Lernumgebung kann das Unterrichtsgespräch unterstützen oder als Grundlage für eine selbstständige Erarbeitung des Themas dienen.Das Programm zur Elektrochemie besteht aus zwei Teilen: Im ersten Abschnitt werden Aufbau und Funktion galvanischer Zellen am Beispiel des Zink-Kupfer-Elements verdeutlicht. Im zweiten Teil können aus einer vorgegebenen Auswahl von Halbzellen beliebige galvanische Zellen zusammengestellt, deren Spannungen virtuell gemessen und gespeichert werden. Im Auswertungsteil der Lernumgebung können die Schülerinnen und Schüler daraus selbstständig eine Spannungsreihe entwickeln.Mit der interaktiven Simulation können Schülerinnen und Schüler in einer selbstständigen Arbeitsphase im Computerraum der Schule oder auch am heimischen Rechner arbeiten - entweder im Rahmen einer Hausaufgabe, zur Wiederholung des im Unterricht Gelernten oder zur Prüfungsvorbereitung. Alternativ zu diesen Einsatzmöglichkeiten können Lehrerinnen und Lehrer mit ihrer Lerngruppe auch im Unterrichtsgespräch eine Spannungsreihe virtuell entwickeln (Beamer-Präsentation im Fachraum). Inhalte und Funktionen Die Entwicklung einer Spannungsreihe mithilfe der Lernumgebung wird hier Schritt für Schritt erläutert und per Screenshot dargestellt. Die Schülerinnen und Schüler sollen Aufbau und die Funktion galvanischer Zellen erkunden. mithilfe virtueller Experimente eine Spannungsreihe aufstellen. Thema Galvanische Zellen - Ermittlung einer Spannungsreihe Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Sekundarstufe II Zeitraum 1 Stunde Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Informationen zum Aufbau Im ersten Teil der Lernumgebung werden Aufbau und Funktion einer vorgegebenen galvanischen Zelle untersucht. Mit der Maus "entdeckt" man verschiedene Details. Beim Anklicken der verschiedenen sensitiven Flächen innerhalb der Apparatur wird jeweils ein kleines Informationsfenster eingeblendet (Abb. 1, Platzhalter bitte anklicken). Chemische Vorgänge Betätigt man im ersten Programmteil den Schalter (Ein/Aus), werden die chemischen Vorgänge an den Elektroden als Animation dargestellt (Abb. 2). Dazu muss das Multimeter zuvor auf "Strommessung" umgeschaltet werden. Die gemessene Stromstärke wird von dem Gerät angezeigt. Anhand der animierten Vorgänge an den Elektroden lassen sich die Begriffe Oxidation, Reduktion, Donator-Halbzelle, Akzeptor-Halbzelle und die Richtung des Stromflusses erläutern. Schaltet man das Multimeter auf die Spannungsmessung um, so werden an den Elektroden die Unterschiede im Lösungsbestreben beider Metalle in ihren Metallsalzlösungen und der daraus resultierende Elektronendruck veranschaulicht. Kombination der Halbzellen Der zweite Programmteil bietet eine virtuelle Experimentieroberfläche: Über den Button "Halbzellenauswahl" (Abb. 3) öffnet sich ein Fenster, in dem man vorgegebene Halbzellen auswählen kann (bitte Scrollbalken beachten). Durch die Bestätigung der Auswahl (OK-Button) werden die gewählten Halbzellen in der Apparatur dargestellt. Spannungsmessung Nach dem Betätigen des Schalters öffnet sich ein Ergebnisfenster (Abb. 4, Platzhalter bitte anklicken). Neben der aktuellen Versuchsnummer werden darin die Halbzellen-Kombination und die messbare Spannung des galvanischen Elements angezeigt. Reaktionen im Trickfilm Auf der Basis der angezeigten Spannung (Abb. 4) müssen die Lernenden die Frage nach der Donator-Halbzelle (unten im Ergebnisfenster) beantworten. Als Hilfestellung können sich Schülerinnen und Schüler die elektrochemischen Vorgänge per Klick auf den Button "Trickfilm" auf der Teilchenebene zeigen lassen (Abb. 5). Speichern der Messwerte Nachdem die Frage zur Donator-Halbzelle per Kick in die jeweilige Klickbox beantwortet ist, betätigt man den "merken?"-Button. Dadurch werden die Werte der aktuellen Messung im Programm für die spätere Auswertung gespeichert. Über die Messwertanzeige (Klick auf Messdaten, oben rechts) kann jederzeit überprüft werden, welche Halbzellen-Kombinationen bereits erfasst sind (Abb. 6). Aufstellung der Spannungsreihe Nach der Aufnahme aller gewünschten Messwerte wird im Bereich Auswertung eine Redox- beziehungsweise Spannungsreihe entwickelt. Unter dem Messdaten-Fenster (Abb. 7) können Halbzellen-Symbole eingeblendet werden (Klick auf "Symbole"). Diese sollen per "drag and drop" verschoben und entsprechend den Spannungsdifferenzen in der linken Skala positioniert werden. Die Halbzelle, die gegenüber sämtlichen anderen Halbzellen als Donator-Halbzelle wirkt, wird dem Wert Null zugeordnet. Dieser Hinweis wird den Schülerinnen und Schülern über die einblendbare Aufgabe mitgeteilt. Freie Texteingabe Abb. 8 zeigt eine abgeschlossene Auswertung. Die Spannungsabstände liest man an der Skala ab. Die "Spannungslineale" wurden über die Toolbox erzeugt, skaliert und positioniert. Damit wird der Spannungsabstand jeweils zwischen zwei Halbzellen (die gemessene Spannung im Messwert-Fenster) auch optisch veranschaulicht. Im Textfenster kann eine Beschreibung zur Spannungsreihe erstellt werden. Abschließend drucken die Lernenden die Bildschirmseite als Protokoll aus.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Die Erfindung des Computers – Zuses Z3

