• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Stromverbrauch von Haushaltsgeräten

Unterrichtseinheit

Wie viel Energie verbrauchen wir eigentlich zu Hause und wie wird das gemessen? In dieser Unterrichtseinheit zeigen die Schülerinnen und Schüler die Energieübertragung der Geräte auf, die sie täglich nutzen und entscheiden, wie sie ihren Stromverbrauch senken können.Die EU hat kürzlich Grenzwerte beim Stromverbrauch von Staubsaugern angeordnet. Neue Entwürfe sehen eine Erweiterung auf andere Haushaltsgeräte wie zum Beispiel Föne vor. Bei dieser Aufgabe betrachten die Schülerinnen und Schüler eine weitere (fiktive) Einschränkung für den Stromverbrauch zu Hause. Sie berechnen die tägliche Energieübertragung der Geräte, die sie nutzen. Anschließend entscheiden sie, wie sie ihren Stromverbrauch senken können, um neue strenge Grenzwerte nicht zu überschreiten. Bezug zum Lehrplan Wissenschaftliches Arbeiten Analyse und Evaluation: Daten interpretieren, um Rückschlüsse zu ziehen. Physik Energie: Vergleich des Stromverbrauchs von Haushaltsgeräten und den übertragenen Energiemengen. Ablauf Ablauf "Stromverbrauch von Haushaltsgeräten" Der Ablauf der Unterrichtssequenz "Stromverbrauch von Haushaltsgeräten" ist auf dieser Seite übersichtlich für Sie zusammengestellt. Die Schülerinnen und Schüler analysieren eine wissenschaftliche Thematik. berechnen den Stromverbrauch von Elektrogeräten und ihre Energieübertragung. lernen, ein Problem zu definieren und eine Lösung zu erarbeiten. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Problemstellung Zeigen Sie Folie 2 der PowerPoint-Präsentation und heben Sie hervor, dass die EU bereits Grenzwerte für den Stromverbrauch von Elektrogeräten verordnet hat. Die Schülerinnnen und Schüler sollen Vorschläge für mögliche Gründe machen. Decken Sie auf, dass dahinter die Senkung des Stromverbrauchs und der Treibhausgase steckt. Präsentieren Sie anschließend den (fiktiven) zukünftigen Grenzwert für den Stromverbrauch zu Hause. Was denken die Schülerinnen und Schüler über diese Beschränkung? Wie können sie ihren eigenen Stromverbrauch senken? Zeigen Sie Folie 4 der PowerPoint-Präsentation und bitten Sie die Lernenden, die drei Geräte mit dem höchsten Stromverbrauch zu bestimmen. Die Antwort ist, dass es sich um Geräte handelt, die am meisten Wärme übertragen - wie zum Beispiel Fön, Dusche und Bügeleisen. Verteilen Sie Kopien der Karten, die aus den Schüler-Informationsblättern SI1a und SI1b ausgeschnitten wurden, sodass jede Gruppe acht Karten hat. Die Schülerinnen und Schüler rechnen den Stromverbrauch in Kilowatt (kW) um und sortieren die Karten vom höchsten Stromverbrauch zum Niedrigsten. Besprechen Sie vorher mit der Klasse, wie Watt (W) in Kilowatt (kW) umgewandelt wird und umgekehrt. Zeigen Sie Folie 5 der PPT und gehen Sie das Rechenbeispiel durch. Anschließend erfinden die Schülerinnen und Schüler ähnliche Fragen für ihre Klassenkameraden mit den auf den Karten vorgegebenen Stromverbräuchen. Zeigen Sie Folie 6 der PPT, um die Aufgabe zu erläutern. Die Lernenden sollen herauszufinden, wie der Stromverbrauch von Elektrogeräten gesenkt werden kann, um das tägliche Maximum von 1,5 Kilowattstunden (kWh) nicht zu überschreiten. Die Schülerinnen und Schüler arbeiten SI2 durch, um die Energieübertragung durch Elektrogeräte zu berechnen, die sie im Alltag benutzen: Für eine visuelle Darstellung sollen sie SI3a und SI3b verwenden. Im Anschluss befolgen sie die Anweisungen auf SI3a um entscheiden zu können, wie sie ihren Stromverbrauch senken können, um ihr tägliches persönliches Stromkontingent von 1,5 kWh nicht zu überschreiten. Alternativ können Sie die berechnungsfreie Version durchführen: Die Lernenden befolgen die Anweisungen auf SI4a, um die Energieübertragung von Elektrogeräten aufzuzeigen, die sie im Alltag benutzen. Im Anschluss befolgen sie die Anweisungen, um entscheiden zu können, wie sie ihren Stromverbrauch senken können, um ihr tägliches persönliches Stromkontingent von 1,5 kWh nicht zu überschreiten. Betrachten Sie die Fragen auf Folie 7 der PPT. Die Schülerinnen und Schüler könnten zum Beispiel vorschlagen, effizientere Elektrogeräte zu benutzen oder Solarpanele zu installieren, um ein größeres Energiekontingent zu bekommen. Sie könnten darauf hinweisen, dass sich ihr Wärmebedarf abhängig von der Jahreszeit ändert.