Unterrichtseinheit

Vor 100 Jahren – am 22. Juni 1910 – wurde Konrad Zuse geboren. Das Zuse-Jahr 2010 soll dieses Jubiläum gebührend ehren. In dieser Unterrichtseinheit erhalten Schülerinnen und Schüler Einblicke in die Erfindung des Computers durch Konrad Zuse und in die Funktionsweise seines ersten Rechners - den Z3.Was sind Dualzahlen und warum rechnen Computer mit ihnen? Wie funktioniert binäre Logik und was sind logische Gatter? Wie arbeitete Konrad Zuses Z3? Die Antworten auf diese Fragen können Schülerinnen und Schüler mit einer zum Zuse-Jahr 2010 entwickelten Lernumgebung finden. Die dynamischen Arbeitsblätter enthalten interaktive Übungen und Veranschaulichungen, die mit LogiFlash erstellt wurden. Dieser Logiksimulator für die Darstellung von digitalen Schaltungen wurde am Lehrstuhl für Technische Informatik der Johann Wolfgang Goethe-Universität Frankfurt am Main entwickelt und steht kostenfrei zur Verfügung. Würdigung der Leistung Konrad Zuses Die hier vorgestellte Lernumgebung kann im Rahmen des Lehrplans genutzt werden. Konzipiert wurde sie vom Autor aber insbesondere zur Würdigung von Konrad Zuse (1910-1995) im Zuse-Jahr 2010. Hier bietet sich ihr Einsatz im Rahmen eingeschobener Unterrichtsstunden an (eine Doppelstunde sollte reichen). Im Verlauf des Unterrichtsgesprächs kann ferner auf die Begriffe Verarbeitungsbreite (Bit) und Speichergröße (Bit und Byte) eingegangen werden. Einführung der Lernumgebung per Beamer Schülerinnen und Schüler der Klasse 7 sind den Einsatz interaktiver Arbeitsblätter oft noch nicht gewohnt. Daher sollte der Umgang damit zunächst von der Lehrperson per Beamer gezeigt werden. Insbesondere der Umgang mit den interaktiven LogiFlash-Simulationen kann so demonstriert werden. Hinweise zu den Übungen Ein Hinweis auf die Notwendigkeit einer korrekten Zahleneingabe bei den Übungen führt zu erhöhter Konzentration und damit zu weniger Frusterlebnissen. Diese entstehen, wenn Fragen inhaltlich richtig, aber formal fehlerhaft (zum Beispiel durch Leerstellen) in die Arbeitsblätter eingegeben werden. Die Angaben werden dann als falsch bewertet. Auch Partnerarbeiten zwischen Schülerinnen und Schülern mit guten Deutschkenntnissen und Lernenden, denen die deutsche Sprache schwer fällt (Integrationskinder), kann zur Vermeidung von Frusterlebnissen beitragen. Aufbau und Inhalte der Lernumgebung Die Themen der Lernumgebung werden kurz vorgestellt. Screenshots zeigen Ausschnitte aus den interaktiven Übungen. Green IT Von der Erfindung des Computers kann ein Bogen geschlagen werden zum heutigen rasanten Wachstum der Datenströme im Internet, die einen signifikanten Beitrag zum Kohlenstoffdioxidausstoß leisten werden, wenn die Energieeffizienz der heutigen Technologie nicht stark verbessert wird. "Green IT" ist das Schlagwort. Computer Gestern - Heute - Morgen: "Green IT" In Zeiten drastisch wachsender Datenströme muss die Nutzung von Informations- und Kommunikationstechnologie umwelt- und ressourcenschonend gestaltet werden. Die Schülerinnen und Schüler sollen im Lernbereich "Computer verstehen: Daten und Strukturen" den grundlegenden Aufbau eines Computers kennen (Hardware, Prozessor, Bus, Speicher). das Blockschaltbild eines Computers verstehen. das Prinzip "Eingabe - Verarbeitung - Ausgabe" verstehen. die Auswirkungen der Rechentechnik aus historischer Sicht bewerten. ein Modell für Informatiksysteme kennenlernen. im Wahlpflichtbereich "Computer Gestern - Heute - Morgen" die Leistung eines Rechners anhand verschiedener Kriterien beurteilen können. die Lernumgebung für das Fach Mathematik zur Prüfungsvorbereitung zum Thema Stellenwertsysteme (Klasse 10) nutzen. Thema Die Erfindung des Computers - Zuses Z3 Autor Jens Tiburski Fächer Informatik, Mathematik (Stellenwertsysteme) Zielgruppe ab Klasse 7 (Informatik), Klasse 10 (Mathematik) Zeitraum 1-2 Stunden Technische Voraussetzungen Computer in ausreichender Zahl (Einzel- oder Partnerarbeit); aktiviertes Java-Script, Flash Player Zuerst werden die Schülerinnen und Schüler darauf aufmerksam gemacht, dass die Rechenmaschinen vor der Erfindung des Computers noch mechanisch funktionierten. Doch selbst herausragende Konstruktionen demonstrierten lediglich die Unmöglichkeit, analytische Maschinen von hoher Komplexität technisch zu verwirklichen. Das macht die Genialität Zuses deutlich, der mit zwei revolutionären Ideen die Entwicklung des modernen Computers ermöglichte: Durch den Vergleich mit Anlagen aus der Nachrichtentechnik kam er zu dem Schluss, dass Rechenmaschinen ebenfalls elektronisch funktionieren müssten - durch den Einsatz von Relais als Schalter. Da Relais nur zwei Schaltzustände kennen - High und Low - erkannte Zuse, dass Rechenmaschinen auf dem Dualsystem basieren müssten. Boolesche Logik Also stellte er seine Experimente mit mechanischen Rechenmaschinen ein (der Zuse Z1 war noch ein mechanischer Rechner) und arbeitete an der Umsetzung der Rechenregeln für Dualzahlen mittels logischer Operatoren. Dass es die Boolesche Logik schon gab, wusste Konrad Zuse nicht. Er entwickelte jedoch unabhängig dieselben Schlussfolgerungen. Die interaktiven Arbeitsmaterialien der Unterrichtseinheit beginnen mit der Erforschung der Rechenregeln für das Dualsystem (also das Zahlensystem auf der Basis 2). Nach grundsätzlichen Erläuterungen haben die Schülerinnen und Schüler die Möglichkeit, ihr erworbenes Wissen in interaktiven Aufgabenstellungen zu testen. Nach der Konvertierung von Dezimalzahlen in Dualzahlen (Abb. 1, Platzhalter bitte anklicken) und umgekehrt sind Additions- sowie eine Multiplikationsaufgabe zu lösen. Die Lernumgebung gibt den Schülerinnen und Schülern Rückmeldungen zum Erfolg ihrer Bemühungen. Den nächsten inhaltlichen Schwerpunkt bildet das Verständnis sogenannter logischer Gatter. Es wird gezeigt, wie solche Gatter aufgebaut sind und welche Funktion sie erfüllen. Dabei beschränkt sich die Lernumgebung auf die wesentlichen Gatter: And-Gatter Or-Gatter Xor-Gatter Nand-Gatter Nor-Gatter Xnor-Gatter Interaktive Übungen Mithilfe von Flash-Simulationen logischer Schaltungen (erstellt mit LogiFlash ) können die Schülerinnen und Schüler die Erklärungen nachvollziehen und eigene Überlegungen visualisieren. Das Kapitel enthält interaktive Übungen zu Wahrheitstabellen logischer Gatter. In verschiedenen Aufgaben können die Schülerinnen und Schüler Wahrheitstabellen vorgegebener Gatter erkunden sowie Gatter anhand ihres Verhaltens zuordnen. Abb. 2 zeigt ein Beispiel: In der Übung muss die Wahrheitstabelle ermittelt und dem entsprechenden Gatter zugeordnet werden. Danach werden - mithilfe der Gatter - die Rechenregeln für Dualzahlen digital umgesetzt. Der 1-Bit-Addierer bildet die Grundlage für das Verständnis des Zusammenhangs zwischen Rechenregeln und logischen Gattern. Wenn dieses Funktionsprinzip verstanden wurde, geht es mit dem 8-Bit-Addierer weiter. Hier liegt der Schwerpunkt auf der Weitergabe des Übertrags. Es kann zwar nur der Übertrag 1 entstehen, aber dieser muss gegebenenfalls über mehrere Stellen weitergegeben werden. Die sich daraus ergebenden Überlegungen zum Einsatz verschiedener Gatter führen auf eine schon recht komplexe Schaltung mit einer Vielzahl von Gattern, die - zur optischen Abgrenzung - in verschiedenen Reihen angeordnet sind (Abb. 3, Platzhalter bitte anklicken). Dieser 8-Bit-Addierer ist nun das eigentliche Rechenwerk des Z3. Es wird an dieser Stelle darauf hingewiesen, dass es sich um ein stark vereinfachtes Modell des Rechenwerks von Konrad Zuse handelt. Im Gegensatz zu Konrad Zuses Rechner wird unser Rechenwerk nun aber noch mit Wandlern zur Ein- und Ausgabe von Dezimalziffern ausgestattet: Dezimal-Dual-Wandler Dieser Wandler basiert komplett auf Or-Gattern, die dafür sorgen, dass eingegebene Dezimalziffern über die Lampen am Ausgang als Dualzahlen weitergegeben werden. Dual-Dezimal-Wandler Dieser Wandler verwendet zwei Gattertypen, das And-Gatter und das Nor-Gatter. Das jeweilige And-Gatter testet die gesetzten richtigen Bits, während das Nor-Gatter falsch gesetzte Bits "herausfiltert". So wird zum Beispiel die Lampe mit der Nummer 7 nur dann auf High-Level gesetzt, wenn die Bits 1, 2 und 3 aktiviert sind und gleichzeitig die Bits 4 und 5 deaktiviert sind (Abb. 4). Wenn man nun den 8-Bit-Addierer mit zwei Dezimal-Dual-Wandlern zur Eingabe von Dezimalziffern und einem Dual-Dezimal-Wandler zur Anzeige der Ergebnisse in Dezimalform ausstattet, erhält man einen einfachen Rechner, der zwei Dezimalziffern addiert und das Ergebnis anzeigt. Der Informationsfluss kann dabei anhand der türkis eingefärbten Hervorhebungen von den Schülerinnen und Schüler nachvollzogen werden, sodass das Funktionsprinzip deutlich wird (Abb. 5) Die Schaltung in Abb. 5 wirkt auf den ersten Blick sicher verwirrend. Deshalb wird dieser Rechner nun modular umgestaltet. Die Hauptbaugruppen werden in Module zusammengefasst. Dann erfolgt die Verdrahtung und man erhält ein Funktionsschema, das wesentlich übersichtlicher wirkt als das vollständige Modell. Dass es sich jedoch um dieselben Schaltungen handelt, kann man durch das Anklicken des Lupen-Symbols sehen. Das Lupensymbol erscheint, wenn Sie den Cursor über die linke oder rechte untere Ecke (4-Bit-Addierer) der Module führen (siehe roter Kreis in Abb. 6). Aufgaben Im letzten Übungsteil sollen die Schülerinnen und Schüler ihr erworbenes Wissen über die logischen Schaltungen testen. Drei vorgegebene Schaltungen sind zu komplettieren: 1-Bit-Addierer Die beiden passenden Logik-Gatter sollen an die richtigen Stellen gezogen und die Schaltungen korrekt verdrahten werden. Per Klick auf das Fragezeichen-Symbol lassen sich Tipps aufrufen. Der Test-Button prüft die Schaltung - das kann bei umfangreichen Schaltungen einige Sekunden dauern - und gibt dann das Ergebnis in Form einer Messagebox aus. 4-Bit-Addierer Neben den vier 1-Bit-Addierern muss die Weiterleitung des Übertrags fehlerfrei funktionieren. Die Aufgabe besteht in der korrekten Verdrahtung der logischen Gatter der Übertragsweiterleitung. Modul-Rechner Der letzte Schaltplan beinhaltet zwei Dezimal-Dualwandler, einen 4-Bit-Addierer sowie einen Dual-Dezimal-Wandler. Die Aufgabe ist es nun, die fertigen Module richtig zu verdrahten, sodass der Modul-Rechner fehlerfrei funktioniert. Im Themenbereich "Computer Gestern - Heute - Morgen" bietet sich ein Ausblick auf die Bestrebungen an, die Nutzung von Informationstechnik (IT) beziehungsweise aller Informations- und Kommunikationstechnologie umwelt- und ressourcenschonend zu gestalten. Dies betrifft die Produktion der Komponenten (Energieeinsatz, Materialien, Produktionsmittel). das Design der Systeme (Energieverbrauch im Betrieb). die Entsorgung oder das Recycling der Geräte. Der letztgenannte Aspekt schließt insbesondere die Schadstoffthematik mit ein, also ob schädliche Stoffe in der Produktion anfallen oder ob Gifte wie Blei oder Brom im Endprodukt enthalten sind und bei dessen Betrieb oder Entsorgung freigesetzt werden. Der Begriff Green IT umfasst auch die Energieeinsparung durch die Nutzung von Informations- und Kommunikationstechnologie. So kann zum Beispiel der Ersatz von Dienstreisen durch Videokonferenzen zur Energie- und Emissionsreduzierung beitragen. Der Verband der Elektrotechnik Elektronik Informationstechnik e.V. (VDE) hat im Jahr 2009 eine Green-IT-Studie veröffentlicht, die "Aspekte der Reduzierung des Energieverbrauchs und der Verbesserung der Energieeffizienz in Kommunikationsnetzwerken" darstellt. Angesichts des dramatisch ansteigenden Datenverkehrs muss, so die Studie, dem damit zusammenhängenden Energieverbrauch aus Umweltgesichtspunkten (Kohlenstoffdioxidausstoß) - aber auch im Hinblick auf die Betriebskosten für Netzbetreiber und private Kunden - entschieden gegengesteuert werden. Nur wenn Forschung und Entwicklung einen essenziellen Beitrag zur Verbesserung der Energieeffizienz der Informations- und Kommunikationstechnologie leiste, sei das Wachstum des Internets ohne einen signifikanten Beitrag zum Kohlenstoffdioxidausstoß möglich. Auch dies gehört zum Erbe Konrad Zuses … Interessierte Lehrkräfte können die nicht ganz günstige Studie (250 Euro) direkt beim VDE bestellen: VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Stresemannallee 15 60596 Frankfurt am Main Kontakt: itg@vde.com

  • Mathematik / Rechnen & Logik / Informatik / Wirtschaftsinformatik / Computer, Internet & Co.
  • Sekundarstufe I

Unterrichtsprojekt: Sauberes Wasser für alle

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema sauberes Wasser werden ausgehend von einer kleinen Lernplattform gezielt kindgerechte Webseiten zur Lösung der gebotenen Arbeitsaufträge besucht. 71 Prozent der Erdoberfläche sind mit Wasser bedeckt, und es kehrt in einem ewigen Kreislauf immer wieder zu uns zurück. Oberflächlich gesehen könnte es danach für alle Menschen auf der Erde genug Wasser geben. Leider ist nur ein Bruchteil des Wasservorkommens trinkbares Süßwasser, das sich immer mehr Menschen teilen müssen. Außerdem ist der weltweite Handel mit riesigen Wasserverschiebungen verbunden. Wir kaufen Produkte, für deren Herstellung viel Wasser benötigt wird, sehr oft in Ländern, in denen sowieso schon Wasserknappheit herrscht. Damit verschärfen wir dort die Wasserkrise, während es uns selbst immer besser geht. Es muss weltweit für eine gerechtere Verteilung des Trinkwassers gesorgt werden - und zwar nicht nur durch die Sensibilisierung für den Kauf von lokalen Produkten, sondern gelegentlich auch durch Direkthilfe in den betroffenen Gebieten durch Spenden. Diese fächerübergreifende interaktive Lerneinheit bietet die Plattform für eine Internetrecherche, von der aus gezielt kindgerechte Webseiten zur Lösung der Arbeitsaufträge besucht werden. Interaktive Übungen sowie Puzzles und Spiele am Computer und herkömmliche Arbeitsblätter runden die Arbeit ab. Zur theoretischen und virtuellen Aufarbeitung des Themas ist das Internet ein ideales Medium. Es gibt eine Reihe kindgerechter Seiten, die den Kindern Gelegenheit zum selbstständigen Erforschen geben. Hintergrundinformationen Wissenswerte Informationen rund um das Themenfeld Wasser und virtuelles Wasser sind hier zusammengestellt. Lernumgebung und Projektablauf Hier erfahren Sie mehr über den Aufbau der interaktiven Lernumgebung und erhalten Hinweise zur Planung der Projektarbeit. Hinweise zum Arbeitsmaterial Die interaktive Lernumgebung bietet eine Fülle von Informationsquellen und Übungen. Die dazu gehörenden Arbeitsblätter stehen hier zum Download bereit. Fachkompetenz Die Schülerinnen und Schüler können Informationen über die Lebensverhältnisse von Kindern und ihren Familien in vertrauten und fremden Ländern und Kulturen aus bereitgestellten Informationsquellen entnehmen und verarbeiten. Meldungen und Bildmaterial zu aktuellen Ereignissen in vertrauten und fremden Ländern und Kulturen aus den Tagesmedien entnehmen. bei Lösungsvorschlägen zu problematischen Lebensverhältnissen in fremden Ländern und Kulturen deren Wertorientierungen berücksichtigen. eine leicht überschaubare Entwicklungsmaßnahme als eher nachhaltig oder eher nicht nachhaltig beurteilen. Beispiele naturräumlicher Nutzung als eher nachhaltig oder eher nicht nachhaltig beurteilen. bei Entwicklungsmaßnahmen und naturräumlicher Nutzung unterschiedliche Interessen erkennen und beurteilen. aus der Kenntnis schwieriger Lebensverhältnisse von Kindern bei uns und in anderen Ländern und Kulturen ein Gefühl der Solidarität entwickeln. umweltbewusstes Verhalten im eigenen Umfeld als Beitrag zur Zukunftsvorsorge darstellen. trotz der Schwierigkeiten, problematische Lebensverhältnisse bei uns und in anderen Ländern zu ändern, Lösungsmöglichkeiten erfinden und ausprobieren. Aktionen zur Lösung von Entwicklungsproblemen vorschlagen und begründen und sind bereit, sich daran zu beteiligen. Aktionen zur Lösung von Umweltproblemen vorschlagen und begründen und sind bereit, sich daran zu beteiligen. Medienkompetenz Die Schülerinnen und Schüler können gezielte Recherchen im Internet durchführen und das Netz als Informationsquelle nutzen. eine interaktive Lerneinheit am PC bearbeiten und dabei das Prinzip der Verlinkung anwenden. ein interaktives Memo lösen. interaktive Übung durchführen (Hot Potatoes: Quiz, Zuordnungsübungen, Kreuzworträtsel). Sozialkompetenz Die Schülerinnen und Schüler können aus der Kenntnis schwieriger Lebensverhältnisse von Kindern bei uns und in anderen Ländern und Kulturen ein Gefühl der Solidarität entwickeln. sich über ein für die Schule eventuell passendes Hilfsprojekt einigen. Absprachen zur Benutzung der PC-Arbeitsplätze treffen. sich als Partner über die Reihenfolge der Aufgaben einigen. sich gegenseitig helfen. *in Auszügen entnommen aus: Orientierungsrahmen für den Lernbereich Globale Entwicklung 4.1 Grundschule: Sachunterricht und weitere Fächer, Seite 94 ff. Lernschwerpunkte Die Schülerinnen und Schüler kennen die Einteilung Salzwasser, Süßwasser, Trinkwasser. wissen, dass der größte Anteil in ihrem Körper Wasser ist. wissen, wie Flüssigkeit ausgeschieden wird und dass die ausgeschiedene Flüssigkeit ersetzt werden muss. wissen, dass wir ohne Wasser nicht leben können. wissen, dass auch Tiere und Pflanzen Wasser brauchen. kennen die Aggregatzustände des Wassers. kennen den Wasserkreislauf. wissen, wofür wir Wasser verbrauchen und wer weltweit am meisten Wasser verbraucht. wissen, dass Wasser gereinigt werden muss, und wie das geht. können ein Experiment zur Wasserreinigung durchführen. wissen, dass es verstecktes (virtuelles) Wasser bei der Herstellung von Produkten gibt. kennen den Begriff Wasserfußabdruck und finden eine Lösung, ihn zu verkleinern. haben einen Überblick über Länder mit Wassermangel. kennen Länder, die dringend Hilfe brauchen, und auch die Gründe dafür. kennen die Organisation Welthungerhilfe und ihre wichtigsten Ziele. kennen den Begriff "Hilfe zur Selbsthilfe". kennen den Begriff WASH und wissen, warum sauberes Trinkwasser und sanitäre Hygiene wichtig sind. kennen Hilfsaktionen der Welthungerhilfe und wählen die für ihre eigene Schule günstigste aus. kennen vielfältige Verben zum Element Wasser. kennen eine Wassergeschichte und ordnen ihren Verlauf chronologisch. erfinden einen eigenen Schluss zu einer Geschichte. erkennen Rechtschreibschwierigkeiten in einem Text (Diktattext). können zusammengesetzte Nomen mit "Wasser" bilden. kennen gegensätzliche Adjektive zum Element Wasser und können sie in Sätzen anwenden. kennen das Wort Wasser in verschiedenen Sprachen. Das Menschenrecht auf Zugang zu sauberem Wasser Viele Millionen Menschen haben heutzutage immer noch keinen Zugang zu sauberem Wasser. Die Welthungerhilfe ruft gemeinsam mit anderen Organisationen dazu auf, unser Möglichstes zu tun, damit allen Menschen dieser Erde sauberes Trinkwasser zur Verfügung steht. Wasser ist unser wichtigstes Lebensmittel, aber in vielen Teilen der Welt ist Trinkwasser knapp. Für diese Regionen ist noch ein anderer, bisher kaum beachteter Aspekt sehr wichtig: der Verbrauch von virtuellem Wasser. Virtuelles Wasser Virtuelles Wasser ist die Wassermenge, die zur Produktion von Gegenständen oder Lebensmitteln nötig, aber im Endprodukt nicht mehr zu finden ist. So verbergen sich etwa in einem T-Shirt 2.700 Liter virtuelles Wasser, und um ein Kilogramm Reis zu ernten, benötigt man 3.400 Liter Wasser. Der durchschnittliche direkte Wasserverbrauch beträgt in Deutschland derzeit pro Kopf und Tag etwa 126 Liter und ist damit leicht gesunken. Dazu kommen allerdings noch etwa 4.000 Liter an virtuellem Wasser. Weltweiter Wasser-Handel Problematisch dabei ist, dass wir dieses Wasser nicht aus eigenen Beständen nehmen, sondern durch den weltweiten Handel den größten Anteil davon importieren - und zwar vornehmlich aus Gebieten, die durch Dürreperioden sowieso mit Wasserknappheit zu kämpfen haben. Während wir also unsere Ressourcen schonen, lassen wir es uns auf Kosten anderer gut gehen, die oft lange Wege zurücklegen müssen, um zu Trinkwasser zu gelangen und denen sanitäre Einrichtungen fehlen. Dadurch sind Infektionskrankheiten und Epidemien vorprogrammiert. Hilfe zur Selbsthilfe Diese Regionen sind auf Hilfe von außen angewiesen, die in kleinem Rahmen auch Kinder leisten können, wenn sie sich etwa an schulischen Aktionen, die auf Anregung der Welthungerhilfe durchgeführt werden, beteiligen. Hilfe von außen bedeutet aber nicht Wasser und Lebensmittelspenden, sondern Hilfe zur Selbsthilfe: Die Menschen in den Zielländern sollen in die Lage versetzt werden, Brunnen und Pumpstationen zu bauen, Wasser bei Überfluss zu lagern und durch verbesserte Bildungsmöglichkeiten Einsicht in den Zusammenhang von Hygiene und Gesundheit gewinnen. Struktur Die interaktive Lerneinheit besteht neben der Eingangsseite aus vier weiteren Hauptseiten (Wasser-Infos, Wasser-Sprache, Wasser international, Experimente, Spiel und Spaß), einer Unterseite mit einer Kontrollmöglichkeit, sechs intern verlinkten interaktiven Übungen (Hot Potatoes-Übungen, Quiz) und 35 externen Links. Die Arbeit mit der Lernumgebung Die Arbeitsanweisungen auf vielen Arbeitsblättern beziehen sich jeweils auf direkt aufrufbare Internetseiten, was natürlich einen Internetzugang voraussetzt. Diese Arbeitsblätter sind besonders gekennzeichnet (durch ein Computer-Icon), auch auf den Deckblättern. Die internen Links dagegen können offline bearbeitet werden. Die Arbeitsblätter 1 bis 13 und die dazu gehörende Seite der interaktiven Lernumgebung (Wasser-Infos) sollten der Reihenfolge nach bearbeitet werden, da sie das Thema sukzessive entwickeln. Eine Ausnahme ist Arbeitsblatt 8: Die Aussaat der Kresse sollte als Einstieg mit der gesamten Klasse vorgenommen werden. Das Messen des benutzten Wassers kann täglich durch ein anderes Kind geschehen, das dann auch das Ergebnis bekannt gibt. Die restlichen Arbeitsblätter können je nach Neigung bearbeitet werden. Infrastruktur Organisation des Unterrichts und Zeitraum der Arbeit hängen von der Anzahl der jeweils vorhandenen PC-Arbeitsplätze ab und davon, ob sie in einem Netzwerk gemeinsamen Zugang zum Internet haben. Sinnvoll hat sich auf jeden Fall Partnerarbeit erwiesen, da sich zum einen so die Zahl der eventuell auf einen Computer wartenden Kinder halbiert und zum anderen die Partnerkinder sich gegenseitig unterstützen können. Als zusätzliches Angebot können im Bedarfsfall weitere Arbeitsblätter zur Verfügung gestellt werden, die die in der Lerneinheit angesprochenen Themen vertiefen: beispielsweise Sachbücher zum Thema anschauen, weitere Wasser-Wörter suchen, Partnerdiktat oder eine eigene Wasser-Geschichte schreiben. Integration von Sach- und Fachthemen Als Fachlehrkraft haben Sie aber auch die Möglichkeit, nur die Sachthemen zu behandeln und die Fächer Deutsch und Kunst auszuklammern, wenn der fächerübergreifende Ansatz aus stundenplantechnischen Gründen nicht oder nur sehr schwer durchführbar ist. Vorschläge aus der Klasse aufgreifen Wichtig ist außerdem die Organisation des Unterrichtsablaufs. Absprachen bezüglich der Computer-Nutzung müssen getroffen werden, da nicht alle Kinder gleichzeitig am Rechner sitzen können. Dabei sollten Vorschläge der Kinder aufgegriffen werden, weil sie erfahrungsgemäß die Einhaltung eigener Vorschläge auch selbst überprüfen. Außerdem ist festzulegen, ob die Arbeit als Partner- oder Gruppenarbeit erfolgen soll und eine entsprechende Einteilung vorzunehmen (freie Wahl, Zufallsprinzip durch Ziehen von Kärtchen oder von der Lehrkraft bestimmt). Kinder als Computer-Experten Es hat sich zudem bewährt, "Computer-Experten" zu wählen, die bei Schwierigkeiten mit dem Medium als erste Ansprechpartner fungieren sollen. So können die Kinder viele Fragen unter sich klären und selbstständig arbeiten. Selbstständig lernen Die Kinder sollten an offene Unterrichtsformen gewöhnt sein. Kenntnisse im Umgang mit dem Internet sind nicht unbedingt nötig, da die Links direkt über die Lerneinheit angesteuert werden und keine Internetadressen eingegeben werden müssen. Erklären sollte man auf jeden Fall, dass die Rückkehr auf den heimischen Rechner über den Rückwärtspfeil des Browsers erfolgt. Erfolgskontrolle Jedes Kind heftet seine fertigen Arbeitsblätter und gelösten Aufgaben in einem Hefter ab, der nach Abschluss des Projekts eingesammelt und von der Lehrerin oder vom Lehrer überprüft werden kann. Einführung Hier befindet sich eine kurze Einführung in die Arbeit mit der Lernumgebung. Die Kinder können auch zwischendurch davon Gebrauch machen, um sich Dinge ins Gedächtnis zu rufen. Wasser als Grundlagen des Lebens Die Kinder erfahren, dass die Erde der einzige bisher bekannte Planet ist, auf dem es Leben gibt, was daran liegt, dass wir Wasser haben, denn dies ist für das Leben unabdingbar. Der größte Teil unseres Planeten besteht zwar aus Wasser, aber nur ein geringes Maß davon ist auch trinkbar. Sie lernen, dass auch unser Körper zu einem Großteil aus Wasser besteht, dass wir Wasser verlieren und es dem Körper wieder zuführen müssen. Aber nicht nur wir Menschen brauchen Wasser, sondern auch Pflanzen und Tiere. Die Kinder bekommen einen Überblick über die Aggregatzustände des Wassers (fest, flüssig, gasförmig) und wiederholen den sicher schon bekannten Kreislauf des Wassers (vorgegebene Sätze werden in der richtigen Reihenfolge geordnet, die Abbildung und Informationen aus dem Internet helfen dabei) und informieren sich noch einmal über den Wasserverbrauch in Haushalten weltweit. Sie erfahren, wie man Wasser reinigt, und bauen sich ihren eigenen Wasserfilter. Hier ist es aus Raumgründen wohl angebracht, den Filter gemeinsam zu bauen und das Experiment gemeinsam durchzuführen. Virtuelles Wasser als Phänomen kennen lernen Die Kinder werten ihr Experiment mit der Kresse aus und erfahren, dass in der Pflanze verstecktes Wasser vorhanden ist und lernen den Begriff "virtuelles Wasser" kennen. Am Beispiel von Äthiopien, Kenia und der Sahelzone erfahren sie, wie diese Gebiete unter Wassermangel leiden. Der Schritt zur Einsicht, dass jeder Mensch das Recht auf sauberes Wasser hat, ist danach nicht mehr groß. Die Schülerinnen und Schüler erfahren, dass Hilfe allein nicht genügt, sondern dass Hilfe zur Selbsthilfe geboten ist, die beispielsweise die Welthungerhilfe mit ihren Projekten gibt. Das Ziel dieser Hilfe auf lange Sicht ist, als Helfer überflüssig zu werden. Die Kinder lernen das Projekt "WASH" kennen. Hier können die Kinder mit einem interaktiven Lückentext und zwei interaktiven Kreuzworträtseln das anstehende Diktat zusätzlich üben. Sie hören sich im Internet eine Wasser-Geschichte an, ordnen vorgegebene Orte aus der Geschichte in chronologischer Reihenfolge und erfinden einen eigenen Schluss. Das Gedicht von James Krüss, das sie aus dem Internet abschreiben (Arbeitsblatt 19) und in Arbeitsteilung auswendig lernen, beschreibt auf lyrische Weise den Kreislauf des Wassers. Die Kinder lernen das Wort Wasser in verschiedenen Sprachen kennen: Englisch, Französisch, Spanisch, Italienisch, Polnisch, Portugiesisch, Türkisch. Im Internet können sie sich die Wörter nicht nur ansehen, sondern auch die Aussprache üben und anschließend in zwei Zuordnungsübungen ihr Wissen überprüfen. Das interaktive Quiz wurde bestückt mit Fragen der Welthungerhilfe rund um das Thema Wasser. Hier findet zum Teil eine Wiederholung der bearbeiteten Problematik in spielerischer Form statt. Das Quiz zu den Wassergeräuschen fordert genaues Hinhören. Hier wäre es angebracht mit Kopfhörern zu arbeiten, um Nebengeräusche auszuschließen. Das Wassermemo ist eine Konzentrationsübung und kann entweder zwischendurch zur Lockerung oder zum Schluss als Belohnung durchgeführt werden. Das Eiswürfel-Experiment sollte zu Hause durchgeführt werden, weil es in der Schule schwierig wird, für alle zum richtigen Zeitpunkt Eiswürfel bereit zu halten. Die Kinder sollten aber in der Schule die Möglichkeit bekommen, sich die Internetseite zum Experiment anzusehen und zu notieren, was gebraucht wird, weil unter Umständen nicht alle Kinder zu Hause über Internetzugang verfügen. Der Wasserfußabdruck (Arbeitsblatt 9), Wassermangel 1 (Arbeitsblatt 10) Die Kinder befassen sich mit dem Begriff "Wasserfußabdruck", indem sie aufspüren, aus welchen Ländern die Produkte stammen, die sie zu Hause vorfinden. Bei einem Vergleich untereinander wird deutlich, dass die meisten Produkte nicht in Deutschland selbst produziert, sondern importiert werden. Da oft aus Ländern importiert wird, die sowieso unter Wasserarmut leiden, (Arbeitsblatt 10) erschließt sich ihnen das soziale Problem der ungerechten Nutzung unserer Wasserressourcen.