  • Physik / Astronomie
  • Sekundarstufe I

Ich und meine Umwelt

Unterrichtseinheit

Ausgehend von der Auseinandersetzung mit dem Thema Umwelt- und Klimaschutz befassen sich die Lernenden in dieser aktualisierten Unterrichtseinheit mit den Fragen der nachhaltigen Energiegewinnung und des sparsamen Energieverbrauchs. Dabei haben sie sowohl das eigene Zuhause als auch die Schule im Blick. Ausgehend von der zunehmenden Bedeutung des Themas Umwelt- und Klimaschutz starten die Schülerinnen und Schüler eine Umfrage, welche Umwelt- und Klimaschutzinitiativen ihre Mitschülerinnen und Mitschüler kennen und wofür sich diese einsetzen. Anschließend recherchieren sie die Ziele und Forderungen der Fridays for Future Bewegung und recherchieren Natur- und Umweltschutzinitiativen in ihrer Region. Danach überlegen sie, wie Energie nachhaltig produziert und konsumiert werden kann. Dafür tragen Sie Möglichkeiten zur Gewinnung erneuerbarer Energie zusammen und berechnen ihren eigenen CO 2 -Fußabdruck. Auf dieser Grundlage tragen sie in einer Mindmap konkrete Möglichkeiten Energie zu sparen ein. Dabei haben sie sowohl den überlegten Verbrauch als auch die eigenen Energieproduktion im Blick. Zum Schluss tragen sie konkrete Möglichkeiten zusammen, in der Schule Energie einzusparen. Energiebedarf privater Haushalte Fossile Energieträger sind nicht unbegrenzt vorhanden. Schon heute müssen sie teuer aus anderen Ländern importiert werden. Zudem belasten ihr Abbau und ihr Verbrauch die Umwelt, das Klima und die Gesundheit. Nachhaltigkeit wird deshalb immer wichtiger- was unter anderem auch die weltweite Fridays for Future-Bewegung zeigt. Rund um den Globus demonstrieren Kinder, Jugendliche und Erwachsene für mehr Klimaschutz und eine bessere Klimapolitik - auch in Deutschland. Daher werden erneuerbare Energien und ein reflektierter, überlegter und sparsamer Umgang mit Energie immer wichtiger. Hier setzt die aktualisierte Unterrichtseinheit "Ich und meine Umwelt" an. Fächerübergreifender Zugang Die Unterrichtseinheit ermöglicht Schülerinnen und Schülern einen fächerübergreifenden Zugang zu den Themen Klimaschutz und Nachhaltigkeit sowie effizienter und sparsamer Umgang mit Energie. Dazu befassen sie sich in einem ersten Schritt mit der Umwelt- und Klimaschutzinitiativen, ihren Zielen und Forderungen. Umwelt- und Klimaschutzinitiativen aus ihrer Region portraitieren die Lernenden in einem Handyvideo und präsentieren dieses vor der Klasse. Anschließend tragen sie verschiedene Möglichkeiten zur Gewinnung erneuerbarer Energie zusammen und berechnen ihren eigenen CO 2 -Fußabdruck. Die Auseinandersetzung mit der Frage, wie Energie eingespart werden kann, rundet die Unterrichtseinheit ab. Dabei geht es sowohl um Möglichkeiten sparsam Energie zu konsumieren als auch um Ideen selbst Energie zu produzieren. Einsatzmöglichkeiten Die Unterrichtseinheit kann aufgrund ihres Bezuges zu den Lehr- und Bildungsplänen in allen deutschen Bundesländern in den Klassenstufen 7 und 8 der Sekundarstufe I eingesetzt werden. Ein Schwerpunkt liegt dabei auf den Fächern Sozialkunde, Technik und Soziales. Bezüge zum Mathematikunterricht sind wegen der Rechenaufgaben möglich. Anknüpfungspunkte bietet auch das Fach Deutsch im Rahmen des Verfassens eigener Texte. Aufgrund des Schwerpunktes, der in der Projektarbeit und Präsentation liegt, eignet sich die Unterrichtseinheit auch für den fachübergreifenden und fächerverbindenden Unterricht im Rahmen einer Projektwoche. EmpfehlungenFachkompetenz Die Schülerinnen und Schüler kennen nationale, internationale Umwelt- und Klimaschutzinitiativen sowie solche aus ihrer Region. setzen sich mit der Entstehungsgeschichte, den Zielen und Forderung von Fridays for Future auseinander. überlegen, was sie selbst aktiv zum Klimaschutz beitragen können überlegen, inwieweit sie sich selbst in einer Umwelt- und Klimaschutzinitative in ihrer Region engagieren. kennen Anlagen zur erneuerbaren Energiegewinnung und können dies den entsprechenden Energieträgern zuordnen. diskutieren auf der Grundlage des eigenen CO2-Fußabdruckes Möglichkeiten Energie zu sparen. wissen, was ein Prosumer ist. wissen, wie ein einfacher Stromkreis funktioniert und wie man mit einfachen Hilfsmitteln Strom erzeugen kann. wissen, wie ein einfacher Stromkreis funktioniert und wie man mit einfachen Hilfsmitteln Strom erzeugen kann. wissen, wie der Stromverbrauch gemessen wird und was eine Kilowattstunde ist. setzen sich anhand von Grafiken und Tabellen mit dem Stromverbrauch im privaten Haushalt auseinander. können grundlegende Strom- und Energiebegriffe definieren. üben sich in der Versuchsbeobachtung und Versuchsdeutung naturwissenschaftlicher Experimente. kennen Gründe und Möglichkeiten, um sowohl im privaten Haushalt als auch in der Schule Energie zu sparen, und können diese benennen. Medienkompetenz Die Schülerinnen und Schüler trainieren das selbstständige Erschließen von Themen und Inhalten sowie das Recherchieren im Internet. üben sich im eigenständigen Analysieren und Interpretieren von Grafiken, Schaubildern und Zahlenmaterial. trainieren das Protokollieren von Informationen und Beobachtungen. analysieren einen Videobeitrag zielgerichtet entsprechend einer Aufgabenstellung. können eine Präsentation in Form eines Aktionsplans erstellen. trainieren das verständliche und zielgruppengenadäquate Schreiben. lernen Medien bei der Produktion eines eigenen Handyclips handlungsorientiert zu nutzen. Sozialkompetenz Die Schülerinnen und Schüler trainieren im Rahmen von Partner- oder Gruppenarbeit ihre Zusammenarbeit mit anderen. lernen Diskussionen argumentativ und rational zu führen. schulen im Rahmen von Diskussionen und Präsentationen die eigene Ausdrucksfähigkeit und aktives Zuhören. trainieren das kreative Entwickeln und Ausformulieren eigener Ideen. Wie und wo wird Energie im privaten Haushalt verbraucht? Die Schülerinnen und Schüler befassen sie sich mit der Frage des Stromverbrauchs in privaten Haushalten und den Möglichkeiten, Energie zu sparen. Dazu analysieren sie zuerst eine Grafik, die die Entwicklung des Stromverbrauchs im Zeitraum von 2000 bis 2014 zeigt. Darauf aufbauend befassen sie sich damit, wofür in den privaten Haushalten Energie verwendet wird. Eine Rechenaufgabe hilft ihnen, die Veränderung im Energieverbrauch zwischen zwei Zeitpunkten (2005 und 2014) zu erschließen. Anhand von zwei zu erstellenden Kreisdiagrammen visualisieren sie zusätzlich die prozentualen Anteile der Energie, die im Privathaushalt genutzt wird. Strom sparen zu Hause Zentraler Gegenstand ist die Auseinandersetzung der Schülerinnen und Schüler mit dem Energieverbrauch im eigenen familiären Umfeld. Auf der Grundlage des Infotextes lernen sie dafür zuerst die Begriffe "Standby-Modus" und "Schein-Aus" kennen und mit eigenen Worten zu definieren. Darauf aufbauend wägen sie die Vor- und Nachteile des Standby-Modus gegeneinander ab und überlegen, welche Personen ihnen beim Kauf eines Computers zur Frage Standby-Modus und des damit verbundenen Stromverbrauchs beratend zur Seite stehen können. Vorbereitende Hausaufgabe Anhand des erworbenen Wissens zu den Funktionen "Standby" und "Schein-Aus" übernehmen sie als vorbereitende Hausaufgabe für die zweite Unterrichtsstunde gemeinsam mit ihren Eltern einen Rundgang durch das eigene Zuhause. Indem sie überprüfen und protokollieren, welche Geräte dauerhaft angeschaltet sein müssen, welche im Standby-Modus laufen und von welchen sie den Netzstecker ziehen können, wenn diese Geräte nicht benutzt werden, werden die Schülerinnen und Schüler für das Thema Strom sparen zu Hause sensibilisiert. Vertiefend wirkt eine abschließende Recherche der Möglichkeiten, in den eigenen vier Wänden Energie zu sparen. Die protokollierten Informationen werden dann in der zweiten Unterrichtsstunde verglichen und diskutiert. Energiesparen in der Schule In einer Projektphase setzen sich die Schülerinnen und Schüler mit den Möglichkeiten auseinander, in der Schule Energie zu sparen. Hierzu unternehmen sie in Kleingruppen einen Rundgang durch das Schulhaus und protokollieren dabei in Kleingruppen mögliche "Stromfresser". Eine Vorgabe oder Einschränkung seitens der Lehrkraft auf bestimmte Bereiche sollte dabei nicht erfolgen, sodass eine möglichst breite Palette an Einsparpotenzialen dokumentiert wird. So kann das Thema Heizung, Wasser oder Strom ebenso thematisiert werden, ebenso wie die Frage, ob und inwieweit LED- oder Energiesparlampen als Leuchtmittel genutzt werden. Ergebnissicherung im Plenum Die Ergebnisse werden anschließend im Plenum zusammengetragen, schriftlich an der Tafel oder einem Plakat fixiert und systematisiert. Darauf aufbauend erarbeiten die Schülerinnen und Schüler dann gemeinsam Vorschläge, wie in ihrer Schule sowohl Lehrende als auch Lernende Energie einsparen können. Mit Blick auf die Nachhaltigkeit halten sie diese auf einem Aktionsplan fest. Dieser wird in Rücksprache mit der Schulleitung für alle Schüler sichtbar im Schulhaus aufgehängt, in der Schülerzeitung oder auf der Schulwebseite publiziert. Energiesparquiz Zum Abschluss testen und festigen die Lernenden mit dem Energiesparquiz ihr Wissen zum Thema effizienter und sparsamer Umgang mit Energie. Einige Schulen setzen sich bereits sehr stark für den sparsamen Energieverbrauch ein. Hier bietet es sich an, nach regionalen oder überregionalen Energiesparwettbewerben zu recherchieren und sich in Absprache mit der Schulleitung im Namen der gesamten Schule zu bewerben. Ergebnissicherung im Plenum Die Ergebnisse werden anschließend im Plenum zusammengetragen, schriftlich an der Tafel oder einem Plakat fixiert und systematisiert. Darauf aufbauend erarbeiten die Schülerinnen und Schüler dann gemeinsam Vorschläge, wie in ihrer Schule sowohl Lehrende als auch Lernende Energie einsparen können. Mit Blick auf die Nachhaltigkeit halten sie diese auf einem Aktionsplan fest. Dieser wird in Rücksprache mit der Schulleitung für alle Schüler sichtbar im Schulhaus aufgehängt, in der Schülerzeitung oder auf der Schulwebseite publiziert. Energiesparquiz (NEU) Zum Abschluss testen und festigen die Lernenden mit dem Energiesparquiz ihr Wissen zum Thema effizienter und sparsamer Umgang mit Energie. Anhand eines Wortwürfels wiederholen die Schülerinnen und Schüler Begriffe aus der Elektrizitätslehre und mithilfe eines Quizzes ordnen die sie Energiebegriffe den passenden Definitionen zu. Ihre Antworten vergleichen sie mithilfe des jeweiligen Lösungsblattes. Die Spiele können in Kombination als auch einzeln eingesetzt werden. Sie eignen sich auch als niederschwelliger Unterrichtseinstieg, für die Projektarbeit oder für den Vertretungsunterricht. Was hat Strom mit Zitronen zu tun? Zur Einführung in das Thema Strom bauen die Schülerinnen und Schüler nach einer genauen Anleitung ihre eigene Zitronenbatterie (Galvanische Batterie). Sie beobachten, wie auf diese Weise Strom erzeugt werden kann und beschreiben, was in diesem Stromkreis passiert. Mithilfe des zuvor gelesenen Informationstextes erklären die Lernenden die Ursache dafür.

  • Politik / WiSo / SoWi / Wirtschaft / Mathematik / Rechnen & Logik / Fächerübergreifend
  • Sekundarstufe I

Smart Grids – Intelligente Stromnetze

Unterrichtseinheit

Flexible Stromnetze, in denen die Schwankungen zwischen Angebot und Nachfrage ausgeglichen werden, gelten als die Entwicklung der Zukunft. Welche Herausforderungen sind mit dieser intelligenten Steuerung verbunden?Die zunehmende Erzeugung von Strom aus erneuerbaren Energien hat zur Folge, dass die Abstimmung zwischen Stromangebot und -nachfrage schwieriger wird. Schließlich ist das Energieangebot beispielsweise von Solar- und Windkraftanlagen schwankend und nicht immer exakt vorherzusagen. Hier greift das Konzept der Intelligenten Stromnetze, bei dem Stromerzeugung und -verbrauch in einem sich selbst überwachenden System besser gesteuert werden sollen. Ziel ist eine Erhöhung der Energieeffizienz bei einer Verringerung der Treibhausgasemission.Die Lernenden bearbeiten die Arbeitsaufträge auf dem Arbeitsblatt. Dabei sind zur Unterstützung einige Quellen aus dem Internet angegeben. Eine animierte Grafik kann optional als Einstieg in die Thematik dienen. Die Schülerinnen und Schüler können sich allein oder in Gruppenarbeit mit dem Thema beschäftigen. Elemente eines Smart Grid Ein intelligentes Stromnetz ist durch dezentrale Energieerzeugung gekennzeichnet, dessen Bestandteile miteinander kommunizieren. Die Schülerinnen und Schüler sollen verstehen, wie ein Smart Grid aufgebaut ist und wie damit eine höhere Energieeffizienz erreicht werden kann. nachvollziehen, wie sich die Rollen der Akteure in einem Smart Grid ändern. sich mit den Vorteilen und Herausforderungen beschäftigen, die mit der Einführung intelligenter Stromnetze verbunden sind. Thema Smart Grids - Intelligente Stromnetze Autor Antje Schmidt Fach Physik, Geographie, Politik/SoWi Zielgruppe ab Klasse 10 Zeitraum 2 Stunden Technische Voraussetzungen Internetzugang (am besten für je 2 Personen), Beamer Stromproduktion und -verbrauch optimieren Ziel ist es, mithilfe von Smart Grids vorhandene Ressourcen effizienter und kostengünstiger zu nutzen. Insbesondere seit zunehmend Strom aus erneuerbaren Energiequellen erzeugt und eingespeist wird, ist die Regelung und der optimale Netzbetrieb schwieriger geworden. Smart Grids sollen also die Schwankungen zwischen Angebot und Nachfrage ausgleichen. Die notwendige Infrastruktur dazu muss allerdings noch aufgebaut werden. dezentrale Energieerzeugung Zwei-Kanal-Kommunikation Intelligente Stromzähler (Smart Meter) Rolle der Akteure verändert sich Die Endverbraucherinnen und -verbraucher können ihren Energieverbrauch mithilfe von Smart Metern besser überwachen und steuern. Zudem können sie selbst in das Stromnetz einspeisen (beispielsweise aus einer privaten Fotovoltaikanlage auf dem Dach oder aus dem Speicher des Elektroautos) und damit zu Stromproduzenten werden. Steigerung der Energieeffizienz durch Verschiebung von Lastspitzen in verbrauchsarme Zeiten und Füllen von Lasttälern Verbraucherinnen und Verbraucher können selbst entscheiden, wann sie bestimmte Geräte einschalten, um günstige Tarife auszunutzen Da die Daten zum Stromverbrauch über das Internet an die Netzbetreiber geleitet werden, stellt sich die Frage nach der Datensicherheit in solchen Systemen. Ebenso fraglich ist das tatsächliche Einsparpotenzial durch intelligente Stromzähler. Wie viel lässt sich durch die Verlagerung des Stromverbrauchs bestimmter Geräte in Zeiten mit günstigeren Tarifen tatsächlich einsparen? Zu berücksichtigen sind hierbei auch die Kosten und jährlichen Gebühren für den neuen intelligenten Zähler. Letztlich eignen sich nicht alle Haushaltsgeräte für die Steuerung durch intelligente Zähler. Wer gerade geduscht hat und einen Fön benötigt oder um eine bestimmte Zeit kochen muss, wird diese Nutzung nicht wegen eines möglicherweise günstigeren Tarifes um Stunden verschieben wollen oder können. Hier bieten sich Diskussionsansätze, mit denen sich die Schülerinnen und Schüler kritisch auseinandersetzen können. Die flächendeckende Realisierung von Smart Grids wird noch einige Jahrzehnte in Anspruch nehmen. Dies beinhaltet sowohl den Aufbau einer IT-Infrastruktur als auch den Ausbau des Stromnetzes an die zukünftigen Erfordernisse. Dafür werden Investitionen in Milliardenhöhe notwendig. Wenn das "kluge" Stromnetz Realität wird, kann der produzierte Strom tatsächlich effizienter genutzt werden. Und das Ziel, den Anteil erneuerbarer Energien bis 2020 auf 30 Prozent anzuheben, erscheint ohne ein Smart Grid kaum umsetzbar.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe II

Klimaschutz und regenerative Energiegewinnung

Unterrichtseinheit

Ausgehend vom eigenen Energieverbrauchsverhalten der Schülerinnen und Schüler vermittelt diese aktualisierte Unterrichtseinheit grundlegende Informationen rund um die Themen Klimaschutz, Nachhaltigkeit und regenerative Energiegewinnung. Dabei werden auch zukunftsweisende Technologien thematisiert. Das aktualisierte Unterrichtsmaterial führt die Schülerinnen und Schüler schrittweise an das Thema Klimaschutz im Zusammenhang mit erneuerbaren Energien und zukunftsweisenden Technologien heran. Ausgehend von der Reflexion des eigenen Umgangs mit Energie und den Möglichkeiten des sparsamen Umgangs mit Energie setzen sie sich anhand von Grafiken und Zahlenmaterial mit regenerativen Energieträgern sowie deren Rolle in der aktuellen und zukünftigen Stromversorgung auseinander. Dabei befassen sie sich unter anderem auch mit dem Thema der dezentralen Energieversorgung. Fächerübergreifender Zugang zum Thema Energie Die aktualisierte Unterrichtseinheit ermöglicht Schülerinnen und Schülern einen fächerübergreifenden Zugang zu den Themen Energieeffizienz, regenerative Energiegewinnung und Nachhaltigkeit. Dazu befassen sie sich in einem ersten Schritt mit der Frage des Stromverbrauchs in privaten Haushalten und den Möglichkeiten, Energie zu sparen. Videoclips und Online-Medienberichte zu den Themen E-Haus und Smart Home sowie eine Internetrecherche bieten den Lernenden dabei Unterstützung zur Lösung dieser Aufgabe. In einem zweiten Schritt befassen sich die Schülerinnen und Schüler mit der Notwendigkeit der Nutzung alternativer Energiequellen zur Sicherung der Energieversorgung. In einem Essay setzen sie sich nach der Analyse von Grafiken und Schaubildern mit der Bedeutung erneuerbarer Energieträger für die Stromerzeugung in Deutschland auseinander. Abschließend befassen sich die Schülerinnen und Schüler mit den Energieformen Windkraft und Sonnenenergie näher. Dabei geht es auch um die Frage der Realisierung der Energiewende im Wohnquartier sowie den damit verbundenen Chancen und Herausforderungen einer dezentralen Energieversorgung. Einsatzmöglichkeiten Die Unterrichtseinheit kann aufgrund ihres Bezuges zu den Lehr- und Bildungsplänen in allen deutschen Bundesländern in der Sekundarstufe II eingesetzt werden. Dabei bildet Geographie den fachlichen Bezugspunkt für diese Lerneinheit, ein fächerübergreifender Einsatz zusammen mit Politik/SoWi kann ebenfalls erfolgen. Auch Vertiefungen in den Fächern Physik sind denkbar. Anknüpfungspunkte bieten die Auseinandersetzung mit der Funktionsweise von Windkraft- und Photovoltaikanlagen sowie von solarthermischen Kraftwerken. Ablauf Ablauf der Unterrichtseinheit "Klimaschutz und nachhaltige Energiegewinnung" Den detaillierten Ablauf der Unterrichtseinheit "Klimaschutz und nachhaltige Energiegewinnung" können Sie auf dieser Seite nachlesen. Fachkompetenz Die Schülerinnen und Schüler kennen Gründe und Möglichkeiten, Energie zu sparen. wissen, was ein Energieausweis ist und was darin dokumentiert wird. definieren die Begriffe Smart Home und intelligente Gebäudetechnik und können dabei eine Verbindung zum Thema Energieeffizienz herstellen. kennen die wichtigsten erneuerbaren Energieträger. können mit eigenen Worten grundlegend die Energiegewinnung aus Wind- und Sonnenkraftwerken beschreiben. setzen sich anhand von Grafiken mit der Entwicklung der weltweiten Energieversorgung sowie dem zunehmenden Anteil erneuerbarer Energieträger an der Energieversorgung auseinander. diskutieren die Auswirkungen der verstärkten Hinwendung zu erneuerbaren Energien für die Bereiche Wirtschaft, Infrastruktur, Landwirtschaft und Umwelt. wissen, was "Wohnen und Arbeiten in Quartieren" bedeutet und was dies mit den Themen Nachhaltigkeit, Klimaschutz sowie regenerativer Energiegewinnung zu tun hat. setzen sich mit Merkmalen. Vorteilen und Herausforderungen einer dezentralen Energieversorgung auseinander. Medienkompetenz Die Schülerinnen und Schüler trainieren das selbstständige Erschließen von Themen und Inhalten sowie das Recherchieren im Internet. üben sich im eigenständigen Beschaffen, Strukturieren und Interpretieren von Informationen, die sie im Internet recherchiert haben. nutzen aktiv verschiedene Medien und erkennen deren Vor- und Nachteile im Rahmen der Informationsaufbereitung. trainieren das verständliche und zielgruppenadäquate Schreiben beim Verfassen von Definitionen und einem Essay. Sozialkompetenz Die Schülerinnen und Schüler trainieren im Rahmen von Partner- beziehungsweise Gruppenarbeit ihre Zusammenarbeit mit anderen Personen. lernen Diskussionen argumentativ und rational zu führen. schulen im Rahmen von Diskussionen und Präsentationen die eigene Ausdrucksfähigkeit und aktives Zuhören. trainieren das kreative Entwickeln und Ausformulieren eigener Ideen. Private Haushalte verbrauchen ein Viertel der gesamten Energie in Deutschland. Zwar ist der Energieverbrauch der einzelnen Haushaltsgeräte gesunken, aber in den Haushalten finden sich immer mehr elektrische Geräte und auch der Weltenergiebedarf steigt. Vor dem Hintergrund der Endlichkeit nicht regenerativer fossiler Energieressourcen und der mit der Energieproduktion und dem Energieverbrauch verbundenen Umweltbelastung ist der Einsatz und der Ausbau erneuerbarer Energie deshalb ein wichtiges gesellschaftspolitisches Thema. Die Schülerinnen und Schüler befassen sich auf der Grundlage des Stromverbrauchs in privaten Haushalten mit den Gründen und Möglichkeiten, Energie zu sparen. Hier tragen sie auch Ideen zusammen, wie Energie dezental und ressourcenschonend eingesetzt werden kann Gleichzeitig lernen sie das Energielabel kennen. Anschließend setzen sie sich unter der Nutzung von Videoclips und Online-Medienberichten mit der Frage auseinander, was die Modernisierung von Wohngebäuden mit der effizienten Verwendung von Energie zu tun hat. Dabei lernen sie unter anderem die Begriffe Smart Home und intelligente Gebäudetechnik kennen. Darüber hinaus recherchieren sie eigenständig, welche Informationen im Energieausweis festgehalten werden. Anhand der Analyse einer Grafik zur weltweiten Primärenergieversorgung setzen sie sich mit der Entwicklung des globalen Energieverbrauchs auseinander und erkennen die Veränderungen in den Anteilen der einzelnen Energieträger an der Gesamtversorgung. Darauf aufbauend verfassen die Lernenden ein Essay zur Bedeutung erneuerbarer Energieträger für die Stromerzeugung in Deutschland und interpretieren dabei eine Grafik zur Entwicklung der Stromerzeugung aus erneuerbaren Energien für den Zeitraum von 2000 bis 2018. Eine Recherche zur Energieeffizuenzstrategie 2050 und dem Masterplan der Bundesregierung zur Ladeinfrastruktur sowie eine Diskussion über die Auswirkungen der Hinwendung zu erneuerbaren Energien auf die Bereiche Wirtschaft, Infrastruktur, Landwirtschaft und Umwelt rundet die Doppelstunde ab. Anhand der Informationstexte auf dem Arbeitsblatt setzen sich die Schülerinnen und Schüler näher mit den Energieformen Windkraft und Sonnenenergie als Beispiele für erneuerbare Energien auseinander. Darauf aufbauend beschreiben sie mit eigenen Worten, wie aus Wind und Sonne elektrische Energie entsteht. Auf der Grundlage eines Schaubildes erläutern sie danach mit eigenen Worten den Begriff "dezentrale Energieversorgung". Dabei gehen sie auf die Apsekte Energiegewinnung, Konsumenten und Produzenten, Vorteile und Herausforderung des Konzeptes "Wohnen und Arbeiten im Quartier" ein. Danach recherchieren sie, wo auf der Welt Solarkraftwerke existieren oder gerade entstehen. Optional kann diese Aufgabe auch als vorbereitende Hausaufgabe aufgegeben werden. Die Ergebnisse werden dann in der Klasse zusammengetragen. Anschließend erstellen die Lernenden in Partner- oder Kleingruppenarbeit einen maximal halbseitigen Steckbrief zu mindestens einem Solarkraftwerk. Die Ergebnisse werden in der Klasse präsentiert. Gemeinsamkeiten und Unterschiede bezüglich Standort, Leistung, Aufbau sollten hier vorgestellt werden.

  • Geographie / Jahreszeiten / Politik / WiSo / SoWi / Technik / Sache & Technik / Fächerübergreifend
  • Sekundarstufe II

Wie funktioniert eine Windkraftanlage?

Fachartikel
5,99 €

In diesem Fachartikel wird mithilfe zahlreicher Abbildungen, Grafiken und Fotos anschaulich erklärt, wie Windkraftanlagen aufgebaut sind und wie die kinetische Energie des Windes zu Strom umgewandelt wird. Schon seit Jahrhunderten wird die Windenergie von der Menschheit genutzt – sei es zur Fortbewegung von Segelschiffen oder zum Verrichten von mechanischer Arbeit in Form von Windmühlen. Heute zählt die Windenergie zu den bedeutendsten Energiegewinnungsverfahren. So waren Ende 2020 in Deutschland 31.109 Windkraftanlagen (onshore und offshore) mit einer Gesamtleistung von circa 62,7 Gigawatt zur Stromerzeugung in Betrieb, was der Leistung von über 50 Kernkraftwerken entspricht! Somit hat die Windenergie mittlerweile bereits einen Anteil von rund 25 Prozent am nationalen Stromverbrauch erreicht. Funktionsweise einer Windkraftanlage Windkraftanlagen wandeln die kinetische Energie des Windes mithilfe seiner Rotorblätter in eine mechanische Drehbewegung um, die ihrerseits einen an die Drehachse gekoppelten Generator antreibt, der Strom erzeugt (Abbildung 1). Dabei werden zwei unterschiedliche Konstruktionen verwendet – zum einen Anlagen mit Getriebe (Abb. 1 a) sowie Anlagen ohne Getriebe (Abb. 1 b):