  • Technik / Sache & Technik / Biologie / Ernährung und Gesundheit / Natur und Umwelt / Ernährung & Gesundheit / Gesundheitsschutz / Pflege, Therapie, Medizin
  • Primarstufe, Sekundarstufe I, Sekundarstufe II, Spezieller Förderbedarf, Berufliche Bildung

Simulation: Ostsee der Zukunft

Unterrichtseinheit

Mithilfe von Simulationen versuchen Wissenschaftlerinnen und Wissenschaftler, Aussagen über zukünftige Ereignisse in komplexen Systemen zu machen. In dieser Lernumgebung können an einem Simulationsmodell Zukunftsszenarien für den Zustand der Ostsee, eines unserer heimischen Meere, erkundet werden. Wie wirken sich menschliche Aktivitäten auf die Ostsee und ihre Organismen aus und was bedeutet dies wiederum für die Nutzung dieses Meeres in Zukunft? Inhaltliches Hauptziel dieser Unterrichtseinheit ist es, Prozesse und Zusammenhänge der wichtigsten Veränderungen der Ostsee (Erwärmung, Eutrophierung, Versauerung und Entsalzung) und deren Auswirkungen auf repräsentative Organismen des Ökosystems (Flohkrebse, Blasentang und Epiphyten) zu vermitteln. Diese Prozesse können mithilfe eines Simulationsmodells von den Lernenden untersucht werden. Ein weiteres Ziel ist es, die daraus resultierenden Herausforderungen für das Ökosystem und für die Gesellschaft (Wasserqualität, Fischerei, Tourismus) zu verstehen und zu diskutieren. Die Materialien wurden an der Kieler Forschungswerkstatt im Rahmen des Kiel Science Outreach Campus in Zusammenarbeit von Wissenschaftlerinnen und Wissenschaftlern aus den Bereichen Meeresökologie, Medienpsychologie und Fachdidaktik entwickelt. Zur Webseite der Simulation und zu den Materialien gelangen Sie über den Link am Ende dieser Seite. Um einen authentischen Einblick in die Wissenschaft zu geben, basiert das Modell einer Computersimulation auf echten wissenschaftlichen Daten. Es ist ratsam, vor dem Einsatz der Simulation die einzelnen Prozesse der Veränderungen (Erwärmung, Versauerung, Eutrophierung und Salzgehaltsunterschiede) mit ihren Auswirkungen auf das Ökosystem Ostsee inhaltlich zu behandeln, da in der Simulation (zumindest im zweiten Schritt) diese vier Veränderungen inklusive ihrer gegenseitigen Abhängigkeiten gleichzeitig untersucht werden. Darüber hinaus werden auf Grundlage der veränderten Variablen direkt mögliche Auswirkungen auf das Gesamtsystem (Wasserqualität, Fischerei und Tourismus) gezeigt. Zur Vermeidung von Desorientierung und um eine kognitive Überlastung zu vermeiden, bearbeiten die Schülerinnen und Schüler ein begleitendes Skript, in dem sie die Ergebnisse ihrer Arbeit zusammenfassen. Diese Aufgaben stehen sowohl als digitales (eingebettet in die Website der Simulation) als auch analoges Format zur Verfügung. Um den Lernenden eine eigenständige Bearbeitung auch ohne Anleitungen der Lehrkraft zu ermöglichen, steht auf der Website unter dem Reiter "Anleitung" eine Schritt-für-Schritt-Erklärung zur Verfügung. Zunächst müssen sich die Lernenden kurze informative Audiodateien zu jeder Variable (= Veränderungen und Organismen) der Simulation anhören, bevor der interaktive Modus aktiviert wird. Dadurch wird ein grundlegender und gleicher Informationsstand gewährleistet. Danach können sie in einem interaktiven Modus selbstbestimmt mit der Simulation interagieren. Die Benutzeroberfläche ermöglicht es, die verschiedenen Veränderungen durch Bewegen eines Schiebereglers einzustellen und zu manipulieren. Die Lernenden können in Echtzeit beobachten, wie sich die von ihnen vorgenommenen Änderungen auf die Populationen der drei Organismen auswirkt. Um das Lernen mit der multidimensionalen Struktur der Simulation zu unterstützen, wurden Elemente wie Toolboxen mit Informationen über jede Veränderung und die verschiedenen Organismen implementiert. Die Schülerinnen und Schüler lernen zu Beginn anhand des (digitalen) Skripts mithilfe von Texten, Abbildungen und Videos die einzelnen Variablen der Simulation kennen. Anschließend sollen sie einzelne Veränderungen der Ostsee in unterschiedlichen Ausprägungen simulieren und die Auswirkungen auf die Organismen beobachten, beschreiben und erklären. Die Auswirkungen auf die Organismen werden dabei direkt in Wechselwirkung dargestellt. Das bedeutet, dass auch indirekte Auswirkungen sichtbar sind. Zum Beispiel führt ein geringerer Salzgehalt zu einer geringeren Population von Flohkrebsen (direkte Auswirkung), was wiederum zu einer Zunahme von Epiphyten führt und sich somit negativ auf die Entwicklung von Blasentang auswirkt (indirekte Auswirkungen). Anschließend müssen die Lernenden mehrere Parameter gleichzeitig verändern und die Auswirkungen auf der Ebene der Organismen untersuchen und beschreiben. Weitere Auswirkungen können mit einem dreistufigen Smiley-System am unteren Rand des Bildschirms gleichzeitig beobachtet werden. Auf diese Weise werden die Wechselwirkungen und Zusammenhänge der verschiedenen Veränderungen und Organismen mit zunehmender Komplexität erforscht. Schließlich diskutierten die Lernenden in ihrer Gruppe die Auswirkungen auf der systemischen Ebene und diskutieren mögliche Maßnahmen zum Schutz der Ostsee. Die Simulation "Ostsee der Zukunft" kann aufgrund der ausführlichen Erläuterungen auch ohne weitere ökologische Vorkenntnisse verwendet werden. In diesem Fall ist es jedoch ratsam, die Lernenden zu einer aufmerksamen Lektüre der erklärenden Informationen aufzufordern. Ansonsten wird unter Umständen ein systemisches Verständnis der komplexen Zusammenhänge nicht erreicht. Für ein vertiefendes Verständnis der Auswirkungen anthropogener Einflüsse auf ein Ökosystem wird daher der Einsatz der Simulation als Vertiefung oder Transfer einer Unterrichtseinheit zum Thema Ökosystem Ostsee empfohlen. Besonders ratsam ist dabei die Behandlung der abiotischen und biotischen Faktoren im Ökosystem Ostsee. Die Unterrichtseinheit lässt sich vor allem in den Fachanforderungen der Sekundarstufe II des Fachs Biologie im Themenbereich Ökologie einordnen. Ein Einsatz ist auch im Fach Geografie am Ende der Sekundarstufe I im Themenbereich Ozeane möglich. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigCompEdu Modell) Die Nutzung der browserbasierten Lernumgebung stellt keine besonderen technischen Anforderungen an die Lehrkraft. Die Lernumgebung sollte allerdings im Vorfeld hinsichtlich der Vorkenntnisse und Fähigkeiten der Lernenden – auch solcher mit besonderen Bedürfnissen – reflektiert (5.1) und gegebenenfalls mit Unterrichtselementen ergänzt werden, die eine Teilhabe aller ermöglicht. Der Einsatz dieser Lernumgebung sollte unter Berücksichtigung der Lerngruppe in eine entsprechende thematische Einheit (Ökosysteme, Anthropozän, Nachhaltigkeit, Meer, ...) eingebettet werden (2.1). Bei der geplanten Nutzung der Simulation im Rahmen einer Gruppenarbeit stellt die Unterstützung gemeinschaftlichen/kollaborativen Lernens in Gruppen (3.3) einen wichtigen Aspekt dar, um allen Teilnehmenden Lernfortschritte zu ermöglichen. Je nach konkretem Einsatz der Simulation in offeneren Kontexten – wie zum Beispiel flipped classroom oder Projektarbeit – ist selbstgesteuertes Lernen (3.4) erforderlich beziehungsweise muss ermöglicht werden. Eine aktive Einbindung der Lernenden (5.3) wird über die Kontextsetzung eines tatsächlich existenten und stärker zu werden drohenden Umweltproblems in der Ostsee erreicht. Bei der Erarbeitung von Handlungsoptionen müssen die Lernenden dabei begleitet werden, ihr in der Lernumgebung erworbenes Wissen auf komplexe Zusammenhänge anzuwenden. Fachkompetenz Die Schülerinnen und Schüler beschreiben verschiedene anthropogene Einflüsse auf das Ökosystem Ostsee. nennen drei Organismengruppen der Ostsee und deren Eigenschaften. verwenden und interpretieren aus einer modellhaften Simulation gewonnene Daten. können verschiedene Auswirkungen anthropogener Einflüsse auf die Ostsee erklären. entwickeln und bewerten Handlungsoptionen für den Schutz der Ostsee. Medienkompetenz Die Schülerinnen und Schüler analysieren Informationen und Daten, interpretieren und bewerten sie kritisch. bewerten und nutzen digitale Lernmöglichkeiten. nutzen digitale Medien (hier: eine Simulation) für die Meinungsbildung und Entscheidungsfindung. 21st Century Skills Die Schülerinnen und Schüler eignen sich themenorientiert disziplinäres und interdisziplinäres Wissen zum systemischen Verständnis eines komplexen Problems an. treffen Vorhersagen auf Grundlage einer digitalen Simulation. wenden erworbenes Wissen auf ein "epochaltypisches Schlüsselproblem" (die Auswirkung anthropogener Veränderungen von Ökosystemen auf die Lebensgrundlagen) an. erlangen/festigen Teilkompetenzen des kritischen Denkens. entwickeln in Co-Agency mit Lehrpersonen mögliche Handlungsoptionen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Geographie / Jahreszeiten
  • Sekundarstufe II