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe II, Berufliche Bildung

Erneuerbare Energien – Windkraftanlagen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit wird Schülerinnen und Schülern gezeigt, wie durch Windkraftanlagen die kinetische Energie des Windes in mechanische Arbeit umgewandelt wird, bevor daraus mithilfe von Generatoren elektrischer Strom erzeugt wird. Sie sollen dabei verstehen lernen, dass aus physikalischen Gründen maximal bis zu 59 Prozent der kinetischen Energie des Windes nutzbar sind, wodurch Windenergie einen sehr bedeutenden Beitrag zur klimafreundlichen Nutzung erneuerbarer Energien leisten kann. Windkraftanlagen können in allen Klimazonen genutzt werden – an Land (Onshore) und in Offshore-Windparks im Küstenbereich der Meere.Anhand von anschaulichen Abbildungen oder Animationen, beispielsweise aus dem Info-Artikel "Wie funktioniert eine Windkraftanlage?" , oder mithilfe zusätzlicher Videos werden die Lernenden in Bau- und Funktionsweise der heute gebräuchlichen Windkraftanlagen eingeführt. Ganz wesentlich für das Verständnis solcher Anlagen ist dabei das Auftriebsprinzip, mit dem die an den Rotorblättern vorbeiströmende Luft dafür sorgt, dass sich die Rotorblätter drehen können. Angelehnt an dieselben Gesetzmäßigkeiten wie bei einem Flugzeugflügel erkennen die Schülerinnen und Schüler, dass dafür eine spezielle Form der Rotorblätter nötig ist – nämlich eine gewölbte Bauform, bei der sich durch die unterschiedlich schnell vorbeiströmende Luft oberhalb und unterhalb des Rotorblattes ein Unter- beziehungsweise Überdruck ergibt, der zum Auftrieb führt. Einordnung Windenergie wurde früher in Form von Windmühlen zum Mahlen von Getreide, Pressen von Oliven oder zum Sägen von Holz benutzt. Heute dient die Windenergie nahezu ausschließlich zur Erzeugung von Strom und hat als klimafreundliche Energiequelle bereits einen Anteil von rund 25 Prozent am Stromverbrauch Deutschlands erreicht. Ihr großer Vorteil liegt darin, dass Windkraftanlagen unabhängig sind von Klimazonen und sowohl an Land als sogenannte Onshore-Anlagen als auch auf dem küstennahen Meer als Offshore-Anlagen Tag und Nacht – bei entsprechendem Wind – betrieben werden können. Vorkenntnisse Windkraftanlagen kennt heute jedes Kind – die Funktionsweise der Übertragung der Windenergie auf die Rotorblätter und die physikalischen Gegebenheiten zur optimalen Ausnutzung dieser Energieform dürften allerdings bei Schülerinnen und Schülern als Vorkenntnisse kaum vorhanden sein. Didaktische Analyse Allein die Bedeutung der Windenergie für die dringend notwendige Verbesserung des Weltklimas sollte bei der Behandlung des Themas auf großes Interesse der Lernenden stoßen – hängt davon doch ganz wesentlich die Lebensqualität von künftigen Generationen ab. Deshalb sollte man zusammen mit der physikalischen Bearbeitung des Themas auch Zeit für Diskussion einplanen. Methodische Analyse Die Herleitung der physikalischen Formeln, die das Umwandeln der kinetischen Energie des Windes in elektrischen Strom beschreiben, sollte mit den mathematischen Kenntnissen der Sekundarstufe I gut machbar sein. Die Schülerinnen und Schüler lernen dabei – einmal mehr – physikalische Inhalte zu verstehen, die bei der Meinungsbildung in Hinblick auf die Energieerzeugung im 21. Jahrhundert von großer Wichtigkeit sind. Fachkompetenz Die Schülerinnen und Schüler können Bau und Funktion von Windkraftanlagen beschreiben und erläutern. kennen die Gesetzmäßigkeiten bei der Umwandlung von Wind in Strom. wissen um die Bedeutung der Windenergie als erneuerbare Energieform für das Weltklima. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern und Freunden diskutieren zu können.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Wie funktioniert ein Transistor? Halbleiterphysik anschaulich erklärt

Fachartikel
5,99 €

Woraus ein Transistor besteht, wie er arbeitet und für welche unterschiedlichen Aufgaben und Anwendungsgebiete er infrage kommt und eingesetzt wird – diese Fragen werden im Folgenden anschaulich erklärt. Die moderne Nachrichtentechnik erlebte zu Beginn des 20. Jahrhunderts ihren Durchbruch, als die ersten Elektronenröhren für die Signalverstärkung entwickelt waren. Trotz ihrer Nachteile – wie etwa geringe Lebensdauer oder hoher Stromverbrauch – hielt ihre Dominanz bis Mitte der fünfziger Jahre. Erst dann erkannte man, dass der im Jahr 1947 von den amerikanischen Physikern William B. Shackley, John Bardeen und Walter H. Brittain entwickelte erste funktionsfähige Bipolar-Transistor zu einer ernst zu nehmenden Konkurrenz für die als unverzichtbar geltenden Röhren werden könnte (Abb. 1 b). Den drei Physikern war es gelungen, erstmals einen Stromkreis mittels eines elektrischen Signals zu steuern. Als die drei Wissenschaftler für ihre bahnbrechende Entwicklung 1956 mit dem Nobelpreis ausgezeichnet wurden, gab es bereits die ersten transistorbestückten Geräte zu kaufen. Seither sind Transistoren aus elektrischen Geräten nicht mehr wegzudenken; heute bilden integrierte Schaltkreise mit Milliarden von Transistoren das Herz eines jeden PC-Prozessors mit der Tendenz, immer noch kleiner und schneller zu werden.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe II

Arbeitsblatt: Wie nachhaltig ist die Digitalisierung?

Kopiervorlage / Interaktives

Wie viel Strom verbraucht eine einzige Suchmaschinen-Anfrage? Wie nachhaltig sind Streaming- oder Clouddienste? Deutschland befindet sich in einer Energiekrise. Die Preise für Benzin, Gas und Strom schnellen nach oben. Das Arbeitsblatt sensibilisiert die Schülerinnen und Schüler für ihren digitalen Energieverbrauch und stellt die Frage, wie digitale Prozesse im Privatleben, aber auch im Berufsleben nachhaltiger gestaltet werden können. Wieviel Strom verbraucht eigentlich eine Suchmaschinen-Anfrage, und wie nachhaltig sind Streaming- oder Clouddienste? Mithilfe digitaler Geräte und Dienste können zwar auf der einen Seite Ressourcen eingespart werden, auf der anderen Seite verschlingt die Digitalisierung jedoch auch viel Energie. Und Deutschland befindet sich in einer Energiekrise. Die Preise für Benzin, Gas und Strom schnellen nach oben. Deshalb stellt sich die Frage, wie wir sowohl privat als auch im Berufsleben digitale (Arbeits-)Prozesse nachhaltig gestalten und Strom sparen können und ob eine nachhaltige Digitalisierung überhaupt möglich ist. Zum Einstieg in das Thema nehmen die Schülerinnen und Schüler zunächst eine Einschätzung vor, wie intensiv sie selbst digitale Geräte im Alltag nutzen. Anschließend beobachten sie ihre Mediennutzung über einen bestimmten Zeitraum, gleichen ihre Einschätzung und ihre Beobachtung miteinander ab und analysieren die Gründe für mögliche Abweichungen zwischen vorheriger Einschätzung und tatsächlichem Ergebnis. Mithilfe einer Tabelle eignen sich die Schülerinnen und Schüler Grundwissen über den Energieverbrauch von unterschiedlichen digitalen Diensten und setzen ihn in Relation zum Energieverbrauch in anderen Sparten. Sie diskutieren die Möglichkeit einer nachhaltigen Digitalisierung und sammeln Tipps für die energiesparende Nutzung digitaler Geräte und Dienste. Vertiefend stellen sie die Frage nach den Möglichkeiten der Digitalisierung in der Berufswelt, hier beispielhaft in Bezug auf das Berufsfeld Steuerberatung . Fachkompetenz Die Schülerinnen und Schüler beobachten ihr Nutzungsverhalten von digitalen Geräten. werden für den Stromverbrauch von digitalen Diensten sensibilisiert. erhalten einen Einblick in die Möglichkeiten der Digitalisierung in der Berufswelt und insbesondere im Berufsfeld Steuerberatung. analysieren die Vor- und Nachteile der Digitalisierung in Bezug auf den Energieverbrauch. lernen die Bedeutung von nachhaltiger Digitalisierung kennen. Medienkompetenz Die Schülerinnen und Schüler recherchieren gezielt nach Informationen anhand von vorgegebenen möglichen Internetquellen. arbeiten in Zitaten die Argumentation von Fachexpertinnen und -experten zur Frage der nachhaltigen Digitalisierung heraus. fassen ihre Arbeitsergebnisse strukturiert in einem handlungsorientierten Handout mit Stromspartipps zusammen. Sozialkompetenz Die Schülerinnen und Schüler organisieren sich in Lerngruppen, um komplexe Sachverhalte zu bearbeiten. trainieren im Rahmen einer Diskussion aktives Zuhören und bringen eigene Argumente strukturiert und überzeugend ein. präsentieren ihre Arbeitsergebnisse strukturiert und verständlich dem Plenum.

  • Fächerübergreifend / Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Technik / Sache & Technik / Informationstechnik / Politik / WiSo / SoWi / Berufsvorbereitung /Berufsalltag / Arbeitsrecht / Orga / Bürowirtschaft / Wirtschaft
  • Sekundarstufe I, Sekundarstufe II

OLED - Innovative Lichtquelle der Zukunft

Unterrichtseinheit

Organische Leuchtdioden (OLEDs) besitzen enormes Zukunftspotenzial als energieeffiziente Beleuchtungsmittel. Neben einem deutlich geringeren Energieverbrauch als bei LED-Displays weisen OLEDs eine hervorragende Bildqualität und noch viele weitere Vorteile auf.Organische Leuchtdioden (OLEDs) revolutionieren derzeit die Beleuchtungsindustrie. Energiesparlampen und Halogenstrahler - in wenigen Jahren werden diese Lichtquellen vielleicht vergessen sein. Bei OLEDs handelt es sich um dünne Folien, die tagsüber transparent sind und nachts in allen denkbaren Farben leuchten. Organische Leuchtdioden sind hocheffiziente Lichtquellen, die viele positive Eigenschaften haben: sie sind äußerst energiesparend, leuchten großflächig, sind extrem dünn und außerdem voll dimmbar. Außerdem haben OLEDs keine Verzögerungszeit beim Einschalten und sie sind so flexibel und transparent herzustellen, dass man sie sogar in Fensterscheiben integrieren kann. Relevanz des Themas Die Unterrichtseinheit kann beispielsweise zu einer längeren Unterrichtsreihe in Physik zum Thema "Licht" eingegliedert werden. Zunächst müssen im Unterricht wichtige Grundlagen der Strahlen- und Wellenoptik sowie der Quantenphysik erarbeitet werden. Zu den vorab zu behandelnden Themen sollten unter anderem die Reflexion, Brechung, Brechungsgesetz, Beugung und Interferenz von Licht sowie der Welle-Teilchen-Dualismus des Photons gehören. Die Schülerinnen und Schüler sollen sich mit aktuellen Forschungsergebnissen zur Bedeutung von OLEDs für neue optische Licht- und Speichermedien auseinandersetzen und diese auswerten. Hintergrundinformationen zu OLEDs Hier finden Sie nähere Informationen zu OLEDs und Biolumineszenz von Leuchtkäfern sowie zu Perspektiven für die Medizinforschung. Fachkompetenz Die Schülerinnen und Schüler sollen den Aufbau und das Funktionsprinzip einer Organischen Leuchtdiode verstehen und beschreiben können. ein Thema selbstständig recherchieren und beschreiben können. wichtige Anwendungsbereiche für OLEDs kennenlernen. in reduzierter Form wissenschaftliche Neuentwicklungen für OLEDs bewerten. Medienkompetenz Die Schülerinnen und Schüler sollen eine interaktive Lernumgebung bedienen können. Informationen zur Thematik aus einem Text entnehmen, wesentliche Aussagen verstehen und in eigenen Texten wiedergeben können. die Nutzungsmöglichkeiten des Internets kennen- und anwenden lernen. Thema Organische Leuchtdioden aus Kohlenstoff Autorin Jana Haberstroh Fächer Physik, Chemie, Biologie, Technik, Naturwissenschaften Zielgruppe ab Klasse 7 Zeitraum circa 2-3 Unterrichtsstunden Technische Voraussetzungen Internetzugang (am besten für je 2 Personen), Beamer Der deutsche Chemiker Herbert Naarmann hat bereits 1969 Strom leitende Polymere - die Vorstufe der OLED - beobachtet, doch es sind noch ganze 21 Jahre vergangen, bis eine Forschergruppe in Cambridge erstmals eine Leuchtdiode herstellte. Die verwendeten organischen Halbleiterschichten waren nur etwa 100 Nanometer dick, also zehntausend Mal dünner als ein Millimeter. Alleine die Leuchteffizienz und Lebensdauer der OLEDs blieben jahrelang hinter der Konkurrenz zurück. Immer wieder entdeckten Forscher "Nebenwirkungen", wie zum Beispiel die Verkürzung der Lebensdauer durch kleinste Verunreinigungen. Auch der Aufbau wurde immer komplizierter. Um gegen Luftfeuchtigkeit resistent zu werden, müssen die OLEDs hinter Glas geschützt werden. Aufbau einer organischen Leuchtdiode Ein transparentes Substrat (Glas, Quarz oder Polymerfolie) dient als Basis für den Aufbau. Die Anode, eine ITO-(Indium-Zinn-Oxid-) Schicht ist elektrisch leitfähig und für sichtbares Licht durchlässig. Das Licht entsteht in den "aktiven" organischen Schichten, wenn dort Paare von Elektronen und "Löchern" rekombinieren und jeweils ein Photon erzeugen. Das Licht wird durch das optisch transparente Substrat abgestrahlt. Um eine hohe Effizienz zu erreichen, werden für den Transport von Ladungsträgern eine oder mehrere zusätzliche Schichten aufgebracht. Schließlich wird als Kathode ein optisch nicht transparenter Metallkontakt aufgedampft. Beim Anlegen einer äußeren Spannung von weniger als 5 Volt zwischen Kathode und Anode kommt es zur Emission von Licht, dessen Farbe von den eingesetzten aktiven Materialien abhängt. Die Chemie der OLEDs Die OLED basieren auf organischen Kohlenstoffmolekülen, also Verbindungen aus mehreren Kohlenstoffteilchen mit anderen Elementen. Setzen sich mehrere gleiche Molekülketten aneinander, dann entstehen sogenannte Polymere. Diese verhalten sich wie Halbleiter, was zur Folge hat, dass sie elektrischen Strom leiten. Und mit diesem bringt man die Folien zum Leuchten. Die Lichtfarben bestehen aus Kohlenstoff-Ringstrukturen, in die ein metallisches Zentralatom integriert wird - beispielsweise Edelmetalle wie Platin oder Iridium. Der OLED-Regenbogen Die OLEDs leuchten beim Anlegen einer Spannung, ob gelb, grün, rot oder blau - alle Farben sind möglich. Die Farbe der Emission wird anders als bei den anorganischen LEDs durch die Energielücke des Halbleiters bestimmt (durch die Energie, die frei wird, wenn ein Elektron und ein "Loch" zusammentreffen und rekombinieren). Diese Energie und damit die Farbe der Emission kann durch die Wahl des organischen Materials gezielt verändert werden. Innerhalb weniger Jahre hat man bereits sämtliche Farben von Rot über Grün bis Blau realisiert. Die Entwicklung ist bereits so weit fortgeschritten, dass erste vollfarbige Bildschirmprototypen hergestellt werden konnten. LED versus OLEDs Anders als bei den anorganischen LEDs wird weißes Licht durch Mischen der Grundfarben rot, blau und gelb erzeugt. Blau ist die Achillesferse der weißen OLED - dieser Farbstoff ist am kurzlebigsten. Multitalent OLED Der größte Markt für OLEDs ist der Bereich "Display", das heißt, OLEDs werden beispielsweise für Fernseher oder Displays von Mobiltelefonen eingesetzt. Displays aus organischen Leuchtdioden benötigen keine Hintergrundbeleuchtung und ermöglichen einen geringen Stromverbrauch. Sie ermöglichen zudem einen größeren Betrachtungswinkel. Zukunftsvision leuchtende Tapeten Organische Leuchtdioden dienen sogar als Basis für Tapeten, die Licht erzeugen und sogar, je nach Stimmung, die Farbe wechseln können. Diese gedruckte Elektronik wird im Fachjargon Polytronik genannt. Die Leuchtfolie emittiert ein für das Auge angenehmes, monochromatisches Kaltlicht, das auch bei Staub, Rauch oder Nebel besser sichtbar sein soll als jede andere Lichtquelle. Die Glühwürmchen sind die OLEDs des Tierreiches. Sie können ihr gelbliches Licht, welches in der Paarungszeit werbewirksam eingesetzt wird, ein- und ausschalten. Forscherinnen und Forscher haben die dahinter stehenden Grundlagen der Lumineszenz analysiert und festgestellt, dass einige natürliche Polymere Halbleitereigenschaften haben und somit für den Transport elektrischer Ladungen geeignet sind. Solche konjugierten Polymere können mittlerweile künstlich und genau spezifiziert hergestellt werden. Halbleiter und andere elektrische Bauteile sind also bald nicht mehr auf Kristallstrukturen angewiesen, sondern können aus Kunststoffen gefertigt werden. In der medizinischen Forschung benutzt man ebenfalls Zellen oder Bakterien mit integiertem Luciferase-Gen. Injiziert man beispielsweise einer Maus Salmonellen-Erreger, die das Luciferase-Gen tragen, so breiten sich die Erreger in ihrem Körper aus. Infusiert man eine Luciferinlösung, so kann man diese Ausbreitung durch das entstehende Licht von außen verfolgen, ohne die Maus zu töten. Analog verhält es sich mit markierten Karzinomen bei denen man die Metastasenbildung und Verbreitung optisch durch das emittierte Licht verfolgen kann.