Ökosystem Wald: kleiner Käfer, großer Schädling

Unterrichtseinheit

Diese Unterrichtseinheit zum Ökosystem Wald befasst sich mit dem Einfluss von Bergkiefernkäfern auf das Waldökosystem in Nordamerika. Im Rahmen des Klimawandels und der damit einhergehenden Prozesse kommt es auch zu gravierenden Veränderungen in den Ökosystemen. West- und Nordamerika zählen zum natürlichen Verbreitungsgebiet des Bergkiefernkäfers, jedoch breitet er sich in den letzten Jahren auch in die borealen Wälder Kanadas aus. Insbesondere wärmere Sommer und mildere Winter begünstigen die Ausbreitung und massenhafte Vermehrung der Käfer. Mithilfe von hyperspektralen Satellitenbildern und daraus abgeleiteten Vegetationsindizes erhalten die Schülerinnen und Schüler einen Überblick über die Möglichkeiten zur Erfassung von Käferschäden. Diese Erkenntnisse werden mit Hintergrundwissen zu den Themen hyperspektrale Fernerkundung, Interaktion zwischen Käfer und Baum sowie grundlegendes Wissen über Aufbau und Funktion der Sprossachse ergänzt. Das Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Einordnung in den Lehrplan Der Lehrplan Biologie für die Sekundarstufe I sieht in Nordrhein-Westfalen das Inhaltsfeld "Energiefluss und Stoffkreisläufe" mit dem Bereich "Erkundung und Beschreibung eines ausgewählten Biotops (Produzenten, Konsumenten, Destruenten)" sowie das Inhaltsfeld "Angepasstheit von Pflanzen und Tieren an die Jahreszeiten" mit dem Bereich "Entwicklung exemplarischer Vertreter der Wirbeltierklassen und eines Vertreters der Gliedertiere" vor. Die Betrachtung von Wäldern aus Satellitenperspektive bietet sich innerhalb dieses Themenkomplexes besonders an, da anhand der Bilder anschaulich gezeigt werden kann, wie großflächige Vegetationsmuster unter dem Einfluss auch der kleinsten sichtbaren Lebewesen stehen und von ihnen beeinflusst werden. Die eingesetzte Methodik der zeitlichen Veränderung eines Vegetationsindexes orientiert sich dabei stark an tatsächlich in der Wissenschaft eingesetzten Techniken. Zudem wird in diesem Zusammenhang im Lehrplan Biologie die Nutzung digitaler Medien explizit gefordert. Sie sollen bei der Planung, Durchführung und Auswertung von Experimenten sowie bei der Darstellung und der Simulation fachlicher Sachverhalte ebenso eingesetzt werden wie bei der Suche nach Informationen, der Präsentation und der Kommunikation von Überlegungen und Ergebnissen. Zielsetzung Das Ziel der Unterrichtseinheit "Ökosystem Wald: kleiner Käfer, großer Schädling" besteht darin, grundlegende Funktionen und Zusammenhänge im Waldökosystem und durch den Klimawandel induzierte Veränderungen zu verstehen. Ferner schult die Unterrichtseinheit den Umgang mit abstrakten Darstellungen (Satellitenbild) von bekannten Landschaftseinheiten. Inhalte und Einsatz im Unterricht Hier erhalten Sie Hinweise zum Aufbau der Lernumgebung "Ökosystem Wald: kleiner Käfer, großer Schädling". Die Abbildungen veranschaulichen die Funktionen und die interaktiven Übungen zu den Themenfeldern "invasive Arten" und "Waldökosystem". Die Schülerinnen und Schüler interpretieren hyperspektrale Satellitenbilder und leiten aus ihnen den Befall mit Bergkiefernkäfern ab. beschreiben den Einfluss von Bergkiefernkäfern auf das Waldökosystem. bekommen ein Verständnis für die Zusammenhänge zwischen Klimawandel, Käferbefall und Abwehrmechanismen der Bäume. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit "Okösystem Wald: kleiner Käfer, großer Schädling" bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Computer nicht als reines Informations- und Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "Kleiner_Käfer_großer_Schädling.exe" gestartet. Unter anderen Betriebssystemen wird die Datei "Kleiner_Käfer_großer_Schädling.html" in einem Webbrowser geöffnet. Hierfür wird der Adobe Flash Player benötigt. Wichtig ist in beiden Fällen, dass die heruntergeladene Ordnerstruktur erhalten bleibt. Der jeweils aktivierte Bereich wird auf der unteren Leiste der Lernumgebung eingeblendet (Abbildung 1). Während der erste Teil einen Einblick in die Thematik liefert und eine übergeordnete Aufgabenstellung benennt, gliedert sich der Rest des Moduls in zwei Sequenzen: Der erste Teil bietet Hintergrundinformationen zum Thema "Ökosystem Wald". Im zweiten Teil werden die Schüler aktiv und wenden eigenständig Bildbearbeitungsmethoden zur Lösung von entsprechenden Aufgaben an. Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. Inhalte im Überblick 1. Einleitung Nach dem Start des Lernmoduls sehen die Schülerinnen und Schüler einen Einführungskasten, der kurz in das Thema "Invasive Arten" einleitet und den Aufbau der Lernsequenz erklärt. Das Bild zeigt deutlich die Schäden, die der Bergkiefernkäfer in Colorado (USA) verursacht hat. Der erste Teil des Lernmoduls legt als Hintergrundwissen die Grundlagen für die spätere Arbeit mit den Satellitenbildern im zweiten Modulteil. In diesem Teil werden grundlegende Inhalte vermittelt, wie zum Beispiel der Unterschied zwischen multispektralen Satellitenbildern - sie enthalten nur wenige Kanäle, die bestimmte Spektralbereiche repräsentieren - und hyperspektralen Bildern, die weit über hundert verschiedene Kanäle umfassen können. So ist es mit der hyperspektralen Fernerkundung beispielsweise möglich, den Wasser- und Chlorophyllgehalts in Blättern aus dem All zu bestimmen. Nach dieser Einführung in die Fernerkundung erhalten die Schülerinnen und Schüler einen Überblick über die Lebensgewohnheiten und die systematische Einordnung des Bergkiefernkäfers. Ferner wird der Aufbau der Sprossachse von Nadelbäumen kurz erklärt. Dies ist wichtig, da die Schülerinnen und Schüler nur so nachvollziehen können, warum ein Käferbefall zum Absterben des Baumes führt. Im zweiten Modulteil stehen den Schülerinnen und Schülern mehrere Einzelbilder zur Verfügung, die verschiedene Kanäle repräsentieren. Die aufgenommenen Szenen zeigen das Gebiet rund um den Grand Lake (Rocky Mountain National Park Colorado USA). Die Bilder stammen vom amerikanischen Satellitensensor Hyperion EO-1. Ein Pixel deckt 90 qm ab; man kann also nicht viel erkennen. Erst durch die Berechnung des Vegetationsindex NDVI wird deutlich, wo gesunde Pflanzen zu finden sind: Besonders hohe NDVI-Werte deuten auf einen guten Gesundheitszustand der Vegetation hin. Durch den Käferbefall vertrocknen die Bäume und sterben sukzessive ab. Dieser Prozess geht mit einer Abnahme des Chlorophyllgehalts und somit des NDVI einher. Diese Veränderungen lassen sich gut im Satellitenbild erkennen. Es stehen insgesamt zwei EO-1 Hyperion-Bilder mit jeweils zwei Kanälen für das Jahr 2004 und 2012 zur Verfügung. Die Schülerinnen und Schüler sollen sich in einem ersten Schritt mit den ungewöhnlichen Aufnahmen vertraut machen. In einem zweiten Schritt sollen sie die NDVI-Werte innerhalb der Waldgebiete berechnen und vergleichen. Dazu können sie die Differenz zwischen den beiden NDVI-Bildern (2004 und 2012) berechnen. Abschließend können sie Waldgebiete identifizieren, in denen sich der NDVI-Wert signifikant verändert hat (weiße Flächen). Die Schülerinnen und Schüler können so relativ einfach vom Käfer befallene Flächen ausmachen und quantifizieren. Ziel ist es, dass sie lernen, die im Differenzbild enthaltenen abstrakten Informationen einem konkreten Prozess (Käferbefall) zuzuordnen. Haben die Schülerinnen und Schüler die Veränderungsdetektion durchgeführt und die gestellten Aufgaben beantwortet, können sie durch Beantworten der Fragen im zweiten Quiz die Bearbeitung des Moduls abschließen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

Meer-Strom

Unterrichtseinheit

In diesem Lernmodul lernen die Schülerinnen und Schüler einige Möglichkeiten zur Stromerzeugung aus dem Meer kennen und lösen dazu verschiedene Aufgabenstellungen.Alle, die schon einmal mit den Füßen in der Meeresbrandung standen, konnten die Kraft der Wellen spüren. Obwohl ein Großteil der Erdoberfläche von Meer bedeckt ist, wird diese Energiequelle bisher nur in geringem Umfang zur Stromerzeugung genutzt. Viele Ideen befinden sich noch im Forschungs- und Entwicklungsstadium. In diesem interaktiven Lernmodul können sich die Schülerinnen und Schüler anhand verschiedener Beispiele kritisch mit dem Meer als regenerative Energiequelle auseinander setzen. Selbstgesteuertes Lernen Das didaktische Konzept fokussiert eine weitgehend selbstständige Erarbeitung der Inhalte. Der hohe Grad an Interaktivität und die multimediale Aufbereitung der Themen regen zum Nachforschen an. Grafische Elemente können per Drag & Drop so positioniert werden, dass dadurch inhaltliche Aussagen entstehen, zum Beispiel bei der Positionierung von Meereskraftwerken auf einer Weltkarte. Arbeitsergebnisse können in einem virtuellen Rucksack verstaut und später an geeigneter Stelle wieder ausgepackt werden. So werden Inhalte wiederholt und vertieft. Bei Bedarf können eigene Inhalte (Texte und Bilder) einfach eingefügt werden. Anpassung an individuelle Anforderungen Beim Beenden der Lerneinheit bietet das Modul die Möglichkeit, die Arbeitsergebnisse zu speichern. So kann zu einem späteren Zeitpunkt die Beschäftigung an der gleichen Stelle wieder aufgenommen werden. Dies ist nicht nur für Lernende, sondern auch für Lehrkräfte interessant: Die Option, eigene Aufgabentexte und andere digitale Materialien einzufügen, abzuspeichern und den Lernenden zur Verfügung zu stellen, ermöglicht die Erstellung individualisierter Lernmodule. Inhalte des Lernmoduls Auf dieser Seite finden Sie detaillierte Informationen zu den Inhalten des Lernmoduls. Screenshots geben einen Eindruck von der grafischen Oberfläche. Nutzung im Unterricht Hier finden Sie Hinweise zur Nutzung des Lernmoduls. Was muss an Vorbereitung stattfinden? Wie kann die Beschäftigung mit dem Lernmodul organisiert werden? Fachkompetenz Die Schülerinnen und Schüler lernen verschiedene Möglichkeiten zur Energiegewinnung aus dem Meer kennen. werden sich über das Funktionsprinzip eines Osmosekraftwerks klar. betrachten Meeresströmungskraftwerke im Vergleich zu Windkraftanlagen. setzen sich mit der Problematik von Gezeitenkraftwerken auseinander. Medienkompetenz Die Schülerinnen und Schüler bedienen eine interaktive Lernumgebung. entnehmen Informationen zur Thematik aus einem Text, verstehen wesentliche Aussagen und geben sie in eigenen Texten wieder. Zu Beginn des Lernmoduls werden bildliche Impressionen angeboten, die die Nutzer auf sich wirken lassen sollen (Abb. 1, zur Vergrößerung anklicken). Insgesamt stehen sieben Bilder zur Verfügung. Durch Anklicken der kleinen Bilder am unteren Ende der Seite können diese vergrößert werden. Themen sind beispielsweise Tidenhub, Wasserpegel, globale Meeresströmungen und Stauwerke. In einer Textbox sollen die Gedanken, die beim Betrachten in den Sinn kommen, festgehalten werden. Diese Textbox kann durch Klick auf die rechte Maustaste im virtuellen Rucksack gespeichert und zum Abschluss des Lernmoduls erneut aufgerufen werden. Diese Seite stellt mithilfe von Infotexten und Abbildungen verschiedene Typen von Meereskraftwerken vor (Abb. 2). Zum Überprüfen des Textverständnisses sollen die Lernenden anschließend per Mausklick entscheiden, ob die Aussagen in einer Textbox richtig oder falsch sind. Als Auswertung werden zu den jeweiligen Antworten Kommentare als Feedback eingeblendet. Den unterschiedlichen Salzgradienten zwischen Süß- und Salzwasser nutzen Osmosekraftwerke, um damit eine Turbine anzutreiben (Abb. 3). In einer Grafik wird die Funktionsweise eines Osmosekraftwerkes vereinfacht dargestellt. Der Arbeitsauftrag dazu lautet, die Beschriftung dieser Grafik per Drag & Drop richtig zuzuordnen. Ein Infotext hilft dabei. Das "Oyster" genannte Wellenkraftwerk vor der Küste Schottlands hat seinen Namen aufgrund des Klappmechanismus erhalten, der an eine Muschelschale erinnert (Abb. 4). Die Schülerinnen und Schüler sollen sich mit möglichen Vor- und Nachteilen dieser Form der Energiegewinnung auseinander setzen und ihre Antworten in eine Texbox eintragen. Die nächsten beiden Kapitel des Lernmoduls thematisieren zwei schwimmende Konstruktionen: einmal das Wellenkraftwerk "Pelamis", nach dem griechischen Wort für Seeschlange, und der Wellendrache, englisch "Wave Dragon" genannt (Abb. 5). Mit ihrem eigenen Worten sollen die Lernenden jeweils die Funktionsweise dieser beiden Wellenkraftwerke in einer Textbox erläutern. Abbildungen und Fotos dienen zur Illustration. Manche Meeresströmungskraftwerke sind mit ihren Rotoren denen von Windkraftanlagen gar nicht unähnlich. Im Beispiel wird das Kraftwerk "Seaflow" vorgestellt, das vor der Küste von Südengland steht (Abb. 6). Der Arbeitsauftrag fordert die Lernenden dazu auf, Wind- und Meeresströmungskraftwerke im Vergleich zu betrachten. Ein weiteres Beispiel für Energiegewinnung aus dem Meer sind Gezeitenkraftwerke. Diese nutzen die Änderung der Strömungsrichtung des Wassers bei Ebbe und Flut an Flussmündungen (Abb. 7). In dem Arbeitsauftrag sollen sich die Lernenden mit den Umweltauswirkungen dieser Staudamm-Bauwerke auseinandersetzen. Im letzten Kapitel können die Schülerinnen und Schüler noch einmal die verschiedenen Kraftwerkstypen der vorangegangenen Kapitel aufgreifen und ihr erworbenes Wissen anwenden (Abb. 8). Sie sollen auf einer Weltkarte verschiedene Meereskraftwerke positionieren und ihre Wahl anschließend begründen können. Ausführbares Programm Zur Nutzung des Lernmoduls müssen Sie die Datei "zukunft-der-energie.exe" (siehe Startseite dieser Unterrichtseinheit) kostenlos heruntergeladen und installieren. Bei der Installation wird ein neues Icon auf Ihrem Desktop angelegt: Wissenschaftsjahr 2010 - Die Zukunft der Energie. Durch Doppelklick auf dieses Icon erscheint eine Auswahl mehrerer Lernmodule. Zum Starten des entsprechenden Lernmoduls klicken Sie bitte auf die zugehörige Grafik. Internetzugang notwendig Die installierte Software bietet Ihnen den Zugang zu verschiedenen Lernmodulen. Zum Starten eines Lernmoduls benötigt diese Software allerdings Daten aus dem Internet. Das Programm "kennt" die Adresse, Sie müssen nur sicherstellen, dass Ihr Computer Internetzugang hat. Vorteil dieser Methode ist, dass Sie immer auf die aktuellste Version des Lernmoduls zugreifen. Überblick verschaffen Zunächst sollten Sie sich selbst mit dem Lernmodul vertraut machen. Dazu bietet Ihnen das Lernmodul eine integrierte Hilfe-Funktion. Ein sogenannter "Schnelleinstieg" (siehe Abb. 9) zeigt alle zur Verfügung stehenden Funktionen. Da alle Lernmaterialien und Aufgabenstellungen in dem Lernmodul integriert sind, wird Ihr Einstieg voraussichtlich nicht viel Zeit benötigen. Mögliche Individualisierung Bitte beachten Sie, dass Sie eigene Texte und Bilder einbinden können. Damit bietet Ihnen das Lernmodul die Möglichkeit, individuelle Aufgabenstellungen zu integrieren. Unter dem Menüpunkt "Funktionen" oder über einen Klick auf die rechte Maustaste können Sie eine Notiz (in Textform), eine Tabelle oder ein Medienelement (in der Regel ein Bild) einfügen. Interessant ist in diesem Zusammenhang die Möglichkeit, die individualisierte Version der Lernumgebung abzuspeichern. Die zugehörige Datei mit der Endung ".wj2010" kann auf einem beliebigen Datenträger gespeichert, kopiert und verteilt werden. Ihre Schülerinnen und Schüler können nach dem Starten des Lernmoduls über die Funktion "Öffnen" die spezielle Version der Lernumgebung einlesen. Präsentieren oder Entdecken Natürlich sollten Sie den Lernenden zunächst die Möglichkeit geben, sich mit der Bedienung der Plattform vertraut zu machen. Es bietet sich an, anhand einer Beamer-Präsentation die wichtigsten Funktionen zu erläutern. Sie können aber auch Ihren Schülerinnen und Schülern den Auftrag geben, sich mit dem "Schnelleinstieg" zu beschäftigen und ihnen etwas Zeit geben, sich selbst mit der Umgebung vertraut zu machen. Zahlreiche Hilfestellungen Bei der Erarbeitung neuer Inhalte tauchen immer wieder Begriffe auf, die für viele Lernende erklärungsbedürftig sind. Daher sind viele Begriffe mit Zusatzinformationen hinterlegt, die beim Anklicken erscheinen. Zusätzlich bietet ein integriertes Lexikon Erläuterungen zu zahlreichen Themen. Das Lernmodul ist so konzipiert, dass Ihre Schülerinnen und Schüler selbstständig die Seiten bearbeiten können. Auf jeder Seite gibt es spezifische Aufgaben und gegebenenfalls zugehörige Hilfestellungen. Bei Bedarf kann im Internet recherchiert werden. Abspeichern Das bearbeitete Lernmodul kann jederzeit gespeichert werden. Dabei bietet es sich an, dass die Schülerinnen und Schüler eine für sie oder ihre Gruppe individuelle Datei-Bezeichnung auswählen, zum Beispiel "michael_schmidt_meerstrom.wj2010". Dadurch wird einerseits gewährleistet, dass nicht durch versehentliches Vertauschen von Dateien Inhalte verloren gehen. Andererseits haben Sie dadurch die Möglichkeit, detaillierte Einsicht in die Arbeitsergebnisse zu erhalten. Präsentieren Insbesondere wenn das Lernmodul in Gruppen bearbeitet wurde, bietet es sich an, dass jede Gruppe ihre Arbeitsergebnisse vorstellt. Dazu kann entweder per Beamer die relevante Seite projiziert werden. Die Lernumgebung bietet aber auch die Möglichkeit, den Bildschirminhalt auszudrucken.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Was ist multimediales Lernen?

Fachartikel
5,99 €

Vor dem Hintergrund klassischer und moderner lernpsychologischer Theorien beschreibt dieser Artikel die Grundlagen des multimedialen Lernens und gibt Lehrkräften Hinweise, worauf sie bei der Gestaltung multimedialer Lernformate achten sollten. Einführung Die rapide Entwicklung der Digitalisierung hat Lehrkräften unzählige Wege eröffnet, Lerninhalte zu gestalten und Lernenden bereitzustellen. Neben den bewährten analogen Medien wie Schulbüchern, Tafel, Arbeitsblättern etc. können wir heute auf zahlreiche digitale Werkzeuge wie Animationen, interaktive Elemente, Soundeffekte etc. zugreifen, mit denen Lerninhalte anschaulicher vermittelt werden können. Integriert man unterschiedliche Medien in den Unterricht, so spricht man von einer multimedialen Lernumgebung, die sich meist positiv auf den Lernprozess auswirkt. Was ist multimediales Lernen? In Lehr- und Lernkontexten wird der Begriff Multimedialität auf die Kombination zwischen visuellen und verbalen Darstellungsweisen bezogen (Scheiter, Richter und Renkl 2018: 32). Man geht davon aus, dass Lernende in multimedialen Lernumgebungen Informationen durch mehrere Sinne aufnehmen und sie in bildlicher und akustisch-sprachlicher Form gleichzeitig verarbeiten. Diese Art des Lernens aus Wörtern und Bildern bezeichnet Meyer (2014: 1) als multimediales Lernen; eine Lernform, die die Verarbeitung größerer Informationsmengen, den Aufbau vielfältiger Wissensrepräsentationen und die wirksamere Steuerung von Lernprozessen verspricht (Schmidt-Borcherding 2020: 63, Meyer 2022: 145). Doch stellt sich dieser positive Effekt automatisch ein? Um die Vorteile multimedialer Lernumgebungen optimal zu nutzen, bedarf es eines grundlegenden Verständnisses der Funktionsweise des Gedächtnisses und der kognitiven Informationsverarbeitungsprozesse, denn multimediale Lernumgebungen sind nur wirksam, wenn sie so konstruiert werden, dass sie der Arbeitsweise des Gehirns gerecht werden (Seifert 2023). Im Folgenden werden vier wichtige Modelle beschrieben, die dieses Grundverständnis ermöglichen. Das Dreispeichermodell Ein bewährtes Modell, das die Entwicklung multimedialer Lerntheorien angestoßen hat, ist das Dreispeichermodell von Atkinson und Shiffrin (1968). Demnach verfügt das Gedächtnis über drei Subsysteme: das sensorische Register , mit dem äußere Reize wahrgenommen werden; das Kurzzeit- oder Arbeitsgedächtnis , in dem Informationen zwischengespeichert und durch Abruf bestehender Gedächtnisinhalte weiterverarbeitet werden; und das Langzeitgedächtnis , welches „anders als die beiden anderen Gedächtnisstrukturen eine unbegrenzte Kapazität für die Speicherung von Informationen aufweist“ (Scheiter, Richter und Renkl 2018: 34). Lehrkräfte können dieses Modell nutzen, um die drei Phasen der Informationsverarbeitung und -speicherung zu verstehen und multimediale Lerninhalte so zu gestalten, dass diese Prozesse bestmöglich ablaufen. So ist es beispielsweise ratsam, klare und strukturierte Präsentationstechniken zu verwenden, um die Fülle äußerer Reize zu beschränken oder die Informationsverarbeitung durch Wiederholungstechniken zu unterstützen. Auch Assoziationstechniken wirken sich positiv auf die Speicherung von Informationen aus. Theorie der dualen Kodierung Paivio (1986) entwickelte ein Modell, das die mentale Informationsrepräsentation im Gedächtnis näher erklärt. Nach ihm können Informationen über zwei Kanäle verarbeitet werden: einen verbalen Kanal , der sprachliche Informationen verarbeitet; und einen nicht-verbalen Kanal , der sensorische, episodische, räumliche und emotionale Informationen in Form von Bildern verarbeitet (Clark und Paivio 1991: 151f.). Beide Kanäle können zwar unabhängig voneinander funktionieren, aber wenn Informationen durch beide Kanäle gleichzeitig verarbeitet werden, entsteht eine doppelte mentale Repräsentation im Gedächtnis , das heißt dieselben Informationen werden sprachlich und bildhaft gespeichert. Eine solche doppelte Kodierung ermöglicht ein besseres Verständnis und eine langfristige Speicherung (Schmidt-Bocherding 2020: 64). Diese Erkenntnis steht im Zentrum moderner multimedialer Lerntheorien und verdeutlicht Lehrkräften, wie wichtig es ist, Lerninhalte doppelt-kodiert, das heißt in bildlicher und sprachlicher Form, darzubieten. Theorie der kognitiven Belastung Chandler und Sweller (1991) haben herausgefunden, dass jeder Reiz, der ins Arbeitsgedächtnis gelangt, eine gewisse kognitive Belastung hervorruft (Sweller 2004: 12). Wenn die Belastungsintensität zu hoch ist, kommt es zur Überforderung und Informationen können nicht zu mentalen Repräsentationen für die dauerhafte Speicherung verarbeitet werden. Wenn äußere Reize beispielsweise nur in sprachlicher Form wahrgenommen werden, erbringt das Arbeitsgedächtnis eine höhere Leistung, um eine passende visuelle Repräsentation zu erzeugen (Chandler und Sweller 1991: 295f.). Nach diesem Modell können Lehrkräfte Einfluss auf den Lernprozess nehmen, indem sie beispielsweise unerwünschte Informationen und Reize reduzieren (ISB-Arbeitskreis Mediendidaktik 2023), doppelt-kodiertes Input anbieten und den Abruf von Wissensbeständen mithilfe von Vorwissensaktivierungsmethoden unterstützen. Kognitive Theorie des multimedialen Lernens Die vorherigen Ansätze verbindet Mayer (2014, 2022) in seiner Theorie des multimedialen Lernens. Er stimmt damit überein, dass verbal und bildlich kodierte Informationen die kognitive Belastung verringern und somit besser gespeichert werden. Er setzt sich jedoch genauer mit den Verarbeitungsmechanismen des Arbeitsgedächtnisses auseinander und verweist auf vier wichtige Prozesse: Aufmerksamkeitssteuerung, Selektion, Organisation und Integration (Mayer 2014: 50). Klicken Sie auf die Plus-Zeichen der Abbildung, um eine Beschreibung der Phasen des Modells zu erhalten:

  • Fächerübergreifend
  • Sekundarstufe II, Sekundarstufe I, Berufliche Bildung, Primarstufe

WiLM@ – Schreiben im Mathematikunterricht

Fachartikel

"Ich schreibe es dir mal auf, dann verstehst du es!" – Dieser Beitrag beschreibt eine internetbasierte Lernumgebung zum Schreiben im Mathematikunterricht der Grundschule und erläutert deren didaktischen Hintergrund. "Ich bin fertig!", "Ich hab' die Lösung!" - Wie oft hört man solche oder ähnlich klingende Äußerungen von Schülerinnen und Schülern, die den Auftrag zum Lösen einer Aufgabe erhalten haben. Meist wird aus diesen Lösungen allerdings nicht ersichtlich, in welcher Weise die Lernenden auf das Ergebnis gekommen sind. Diese "schwer zugängliche Gedankenwelt" (Kuntze/ Prediger) bleibt den Lehrkräften und auch den Mitschülerinnen und Mitschülern oft unerschlossen. Doch gerade das Verschriftlichen des eigenen Lösungswegs enthält neben der Annäherung an das Thema auch die Möglichkeit einer vertiefenden Auseinandersetzung und Verarbeitung der mathematischen Inhalte. Zudem werden die individuellen Gedankengänge der Schülerinnen und Schüler auch für die Lehrperson und die Mitschülerinnen und Mitschüler transparenter. In diesem Artikel wird die für das Schreiben im Mathematikunterricht entwickelte Lernumgebung WiLM@ (Wiki-basierte Lernumgebung zum kooperativen Lernen im Mathematikunterricht der Primarstufe) vorgestellt. Inhaltsaspekte von WiLM@ Zahlreiche Interaktionsmöglichkeiten Die Lernumgebung WiLM@ hält viele Interaktionsmöglichkeiten zwischen den beteiligten Schülerinnen und Schülern bereit, die hier mit Bezug auf Koch/Oesterreicher genauer charakterisiert werden soll. Diese unterscheiden in ihrem linguistischen Ansatz Mündlichkeit und Schriftlichkeit in zwei Dimensionen - in eine konzeptionelle und eine mediale (Koch/Oesterreicher 1985). WilM@ lässt sich daher in eine konzeptionell-mündliche und medial-schriftliche Kommunikationsform einordnen. Aspekte der schriftlich-grafischen Kommunikation Da eine mündliche Interaktion zwischen den Schülerinnen und Schülern mit WiLM@ nicht möglich ist, wird eine schriftlich-grafische Kommunikation erforderlich. Diese Kommunikation kann zeitgleich (synchron) oder zeitversetzt (asynchron) geschehen. Werden Aufgaben gleichzeitig bearbeitet, so liegt eine synchrone Kommunikation vor. Die Schülerinnen und Schüler können im Whiteboardfenster die Entstehung einer Lösung zeitgleich verfolgen, an ihr weiterarbeiten und bei Bedarf mit dem Kommentarfeld über die Tastatur Ideen und Gedanken "quasi - synchron" veröffentlichen. Beziehen sich die Kinder auf eine zeitlich zurückliegende Lösung, die in der Datenbank abgespeichert ist, kann von einer asynchronen Kommunikationsform gesprochen werden. Diese zum Teil synchrone, zum Teil asynchrone Kommunikationsform unterstützt kooperatives Lernen im Unterricht. Aktivität und Oeuvre Durch die schriftliche Fixierung von Gedanken und Ideen der Schülerinnen und Schüler verändert sich der Status der Lösungen und macht sie gleichsam angreifbar und verhandelbar. Bruner spricht von "Externalisierung" und meint damit eine "... Aktivität, in welcher (kollektive) Gedanken, Ideen und Absichten eine äußere Gestalt annehmen..." (Bruner, 1996). Richtet man den Blick stärker auf den Prozess der Herstellung eines gemeinsamen Werkes, das eine "äußere Gestalt annimmt", so begegnet man dem Begriff des "Oeuvre" (Bruner, 1996). Ein Oeuvre ist damit stärker auf die Veröffentlichung und die Rezeption hin angelegt. WiLM@ ist in drei Öffentlichkeitsbereiche unterteilt, die im folgenden Abschnitt erläutert werden. Es bleibt dabei den Kindern überlassen, im welchem Bereich sie sich aufhalten. Gestaffelte Veröffentlichung Innerhalb des "privaten Bereichs" arbeiten die Schülerinnen und Schüler alleine in einem "geschützten Raum" an der Entstehung einer Lösung und haben die Möglichkeit, ihre bisher erstellten Inhalte einer bestimmten Gruppe von Mitschülerinnen und -schülern zu zeigen. In diesem zweiten Öffentlichkeitsbereich können die Kinder gemeinsam alternative Bearbeitungsweisen (weiter-) entwickeln. In einem dritten Schritt kann eine Lösung "für alle sichtbar" werden und erreicht die höchste Öffentlichkeitsstufe. Eine besondere Funktion, die mit der Entwicklung von WiLM@ entstand, ist die Möglichkeit der Dokumentation von Lösungsprozessen. Mit Hilfe eines Scrollbalkens am Arbeitsblatt lassen sich entstandene Lösungen wie in einem Film ansehen. So lässt sich die Entstehung einer Lösung zeitlich versetzt nachvollziehen.

  • Mathematik / Rechnen & Logik
  • Primarstufe

KooL ist cool

Fachartikel

Qualität braucht Innovation! – Daher werden im Modellversuch KooL die pädagogischen Potenziale von Medien zur Förderung sowohl selbstgesteuerten als auch kooperativen Lernens ausgelotet. Für die Ausbildung im Splitterberuf Glas werden didaktisch begründete Medienkonzepte entwickelt und in den Unterricht implementiert.Im Fokus des Modellversuchs der Bund-Länder-Kommission "KooL" (Kooperatives Lernen in webbasierten Lernumgebungen in der beruflichen Erstausbildung) stehen Medien nicht primär als Präsentationsmedien, sondern als interaktive Kommunikations- und Entwicklungsmedien. Der Umgang mit Medien ist für viele Schülerinnen und Schüler als Teil der digitalen Net-Generation selbstverständlich, während Lehrerinnen und Lehrer häufig printsozialisiert sind. Diese Kluft will KooL überwinden. Neben der Einführung einer Lernplattform werden vor allem Instrumente des Web 2.0 für Personal Broadcasting und Social Publishing im Unterrichtseinsatz erprobt. Sie ermöglichen den Lernenden, sich als autonome Medien-Akteure zu erleben und Wissen in kooperativen Lehr-Lernsettings im Diskurs zu erarbeiten.

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Informationstechnik / Pädagogik / Fächerübergreifend
  • Berufliche Bildung

Interview: Motivationsförderung im digitalen Unterricht

Fachartikel
5,99 €

In diesem Interview beantwortet Dr. Ria Nolte, promovierte Pädagogin und Lehrerin für Geographie, Mathematik und Darstellendes Spiel, Fragen rund um das Thema "Motivationsförderung im digitalen Unterricht". Dabei wird auch auf eine lernförderliche Unterrichtsgestaltung, die Rolle der Lehrkraft sowie Lernumgebungen im Präsenz-Unterricht eingegangen. Was ist Motivationsförderung? Wenn man von der Motivation als Gesamtheit der Beweggründe, die zur Handlungsbereitschaft führen, ausgeht, dann bedeutet Motivationsförderung ganz einfach gedacht, das Verändern beziehungsweise Aktivieren der Zielausrichtung, um das Handeln mehr oder weniger dauerhaft in eine bestimmte Richtung zu leiten. Die Grundmotive Zugehörigkeit, Macht und Leistung spielen dabei eine maßgebliche Rolle. Hier merkt man schon, dass die Motivationsförderung sowohl positiv als auch negativ ausgerichtet sein kann. Welche Möglichkeiten beziehungsweise Grenzen der Gestaltung lernförderlicher Unterrichtsgestaltung gibt es? Einerseits gibt es die Möglichkeit, Motivation über Ängste und Befürchtungen zu beeinflussen. Der Kampf gegen Wertlosigkeit, Ohnmachtsgefühle oder Versagen als ein Weg der Motivationsförderung bringt aus meiner Sicht nur kurzzeitig Erfolge mit sich. Das Ankämpfen gegen etwas ist stets von Stress und innerer Unruhe begleitet. Auch das ständige Verweisen auf Arbeiten und Prüfungen gehört dazu. Viel zielgerichteter und dauerhaft orientierend sind positive Ausrichtungen wie Zuwendung, Geborgenheit oder Vertrauen. Auch das Erkennen, welche Wertigkeit man in einer Gruppe innehat, dass die eigene Kreativität, die Neugier und auch die eigenen Leistungen anerkannt und geachtet werden, führen zu einer langfristigen Ausrichtung und der Entwicklung intrinsischer Motive des Handelns. Welche Rolle kommt der Lehrkraft zu? Das bedeutet für die Lehrkraft, dass sie alle Lernenden in ihrer Person beachten darf und muss, sie wertschätzend begleitet. Und ich bin der Überzeugung, dass nur mit dem Kind gemeinsam positiv orientierte Motive aktiviert werden können. Wir dürfen auf keinen Fall davon ausgehen, dass Schülerinnen und Schüler nur von uns etwas lernen wollen. Auch wir sind ihnen gegenüber Lernende. Eine Motivationsförderung von oben herab ist nicht mehr zeitgemäß. Doch manche Lehrkraft verwechselt dies mit Kumpelhaftigkeit und hat Ängste, an Respekt zu verlieren. Doch es ist offensichtlich: Wenn man den Lernenden keine Wertschätzung entgegenbringt, braucht man auf ihren Respekt nicht zu hoffen. Welche Unterschiede gibt es hinsichtlich der Motivationsförderung in digitalen Lernumgebungen und jener im Präsenz-Unterricht? In digitalen Lernsequenzen gelten die oben genannten Prinzipien ganz genau so, denn gerade das Arbeiten allein zu Hause ohne Feedback zeigt, wie problematisch eine fehlende Wertung für Kinder ist. Doch unter eine Arbeit nach der Korrektur mal ganz schnell eine positive Bemerkung schreiben oder ein Smiley setzen, ist je nach Art des digitalen Unterrichts kaum möglich. Hier erscheint es sehr wichtig, sich Zeit zu nehmen und allen Lernenden nach einer gewissen Zeit eine individuelle schriftliche Rückmeldung zu übermittelten. Auch eine Audiodatei birgt Möglichkeiten in sich, individuell Aufgaben zu werten und wertzuschätzen. Die positive Verstärkung bei Video-Konferenzen kann natürlich auch durch verbales Lob und Ermutigung sehr gut erfolgen. Virtuelle Gruppen-Räume bieten eine gute Möglichkeit dies auch in einem ganz persönlichen Gespräch zu tun. Inwiefern eröffnen digitale Lernumgebungen neue Chancen und Wege? Ich sehe hier die Chance, neu über Bewertungen und Benotung nachzudenken. Diese Art von Motivationsförderung muss aus meiner Sicht, da sie für viele Menschen negativ orientiert und stressbezogen ist, überdacht werden. Auch das prozessbegleitende Werten ist hier so gut wie nicht relevant, da es immer subjektiver wird. Gleichzeitig durfte ich feststellen, dass die Schülerinnen und Schüler in dieser Zeit einen ungeheuren Zuwachs an Kompetenzen im Bereich der Selbstorganisation und Selbstständigkeit verzeichnen konnten und mussten. Ihnen das auch aufzuzeigen und nicht nur den Wert auf den nicht erteilten Unterrichtsstoff zu legen, ist eine der Aufgaben, die wir Lehrkräfte im Blick haben sollen. Wie kann Motivation in digitalen Lernumgebungen konkret gefördert werden? Wenn ich von digitaler Lernumgebung spreche, meine ich nicht, dass Schülerinnen und Schüler nur per Computer Aufgaben bekommen, die sie dann an die Lehrkraft zurückschicken. Digitale Lernumgebung ist für mich Unterricht mit einem großen Anteil an digitaler Präsenz der Hauptakteure. Das bedeutet, dass ich als Lehrperson da sein muss, wenn es Fragen gibt. Ich habe die Aufgabe, den Unterricht auch transparent für die Lernenden zu gestalten, sie in die didaktischen Schrittfolgen einzuführen, damit sie wissen, was sie warum und wann machen können, um die Inhalte zu erarbeiten, zu verstehen und zu transformieren. Motivation ist immer wieder ein sehr spannendes und viel diskutiertes Thema. Ich gehe immer wieder davon aus, dass ich Motivation in anderen Menschen nicht schaffen kann. Ich kann meinen Schülerinnen und Schülern einen Stups geben, damit sie Möglichkeiten finden, in dem zu vermittelnden Stoff Dinge zu finden, die sie interessieren, die sie eventuell benötigen oder die sie als wichtig erachten, um etwas zu erreichen. Auf dieser Grundlage gehe ich immer wieder von den individuellen Interessen, den Alleinstellungsmerkmalen der Klasse aus und nehme die Lernenden mit auf die Reise. Bereits bei Planung der Unterrichtseinheiten, auch in digitaler Arbeitsweise, frage ich nach Interessen oder speziellen Themenschwerpunkten, die besonders interessieren. Auch Diskussionen über die Notwendigkeiten oder die Hintergründe von Unterrichtsinhalten sind ein gutes Mittel. In Video-Konferenzen lässt sich das sehr gut über virtuelle Gruppen-Räume organisieren. Auch Wertungen und Feedback in digitaler Form können dazu beitragen, dass Motivation entsteht. Wer wertgeschätzt wird, arbeitet gern mit demjenigen zusammen, der ihn wertschätzt, auch wenn das Thema mal nicht so interessant ist. Welche Learnings können aus Pandemiezeiten mit in die Unterrichtsgestaltung für "danach" mitgenommen werden? Die Planung von Unterricht ist keine Einbahnstraße. Überlegungen zu Bewertungsmöglichkeiten sind sowohl für Präsenz- als auch für digitale Unterrichtssequenzen einzuplanen. Die Auswahl des Materials unterliegt massiven Veränderungen. Arbeit mit digitalen Video-Clips ist kein Ersatz, jedoch ein Hilfsmittel, das wir einsetzen sollten, beispielsweise, wenn wir nicht vor Ort sein können. Unser Geschick ist gefragt, digital zur Verfügung stehende Unterrichtsmaterialen auszuwählen und bewusst in den gemeinsamen Unterricht zu integrieren. Die Lernenden sollten und können bei der Auswahl behilflich sein. Auch im digitaler Zeit gilt: Ein gesunder Wechsel zwischen verschiedenen Methoden bereichert den Unterricht. Noch mehr sollen wir darauf achten, dass alle dabei sind und mitarbeiten. Zumeist geht es nur über die Kontrolle der Ergebnisse. Die Bewertung von Mitarbeit muss angepasst werden. Schülerinnen und Schüler können sich sehr wohl selbst organisieren. Wir müssen es nur eher einführen und immer wieder praktizieren. Das Arbeiten mit digitalen Aufzeichnungen kann und soll bereits sehr zeitig Eingang in den Präsenz-Unterricht finden. Ein Verbot von Handys im Unterricht ist nicht mehr zeitgemäß und reißt uns viele Möglichkeiten des digitalen Arbeitens schon in Präsenz-Phasen aus der Hand. Wertschätzung ist der wichtige Faktor, der dieses Arbeiten möglich macht. Wenn ich Schülerinnen und Schüler wertschätze, dann kann auch ich mit Respekt rechnen. Schule wird und muss sich verändern. Die Gesellschaft ist schon mittendrin. Lernen wir also von unseren Schülerinnen und Schülern sowie ihren Eltern.

  • Fächerübergreifend
ANZEIGE