  • Physik / Astronomie / Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

Forschung zu fossilen Energieträgern

Unterrichtseinheit

Wie lange können fossile Energieträger noch genutzt werden? Was macht ökonomisch Sinn, was ist ökologisch vertretbar und was sind die sozialen Folgen? Diese Unterrichtseinheit behandelt aktuelle Forschungsfelder und fordert zur Diskussion über die strategische Ausrichtung der Energiepolitik auf. Unser materieller Wohlstand basiert zu einem sehr großen Teil auf der Nutzung fossiler Energieträger. Strom und Wärme werden traditionell durch die Verbrennung von Kohle, Öl und Erdgas erzeugt – sowohl für die Industrie als auch für die private Nutzung. Die Energiewende, also der Umbau der Energieversorgung weg von fossilen Energieträgern hin zur Nutzung erneuerbarer Energien, braucht Zeit. Gründe hierfür sind vielfältig und zur Dauer des Übergangs gibt es unterschiedliche Einschätzungen. Sicher ist jedoch, dass fossile Energiequellen noch viele Jahre genutzt werden. Lohnt es sich also, die bestehenden Technologien weiterzuentwickeln? Zum Einstieg in das Thema spielen die Schülerinnen und Schüler das „KEEP COOL mobil“. Während des Spiels können gemeinsam Forschungen zu verschiedenen Energiebereichen durchgeführt werden, die einen bestimmten Einfluss auf den Spielfortgang haben. Diese Forschungstätigkeiten sollen anschließend vertieft werden, speziell die Forschungstätigkeiten für sogenannte „Schwarze Fabriken“, also aus dem Bereich der fossilen, klimabelastenden Energienutzung. Hierfür stehen vier Arbeitsblätter zur Verfügung, sodass vier Gruppen gebildet werden können. Nach einer ersten Erarbeitungsphase sollen die Schülerinnen und Schüler ihre Ergebnisse vorstellen und diskutieren. In einer zweiten Arbeitsphase beschäftigen sich die Schülerinnen und Schüler mit den fossilen Energieträgern als Teil des gesamten Energiemixes. Auch hierfür steht ein Arbeitsmaterial zur Verfügung, das am zielführendsten in Gruppenarbeit bearbeitet wird. Zum Abschluss sollten auch diese Ergebnisse präsentiert und im Plenum diskutiert werden. Forschungsprojekte im Spiel „KEEP COOL mobil“ Die Spielerinnen und Spieler haben die Möglichkeit, gemeinsame Forschungsprojekte durchzuführen und sich dadurch einen wirtschaftlichen Vorteil zu verschaffen. Forschungsfelder der fossilen Energieversorgung Früher oder später versorgen wir uns zu 100 Prozent aus erneuerbaren Energien. Bis dahin wird weiter zu fossilen Energieträgern geforscht. Energiemix der Zukunft Die Schülerinnen und Schüler werden Energieminister eines fiktiven Landes. Welche Rolle spielen die verschiedenen Energiequellen? Woran soll geforscht werden? Fachkompetenz Die Schülerinnen und Schüler lernen Forschungsthemen aus dem Bereich der fossilen Energienutzung kennen: Fracking, Tiefsee-Ölförderung, Kraftwerkstechnologie, Flugverkehr, Bauwirtschaft. analysieren Chancen und Risiken dieser Technologien. nehmen die fossile Energienutzung als Teil des Energiemix wahr. erörtern Zukunftsvisionen, wägen Handlungsoptionen ab und entwerfen einen vereinfachten Plan für die zukünftige Energieversorgung eines Landes. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren in dem mobilen Multiplayer-Spiel „KEEP COOL mobil“ mit anderen Spielern. entwickeln gemeinsam eine Gruppenarbeit gemeinsam zur Zukunft der Energieversorgung. präsentieren ihre Ergebnisse und diskutieren im Plenum. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet. nutzen das mobile Multiplayer-Spiel „KEEP COOL mobil“. Anmeldung und Start des Spiels In "KEEP COOL mobil" übernimmt jeder Spieler die Rolle einer Metropole (zum Beispiel Sao Paolo, Berlin, Shanghai oder Mexico City). Die Metropolen sind dabei vier Ländergruppen zugeordnet: Europa USA & Partner BRIC (Schwellenländer Brasilien, Russland, Indien und China) G77 (Entwicklungsländer) Spielablauf Nachdem der Spielleiter das Spiel freigegeben beziehungsweise gestartet hat, laufen die Ticks und der Spieler kann definierte Aktionen durchführen. Aktionen sind etwa: Fabriken oder Gebäude bauen/abreißen (Anpassungsmaßnahmen) Forschungen betreiben (Forschungsfonds) in Kontakt/Verhandlung treten mit einem anderen Spieler Gelder anderen Spielern senden oder von anderen Spielern erhalten Informationen zu anderen Spielern einholen (inklusive Einsicht ins Spielerprofil) eigene Statistiken und Ergebnisse betrachten Mehr Informationen zum Spielablauf von "Keep Cool mobil" finden Sie hier. Forschungsprojekte bei Keep Cool mobil Während des Spiels haben die Spielerinnen und Spieler die Möglichkeit, „grüne“ (erneuerbare) oder „schwarze“ (fossile) Forschungsprojekte zu starten und können andere Mitspielerinnen und -spieler einladen, mit ihnen zu forschen. Da zu Forschungszwecken Geld in einen Forschungs-Fonds eingezahlt werden muss, ist es sogar sinnvoll, gemeinsam zu forschen. Forschungsprojekte zahlen sich für alle teilnehmenden Metropolen aus: Der Neubau einer grünen oder schwarzen Fabrik – je nach Forschungsart – kostet nach erfolgreichem Abschluss eines Forschungsprojektes weniger Geld. Auf diese Art und Weise können die Spielerinnen und Spieler die wirtschaftliche Entwicklung ihrer Metropolregion langfristig lenken – doch Vorsicht – massive Investitionen in fossile Energieträger beschleunigen die Gesamterwärmung der Erdatmosphäre. Klimafolgen können mit Fortschreiten der Spielrunde stärker und häufiger auftreten. Reflektion Wie in der realen Welt, können auch in "Keep Cool mobil" diejenigen Akteure Profit erzielen (im Spiel: Siegpunkte und Siegpunkte aus politischen Forderungen), die auf schwarze Fabriken und somit auf die Weiternutzung und Förderung fossiler Energieträger setzen. Wirtschaftlich gesehen macht das Sinn, denn bis die Energieversorgung das Label „100 Prozent erneuerbar“ trägt, vergehen auch in der Realität noch einige Jahre. Der Effekt der Weiternutzung fossiler Energieformen nach heutigen Standards und mit den derzeitigen CO 2 -Emissionen allerdings ist mit Blick in die Zukunft besorgniserregend – die dadurch konstant steigende Erderwärmung bildet sich auch im Spielverlauf einer Runde "Keep Cool mobil" ab. Hieran und an den Klimafolgen kann die Lehrkraft exemplarisch aufzeigen, dass die Erforschung bestehender fossiler Energieversorgungssysteme wichtig ist, um neben dem Voranbringen erneuerbarer Energien auch Optimierungspotentiale zu nutzen. Eine effizientere Technik spart nicht nur Kosten, sondern auch CO 2 -Emissionen. Die Energiewende lässt auf sich warten Die Nutzung fossiler Energieträger ist der Hauptgrund für den Klimawandel. Wir verbrennen Kohle und Gas zur Stromerzeugung. Wir verbrennen Benzin, Diesel und Kerosin als Treibstoff für unsere Mobilität. Erst allmählich werden erneuerbare Energien genutzt. Der Umstieg braucht Zeit. Das liegt einerseits an technischen Hürden. Aber auch ökonomische Interessen spielen eine Rolle. Denn je länger eine Technologie genutzt werden kann, desto eher amortisieren sich die Investitionen in Forschung und Innovation. Die großen Energieversorger sind daher träge und wollen die hohen Gewinnmargen ihrer Kraftwerke möglichst lange abschöpfen. Übergangsfrist für fossile Energieversorgung Bis wir unsere Energieversorgung mit dem Label "100 Prozent erneuerbar" versehen und komplett umgestellt haben werden, vergehen noch einige Jahre. Aber sollen die bestehenden Kraftwerke und Energieversorgungssysteme einfach so weitermachen wie bisher, ohne Optimierungspotentiale zu nutzen? Eine effizientere Technik spart nicht nur Kosten sondern auch CO 2 -Emissionen. An sich also ein lohnendes Forschungsfeld. Oder etwa nicht? Forschungsgebiete der fossilen Energieversorgung Anhand der Arbeitsblätter 1 bis 4 sollen sich die Schülerinnen und Schüler mit ausgewählten Forschungsthemen aus dem Bereich der fossilen Energieversorgung beschäftigen. Die Arbeitsblätter enthalten kurze Zusammenfassungen, weiterführende Internetadressen und Aufgaben. 1. Neue Rohstoffvorräte 2. Kraftwerkstechnik 3. Flugverkehr 4. Bauwirtschaft Hier bietet es sich an, vier kleinere Gruppen zu bilden. Nach einer Erarbeitungsphase sollen die Schülerinnen und Schüler ihre Ergebnisse vorstellen und diskutieren. Fossile Energieträger sind endlich Es dauert Jahrmillionen, um fossile Energieträger wie Kohle und Öl entstehen zu lassen. Nach menschlichen Zeitmaßstäben sind die fossilen Vorräte also endlich. Und die Lagerstätten sind unterschiedlich leicht auszubeuten. Selbstverständlich werden zunächst die Lagerstätten genutzt, die einfach auszubeuten sind. Je näher wir dem Ende der weltweiten Ressourcen kommen, desto schwieriger wird es, die Rohstoffe zu fördern. Deshalb werden neue Fördertechnologien erforscht, die bislang unwirtschaftliche Lagerstätten interessant werden lassen. Schwer zugängliche Rohstoffquellen Oberflächennahe Ölsande und Ölschiefer, Erdgas in dichten Speichergesteinen, flach und sehr tief liegende Erdgasvorkommen, Gas in Kohleflözen und Gashydrat, diese Rohstofflagerstätten waren lange Zeit nicht wirtschaftlich nutzbar. Durch Fortschritte bei der Erkundung der Lagerstätten als auch bei der Förderung, werden große Mengen fossiler Energieträger zusätzlich nutzbar. Was ist Fracking? Der Begriff Fracking leitet sich von Hydraulic Fracturing ab, also dem „hydraulischen Zerbrechen“, und zwar von Untergrund-Gestein. Dadurch sollen mehr gasförmige und lösliche Stoffe (Erdöl und Erdgas) zugänglich gemacht werden. Wissenschaftler sprechen von „Stimulierung“. Erreicht wird dieses Aufbrechen, indem man chemische Substanzen mit sehr hohem Druck (mehrere hundert Bar) in das Gestein presst. Die Chancen Im Vordergrund stehen ökonomische Interessen. Durch Fracking werden noch mehr Rohstoffe pro Lagerstätte genutzt. Oder es wird die Nutzung von bislang ökonomisch nicht nutzbaren Lagerstätten erst möglich. Abgesehen von den technischen und wirtschaftlichen Aspekten, spielen auch geopolitische Interessen eine Rolle. So setzten die USA unter anderem deshalb so stark auf Fracking, weil es dadurch unabhängiger wird von Rohstoffimporten aus dem mittleren Osten. In Deutschland überwiegen die Bedenken vor den schädlichen Auswirkungen. Dementsprechend ist Fracking bei uns (Stand Juli 2016) nur sehr eingeschränkt erlaubt. Die Risiken Die chemischen Substanzen, die mit hohem Druck in den Untergrund gepumpt werden, sind hochgiftig. Sie enthalten krebserregende Kohlenwasserstoffe, Schwermetalle und teilweise auch radioaktive Substanzen. Immer wieder dringen diese Schadstoffe an die Oberfläche oder ins Grundwasser. Die Bohrschlämme müssen in speziellen Deponien entsorgt werden. Umweltverbände rechnen vor , dass bereits im Jahr 2016 bis zu 35 Millionen Tonnen Sondermüll entsorgt werden müssen. Die Chancen Ob in der Tiefsee Öl gefördert wird, hängt vorrangig davon ab, ob es sich wirtschaftlich lohnt. Durch entsprechende Forschungsaktivitäten können Verfahren entwickelt werden, die den Kostenaufwand für die Förderung reduzieren. Und wenn die Nachfrage steigt, kann das geförderte Öl auch noch teuer verkauft werden. So kann sich insgesamt das wirtschaftliche Verhältnis von Aufwand zu Nutzen dahingehend verschieben, dass sogar die Tiefseeförderung ein lohnendes Geschäft wird. Neben den rein wirtschaftlichen Interessen gibt es auch geopolitische Interessen. Die Unabhängigkeit von Staaten mit hohen Öl- und Gasvorkommen kann auch eine große Rolle spielen. Die Risiken Das Bohren in großen Wassertiefen ist mit besonderen technischen Anforderungen verbunden. Der Druck in großen Tiefen ist enorm. In 2.800 Metern Tiefe ist der Druck der Wassersäule doppelt so groß wie der einer Autopresse. Entsprechend teuer sind die eingesetzten technischen Geräte und Verfahren. Schwierigkeiten bereiten auch die Temperaturunterschiede. In diesen Tiefen ist der geförderte Rohstoff teilweise sehr heiß. Beim kilometerlangen Aufstieg zur Bohrplattform können durch das Abkühlen störende Effekte wie Wachsbildung auftreten. Wenn ein Störfall eintritt, ist er viel schwieriger zu kontrollieren. Schon allein aufgrund der Entfernung zum Bohrloch, aber auch aufgrund der extremen Bedingungen in solchen Tiefen. Trauriges Beispiel ist die Katastrophe am 20. April 2010 auf der Plattform "Deepwater Horizon", einer Bohrplattform im Golf von Mexico. Höhere Wirkungsgrade Übliche Kohlekraftwerke erreichen hinsichtlich der Stromerzeugung einen Wirkungsgrad von 30 bis 40 Prozent. Moderne Kohlekraftwerke erreichen bis zu 45 Prozent. Eine weitere Steigerung auf über 50 Prozent wird angestrebt. Möglich sein soll das durch höhere Temperaturen und höheren Druck. Bisherige Materialien der Kraftwerkstechnik würden diesen Belastungen nicht oder nur sehr kurz standhalten. Deshalb wird an neuen Materialien geforscht, die auch extremen Bedingungen lange standhalten. Eine andere Möglichkeit, den Wirkungsgrad zu erhöhen, ist die Verbrennung von Kohle mit reinem Sauerstoff. Allerdings ist bislang die Herstellung von reinem Sauerstoff sehr aufwendig. Aus diesem Grund versucht man das Herstellungsverfahren zu optimieren oder andere, effizientere Verfahren zu entwickeln. Häufige Lastwechsel Kraftwerke müssen zunehmend flexibel auf unterschiedlichen Strombedarf reagieren können. Grund hierfür ist der steigende Anteil der Stromerzeugung aus erneuerbaren Energien. Sie hängt vom Wetter ab und schwankt entsprechend. Der Stromverbrauch ist aber unabhängig vom Wetter. Diese Differenz müssen Kraftwerke ausgleichen (dabei können fossile oder erneuerbare Brennstoffe eingesetzt werden). Je nach Wetterlagen können kurzfristige und häufige Lastwechsel auftreten. Entsprechend müssen Kraftwerke hoch- oder runtergefahren werden. Jeder Lastwechsel führt zu Temperatur- und Druckwechseln in der Kraftwerkstechnik. Die Folge ist, dass die Materialien stärker beansprucht werden und schneller verschleißen. Abhilfe können neue Materialien bringen. Aber auch die Wartungstechnik muss auf die höheren Belastungen reagieren, um sicherzustellen, dass Bauteile rechtzeitig ausgetauscht werden. Chancen und Risiken Höhere Wirkungsgrade haben zur Folge, dass bei gleicher erzeugter Strommenge weniger CO 2 freigesetzt wird. Das ist natürlich grundsätzlich zu begrüßen. Gleichzeitig besteht das Risiko, dass durch sogenannte Rebound-Effekte der Vorteil der modernen Technik wieder zunichte gemacht wird. Das bedeutet, dass der Stromverbrauch in gleichem Maß oder sogar mehr steigt als der Wirkungsgrad des Kraftwerks. Leider sind solche Rebound-Effekte nicht selten. Als Beispiel hierfür sei die Autobranche genannt: Motoren werden immer sparsamer, gleichzeitig werden die Autos immer leistungsstärker. Auch die Atomenergie beruht auf einem fossilen Energieträger, dem Uran. Zwar emittieren Kernkraftwerke prinzipiell kein CO 2 . Aufgrund des außerordentlichen Gefährdungspotentials und der ungelösten Entsorgungsproblematik verliert diese Art der Energieversorgung nicht nur in Deutschland an Bedeutung. Selbst nach dem Atomausstieg wird die Entsorgung von Atommüll und der Rückbau stillgelegter Atommeiler noch lange als Herausforderung beziehungsweise als Forschungsfeld relevant bleiben. Belastung für das Klima Der Flugverkehr hat bislang einen Anteil von 2 Prozent an den globalen CO 2 -Emissionen. Der Anteil am anthropogenen Klimawandel liegt allerdings bei 5 Prozent, da nicht nur CO 2 , sondern auch weitere klimarelevante Gase in großen Höhen freigesetzt werden. Zudem muss davon ausgegangen werden, dass in Zukunft noch mehr geflogen wird als heute. Kein Wunder also, dass zu umweltverträglicheren Alternativen geforscht wird. Propellerantriebe der Zukunft Bei der sogenannten Open-Rotor-Technologie kommen große, vielblättrige Rotoren zum Einsatz. Sie sollen bis zu 30 Prozent weniger Treibstoff verbrauchen. Es gibt aber auch Nachteile. So erreichen Flugzeuge mit diesem Antrieb nur geringere Fluggeschwindigkeiten als mit herkömmlichen Triebwerken. Außerdem sind die Antriebe deutlich lauter. Und der dritte große Nachteil ist die Größe der Triebwerke. Sie passen nicht unter die Flügel und müssen stattdessen im Heckbereich integriert werden. Dadurch werden neue Bauarten von Flugzeugen notwendig. Biokraftstoff Könnte man Biokraftstoffe im Flugverkehr einsetzen, wäre die CO 2 -Bilanz deutlich besser. Denn im Prinzip wird nur die Menge an CO 2 freigesetzt, die vorher eine Pflanze aus der Atmosphäre entnommen hat, um ihre Biomasse aufzubauen. Beachtet werden muss allerdings auch, ob die Quellen, aus denen die Biomasse stammt, nachhaltig bewirtschaftet wurden. Wenn nämlich Regenwald gerodet wird, um dort Soja für Biokraftstoff anzubauen, dann ist die Ökobilanz nicht mehr so rosig. Brennstoffzelle Ähnliches gilt für die Idee, Energie aus Brennstoffzellen zu nutzen. Die meisten Brennstoffzellen erzeugen Strom aus Wasserstoff und Sauerstoff, und zwar mit einem beachtlichen Wirkungsgrad. Theoretisch können 80 Prozent der Energie in Strom umgewandelt werden. In der Praxis werden jedoch „nur“ 45 Prozent erreicht. In der Gesamt-Ökobilanz muss allerdings berücksichtigt werden, wie das Wasserstoff-Gas hergestellt wurde. Dafür muss nämlich zunächst eine Menge Energie investiert werden. Nur wenn diese Energie aus erneuerbaren Quellen stammt, stellen Brennstoffzellen eine Entlastung des Klimas dar. Der Gesamt-Wirkungsgrad (Wasserstoff-Herstellung – Stromerzeugung – Antriebsenergie) kann zwar theoretisch bis zu 45 Prozent betragen, in der Praxis dürfte er jedoch deutlich darunter liegen. Auch der Preis der Technologie ist für den Massenmarkt noch nicht attraktiv. Ressourcenverbrauch und CO 2 -Emissionen Die Bauwirtschaft hat einen sehr hohen Anteil an unserem Ressourcenverbrauch. Aus ökologischer Sicht ist insbesondere das Bauen mit Beton problematisch. Beton besteht aus Sand, Kies und dem Bindemittel Zement. Zement wird aus Kalkstein, Ton, Sand, Eisenerz und Gips hergestellt. Bei der Zementherstellung werden enorme Mengen an CO 2 freigesetzt. Einerseits entsteht CO 2 als chemisches Produkt beim Brennen von Kalkstein. Andererseits wird CO 2 durch Verbrennungsvorgänge frei, die für die hohen Temperaturen von über 1.400 °C benötigt werden. Laut IPCC gehen weltweit 7 Prozent der anthropogenen (vom Mensch gemachten) CO 2 -Emissionen auf das Konto der Zementherstellung. Auch Ersatzbrennstoffe machen schlechte Luft Zur Einsparung fossiler Brennstoffe werden bei der Zementherstellung zunehmend sogenannte „Ersatzbrennstoffe" verwendet. Unter anderem Altöl, Lösemittel, Haus- und Gewerbemüll, Autoreifen, Tiermehl. Auch wenn Filteranlagen einen Teil der Schadstoffe aus den Abgasen entfernen können, ein mehr oder weniger großer Rest an Schadstoffen entweicht in die Umwelt. Forschung zur Zementherstellung Wissenschaftler haben ein Verfahren entwickelt, das deutlich weniger CO 2 emittiert. Statt 1.450°C sollen weniger als 300°C ausreichen, um den alternativen Zement herzustellen. Zudem wird weniger Kalk benötigt, wodurch sich die CO 2 -Emissionen weiter senken lassen. Forschung im Bereich Betonbau An der Hochschule Bochum wurde ein Verfahren entwickelt, um bei gleicher Bauweise den Betonanteil zu verringern. Dazu werden Hohlkörper aus recyceltem Kunststoff in den Beton gemischt. Auf diese Weise werden über 20 Prozent weniger Primärenergie verbraucht. Außerdem sind die Bauteile leichter, wodurch die gesamte Gebäudekonstruktion schlanker ausfallen kann. Das spart weitere Ressourcen und dadurch auch CO 2 -Emissionen. Bislang haben sich die Schülerinnen und Schüler schwerpunktmäßig mit fossilen Energieträgern beschäftigt. Diese sind aber nur ein Teil der Energieversorgung. Zur Energieversorgung tragen auch die erneuerbaren Energien einen erheblichen Teil bei. Beim Strom ist das bereits über 25 Prozent, Tendenz stark steigend. Die Zukunft der Energieversorgung Legen Sie die Zukunft der Energieversorgung schon heute in die Hände Ihrer Schülerinnen und Schüler (später werden ohnehin sie es sein, die bestimmen werden). Arbeitsblatt 5 bietet hierfür eine einfache Vorlage, um auf einem sehr hohen Abstraktionsniveau die Planung bis ins Jahr 2100 durchzuführen. Es kommt dabei weniger auf „richtig“ oder „falsch“ an, sondern darauf, dass sich die Schülerinnen und Schüler gemeinsam in kleinen Gruppen über Ideen und Ansätze zu einer generellen Strategie und den damit verbundenen Entscheidungsfaktoren unterhalten. Welche Gewichtung haben ökonomische und ökologische Fragestellungen? Wo sind die Investitionen am sinnvollsten? Welche sozialen Konsequenzen haben die Entscheidungen (Energiepreis, Bau von Stromleitungen, Gesundheitsrisiken, Folgen des Klimawandels …), im eigenen Land, aber auch weltweit?

  • Politik / WiSo / SoWi / Geographie / Jahreszeiten
  • Sekundarstufe II

Die Energiewende und andere Klimaschutzmaßnahmen

Unterrichtseinheit

Durch diese fachübergreifende Unterrichtseinheit lernen die Schülerinnen und Schüler die wichtigsten Entwicklungen und Herausforderungen der deutschen und weltweiten Energiewende sowie die großen Klimaschutz-Baustellen in Landwirtschaft und Verkehr kennen. Sie analysieren die damit verbundenen Interessenskonflikte und suchen gemeinsam nach sinnvollen Lösungen. Mit der Entscheidung, aus der Atomkraft auszusteigen und die Energieversorgung auf erneuerbare Energien und Energieeffizienz umzustellen, ist Deutschland international zu einem Vorbild geworden. Noch nie hat ein Industrieland eine solche Transformation vorgenommen. Schon heute wird bei uns mehr als ein Drittel des Stroms aus Sonnen- und Windenergie, Biomasse und Wasserkraft erzeugt. Auch weltweit sind die erneuerbaren Energien auf dem Vormarsch, da sie immer billiger werden und einen wichtigen Beitrag zum Klimaschutz leisten. Oft rechnet sich der Bau eines großen Windparks für Stromproduzenten schon mehr als der eines Kraftwerks, das Strom mit fossilem Brennstoff produziert. Um einen ausufernden Klimawandel zu verhindern, reicht aber eine Stromwende nicht aus. Auch in anderen Sektoren wie Landwirtschaft und Verkehr müssen die CO 2 -Emissionen stark reduziert werden. Diese Unterrichtseinheit ermöglicht die selbstständige Auseinandersetzung der Schülerinnen und Schüler mit der Energiewende in Deutschland und weltweit, ihrer Vorteile und Herausforderungen. Dabei haben sie auch die Auswirkungen für Wirtschaft, Infrastruktur, Landwirtschaft und Umwelt im Blick. Außerdem analysieren sie die Auswirkungen der Landwirtschaft, insbesondere der industriellen Produktion von Lebensmittel und Fleisch sowie des Verkehrs auf die Erwärmung des Planeten und beschäftigen sich mit Strategien zu nachhaltiger Transformation in diesen Sektoren. Themen der Unterrichtseinheit Die Energiewende Hier geht es um die aktuelle Entwicklung und Verbreitung von erneuerbaren Energien in Deutschland und weltweit. Deutschland will bis 2050 mindestens 80 Prozent seines Stroms aus erneuerbaren Energien erzeugen. Doch das Land ist dabei nicht alleine. Mehr und mehr Länder entscheiden sich für erneuerbare Energien. Warum brauchen wir erneuerbare Energien? Welche Auswirkungen wird und soll die Energiewende auf Wirtschaft, Umwelt und Gesellschaft haben? Vor welchen Herausforderungen steht Deutschland? Mobilität und Verkehr Wie muss sich der Verkehr verändern, wenn Deutschland das während des Klimagipfels in Paris 2015 zugesagte Ziel einer Reduzierung seiner Treibhausgas-Reduktionen auf Null bis Mitte des Jahrhunderts erreichen will? Wie sieht die Energiewende im Verkehrssektor aus? Welche Auswirkungen hat der Flugverkehr? Können Elektroautos das Problem weitgehend lösen? Sollte Deutschland sein Autobahnnetz weiter verdichten? Welche Rolle spielt der internationale Warentransport? Welche Alternativen existieren und können stärker genutzt werden? Die Landwirtschaft und ihre Bedeutung für den Klimaschutz Welche Rolle spielt die Landwirtschaft für den Klimaschutz? Welche Auswirkungen hat die industrielle Produktion von Lebensmitteln und Fleisch für tropische Regenwälder in Brasilien und auf Indonesien und was hat das mit dem Klimawandel zu tun? Warum sind Palmöl und Soja ein Problem für den Klimaschutz und was kann ich in Deutschland tun? Fachkompetenz Die Schülerinnen und Schüler… lernen die wichtigsten erneuerbaren Energieträger kennen. werden für die Herausforderungen der Energiewende in Deutschland und weltweit sensibilisiert. setzen sich mit den jüngsten Entwicklungen in der weltweiten Energieversorgung und mit dem Ausbau erneuerbarer Energien auseinander. können die Auswirkungen der Landwirtschaft und Lebensmittelproduktion, inklusive Fleischproduktion, auf den Klimawandel nachvollziehen. setzen sich mit den Folgen von Flug- und Landverkehr für Erderwärmung und Klimawandel auseinander. entwerfen selbstständig Ansätze und tragen Ideen zusammen für zukunftsorientierte, klimaschützende und wirtschaftlich umsetzbare Energieversorgung. Medienkompetenz Die Schülerinnen und Schüler… recherchieren im Internet. analysieren und interpretieren Informationen, die sie im Internet recherchiert haben. bereiten digitale Präsentationen vor. Sozialkompetenz Die Schülerinnen und Schüler arbeiten in Teams zusammen. Fundamentale Wende in der Energieversorgung Der Energiesektor verursacht den größten Teil der weltweiten Treibhausgas-Emissionen, sein Anteil lag 2010 bei 35 Prozent. Durch das weltweite Wirtschafts- und Bevölkerungswachstum steigt die Nachfrage nach Energie und Strom weiter. Der Ausstoß von Treibhausgasemissionen hat sich jedoch in den vergangenen Jahren stabilisiert. Diese für viele überraschende Entwicklung deutet darauf hin, dass inzwischen nicht nur in Deutschland eine Energiewende stattfindet. Die Energiewende steht für eine fundamentale Wende in der Energieversorgung. Das bisherige Energiesystem, das auf fossilen Brennstoffen (Kohle, Öl und Gas) sowie Kernenergie beruht, wird abgelöst von einer neuen Energieversorgung durch erneuerbare Energien (Windkraft, Sonnenenergie, Wasserkraft, Biomasse und Erdwärme) sowie einer verbesserten Energieeffizienz und Energieeinsparung. Energiewende in Deutschland Deutschland hat mit der Energiewende eine radikale Transformation seines Stromsektors beschlossen. Die übergeordneten energiepolitischen Ziele der Bundesregierung im Juni 2011 umfassen den Atomausstieg bis 31.12.2022 und den Ausbau der erneuerbaren Energien. Darüber hinaus sollen die Stromnetze zügig ausgebaut und modernisiert werden sowie die Energieeffizienz insbesondere im Gebäudesektor, bei der Mobilität und beim Stromverbrauch erhöht werden. Dabei müssen die Treibhausgasemissionen um 40 Prozent bis 2020 und um 80 bis 95 Prozent bis 2050 im Vergleich zum Basisjahr 1990 reduziert werden. Erneuerbare Energien weltweit 2015 war ein Rekordjahr für Erneuerbare Energien. Zu diesem Ergebnis kommt der Statusbericht "Renewables 2016" von REN21. (...) Die Erneuerbaren decken mittlerweile 19 Prozent der globalen Energienachfrage. Einen solchen Anstieg innerhalb eines Jahres hat es noch nie gegeben. Mit 330 Milliarden US-Dollar erreichten auch die Investitionen in erneuerbare Energien in den Bereichen Verkehr, Strom und Wärme einen neuen Rekordwert. Allein beim Strom wurde 2015 doppelt so viel in Solar-, Wind- und Wasserkraft investiert (etwa 265 Milliarden Dollar) wie in neue Kohle- und Gaskraftwerke zusammen (130 Milliarden). Auch auf dem Arbeitsmarkt zeigt sich eine positive Entwicklung. Mehr als acht Millionen Menschen arbeiten mittlerweile weltweit in der Erneuerbaren-Branche. Europa: Investitionen gesunken! Europa ist die einzige Weltregion, in der die Investitionen in Erneuerbare im vergangenen Jahr deutlich gesunken sind, bedingt durch die Wirtschaftskrise und mangelnde politische Ambition. Besonders drastisch ist der Einbruch um 46 Prozent in Deutschland, dem vormals größten Markt für erneuerbare Energien. In den USA war dafür ein kräftiges Wachstum zu verzeichnen und in Japan blieben die Investitionen immerhin stabil. Der globale Süden hingegen befindet sich auf der Überholspur. Zum ersten Mal waren die Investitionen in erneuerbare Energien dort höher als in den Industrieländern. Alleine China konnte rund 36 Prozent aller globalen Investitionen in erneuerbare Energien auf sich vereinen. Aus entwicklungspolitischer Perspektive dabei besonderes beindruckend: Finanzschwächere Länder wie Marokko, Jamaika, Honduras, Jordanien, Uruguay, Nicaragua, Mauretanien oder die Kapverden haben letztes Jahr ein Prozent oder mehr ihrer Wirtschaftsleistung in den Ausbau erneuerbarer Energien investiert. In Deutschland verursacht der Verkehrssektor rund 20 Prozent der Treibhausgasemissionen. Kein anderer Sektor hat in Deutschland so wenig zur Erreichung der gesetzten Klimaziele beigetragen, wie der Verkehr. Er ist damit das größte Problemkind der Klimapolitik. Um die deutschen Klimaschutzziele nach dem Klimaabkommen von Paris zu erreichen, muss der CO 2 -Ausstoß des Verkehrs vor 2050 auf nahezu Null gesenkt werden. Wie das passieren kann, dafür hat Deutschland noch keinen Plan. Weitgehender Konsens herrscht nur dabei, dass die Effizienz der Fahrzeuge weiter gesteigert werden muss und dass der gesamte Straßen- und Schienenverkehr langfristig auf erneuerbare Antriebe (Strom, Biosprit) umgestellt werden soll. Inwiefern auch die Vermeidung von Verkehr und die Verlagerung von der Straße auf die Schiene eine Rolle spielen muss, um die Treibhausgasreduktionsziele erreichen zu können, ist noch umstritten. Zwei Trends verantwortlich Vor allem zwei Trends sind für die problematische Entwicklung im Verkehr verantwortlich. Erster Hauptfaktor ist im Personenverkehr die Tendenz zu schweren, PS-starken Autos, wodurch die Effizienzgewinne durch sparsamere Motoren wieder aufgefressen werden. Heute werden etwa ebenso viele SUVs wie Kleinwagen verkauft, und die durchschnittliche Motorleistung der Neuwagen ist alleine zwischen 2007 und 2014 von 95 auf 140 PS gestiegen. Die aktuell niedrigen Spritpreise verstärken diese Entwicklung. Zweiter Hauptfaktor ist das hohe Wachstum im Güterverkehr. So hat der Warentransport auf der Straße seit Mitte der 1990er Jahre um mehr als 60 Prozent zugenommen, und das Bundesverkehrsministerium rechnet weiterhin mit deutlichen Zunahmen. Der kurze Einbruch der Frachtmengen während der Finanz- und Wirtschaftskrise 2008/2009 ist längst vergessen. Weitere Faktoren Viele Akteure in Politik und Wirtschaft setzen in Deutschland vor allem auf das Elektroauto, um die Emissionen des Verkehrssektors zu senken. Bis 2020 – so das Ziel der Bundesregierung – sollen eine Million E-Autos über Deutschlands Straßen rollen. Doch die Verkaufszahlen bei Elektroautos bleiben vorerst sehr niedrig und die Zahl von eine Million gilt inzwischen weithin als nicht erreichbar. Seit Sommer 2016 können Käufer eines E-Autos darum eine Prämie von mehreren tausend Euro beantragen, die sie zusätzlich mit dem Kauf des Autos erhalten. Doch auch dadurch konnte der Absatz bisher nur unwesentlich angekurbelt werden. Der Güterverkehr wächst noch schneller als der Personenverkehr. Daran hat auch die seit 2005 eingeführte Lkw-Maut nichts geändert. Die absoluten CO 2 -Emissionen im Lkw-Verkehr sind von 1995 bis 2013 um 13 Prozent gestiegen. Der Güterverkehr auf der Straße hat im gleichen Zeitraum um 31 Prozent zugenommen. Die Prognosen gehen alle von einem weiter wachsenden Straßengüterverkehr aus. Auch hier gibt es bisher keine Problemlösungsstrategie. Lösungsansätze wären ein starker Ausbau des Schienengüterverkehrs und Anreize dafür, dass Güter häufiger regional gehandelt und nicht mehr durch ganz Europa gefahren werden. Das Umweltbundesamt fordert deshalb eine Einbeziehung aller Fahrzeuge von 3,5 Tonnen in die Lkw-Maut. Außerdem schlägt das UBA vor, alle Straßen mautpflichtig zu machen. Bisher sind es nur Autobahnen und ein Teil der Bundesstraßen. Fliegen ist die mit Abstand klimaschädlichste Art der Fortbewegung. In Reiseflughöhe ist die Klimawirkung der Flugzeugemissionen nach aktuellem Stand der Wissenschaft um den Faktor 2- bis 4½-mal höher, als am Boden. Das ergibt derzeit einen Anteil von ca. 7 Prozent am gesamten menschengemachten Treibhauseffekt. Doch dieser Anteil nimmt schnell zu, denn der Flugverkehr wächst weiter, selbst in Deutschland. Das liegt auch daran, dass Fliegen vom Staat stark bezuschusst wird. Unter anderem ist Kerosin von der Energiesteuer befreit, internationale Flüge von der Mehrwertsteuer. Bis 2040, schätzt die internationale Luftverkehrsorganisation ICAO, könnten sich die weltweiten Emissionen im Flugverkehr vervierfachen. Das Überschießen der globalen 2-Grad-Erwärmungsrenze wäre damit unvermeidlich. Die Landwirtschaft ist einer der wichtigsten Verursacher des Klimawandels. 2010 trug sie 10 bis 12 Prozent zu den weltweiten Treibhausgasemissionen bei. Der Agrarsektor ist dabei die größte Quelle der Treibhausgase Methan (CH 4 ) und Lachgas (N 2 O), die zum Beispiel in der Viehhaltung entstehen. Gleichzeitig ist die Landwirtschaft das größte Opfer des Klimawandels. Dürre und Überschwemmungen, Stürme, die Versalzung des Grundwassers, Austrocknung und Landdegradierung wirken sich bereits heute negativ auf Ernteerträge und Lebensmittelproduktion aus. Obwohl in einigen nördlichen Regionen die landwirtschaftliche Produktivität auch steigen könnte, sind die negativen Folgen für die weltweite Nahrungsmittelproduktion und damit die ländliche und die ärmere städtische Bevölkerung insgesamt sehr negativ. Vor allem in Afrika und Asien ist es durch den Klimawandel mit drastischen Ernteverlusten zu rechnen.

  • Politik / WiSo / SoWi / Wirtschaft / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE