• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 3
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die Entfernung der Galaxie M100

Unterrichtseinheit

Schülerinnen und Schüler werten mithilfe von Daten des Hubble-Weltraumteleskops die Perioden und scheinbaren Helligkeiten von Cepheiden-Veränderlichen in der Galaxie M100 aus und ermitteln so deren Entfernung. Die Helligkeit der Delta-Cephei-Sterne variiert periodisch. Eine bestimmte Periodenlänge entspricht dabei einer ganz bestimmten mittleren Strahlungsleistung. Diese wiederum ergibt zusammen mit der scheinbaren Helligkeit die Entfernung. Voraussetzung dafür ist allerdings, dass die Entfernungsskala mithilfe von solchen Cepheiden geeicht wurde, deren Entfernung auf ganz unabhängige Weise ermittelt werden kann. In diesem Zusammenhang spielt die in der Unterrichtseinheit Die Entfernung der Supernova SN 1987A bestimmte Entfernung zur Supernova in der Großen Magellanschen Wolke eine Schlüsselrolle: In dieser findet man nämlich sehr viele veränderliche Sterne vom Typ Delta Cephei, deren Entfernungsskala mithilfe der Supernova mit bisher nicht gekannter Präzision geeicht werden kann. Neben den Arbeitsmaterialien und Aufgabenstellungen für die Schülerinnen und Schüler steht im Downloadbereich auch eine Handreichung für Lehrkräfte mit weiteren ausführlichen Informationen zur Verfügung. Obwohl in den Details durchaus kompliziert, sind die Prinzipien der Entfernungsbestimmungen einfach genug, um von Schülerinnen und Schülern der Oberstufe verstanden und angewandt werden zu können. Aus der Mathematik werden in dieser Unterrichtseinheit lediglich Kenntnisse über den dekadischen Logarithmus vorausgesetzt. Die kosmische Entfernungsskala Methoden der Entfernungsbestimmung: Schülerinnen und Schüler erklimmen zwei Stufen der kosmischen Entfernungsleiter. Informationen und Materialien zur Entfernungsberechnung von M100 Wie entsteht der Lichtwechsel der Cepheiden-Veränderlichen? Welche Eigenschaften machen sie zu Entfernungsindikatoren? Die Schülerinnen und Schüler verstehen die Ursachen des Lichtwechsels von Delta-Cephei-Sternen. werten Lichtkurven von Cepheiden aus und bestimmen mithilfe dieser "Standard-Kerzen" die Entfernung von M100. werden dazu angeregt, den Namensgeber der Cepheiden im Sternbild Kepheus oder andere Cepheiden selbst zu beobachten. Freedman, W.L., Madore, B.F., Mould, J.R. und andere (1994): Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids, Nature 371 (1994), Seite 757-762. Gaposhkin, S. I. (1970): The Large Magellanic Cloud: Its Topography of 1830 Variable Stars, Smithsonian Institution Astrophysical Observatory Special Report Nr. 310, Cambridge (MA) 1970. Für die nähere Umgebung: Radarechos und trigonometrische Parallaxe Vergleichsweise kleine Entfernungen, wie die innerhalb unseres Sonnensystems, lassen sich aus der Laufzeit von Radarechos ermitteln. Für die Sterne der näheren Sonnenumgebung ist die Methode der trigonometrischen Parallaxe anwendbar. Sie beruht auf der Messung der Verschiebung dieser Sterne gegenüber sehr viel weiter entfernten Sternen, wenn man sie von verschiedenen Positionen der Erdbahn aus beobachtet. Dieser Effekt ist vergleichbar mit der Erfahrung, dass man ein und dasselbe Objekt einer Landschaft aus einem fahrenden Zug heraus auf dauernd wechselnde Punkte am Horizont projiziert. Erscheint, von einem Stern aus gesehen, die große Halbachse der Erdbahn unter einem Winkel von einer Bogensekunde, so hat er eine Entfernung von einem Parsec (1 Parsec = 3,26 Lichtjahre). Bei viel weiter entfernten Objekten kommen andere Methoden zur Entfernungsbestimmung in Betracht: Vergleich der wahren (etwa in Parsec gemessenen) Größe der Objekte mit dem Winkeldurchmesser, unter dem sie dem Betrachter erscheinen. Vergleich der absoluten Helligkeit (oder Leuchtkraft) der Objekte mit der scheinbaren Helligkeit, die sie für den Beobachter haben. Beide Methoden sind dadurch gekennzeichnet, dass sie aus einer relativ leicht zu bewältigenden und einer schwierigen Aufgabenstellung bestehen. Scheinbare Helligkeiten und Winkeldurchmesser sind der Messung direkt zugänglich. Aussagen über die Leuchtkraft oder die wahre Größe von Himmelsobjekten sind viel schwieriger zu treffen und erfordern in der Regel ein tiefes Verständnis der physikalischen Natur dieser Objekte. In zwei Projekten lernen die Schülerinnen und Schüler ein Beispiel für je eine der Methoden zur Bestimmung großer Entfernungen kennen. Nachdem zuvor in der Unterrichtseinheit Die Entfernung der Supernova SN 1987A (siehe auch Fosbury, 1994) das erste Verfahren praktiziert wurde, kommt in dem hier vorgestellten Projekt die zweite Methode zum Einsatz: der Vergleich von scheinbarer und absoluter Helligkeit bei Delta-Cephei-Sternen zur Entfernungsbestimmung der Spiralgalaxie M100 im Virgo-Galaxienhaufen. Dabei hat die Durchsichtigkeit des Messprinzips gegenüber der erreichten Genauigkeit aus didaktischen Gründen den Vorrang. "Standard-Kerzen" im All Veränderliche Sterne vom Typ Delta Cephei sind sehr zuverlässige Entfernungsindikatoren, da man durch die Beobachtung ihres regelmäßigen Lichtwechsels zuerst auf ihre Leuchtkraft und dann aus dieser und der scheinbaren Helligkeit auf ihre Entfernung schließen kann. Zu jeder Lichtwechselperiode gehört nämlich eine ganz bestimmte mittlere Leuchtkraft, denn je größer ein Stern ist (je mehr Masse er hat), desto leuchtkräftiger ist er und desto länger braucht er für eine Pulsation. Der Lichtwechsel der Cepheiden mit Perioden bis zu einhundert Tagen ist durch einen raschen Anstieg zum Helligkeitsmaximum und einen vergleichsweise langsamen Abfall zum Minimum gekennzeichnet (Abb. 1). Freie Elektronen verursachen einen Strahlungsstau Cepheiden sind massereiche und leuchtekräftige Sterne, die bereits ein fortgeschrittenes Stadium ihrer Entwicklung erreicht haben, obwohl sie - absolut gesehen - noch jung sind. Ihre Atmosphären, in denen Helium ein wesentlicher Bestandteil ist, befinden sich nicht im hydrostatischen Gleichgewicht. Infolge hoher Temperaturen liegt das Helium normalerweise bereits in einfach ionisierter Form vor. Wenn die Strahlung aus dem Sterninnern den Heliumatomen auch ihr zweites Elektron entreißt, sind viele freie Elektronen vorhanden, die sich mit ihrer großen Beweglichkeit der Strahlung in den Weg stellen und einen Strahlungsstau verursachen. Expansion verschafft Abkühlung Der Strahlungsstau kann sich entladen, indem der Stern expandiert und dabei abkühlt. Bei der Abkühlung können die Heliumkerne viele Elektronen wieder einfangen, so dass die Strahlung wieder besser entweichen kann. Die Gravitation beginnt zu dominieren und veranlasst den Stern zu schrumpfen. Dann beginnt der Zyklus von neuem. Die Unterrichtseinheit basiert auf Daten des Hubble-Weltraumteleskops, das Cepheiden-Veränderliche im Sternenmeer von M100 aufstöberte und deren Zyklen dokumentierte. Abb. 2 zeigt drei zu verschiedenen Zeitpunkten aufgenommene Bilder eines Cepheiden, dessen Daten in dieser Übung verwendet werden. Der Stern befindet sich in einem Sternentstehungsgebiet in einem der Spiralarme der Galaxie im Zentrum der - auf dem großen Bild nur scheinbar leeren - Region des kleinen Kastens. Während des Projektes zur Entfernungsbestimmung bietet es sich an - soweit dies der Stand des Sternbildes Kepheus ermöglicht - den Namenspatron der Cepheiden-Veränderlichen, Delta Cephei, selbst ins Visier zu nehmen. Der 892 Lichtjahre entfernte Stern ist ein gelber Überriese und schwankt mit einer Periode von etwa 5,4 Tagen in seiner scheinbaren Helligkeit zwischen den Größenklassen +3,6 und +4,6. Schülerinnen und Schüler können mit der Argelander-Stufenschätzmethode selbst eine Lichtkurve des Sterns erstellen. Die Methode wird in der folgenden Unterrichtseinheit von Dr. Olaf Fischer aus Freiburg ausführlich vorgestellt:

  • Physik / Astronomie
  • Sekundarstufe II

Die Entfernung der Supernova SN 1987A

Unterrichtseinheit

Auf der Grundlage von Bildern, die mit dem Hubble-Weltraumteleskop gewonnen wurden, bestimmen Schülerinnen und Schüler die Entfernung zur Supernova SN 1987A in der Großen Magellanschen Wolke. Am 23. Februar 1987 leuchtete in einer der Milchstraße benachbarten Zwerggalaxie eine Supernova auf - nach 400 Jahren war dies die erste mit bloßem Auge sichtbare Supernova und daher ein spannendes Ereignis für die Astronomie. Mehr als drei Jahre nach der Explosion des Sterns nahm das 1990 gestartete Hubble-Weltraumteleskop die Überreste der Supernova ins Visier und lieferte Bilder von Ringstrukturen, deren Entstehung noch heute zum Teil rätselhaft ist. Die Vermessung des inneren Rings mithilfe der Hubble-Bilder und die Analyse einer Lichtkurve des Rings ermöglichen mit Kenntnissen der ebenen Trigonometrie die Berechnung der Entfernung von SN 1987A. Neben den Arbeitsmaterialien und Aufgabenstellungen für die Schülerinnen und Schüler steht im Downloadbereich auch eine Handreichung für Lehrkräfte mit weiteren ausführlichen Informationen zur Verfügung. Die Unterrichtseinheit zur Supernova SN 1987A in der Große Magellanschen Wolke schafft die Grundlage für ein zweites Projekt zur Entfernungsbestimmung: Die Große Magellansche Wolke enthält nämlich viele veränderliche Sterne vom Typ Delta Cephei, deren Entfernung mithilfe der Supernova SN 1987A geeicht werden kann. Auf der Basis dieser Eichung erfolgt dann in der Unterrichtseinheit Die Entfernung der Galaxie M100 eine Entfernungsbestimmung mit einer weiteren Methode: dem Vergleich scheinbarer und absoluter Helligkeiten bei Delta-Cephei-Sternen. Die kosmische Entfernungsskala Methoden der Entfernungsbestimmung: Schülerinnen und Schüler erklimmen zwei Stufen der kosmischen Entfernungsleiter. Warum explodieren Sterne? Obwohl die Details für die Entfernungsbestimmung nicht von Bedeutung sind, soll kurz dargestellt werden, wie Supernovae entstehen. Informationen und Materialien zur Entfernungsberechnung Die Bestimmung der Entfernung der Supernova SN 1987A beruht auf einfachen geometrischen Überlegungen. Die Schülerinnen und Schüler verstehen die Geometrie des inneren Ringes um SN 1987A (Projektion des kreisförmigen Rings als Ellipse an die Himmelssphäre) und schulen dadurch ihr räumliches Vorstellungsvermögen. definieren den Maßstab des Hubblebildes der Supernova und bestimmen den Winkeldurchmesser des Ringes und seine Neigung relativ zur Himmelsebene. werten eine Lichtkurve aus, die zeigt, wie das von verschiedenen Teilen des Rings ausgesendete Licht die Erde zu verschiedenen Zeitpunkten erreicht, um die physikalischen Dimensionen des Ringes zu bestimmen. bestimmen aus dem Winkeldurchmesser und der Größe des Ringes die Entfernung von SN 1987A. Boßle, M., Wörmke, St. (1995): Entfernungsbestimmung im Weltraum, Deutsche Schülerakademie: Dokumentation Spetzgart. Bad Godesberg, Seite 58-63. Fosbury, R. (1994): HSTX - Practical exercises in astronomy using observations made with the Hubble Space Telescope, Project 1: The Distance to SN 1987A Space Telescope European Coordinating Facility, Garching. Gould, A. (1994): The Ring Around Supernova 1987A Revisited: I. Ellipticity of the Ring, Astrophysical Journal 425 (1994), Seite 51-56. Panagia, N., Gilmozzi, R., Macchetto, F. und andere (1991): Properties of the SN 1987A Circumstellar Ring and the Distance of the Large Magellanic Cloud, Astrophysical Journal 380 (1991), Seite 23-26. Für die nähere Umgebung: Radarechos und trigonometrische Parallaxe Vergleichsweise kleine Entfernungen, wie die innerhalb unseres Sonnensystems, lassen sich aus der Laufzeit von Radarechos ermitteln. Für die Sterne der näheren Sonnenumgebung ist die Methode der trigonometrischen Parallaxe anwendbar, die auf der Messung der Verschiebung dieser Sterne gegenüber sehr viel weiter entfernten Sternen beruht, wenn man sie von verschiedenen Positionen der Erdbahn aus beobachtet. Dieser Effekt ist vergleichbar mit der Erfahrung, dass man ein und dasselbe Objekt einer Landschaft aus einem fahrenden Zug heraus auf dauernd wechselnde Punkte am Horizont projiziert. Erscheint, von einem Stern aus gesehen, die große Halbachse der Erdbahn unter einem Winkel von einer Bogensekunde, so hat er eine Entfernung von einem Parsec (1 Parsec = 3,26 Lichtjahre). Bei viel weiter entfernten Objekten kommen andere Methoden zur Entfernungsbestimmung in Betracht: Vergleich der wahren (etwa in Parsec gemessenen) Größe der Objekte mit dem Winkeldurchmesser, unter dem sie dem Betrachter erscheinen. Vergleich der absoluten Helligkeit (oder Leuchtkraft) der Objekte mit der scheinbaren Helligkeit, die sie für den Beobachter haben. Beide Methoden sind dadurch gekennzeichnet, dass sie in jeweils eine relativ leicht zu bewältigende und eine schwierige Aufgabenstellung zerfallen. Scheinbare Helligkeiten und Winkeldurchmesser sind der Messung direkt zugänglich. Aussagen über die Leuchtkraft oder die wahre Größe von Himmelsobjekten sind viel schwieriger zu treffen und erfordern in der Regel ein tiefes Verständnis der physikalischen Natur dieser Objekte. Die Supernova SN 1987A und die Galaxie M100 In zwei Projekten lernen die Schülerinnen und Schüler ein Beispiel für je eine der Methoden zur Bestimmung großer Entfernungen kennen. In dieser Unterrichtseinheit wird das erste Verfahren angewendet, indem die Entfernung zur Supernova SN 1987A in der Großen Magellanschen Wolke bestimmt wird (Fosbury, 1994). Zu diesem Zweck werden aus Originalaufnahmen des Hubble-Weltraumteleskops zuerst die scheinbare Größe des hellen zirkumstellaren Rings und anschließend aus der Analyse seiner Lichtkurve seine wahren Abmessungen ermittelt. In einem zweiten Projekt (siehe Unterrichtseinheit Die Entfernung der Galaxie M100 ) wird das zweite Verfahren angewendet, nämlich der Vergleich von scheinbarer und absoluter Helligkeit bei Delta-Cephei-Sternen. Zwei Stufen der kosmischen Entfernungsleiter Obwohl in den Details durchaus kompliziert, sind die geometrischen und physikalischen Prinzipien dieser Entfernungsbestimmungen einfach genug, um bereits von Schülerinnen und Schülern der Oberstufe verstanden und angewandt werden zu können. Wichtig ist dabei, dass für die Bestimmung der Entfernung zur Galaxie M100 das Ergebnis der Supernova-Messungen zugrunde gelegt wird. In der Großen Magellanschen Wolke findet man nämlich außer der Supernova SN 1987A sehr viele veränderliche Sterne vom Typ Delta Cephei, deren Entfernungsskala man mithilfe der Supernova mit bisher nicht gekannter Präzision eichen kann. So können die Schülerinnen und Schüler praktisch nachvollziehen, wie zwei Stufen der kosmischen Entfernungsleiter nacheinander erstiegen werden. Beide Projekte wurden mit Schülerinnen und Schülern erprobt und von diesen auch publiziert (Boßle, Wörmke, 1995). Wachstum eines Weißen Zwergs auf Kosten seines Begleiters Bei den Supernovae vom Typ I handelt es sich ursprünglich um relativ massearme Sterne in einem Spätstadium ihrer Entwicklung, um so genannte Weiße Zwerge, die zusammen mit einem anderen Stern ein enges Doppelsternsystem bilden. Die von dem Weißen Zwerg ausgehenden Gezeitenkräfte bewirken, dass stellares Material vom Begleiter zum Weißen Zwerg strömt, wodurch dessen Masse zunimmt. Explosion beim Überschreiten einer definierten Massengrenze Übersteigt die Masse des Sterns dabei die so genannte Chandrasekhar-Grenze von etwa 1,4 Sonnenmassen, kann er nicht mehr als Weißer Zwerg weiter existieren. Er fällt unter der Wirkung seiner eigenen Schwerkraft zusammen, wobei Temperatur und Dichte soweit zunehmen, dass Kernreaktionen zünden. Diese setzen soviel Energie frei, dass der ganze Stern explodiert. Typ-I-Supernovae als Entfernungsindikatoren Alle Supernovae vom Typ I ereignen sich demnach beim Überschreiten einer definierten Massengrenze. Dies macht sie vergleichbar und prädestiniert sie zum Entfernungsindikator. Solche müssen nämlich in ihren inneren Eigenschaften übereinstimmen, damit man äußere Unterschiede allein auf unterschiedliche Entfernungen zurückführen kann. Implosion massereicher Sterne Supernovae vom Typ II sind das Endresultat der Individualentwicklung von Sternen, die mindestens etwa achtmal massereicher sind als die Sonne. Solche Sterne durchlaufen eine Folge von Kontraktionen und Kernreaktionen, wobei immer schwerere Elemente bis zum Eisen fusioniert werden. Danach kollabiert der Eisenkern, jedoch nicht die darüber liegende Hülle, bis sich ein stabiler Neutronenstern bildet, der die Dichte von Kernmaterie hat. Die Implosion wird zur Explosion In diesem Stadium wird die Implosion des Sterns plötzlich gestoppt, wodurch eine so starke Schockwelle entsteht, dass seine Hülle abgeblasen wird. Die Implosion wird in eine Explosion verwandelt, die als Supernova erscheint und einen Neutronenstern zurücklässt. Untypischer Typ II Die Supernova, die am 23. Februar 1987 in der Großen Magellanschen Wolke beobachtet wurde (Abb. 1), ist eine Supernova vom Typ II. Sie ist jedoch kein typischer Vertreter dieser Gattung: So wurde bislang kein Neutronenstern-Überrest gefunden. Zudem war die Explosion etwa einhundertmal schwächer als andere Supernovae dieses Typs. Rätselhafte Ringe Die Berechnung der Entfernung von SN 1987A basiert auf einfachen Überlegungen zur Vermessung des vom Hubble Space Telescope gesehenen hellen inneren Rings (Abb. 2) und der Analyse von dessen Lichtkurve, die vom International Ultraviolet Explorer (IUE) aufgezeichnet wurde. Bei dem Ring handelt es sich nicht um ein Produkt der Supernova-Explosion. Sein Material wurde bereits vor langer Zeit vom Vorgängerstern der Supernova ausgestoßen und zu aktivem Leuchten erst angeregt, als es von der energiereichen UV-Strahlung der Supernova mit Lichtgeschwindigkeit eingeholt wurde. Auf die Frage nach der Entstehung der Ringe gibt es bisher keine endgültige Antwort. In den Materialien zur Unterrichtseinheit werden die geometrischen Grundlagen zur Projektion des kreisförmigen Rings von SN 1987A als Ellipse an die Himmelssphäre, die Bestimmung des scheinbaren Ringradius und die Berechnung des wahren Ringradius ausführlich dargestellt. Weitere Materialien mit Aufgaben und Zusatzinformationen finden Sie in den deutschsprachigen Materialien zur astronomischen Übungsreihe der ESA/ESO auf der Website astroex.org.

  • Physik / Astronomie
  • Sekundarstufe II

Recherche in umfangreichen Datenbeständen

Unterrichtseinheit

Der Nutzen einer komfortablen Datenrecherche erschließt sich erst bei umfangreichen Datenmengen. In dieser Unterrichtsreihe arbeiten die Schülerinnen und Schüler in Datenblättern mit mehr als 8000 Datensätzen.Als Einstieg in die Unterrichtssequenz wurde eine betriebswirtschaftliche Problemstellung gewählt; die Auswertung umfangreichen Datenmaterials liefert einen Beitrag zur Lösung des Problems: Die Schülerinnen und Schüler sollen für ein Unternehmen die Entfernung einer möglichen Zweigstelle zu potenziellen Kunden auswerten.In der ersten Stunde wird der SVerweis eingeführt, eine Excel-Funktion, die eine parametrisierte Suche in Excel-Tabellen erlaubt. Für eine Ad-hoc-Suche ist jedoch der in der folgenden Stunde behandelte Autofilter geeigneter, da er keine Programmierung durch den Nutzer erfordert. Die SVerweis-Funktion In der SVerweis-Stunde wird eine Datei erarbeitet, in der zu einer gegebenen Postleitzahl aus einer Postleitzahlentabelle die Geokoordinaten abgelesen sowie die Entfernungen zu den anderen Postleitzahlen berechnet werden. Recherche mit der Autofilter-Funktion In der Autofilter-Stunde wird diese Funktionalität genutzt, um aus einer umfangreichen Adressenliste einen zulässigen, entfernungsoptimalen Standort experimentell herauszufiltern. Die Schülerinnen und Schüler lernen den SVerweis als Mittel der automatisierten Datenauswahl und -übernahme in Excel kennen. lernen, wie umfangreiche Datenmengen in Excel bereitgestellt und aufbereitet werden müssen, um mit SVerweis ausgewertet werden zu können. erfahren, wie ein komplexes Problem in Teilprobleme zerlegt und dann kleinschrittig gelöst werden kann. lernen "Autofilter" als einfaches und schnelles Recherche-Werkzeug in Excel kennen und erfahren, dass die Filteranzeige mit "Teilergebnis" auswertbar ist. erarbeiten explorativ Lösungsmöglichkeiten für eine betriebswirtschaftliche Fragestellung. Thema Datenanalyse mit Excel: SVerweis, Autofilter und Teilergebnis Autorin Ute Lamberts Fach Wirtschaftsinformatik, Datenverarbeitung Lernfeld Mit betrieblichen Informations- und Kommunikationssystemen wirtschaftlich und verantwortungsbewusst umgehen Zeitumfang 2 Unterrichtsstunden Technische Voraussetzung Mindestens ein Rechner für je zwei Personen mit MS Excel Planung Verlaufsplan - SVerweis-Funktion in Excel , Autofilter Aus didaktischen Gründen bleiben Sonderfälle unberücksichtigt. Eine Inhaltsreduktion (vertikale Reduktion) besteht vor allem darin, dass auf den optionalen Parameter "Bereich_Verweis" nicht eingegangen wird. (Im Beispiel wird er mit "FALSCH" vorbelegt; aufgrund der Sortierung der PLZ-Tabelle nach Postleitzahl liefert eine Belegung mit "WAHR" beziehungsweise ein Nicht-Angeben bei vorhandener Postleitzahl dasselbe Ergebnis.) Einstieg Folgende Ausgangssituation dient als Einstieg in die Thematik: Die Trockenschwimm AG mit Sitz in Freiburg vertreibt und wartet Schwimmhallenentfeuchtungsgeräte. Ihre Kunden sind öffentliche Schwimmbäder. Damit auch potenzielle Kunden aus Nordrhein-Westfalen sich von der Qualität der Geräte überzeugen können, plant sie, dort eine Niederlassung mit firmeneigenen Ausstellungs- und Technikräumen zu eröffnen. Problematisierung Um die Argumente für oder gegen einen möglichen Standort in NRW zu finden, soll in einer Excel-Liste mit Schwimmbad-Adressen die jeweilige Entfernung zu diesem vorgegebenen Standort (im Beispiel: Willich) angezeigt werden. Die Lehrkraft präsentiert per Beamer einen Auszug aus der Kundentabelle. Hinführung Die Lehrkraft erläutert nun den Aufbau der SVerweis-Funktion an der Tafel. Erarbeitung Die Schülerinnen und Schüler ermitteln nun in Partnerarbeit die Ortsdaten zu gegebener Postleitzahl mithilfe des SVerweis. Anschließend ermitteln sie durch den SVerweis die Entfernungsdaten zu den gegebenen Postleitzahlen. Präsentation Die Schülerinnen und Schüler präsentieren abschließend die Entfernungstabelle und vergleichen ihre Ergebnisse. Nach Einschalten des Autofilters wird für jede Tabellenspalte eine Auswahlliste der in der aktuellen Filterung vorkommenden Ausprägungen angezeigt. Obwohl der Autofilter eine Anzeigeoption ist, kann das Ergebnis mittels der Funktion Teilergebnis (statistisch) ausgewertet werden. Andere mögliche Funktionen wurden ausgeblendet: Auf die ebenfalls im Excel-Menü angebotenen Spezialfilter und Teilergebnisse, die komplexere Filterungen und Auswertungen erlauben, wird nicht eingegangen. Die Funktion Teilergebnis erlaubt eigentlich mehrere Bezugsbereiche (Parameter Bezug); für den Parameter Funktion sind weitere, vor allem statistische Auswertungsoptionen (Standardabweichung etcetera) möglich. Die Darstellung beschränkt sich hier auf die einfacheren, für die Lösung der Aufgabe in Frage kommenden Möglichkeiten. Um Problemen der Schülerinnen und Schüler beim Markieren großer Datenmengen vorzubeugen, wird im Informationsblatt der für den Autofilter relevante Bereich nicht durch Markieren des gesamten zu filternden Bereichs, sondern durch Markieren der Überschriftenzeile gebildet. Excel nimmt dann an, dass der relevante Bereich bis zur ersten Leerzeile geht. Einstieg Auch in dieser Stunde ist das Ausgangsproblem wiederum die Standortwahl für einen Anbieter von Schwimmhallenentfeuchtungsgeräten. Freiburg ist als Standort für potentielle Kunden in Nordrhein-Westfalen ungeeignet. An der Tafel werden mehrere Kriterien für die Standortwahl gesammelt; die Tabellendaten lassen sich allerdings nur im Hinblick auf die Anzahl potentieller Kunden und die Entfernung eines Standortes zu den Kunden auswerten. Erarbeitung Nach der Festlegung der für den Kunden noch annehmbaren Entfernung (dem Radius um den Standort) geben die Schülerinnen und Schüler in Partnerarbeit eine Postleitzahl vor. Zu diesem Standort ermitteln sie dann mithilfe der Funktion Teilergebnis die Anzahl der umliegenden Schwimmbäder und die durchschnittliche Entfernung. Ergebnisvergleich Schließlich präsentieren die Schülerinnen und Schüler ihre Ergebnisse: Die Anzahl potenzieller Kunden im Umkreis sowie deren durchschnittliche Entfernung zu dem jeweils beispielhaft gewählten Standort. Es ist nun der Standort optimal, der im Umkreis eine möglichst hohe Kundenzahl bei gleichzeitig möglichst geringer Durchschnittsentfernung hat.

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co.
  • Sekundarstufe II

Ein Modell des Sonnensystems auf dem Schulhof

Unterrichtseinheit

In diesem Unterrichtsprojekt veranschaulichen die Schülerinnen und Schüler unsere "Adresse im Sonnensystem" eindrucksvoll durch ein selbst erstelltes und geeignet skaliertes Modell des Sonnensystems in der vertrauten Umgebung des Schulhofs. Wenn das Modell der Sonne an einem zentralen Ort in der Schule platziert wird, reichen die inneren Planeten meist bis auf den Sportplatz. Die äußeren Planeten können in einer Google Earth-Karte "virtuell verortet" werden. Die Lernenden untersuchen in dem hier vorgestellten Projekt nicht nur die Entfernungen innerhalb des Sonnensystems, sondern erkunden auch die Größen- und Massenverhältnisse der Himmelskörper vor unserer astronomischen Haustür. Die Lernenden entwickeln in diesem Projekt ein verkleinertes Abbild unseres Sonnensystems mit seinen Planeten und Monden. Um die riesigen Entfernungen anschaulich darzustellen, wird der Durchmesser der Sonne auf einen Meter festgelegt. In diesem Maßstab werden dann die Durchmesser und Umlaufbahnen der Planeten sowie ihrer Monde berechnet. Mit geeigneten Materialen (Styropor und Papierkugeln, Fäden und Namensschildchen) soll ein Modell des Sonnensystems gebaut und auf dem Schulgelände ausgestellt werden. Hinweise zum Unterrichtsverlauf und Materialien In arbeitsteiliger Gruppenarbeit recherchieren die Lernenden mithilfe von Lexika, Atlanten und des Internets die benötigten Daten, rechnen sie um und stellen sie in Modellen dar. Die Schülerinnen und Schüler lernen die Größenordnungen (Abstände und Massen) im Sonnensystem kennen. können die betrachteten Größen im richtigen Maßstab umrechnen. können geeignete Modelle auswählen oder selbst basteln. lernen die Eigenschaften und Besonderheiten der Planeten unseres Sonnensystems kennen und können sie in Steckbriefen präsentieren. entwickeln Gedichte, Bilder oder andere kreative Darstellungen zum Thema. können im Internet und in Büchern recherchieren. können mit Google Earth Distanzen bestimmen und Markierungen setzen. 1. Entfernungen im Sonnensystem - eine Landkarte Wenn die Sonne einen Durchmesser von einem Meter hätte, in welchem Abstand würden dann die Planeten um sie kreisen? Die Schülerinnen und Schüler tragen ihre Ergebnisse in eine Landkarte ein. Für die Sonne wird ein geeigneter Standort auf dem Schulgelände gewählt. Während die inneren Planeten noch vor der Haustür der Schule liegen, werden die Entfernungen der äußeren Planeten mithilfe von Google Earth virtuell verortet (Abb. 1, Platzhalter bitte anklicken) 2. Massenverhältnisse im Sonnensystem Wenn die Sonne soviel wie eine Tonne wiegen würde (dies entspricht dem Gewicht von einem Kubikmeter Wasser), wie viel Gramm würden dann die Planeten wiegen? Die Massenverhältnisse der Planeten werden mithilfe geeigneter Materialien veranschaulicht, zum Beispiel mit der Füllung von Gefäßen. 3. Erde und Mond Wenn die Erde einen Durchmesser von 50 Zentimetern hätte, wie groß wäre dann der Mond und in welchem Abstand würde er die Erde umkreisen? Die Lernenden basteln ein maßstabsgetreues Erde-Mond-System und verbinden die Himmelskörper mit einer Schnur. 4. Vergleich der Durchmesser der Himmelskörper Wenn die Sonne einen Meter groß wäre, wie groß wären dann die Planeten? Zur Veranschaulichung der Ergebnisse erstellen die Schülerinnen und Schüler zweidimensionale Planetenmodelle und kleben sie auf einer ein Meter großen Sonnenscheibe auf (Abb. 2). Die übrigen Gruppen beschäftigen sich mit einzelnen Planeten-Mond-Systemen. Wenn die Sonne einen Meter groß wäre, wie groß wären die Planeten der Monde und in welchen Abstand würden sie um ihre Planeten kreisen? Die Monde eines Planeten werden auf einer dünnen Angelschnur im Modellabstand aufgereiht, mit einem Namensschildchen versehen und an ihrem Planeten befestigt. Zur Größenordnung der Modelle: Jupiter hat bei einem Maßstab von 1:1,4 Milliarden einen Durchmesser von etwa 10 Zentimetern. Merkur ist dann gerade einmal 3 Millimeter groß. Die Jupitermonde liegen in der Größenordnung von Merkur (tatsächlich ist Kallisto fast gleich groß, Ganymed sogar größer). Die kleinen Monde lassen sich zum Beispiel mit kleinen Perlen oder Stecknadeln darstellen. Die gebastelten Planeten-Mond-Systeme werden in der Schule aufgehängt. Als Sonnenmodell kann ein Sitzball oder Ballon entsprechender Größe verwendet werden. Zu jedem Himmelskörper wird auch ein Steckbrief beziehungsweise ein Plakat erstellt und ebenfalls im Schulgebäude ausgestellt (Abb. 3). 5. Merkur, Venus, Mars und Erde 6. Jupiter 7. Saturn 8. Uranus 9. Neptun und die Zwergplaneten Pluto und Sedna

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Bestimmung der Mondentfernung durch eine Mondfinsternis

Unterrichtseinheit

Schülerinnen und Schüler fotografieren den vom Kernschatten der Erde halb verfinsterten Mond und bearbeiten das Foto am Rechner. Die geometrische Auswertung liefert Daten für die Berechnung der Mondentfernung.Die hier vorgestellte Methode ermöglicht eine Abstandsbestimmung mit geringem Aufwand. Im Gegensatz zur Bestimmung der Mondentfernung per Triangulation benötigt man bei der Abstandsbestimmung mithilfe einer Mondfinsternis keine Partnerschule. Die Vorteile der Mondfinsternis-Methode werden allerdings mit einer anspruchsvolleren Theorie bezahlt, die an verschiedenen Stellen zum leichteren Verständnis für die Schülerinnen und Schüler etwas vereinfacht werden muss, wodurch die Ungenauigkeit der Messung etwas erhöht wird. Voraussetzungen Um die für die Entfernungsbestimmung benötigten Zusammenhänge verstehen zu können, müssen die Schülerinnen und Schüler die Geometrie der Mittelstufe beherrschen und Kenntnisse über die trigonometrischen Funktionen und das Lösen mathematischer Gleichungssysteme verinnerlicht haben. Einstieg und Motivation Der Mond ist ständiger Begleiter des Menschen. Schon kleine Kinder wenden ihren Blick häufig fasziniert dem Erdtrabanten zu, aber auch viele Jugendliche und Erwachsene können sich dem Bann des Mondes kaum entziehen. Vielfältig und über verschiedene Medien wird über den Mond und seine Eigenschaften informiert. Nur selten wird jedoch darüber berichtet, wie man zu diesen Informationen gelangt. Dies gilt auch für den Abstand des Mondes von der Erde. Allein die Frage "Wie misst man eigentlich mehrere hunderttausend Kilometer lange Strecken?" weckt bei vielen Schülerinnen und Schülern bereits das Interesse. Dies kann noch gesteigert werden, wenn es darum geht, die Entfernung des Mondes mit eigenen Mitteln zu bestimmen. Fotografieren, bearbeiten, auswerten Das mathematische Rüstzeug wird in fünf Etappen erarbeitet und angewendet. Bearbeitung und Auswertung einer Mondfotografie werden hier durch ein Beispiel veranschaulicht. Methodische und fachliche Hinweise Wodurch zeichnen sich die Mondfinsternis- und die Triangulationsmethode zur Entfernungsbestimmung aus? Wie messen Forscher die Entfernung zum Mond? Die Schülerinnen und Schüler sollen Kenntnisse über Planeten und Monde im Sonnensystem, deren Größenverhältnisse und deren Bewegungen erwerben oder auffrischen. Kenntnisse über Mond- und Sonnenfinsternisse und deren Entstehung erwerben oder auffrischen. mit trigonometrischen Funktionen und Gleichungen arbeiten können. den Umgang mit Bildbearbeitungssoftware kennen lernen und üben. ihre Fähigkeiten in der Handhabung einfacher Messinstrumente schulen. ihr räumliches Vorstellungsvermögen schulen. Thema Bestimmung der Mondentfernung mithilfe einer Mondfinsternis Autor Alexander Staidl Fächer Astronomie, Physik, Naturwissenschaften Zielgruppe ab Jahrgangsstufe 11 (bei guten Lerngruppen auch ab Klasse 10) Zeitraum Beobachtungszeit etwa 30-40 Minuten (es muss ein Foto geschossen werden); Theorie und Auswertung nehmen etwa 2-4 Stunden in Anspruch (je nach Lerngruppe und Unterrichtsmethodik) Technische Voraussetzungen Digitalkamera mit mindestens achtfachem Zoom oder ein kleines Teleskop, an das die Kamera angeschlossen werden kann; Stativ, Bildbearbeitungssoftware (zum Beispiel GIMP ) Überblick Da die Bestimmung des Mondabstandes mithilfe einer Mondfinsternis auf komplexen geometrischen und mathematischen Zusammenhängen basiert, werden die Lernenden schrittweise an das Thema herangeführt. Die folgende Gliederung hat sich dabei bewährt: 1. Mondfinsternisse Allgemeine Informationen: Wie kommen Mondfinsternisse zustande? 2. Der Winkelradius der Sonne Was ist ein Winkelradius? Wie kann man ihn messen? Welche Aussagen lassen sich daraus über den Kernschatten der Erde gewinnen? 3. Der Winkelradius des Mondes Wie kann man den Winkelradius des Mondes messen? Weshalb funktionieren die Methoden zur Messung des Winkelradius der Sonne (Schritt 2) hier nicht? 4. Winkelradius des Kern-Erdschattens in Mondentfernung Was versteht man darunter? Wie kann man ihn mithilfe einer Mondfinsternis bestimmen? 5. Berechnung des Mondabstandes Die bisherigen Erkenntnisse werden zusammengeführt und die Mondentfernung mithilfe der bei einer Finsternis aufgenommenen Fotos berechnet. Der Winkelradius des Erdschattens in Mondentfernung Für die Bestimmung des Winkelradius (Schritt 4) ist die Auswertung eines Fotos von einer Mondfinsternis entscheidend. Der Kernschatten, der während der Finsternis auf dem Mond zu sehen ist, lässt sich mit dem Winkeldurchmesser des Mondes vergleichen. Der halb verfinsterte Mond wird fotografiert Der gesamte Mond wird, während er etwa halb vom Kernschatten der Erde bedeckt ist, mit einer Vergrößerung beziehungsweise Auflösung fotografiert, die hoch genug ist, um Details der Finsternis erkennen zu können. Die Digitalkamera sollte über einen mindestens achtfachen optischen Zoom verfügen. Alternativ kann die Kamera auch an ein kleines Teleskop angeschlossen werden. Beim Fotografieren sollte auf jeden Fall ein Stativ verwendet werden. Abb. 1 (linke Teilabbildung) zeigt ein entsprechendes Ergebnis. Man sieht deutlich, dass sich der Kernschatten nicht scharf von dem Bereich des Halbschattens abgrenzt, sondern dass beide weich ineinander übergehen. Wenn man schon mal dabei ist … Bei der Gelegenheit bietet es sich natürlich auch an, den gesamten Verlauf der Mondfinsternis fotografisch zu dokumentieren, im Idealfall vom Beginn bis zu Ende der Verfinsterung. Auch, wenn dies zum Zwecke der Entfernungsbestimmung nicht erforderlich ist (dafür reicht ein einziges Foto aus), kann man mit dem ohnehin verwendeten Bildbearbeitungsprogramm den Verlauf des Ereignisses in einer kleinen Kollage sehr schön darstellen. Kontrastierung der Schattengrenze am Rechner Um den Winkelradius des Kernschattens möglichst exakt bestimmen zu können, muss die Grenze zwischen Kern- und Halbschattenbereich durch eine Verstärkung des Kontrastes hervorgehoben werden. Die ist mit den gängigen Bildbearbeitungsprogrammen einfach durchzuführen. In dem hier vorgestellten Beispiel wurde die kostenfreie Open Source Software GIMP verwendet. GIMP-Homepage Informationen zur kostenfreien Bildbearbeitungssoftware und Downloadmöglichkeit Bildbearbeitung mit GIMP Öffnet man mit dem Programm die Mondfoto-Datei, lässt sich die Grenze des Kernschattens durch den Schwellwerte-Regler im Farben-Menü hervorheben (Abb.1, Mitte). Unter der Voraussetzung, dass der scharfe Rand des Mondes nicht mit weißen Pixeln durchsetzt sein darf, stellt man den Regler so niedrig wie möglich ein. Je nach Geschmack kann man über das Farben-Menü und die Funktion "Invertieren" den Mond schwarz und den Hintergrund weiß darstellen (Abb.1, rechts). In dem Ergebnis kann man nun gut erkennen, dass der Kernschatten, den die kugelförmige Erde auf den Mond wirft, auf der Mondoberfläche tatsächlich kreisförmig abgebildet wird. Die Kreisbogenform der Schattengrenze ist durch die nachträgliche Bearbeitung deutlich besser auszuwerten. Projektion oder Ausdruck des bearbeiteten Mondbildes Das bearbeitete Bild kann nun vergrößert ausgedruckt oder auf eine Tafel projiziert werden. Ziel ist es, den auf der Tafel abgebildeten "Radius" des Mondes mit dem zu ermittelnden abgebildeten "Radius" des Kernschattens in Relation zu setzen - entweder auf Ausdrucken oder mithilfe des an die Tafel projizierten Bildes. Hieraus ergibt sich dann die Relation des Winkelradius des Mondes und des Kernschattens in Mondabstand, die sich im gleichen Verhältnis wie die Radien der Projektion teilen müssen. Geometrische Auswertung Abb. 2 veranschaulicht, wie man den Radius des Kernschattens bestimmt (A = Projektion des Kernschattenradius, E = Projektion des Mondradius). Die Konstruktion kann auch mit einem Vektorgrafikprogramm (zum Beispiel OpenOffice-Anwendung Draw) erzeugt werden. Zunächst wählt man drei Punkte, die auf dem Kreisbogen liegen (grün), und verbindet diese zu zwei Sekanten (rot). Anschließend werden die Mittelsenkrechten (blau) der Sekanten gebildet, die sich im Mittelpunkt des Kreises treffen. Damit ergibt sich der Radius A des abgebildeten Kernschattens durch den Abstand zwischen den grünen Punkten auf dem Kreisbogen und dem Schnittpunkt der blauen Mittelsenkrechten. Der Radius E des abgebildeten Mondes lässt sich über dessen leicht bestimmbaren Durchmesser berechnen. Aus Schritt 3 (siehe oben) ist der Winkelradius des Mondes epsilon bekannt. Gesucht ist der Winkelradius alpha des Kernschattens der Erde (in Mondentfernung). Wenn wir das Verhältnis alpha/epsilon kennen würden, könnten wir alpha direkt berechnen. Das Verhältnis alpha/epsilon ist nämlich genau so groß, wie das Verhältnis der Radien A/E auf dem Ausdruck (Abb. 2). Für die Bestimmung der Mondentfernung wird in schulischen Projekten meist die Methode der Triangulation benutzt (siehe Unterrichtseinheit Bestimmung der Mondentfernung durch Triangulation ). Dieses Verfahren erlaubt eine relativ exakte Bestimmung des Abstandes. Die Methode lässt sich in jeder Nacht durchführen, in der der Mond in Verbindung mit zwei hellen, weiter entfernten Objekten zu sehen ist (Planeten, helle Sterne), ist jedoch organisatorisch recht aufwändig: Partnerschulen müssen gefunden und die Messungen sehr exakt und gut koordiniert durchgeführt werden. Bei der Bestimmung der Mondentfernung mithilfe einer Mondfinsternis ist man dagegen von Partnerschulen unabhängig. Man benötigt jedoch zur rechten Stunde gute Sicht! Zwar sind für die Triangulations-Methode geeignete Konstellationen "haltbarer", jedoch ist der Anlass einer Mondfinsternis für Schülerinnen und Schüler sicher motivierender und spektakulärer als eine Konstellation "Mond und zwei Sterne". Die Wahl der Methode ist natürlich auch vom "Terminplan" der Himmelskörper abhängig. Je nach Jahreszeit ist es in Deutschland nicht unwahrscheinlich, dass das Wetter einen Strich durch die Planung macht. Tritt dieser Fall ein, kann dann auf die nächste Mondfinsternis warten, eine in naher Zukunft gelegene Konstellationen ausgucken, die für die Triangulationsmethode geeignet ist, oder auf Mondfinsternisfotos "aus der Konserve" zurückgreifen, die natürlich ohne eigene Beobachtung ausgewertet werden können. Dabei können auch verschiedene Fotos von verschiedenen Kleingruppen oder in Partnerarbeit ausgewertet werden. Wie sieht der Mittelwert der Ergebnisse aus und welche Gruppe war am nächsten am "offiziellen" Wert dran? Wie weit ist es nun zum Mond? Die Bahn des Mondes um die Erde ist nicht perfekt kreisförmig und die Entfernung daher nicht konstant. Vom Mittelwert (384.400 Kilometer) weicht die größte (405.500 Kilometer) und die kleinste Entfernung (etwa 363.200 Kilometer) um etwa 5,5 Prozent ab. Visualisierung Der Mond liegt zwar - in astronomischen Maßstäben - vor unserer Haustür. Dennoch ist die in Zahlen gefasste Entfernung nicht mehr anschaulich. Hilfreicher sind für die Veranschaulichung sind grafische Darstellungen, wie zum Beispiel die folgenden, die uns der Amateur-Astronom Thomas Borowski freundlicherweise zur Verfügung gestellt hat: Wie und warum messen Forscher heute die Mondentfernung? Astronauten des Apollo-Programms hinterließen auf der Mondoberfläche einen Reflektor. Von der Erde aus werden kurze und intensive Laserblitze auf den Reflektor abgeschossen. Die Zeit zwischen dem "Schuss" und dem Eintreffen der Reflexion wird mit einer Atomuhr exakt gemessen. Mit dieser zentimetergenauen Methode konnte man feststellen, dass sich der Mond pro Jahr etwa um 3,8 Zentimeter von der Erde entfernt. Wegen den Gezeitenkräften findet ein fortlaufender Rotationsenergie- und Drehimpulstransfer von der rotierenden Erde zum Mond statt. Dieser Transfer bewirkt nicht nur die Abstandsvergrößerung des Mondes, sondern im gleichen Maße eine Verlangsamung der Erdrotation - die Tage dauern also immer länger! Aus kleinen Laufzeitänderungen, die von verschiedenen Messstationen auf der Erde registriert werden, sind Aussagen über die Kontinentaldrift möglich.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II

Blitz und Donner

Unterrichtseinheit

Ziel dieser Unterrichtseinheit ist es, mit falschen Vorstellungen rund um das Natur-Phänomen Gewitter aufzuräumen und stattdessen Hintergrundwissen sowie sinnvolle Verhaltensregeln zu vermitteln. Die meisten Kinder und auch viele Erwachsene haben vor Gewittern Angst. Ziel der Unterrichtsmaterialien "Blitz und Donner" ist es, mit falschen Vorstellungen aufzuräumen und stattdessen Hintergrundwissen sowie sinnvolle Verhaltensregeln zu vermitteln. Die Bauernregel "Vor den Eichen sollst du weichen – doch die Buchen sollst du suchen." ist lebensgefährlich, da den Blitzen die Art des Baumes einerlei ist. Die vorliegenden Unterrichtsmaterialien sind ab der 3. Klasse im Sachkundeunterricht zum Thema Wetter einsetzbar. Einzelne Module bieten sich für einen fächerübergreifenden Einsatz in den Fächern Kunst, Musik, Mathematik sowie Deutsch an. Lehrkräfte erhalten Hintergrundinformationen zur Entstehung von Gewitterwolken, zu Spannung und Entladung, Blitz und Donner, eine Anleitung zum Schülerversuch "Blitze erzeugen" sowie zur Berechnung der Entfernung eines Gewitters. Fachkompetenz Die Schülerinnen und Schüler wissen, wie Blitz und Donner entstehen. können die Entfernung eines Gewitters berechnen. kennen die Gefahren eines Blitzschlags. wissen, wie man sich bei einem Gewitter in Gebäuden verhält. kennen Verhaltensregeln, wenn sie von einem Gewitter im Freien überrascht werden. Methodenkompetenz Die Schülerinnen und Schüler markieren Schlüsselbegriffe in einem Text. schulen ihr Textverständnis. fassen Inhalte zusammen und erstellen einen Spickzettel. tauschen sich in Kleingruppen aus. erstellen selbständig in Gruppenarbeit ein Lernprodukt. präsentieren Arbeitsergebnisse. bilden Hypothesen, führen einfache Experimente aus, beobachten, finden Erklärungen. Sozialkompetenz Die Schülerinnen und Schüler besprechen und lösen Aufgaben mit einer Partnerin oder einem Partner beziehungsweise in der Gruppe. verhalten sich kooperativ. trainieren Gesprächsregeln.

  • Technik / Sache & Technik / Geographie / Jahreszeiten / Physik / Astronomie
  • Primarstufe, Sekundarstufe I

Die Expansion des Weltalls

Unterrichtseinheit

In dieser Unterrichtseinheit zur Expansion des Weltalls erarbeiten die Schülerinnen und Schüler grundlegende Ansätze zum Verständnis des Urknall-Modells. Dabei geht es in erster Linie um die physikalische Interpretation der Rotverschiebung in den Spektren weit entfernter Galaxien. Die Arbeitsblätter nehmen dabei Bezug auf ein Erklärvideo zum Thema Kosmologie. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Verschiebung von Spektrallinien in den Spektren von Galaxien wird zunächst als Folge des optischen Dopplereffekts gedeutet, was dem Vorgehen von Edwin Hubble bei seinen Auswertungen im Jahre 1929 entspricht. Die Lernenden stellen in diesem Zusammenhang mithilfe von 14 Galaxienspektren ein Entfernung-Geschwindigkeit-Diagramm für die Galaxien auf und bestimmen einen Wert der Hubble-Konstante. In einem weiteren Arbeitsblatt erfahren die Lernenden dann, dass der Astrophysiker George Lemaître die Rotverschiebung der Spektrallinien mit der Ausdehnung des Raumes erklärte und damit als einer der Ersten das Urknall-Modell postulierte. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema "Expansion des Weltalls" im Unterricht Die Unterrichtseinheit verbindet Inhalte der Oberstufen-Physik (beispielsweise den Dopplereffekt, die Aufnahme und Interpretation von Spektren sowie die Darstellung und Auswertung von Daten) mit interessanten Fragen der modernen Kosmologie. Dadurch werden Inhalte des Physik-Unterrichts in einen stark motivierenden und anwendungsorientierten Kontext gestellt. Vorkenntnisse Im Unterricht sollte die Wellen-Eigenschaft des Lichts bereits behandelt worden sein. Speziell sollten Kenntnisse vorhanden sein, wie man Lichtspektren aufnimmt (Prisma oder optisches Gitter) und auswertet. Kenntnisse zum Dopplereffekt sind nützlich, können aber auch während der Unterrichtseinheit durch Recherche erarbeitet werden. Einige astronomische Grundkenntnisse sollten ebenfalls vorhanden sein. So ist es hilfreich, wenn die Lernenden wissen, was die Einheit "Lichtjahr" bedeutet, was eine Spiralgalaxie ist, und wie das Spektrum des Wasserstoff-Atoms aussieht. Didaktische und methodische Analyse Die Entdeckung von Edwin Hubble, dass die Rotverschiebung in den Spektren von Galaxien mit deren Entfernung von der Erde korreliert, war für die Entwicklung der modernen Kosmologie außerordentlich bedeutsam und befeuerte die Diskussion über die Beschaffenheit und Dynamik des Universums. Theoretische Folgerungen auf der Basis der Allgemeinen Relativitätstheorie konnten nun auf den experimentellen Prüfstand gestellt werden. Selbst Albert Einstein wurde veranlasst, seine Idee eines statischen Universums und die Einführung seiner kosmologischen Konstante zu überdenken. Interessant ist in diesem Zusammenhang, dass Edwin Hubble keineswegs die Idee eines expandierenden Weltalls formulierte, sondern lediglich die Verknüpfung von Entfernung und Rotverschiebung feststellte, dies aber mit einer Relativgeschwindigkeit der Objekte zueinander zu erklären versuchte. Der eigentliche Vater des Urknall-Modells ist aber der belgische Priester und Astrophysiker Georges Lemaître, der die Ergebnisse von Hubble ganz anders interpretierte: Der Raum ist es, der sich kontinuierlich ausdehnt, die Galaxien dabei mitnimmt und so eine scheinbare Bewegung der Objekte bezüglich des Beobachters erzeugt. Die Rotverschiebung entsteht dann dadurch, dass die Lichtwellen praktisch auseinandergezogen werden, wenn der Raum sich auf ihrem Weg zu uns vergrößert hat. Dies nennt man kosmologische Rotverschiebung. Für ein eingängiges Beispiel, das man auch gut im Unterricht vorführen kann, eignet sich ein Luftballon. Dieser wird ein wenig mit Luft gefüllt, dann werden an verschieden Stellen Punkte (Galaxien) mit einem Filzstift aufgezeichnet. Auch eine "Lichtwelle" in Form einer aufgemalten engen Sinuskurve sollte nicht fehlen. Wenn man nun den Luftballon langsam aufbläst (der Raum vergrößert sich), erkennen die Lernenden gut, dass sich die Punkte voneinander wegbewegen, obwohl sie ihren Platz nicht verlassen. Außerdem wird die Lichtwelle auseinandergezogen, was besagter kosmologischer Rotverschiebung entspricht. Die Deutung der Rotverschiebung als Dopplereffekt ist dennoch akzeptabel für nicht zu weit entfernte Galaxien, da der Wert von H 0 dann noch als konstant angesehen werden kann. Allerdings muss man sich bei dieser Deutung darüber im Klaren sein, dass man dann der Galaxie eine Geschwindigkeit zu einem Zeitpunkt zuordnet, als das Licht von ihr ausging. Wird die Rotverschiebung der Galaxie hingegen kosmologisch gedeutet, können wir daran ablesen, in welchem Maße sich das Universum seither ausgedehnt hat. Die Unterrichtseinheit "Die Expansion des Weltalls" orientiert sich in ihrer Struktur an dem wissenschaftshistorischen Weg: So wird zunächst der Dopplereffekt als nützliches Hilfsmittel zur Messung von Geschwindigkeiten im Weltall behandelt. Die Auswertung von Galaxienspektren führt dann unter Verwendung der Dopplerformel zu einem Entfernung-Geschwindigkeit-Diagramm, so wie es Hubble seinerzeit erstellt hatte. Daraus lässt sich dann das Hubble-Gesetz herleiten und aus der Steigung der Regressionsgerade die Hubble-Konstante bestimmen. Dass die Geschwindigkeit, die aus der Rotverschiebung mithilfe der Dopplerformel gewonnen wurde, eher als scheinbare Bewegung verstanden werden sollte, wird schließlich im dritten Arbeitsblatt thematisiert, wenn die Idee des sich aufblähenden Raumes und das Urknall-Modell zur Sprache kommen. Für die Erstellung des Hubble-Diagramms stehen die Spektren von 14 Galaxien zur Verfügung. Diese befinden sich in unserer kosmischen Nachbarschaft, also in einem Raumbereich, in dem die Rotverschiebung deutlich unter 10 % (z=0,1) liegt. Dann nämlich darf man davon ausgehen, dass die Hubble-Konstante wirklich eine Konstante ist. Für weiter entfernte Objekte gilt das nicht mehr, da ihr Licht aus einer Zeit stammt, als die Ausdehnungsrate des Weltalls einen anderen Wert hatte als jetzt. Man weiß inzwischen, das die Expansionsgeschwindigkeit sich im Laufe der Jahrmilliarden verändert hat und die Hubble-Konstante daher zeitabhängig ist (also eher ein Hubble-Parameter ist). Es ist ratsam, dass die Lernenden die 14 Galaxienspektren arbeitsteilig auswerten und ihre Ergebnisse anschließend in einer Tabelle im Plenum eintragen. Die Auswertung erfolgt sinnvollerweise mithilfe eines Tabellenkalkulationsprogramms. Achten Sie darauf, dass die Lernenden eine Gerade als Trendkurve wählen, die durch den Ursprung geht. Die Lernenden werden feststellen, dass die Streuung der Punkte um diese Gerade recht groß ist. Dies dient als willkommener Anlass, im Plenum die Gründe zu besprechen. Hier sollte vor allem kurz auf die Problematik der Entfernungsmessung von Galaxien eingegangen werden. Der Streit um den Wert der Hubble-Konstanten ist übrigens in der Wissenschaft zurzeit in vollem Gange. Erstaunlicherweise haben gänzlich verschiedene und voneinander unabhängige Methoden zu unterschiedlichen Werten für H 0 geführt, wobei sich die Fehlergrenzen der Ergebnisse kaum überlappen. Bisher konnte niemand schlüssig erklären, woher diese Unterschiede kommen. Das Thema dieser Unterrichtsreihe streift also ein brandaktuelles Thema der modernen Astrophysik. Fachkompetenz Die Schülerinnen und Schüler lernen den optischen Dopplereffekt kennen und wenden ihn an, um die Geschwindigkeit astronomischer Objekte zu bestimmen. werten Spektren von Galaxien aus und bestimmen aus einem Diagramm die Hubble-Konstante. lernen die grundlegenden Ideen des Urknall-Modells kennen. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet und sammeln, sortieren und bewerten Informationen. verwenden ein Tabellenkalkulationsprogramm zur Darstellung und Auswertung von Daten. binden Informationen eines Erklärvideos in ihre Lösungen ein. Sozialkompetenz Die Schülerinnen und Schüler bearbeiten Aufgaben in Paar- und Gruppenarbeit. tauschen Informationen und Messergebnisse untereinander aus. diskutieren und hinterfragen Lösungen im Plenum .

  • Physik / Astronomie
  • Sekundarstufe II

Strom aus Sonnenlicht: Mit Solarenergie das Weltall erkunden

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Solarenergie kennen und wie diese genutzt werden kann, um Strom für den Verbrauch auf der Erde zu erzeugen. Solarenergie wird oft für Raumfahrtmissionen genutzt, da sie die einzige Energiequelle ist, die nicht mit dem Raumschiff gestartet werden muss und das Raumschiff mehrere Jahre lang mit Strom versorgen kann. In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler zwei physikalische Gesetze kennen, die das Design von Solarmodulen für Raumfahrtmissionen beeinflussen: das Abstandsgesetz (auch reziprokes Quadratgesetz oder quadratisches Entfernungsgesetz) und den Einfallswinkel. Die Lernenden führen zwei einfache Untersuchungen mit einer Photovoltaikzelle (Solarzelle) und einer Lichtquelle durch. Zuerst messen sie, wie sich die von den Solarzellen erzeugte Leistung mit der Entfernung von der Lichtquelle ändert und versuchen, das Abstandsgesetz für die Strahlungsintensität experimentell zu ermitteln. Die Lernenden führen dann ein zweites Experiment durch, um die Abhängigkeit der Leistung der Solarzelle vom Einfallswinkel zu untersuchen. Schließlich werden sie diese Konzepte auf echte ESA-Raumfahrtmissionen anwenden. Die Schülerinnen und Schüler erkennen in dieser Unterrichtseinheit den Nutzen von Solarenergie und verstehen die Abläufe, die bei der Umwandlung von Lichtenergie in Strom stattfinden. Dabei wird die Bedeutung des Einfallwinkels der Sonneneinstrahlung behandelt und wie deren Intensität zu berechnen wird. Anschließend wird der Aufbau und die Funktionsweise einer Solarzelle behandelt. Um das Erlernte zu verinnerlichen und anzuwenden, werden daraufhin Experimente zu den Themen Abstandsgesetz und Einfallswinkel durchgeführt. Zudem werden eigene Stromkreisläufe mit Solarzellen gebaut. Dabei machen sich die Schülerinnen und Schüler sich mit der elektrischen Spannung, der Stromstärke, der Leistung und der Strahlungsintensität vertraut. Zuletzt werden die Anforderungen an die Solarenergie in der praktischen Anwendung bei Weltraummissionen untersucht. Altersgruppe: 14-18 Jahre Schwierigkeitsgrad: mittel Vorbereitungszeit: Eine Stunde Kosten: gering Die Schülerinnen und Schüler verstehen, was Strahlungsintensität ist und lernen sie zu berechnen. erfahren den Aufbau und die Funktionsweise von Solarzellen. lernen die Bedeutung des Einfallswinkels kennen und führen Experimente dazu durch. führen Experimente zum Abstandsgesetz durch. analysieren Daten und stellen diese graphisch dar. bauen und gestalten eigene Stromkreise mit Solarzellen. machen sich mit der elektrischen Spannung, der Stromstärke, der Leistung und der Strahlungsintensität vertraut. untersuchen die Anforderungen an Solarenergie bei ihrem Einsatz bei Weltallmissionen.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Ein Schwarzes Loch im Zentrum der Galaxie M87

Unterrichtseinheit

Schülerinnen und Schüler nutzen Aufnahmen und Spektren, die mit dem Hubble-Weltraumteleskop gewonnen wurden, um die Masse eines Schwarzen Lochs in der Galaxie M87 zu berechnen. Mithilfe des Doppler-Effekts können Schülerinnen und Schüler die Geschwindigkeit ermitteln, mit der sich Gas in einer bestimmten Entfernung um das Zentrum der Galaxie M87 bewegt. Aus diesen Daten können sie dann auf die Masse schließen. Die mit einfachen Mitteln zu erzielenden Resultate sind durchaus mit den in der Literatur publizierten Werten vergleichbar. Das vom Hubble-Weltraumteleskop aufgenommene Bild (links) zeigt den aktiven Kern der Galaxie, aus dem ein gebündelter Jet aus Elektronen und subatomaren Teilchen mit nahezu Lichtgeschwindigkeit herausschießt. Das hier vorgestellte Projekt ist eine von mehreren Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, die von der Arbeitsgruppe Fachdidaktik der Physik und Astronomie an der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität Jena entwickelt wurden (weitere Projekte: Die Entfernung der Supernova SN 1987A und Die Entfernung der Galaxie M100 ). Von den mathematisch anspruchsvollen Übungen stellt das hier vorgestellte Projekt die höchsten Anforderungen an die Schülerinnen und Schüler. Die Suche nach Schwarzen Löchern Neben der Geschwindigkeit von Sternen oder Gas im Kern der Galaxien müssen bei der Suche nach möglichen Schwarzen Löchern noch weitere Kriterien herangezogen werden. Die Schülerinnen und Schüler erklären den Verlauf der Rotationskurven von Galaxien mit und ohne Schwarzem Loch im Kern der Galaxie. bestimmen mithilfe des Doppler-Effekts die Geschwindigkeit, mit der das Gas in Abhängigkeit von der Entfernung zum Zentrum der Galaxie M87 rotiert und schließen daraus auf die Masse. beziehen die Geometrie der um das Zentrum der Galaxie rotierenden Gasscheibe (Projektion des kreisförmigen Rings als Ellipse an die Himmelssphäre) in ihre Berechnungen mit ein und schulen dadurch ihr räumliches Vorstellungsvermögen. erkennen, dass die Auflösung des Hubble-Weltraumteleskops nicht ausreicht, in der Nähe des Schwarzschildradius relativistische Geschwindigkeiten nachzuweisen zu können. lernen für das Vorhandensein eines Schwarzen Lochs im Zentrum einer Galaxie neben den charakteristischen Eigenschaften der Rotationskurve noch weitere Indizien kennen. In letzter Zeit mehren sich die Anzeichen dafür, dass Schwarze Löcher nicht nur theoretisch möglich sind, sondern tief im Innern vieler Galaxien auch wirklich existieren. Sie könnten durch dynamische Vorgänge in den Galaxienzentren, wie etwa der Akkretion von Materie aus einer Gasscheibe, entstanden sein und so die am wenigsten exotische Erklärung für die Aktivitäten von Galaxienkernen, wie zum Beispiel intensive Röntgen- und Radiostrahlung und die Aussendung von Materie-Jets, darstellen. So deuten seit Langem gleich mehrere Indizien darauf hin, dass auch die riesige elliptische Galaxie M87 (Abb. 1), die zum Virgo-Galaxienhaufen gehört, ein massereiches Schwarzes Loch beherbergt. Dem hohen Auflösungsvermögen des Hubble-Weltraumteleskops verdanken wir die Entdeckung einer rotierenden Scheibe aus ionisiertem Gas im Zentrum dieser Galaxie. Keplersch oder nicht? Die empirische Abhängigkeit der Rotationsgeschwindigkeit v vom Abstand R ist bei normalen Galaxien nicht keplersch. Die inneren Partien von Spiral- und elliptischen Galaxien rotieren nämlich wie starre Körper, das heißt, die Bahngeschwindigkeit wächst linear mit dem Abstand. Dies lässt auf eine konstante Massendichte schließen. Weiter außen bleiben dann die Bahngeschwindigkeiten über große Abstände nahezu konstant, das heißt, dort wächst die Masse linear mit dem Abstand. Enthielte das Zentrum einer Galaxie nun ein Schwarzes Loch mit der Masse von einer Milliarde Sonnen, zeigt die Rotationskurve bei enger Annäherung an dieses Zentrum einen keplerschen Verlauf, so wie die des Sonnensystems. Geschwindigkeit von Sternen oder Gas im Kern der Galaxien Damit liegt eine Strategie für die Suche nach Schwarzen Löchern in Galaxienzentren auf der Hand: Wir müssen in möglichst kleinen Abständen vom Zentrum einer Galaxie die Geschwindigkeit von Sternen oder Gas messen. Ist die Rotationskurve dann keplersch, gibt dies einen deutlichen Hinweis darauf, dass im Galaxienzentrum ein sehr massereiches, kompaktes Objekt verborgen ist. Ein beeindruckendes Beispiel dafür ist die mit dem Langspalt-Spektrographen des Hubble-Weltraumteleskops aufgenommene Rotationskurve für das Zentrum der Galaxie M84. Abb. 2 zeigt die Zentralregion der Galaxie M84 in einer Aufnahme der Weitwinkelkamera des Weltraumteleskops (links). Der rechte Bildteil zeigt die Verteilung der Geschwindigkeiten von Sternen und Gas über die von dem Rechteck im linken Bild markierten Abstände vom Zentrum. Diese Radialgeschwindigkeitskurve zeigt die auf den Beobachter zu (blau) und von ihm weg (rot) gerichteten, messbaren Komponenten der Bahngeschwindigkeit. Ihre Auswertung führt auf 300 Millionen Sonnenmassen in einer Kugel mit 26 Lichtjahren Radius! Das begrenzte Auflösungsvermögen des Hubble-Weltraumteleskops verhindert bei Weitem die für den endgültigen Nachweis eines Schwarzen Lochs nötige Annäherung an dessen Schwarzschild-Radius, wobei sich relativistische Bahngeschwindigkeiten ergeben müssten. Aber auch dann, wenn die empirische Feststellung des keplerschen Verlaufs der Rotationskurve bei Annäherung an das Zentrum bei einem bestimmten kleinsten Abstand R abbricht, können wir aus einem ( R, v )-Messpunkt auf die von der Kugel mit dem Radius R eingeschlossene Masse schließen. Anschließend müssen jedoch andere Argumente zugunsten eines Schwarzen Lochs im Zentrum von M87 als die (für noch kleinere Abstände empirisch nicht mehr vorhandene) Rotationskurve herangezogen werden, um Alternativen auszuschließen: Viel Masse auf engem Raum Ein Schwarzes Loch wird umso wahrscheinlicher, je mehr Masse in einem bestimmten Volumen enthalten ist und je mehr diese die Masse der darin leuchtenden Materie übersteigt. Mathematische Modelle Dynamische Rechnungen zeigen, dass nicht leuchtende Himmelskörper, wie zum Beispiel Braune Zwerge, Neutronensterne und stellare Schwarze Löcher, in der erforderlichen Anzahl rasch zu einem einzigen Schwarzen Loch kollabieren würden. Materie-Jet Nahezu senkrecht auf der Gasscheibe im Zentrum von M87 steht ein sogenannter Materie-Jet (Abb. 3), der radioastronomischen Beobachtungen zufolge aus einem Gebiet von höchstens sechs Lichtjahren Durchmesser austritt. Zur Erklärung dieses Phänomens wird seit Langem ein Schwarzes Loch diskutiert. Die in diesem Projekt durchgeführte Auswertung der M87-Daten drängen zu folgender Schlussfolgerung: Wenn wir die in einem relativ kleinen Volumen konzentrierte Masse nicht als die eines Schwarzen Lochs deuteten, wüssten wir nach dem heutigen Stand der Wissenschaft gar keine Erklärung dafür abzugeben. Um uns dieser Deutung noch mehr zu vergewissern, müsste die Bewegung von Sternen und Gas in noch größerer Nähe zum Zentrum der Galaxie analysiert werden. Zumindest für das Milchstraßensystem ist dies in jüngster Zeit geschehen (siehe Links und Literatur ). Eckart, A., Genzel, R. Erster schlüssiger Beweis für ein massives Schwarzes Loch?, Physikalische Blätter 54 (1998) (l) 25-30 Eckart, A., Genzel, R. Der innerste Kern des galaktischen Zentrums, Sterne und Weltraum 37 (1998) (3) 224-230 Ford, H.C., Tsvetanov, Z.I. Massive Black Holes in the Hearts of Galaxies, Sky & Telescope (1996) (6) 28-33 Ford, H.C., Harms, R.J., Tsvetanov, Z.I. et al Narrow Band HST Images of M87: Evidence for a Disk of Ionized Gas Around a Black Hole, Astrophysical Journal Letters 435 (1994) L27-30 Harms, R.J., Ford, H.C., Tsvetanov, Z.I. et al HAST FOS Spectroscopy of M87: Evidence for a Disk of Ionized Gas Around a Massive Black Hole, Astrophysical Journal Letters 435 (1994) L35-38 Lotze, K.-H. Schwarze Löcher - vom Mythos zum Unterrichtsgegenstand, Praxis der Naturwissenschaften/Physik 49 (2000) (5) 21-27 Lotze, K.-H. Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, Projekt Nr. 1: Die Entfernung der Supernova SN1987A, Der Mathematische und Naturwissenschaftliche Unterricht (MNU) 51 (1998) (4) 218-222 Lotze, K.-H. Praktische Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, Projekt Nr. 2: Die Entfernung der Galaxie M100, Der Mathematische und Naturwissenschaftliche Unterricht (MNU) 52 (1999) (2) 85-91 Rubin, V.C. Dark Matter in Spiral Galaxies, Scientific American 248 (1983) (6) 96-106

  • Physik / Astronomie
  • Sekundarstufe II

Bestimmung der Mondentfernung durch Triangulation

Unterrichtseinheit

Schülerinnen und Schüler aus Südafrika, Griechenland und Deutschland fotografierten zur selben Zeit Mond, Jupiter und Saturn. Nachdem die Bilder über das Internet ausgetauscht worden waren, wurde die Mondparallaxe bestimmt und die Entfernung des Mondes von der Erde berechnet. Eine günstige Stellung des Mondes wurde genutzt, um in Kooperation mit Schulen in fernen Ländern die Mondentfernung zu bestimmen. Dazu wurde der Winkelabstand Jupiter-Saturn mit einem Jakobsstab gemessen. Der Winkelabstand des Mondes wurde mithilfe von Fotografien bestimmt, die zeitgleich an verschiedenen Orten (Neumünster, Thessaloniki, Johannesburg) aufgenommen, digital bearbeitet und ausgewertet wurden. Aus den ermittelten Werten wurde mithilfe des Sinussatzes die Entfernung der Erde zum Mond mit 372.500 Kilometern bestimmt. Der Literaturwert für die mittlere Entfernung beträgt 384.401 Kilometer. Das hier vorgestellte anspruchsvolle Projekt eignet sich für Astronomie-Arbeitsgemeinschaften und wurde vom Autor im Rahmen des SINUS-Programms in Schleswig-Holstein durchgeführt. Die Auswertung der Messdaten gelingt im Mathematik-Unterricht der 10. Klasse (Sinussatz). Das Thema ist Teil des Unterrichts zur Gravitation in Jahrgangstufe 11 (Mechanik). Die Aufgabe "Bestimme die Entfernung des Mondes" ist schnell formuliert, lässt sich aber nur mit relativ großem Aufwand lösen. Sie erfordert neben vielfältigem Wissen aus verschiedenen Gebieten auch handwerkliche und organisatorische Fähigkeiten und Fertigkeiten Vorbereitung und Softwaretipps Hinweise für die Suche nach Beobachtungspartnern und Tipps zur Softwarenutzung bei der Auswahl des Beobachtungstermins und der Bildbearbeitung Grundlagen und Winkelmessungen Geometrische Grundlagen und praktische Vorschläge zur Durchführung der Winkelmessungen Ergebnisse Vorschläge zur Auswertung der Fotografien und zur Berechnung der Entfernung von der Erde zum Mond Die Schülerinnen und Schüler sollen Kenntnisse über die Positionen und Bewegungen der Körper im Sonnensystem erwerben. ein ziemlich großes Dreieck vermessen. Fotografie für Messzwecke einsetzen lernen. verschiedene Winkelmessverfahren kennen lernen. Thema Messung der Mondentfernung durch Triangulation Autor Bernd Huhn Fach Physik, Astronomie Zielgruppe Astronomie-AGs, Schülerinnen und Schüler ab Klasse 10 Zeitraum Das komplette Projekt dauert sicher mehrere Monate. Wenn man auf vorhandene Fotos zurückgreift, geht es schneller, es verliert aber einen Teil seines Reizes. Technische Voraussetzungen "klassischer" Fotoapparat oder Digitalkamera, Stativ, Drahtauslöser, Winkelmessscheibe, Geodreieck, Kompass, Wasserwaage, Knetgummi, dünner Stab (z.B. Schaschlikspieß), Schiebelehre, doppelseitiges Klebeband, Globus, Telefon- und E-Mail-Anschluss Software, Literatur Bildbearbeitungsprogramm (Corel Photo-Paint, GIMP oder vergleichbare Software), Astronomie-Software wie KStars, XEphem (beide kostenlos), SkyMap, Skyplot oder Tabellenwerke, zum Beispiel das Kosmos Himmelsjahr (Franckh-Kosmos Verlags-GmbH) oder Ahnerts Kalender für Sternfreunde (Spektrum der Wissenschaft Verlagsgesellschaft) Keller, Hans-Ulrich Kosmos Himmelsjahr, Franckh-Kosmos Verlags-GmbH, erscheint jährlich; alle wichtigen Infos zu Sonne, Mond und Sternen, den Planeten, Finsternissen und sonstigen Himmelsschauspielen sowie den "Monatsthemen" mit aktuellen und interessanten Beiträgen. Neckel, Thorsten; Montenbruck, Oliver Ahnerts Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft mbH, erscheint jährlich; in den Monatsübersichten wird unter anderem dargestellt, welchen Planeten und hellen Sternen der Mond begegnet und wie die Sichtbarkeitsbedingungen der Planeten sind. Soffel, Michael ; Müller, Jürgen Lasermessungen der Monddistanz, Sterne und Weltraum 7/1997, Seiten 646-651; Die Autoren erläutern das Messverfahren und stellen weit reichende Folgerungen dar, die man aus dem auf wenige Zentimeter genauen Messergebnis ziehen kann. Zimmermann, Otto Astronomisches Praktikum, Spektrum der Wissenschaft Verlag GmbH, ISBN 3-8274-1336-2 (2003); hier werden weitere Methoden zur Messung der Mondentfernung beschrieben (Erdschattendurchmesser auf dem Mond ,Änderung der Mondgröße mit der Höhe, parallaktische Libration, Sternbedeckungen durch den Mond) Gut geeignet für die Triangulation ist eine Kombination von Beobachtungsstandorten mit einer großen Differenz der geographischen Breiten und einer kleinen Differenz der geographischen Längen. Die erste Bedingung sichert eine große Basislänge, die zweite sorgt dafür, dass die fotografierte Himmelsgegend etwa zur gleichen Zeit an beiden Standorten möglichst hoch über dem Horizont steht. Wenn sich ein Standort in Deutschland befindet, sollte der zweite also idealerweise im Süden Afrikas liegen. Auch das östliche Südamerika kommt in Frage. Aufgeschlossene Kolleginnen und Kollegen findet man durch Nachfragen bei den deutschen Auslandsschulen: Bundesverwaltungsamt: Schulverzeichnis Auf der Website des BVA finden Sie das Schulverzeichnis der Zentralstelle für das Auslandsschulwesen. Für die vorbereitenden Verabredungen und den Austausch der Ergebnisse reicht der Kontakt per E-Mail. Zum Zeitpunkt der Aufnahmen selbst ist eine Telefonverbindung nützlich: Wenn der Himmel nur teilweise klar ist und "Wolkenlöcher" genutzt werden müssen, können kurzfristige Absprachen gewährleisten, dass die Aufnahmen möglichst zeitgleich entstehen. Alternativ können dafür auch Chat-Rooms genutzt werden. Für die Aufnahme muss sich der Mond in möglichst geringem Winkelabstand zu zwei hellen und sehr viel weiter entfernten Objekten am Himmel befinden. Günstig dafür ist eine Konjunktion von mindestens zwei der Planeten Venus, Mars, Jupiter und Saturn; der Mond sollte zwischen ihnen stehen. Die Mondphase ist nicht entscheidend; ein zunehmender Mond ist allerdings zu bevorzugen, wenn jüngere Schülerinnen und Schüler mitarbeiten sollen, da er vor Mitternacht kulminiert. Einen geeigneten Zeitpunkt findet man durch systematische Suche in entsprechenden Tabellenbüchern (Kosmos Himmeljahr, Ahnerts Astronomisches Jahrbuch) oder durch Verwendung eines Astronomieprogramms, das ein Planetarium simulieren kann: KStars Diese Software unterliegt der GNU General Public License (GPL) und steht kostenfrei zur Verfügung. XEphem Auf der Website des Clear Sky Institute ist auch dieses Programm kostenlos erhältlich. Skyplot Informationen und Bestellmöglichkeit zur Software auf der Website des Autors Frank P. Thielen. Skyplot ist für 30 € zu haben. SkyMap Die kommerzielle Software ist in der Lite-Version für etwa 37 € und in der Pro-Version für etwa 100 € zu haben. In dem hier beschriebenen Projekt wurden die beiden Planeten Jupiter und Saturn als "Fixpunkte" verwendet. Besser wäre natürlich die Verwendung von Sternen, weil sie der Forderung, unendlich weit entfernte Fixpunkte zu sein, besser entsprechen. Allerdings müssen die Sterne relativ dicht nebeneinander und nahe der Ekliptik stehen und auch noch hell genug sein. Gute Gelegenheiten für Aufnahmen mit Fixsternen bieten totale Mondfinsternisse. Der dann nur schwach beleuchtete Mond überstrahlt auch die schwächeren Sterne in seiner Umgebung nicht. Allerdings bietet sich diese Gelegenheit seltener, wodurch man mehr von günstigen Beobachtungsbedingungen abhängig ist. Probeaufnahmen In dem hier vorgestellten Projekt wurde eine klassische Kamera benutzt, natürlich kann auch eine Digitalkamera verwendet werden. Probeaufnahmen vor dem Aufnahmetermin sind anzuraten. Die Qualität der Aufnahmen sollte immer am Negativ oder an der Rohdatei beurteilt werden. Bildverwackelungen können durch die Nutzung eines Stativs und eines Drahtauslösers vermieden werden. Eine Nachführung ist nicht nötig. Für die spätere Auswertung der Fotos ist es wichtig, die Aufnahmezeitpunkte und die verwendete Zonenzeit zu notieren! Der Winkelabstand Jupiter-Saturn betrug bei unseren Messungen etwa 10 Grad. Dabei ist eine Brennweite von 15 Zentimetern beim Kleinbildformat 24 Millimeter mal 36 Millimeter optimal. Die Auflösung von Standardfilmen reicht völlig, unabhängig davon, ob Farb- oder Schwarz-Weiß-Filme verwendet werden. Verschiedene Belichtungszeiten bei jedem Aufnahmezeitpunkt Die Belichtungszeit soll so gewählt werden, dass die im Vergleich zum Mond lichtschwachen Planeten (oder Sterne) gerade sicher zu erkennen und der Mond nicht unnötig überbelichtet wird. Der Mondrand sollte auf den Bildern noch gut erkennbar sein. Belichtungszeiten zwischen 0,1 und 10 Sekunden sollten bei mittlerer Blende passen. Die Zeiten sind allerdings stark von den aktuellen Dunstverhältnissen und der lokalen Lichtverschmutzung abhängig. Daher ist es sinnvoll, zu jedem Aufnahmezeitpunkt immer mehrere Aufnahmen mit unterschiedlichen Belichtungszeiten zu machen. Lichtschwache und lichtstarke Objekte auf einem Bild? Wie in der Astronomie üblich, werden die Bildnegative bearbeitet, also dunkle Objekte vor hellem Hintergrund. Wenn die punktförmigen Objekte - zwei Planeten oder Sterne - auf den Fotografien sicher abgebildet sind, der Mondrand aber unscharf dargestellt ist, nutzt man ein Bildbearbeitungsprogramm um für die Auswertung der Bilder einen scharfen Mondrand zu erzeugen, ohne dabei die lichtschwachen Objekte zu verlieren. Dabei geht man in zwei Schritten vor. Retusche der lichtschwachen Planeten Zunächst werden die zentralen Pixel der Planetenbilder bei hoher Vergrößerung schwarz eingefärbt. Es reichen Quadrate von vier oder neun retuschierten Bildpunkten. Abb. 1 (Platzhalter bitte anklicken) zeigt ein Beispiel: S-01-03-1 zeigt das stark vergrößerte digitalisierte Bild des Planeten Jupiter aus der linken unteren Ecke des Bildes S-01-03. Darunter sieht man in s-01-03-2 das retuschierte Jupiterbild mit neun zentralen schwarzen Pixeln. Noch wichtiger ist die Retusche beim relativ schwachen Bild des Saturns rechts im oberen Drittel des Bildes S-01-03. Benutzt wurde das Programm Corel Photo-Paint, Version 6.0. "Scharfstellen" des Mondes Im zweiten Schritt wird die Helligkeit des gesamten Bildes angehoben und der Kontrast so verstärkt, dass der "echte" Mondrand scharf erscheint. Das ist dann der Fall, wenn der Mond hellgrau vor weißem Hintergrund erscheint und das Mondbild bei einer weiteren Anhebung der Helligkeit nicht mehr kleiner wird (Abb. 2, Platzhalter bitte anklicken). Mithilfe der Vorschaufunktion von Corel Photo-Paint lässt sich dies gut beurteilen. Anschließend kann der Kontrast des Bildes weiter erhöht werden, bis die Abbildung schwarze scharfe Objekte vor weißem Hintergrund zeigt. Alternativ zu kommerzieller Software kann auch das kostenfreie Bildbearbeitungsprogramm GIMP verwendet werden: Zwei Punkte A und B auf der Erde und der Mittelpunkt M des Mondes bilden ein Dreieck (Abb. 3). Die Längen der Strecken AM beziehungsweise BM sind gesucht. Um sie zu ermitteln, müssen wir drei Stücke dieses Dreiecks messen, ohne die Erde zu verlassen. Eines dieser Stücke muss eine Seitenlänge sein, dafür kommt nur die Länge der Strecke AB in Frage. Zwei Winkel sind also noch zu messen. Da die Messgenauigkeit der gesuchten Längen sehr empfindlich von dem Winkel pi mit dem Scheitelpunkt M abhängt, ist es unerlässlich, diesen direkt zu messen und ihn nicht etwa aus der Differenz 180 Grad - Winkel BAM - Winkel MBA zu errechnen, denn kleine relative Fehler bei den Messungen der Winkel BAM und MBA hätten einen großen relativen Fehler für den Wert von pi zur Folge. Leider können wir uns nicht auf den Mond begeben und von dort einfach die beiden Punkte A und B auf der Erde anpeilen. Wir können pi aber auch auf der Erde messen, denn er ist gleich der Winkeldifferenz der Richtungen, in denen der Mond von den beiden Punkten A und B aus gesehen erscheint, also gleich dem Winkel zwischen BM und der Parallele zu AM durch B. Er heißt daher auch Parallaxenwinkel (Abb. 3). Einer der beiden weiteren Winkel - BAM oder MBA - muss außerdem gemessen werden. Die Genauigkeit dieser Messung ist unkritisch für die Genauigkeit des Ergebnisses, besonders wenn der Wert des Winkels nahe 90 Grad liegt. Mithilfe des Sinussatzes ergeben sich die gesuchten Längen der Seiten MA oder MB. Um die Entfernung des Mondmittelpunktes vom Erdmittelpunkt und nicht von einem Punkt der Erdoberfläche zu erhalten, wäre weiterer Aufwand nötig. Dies erscheint angesichts der erzielbaren Messgenauigkeit jedoch nicht sinnvoll. Das Vorgehen sollte für Schülerinnen und Schüler, die gerade den Sinussatz am ebenen Dreieck verstanden haben, gut nachvollziehbar sein. Jüngere Schülerinnen und Schüler können die Anwendung des Sinussatzes möglicherweise durch eine Dreieckskonstruktion ersetzen, die aber sehr präzise sein muss, da der Parallaxenwinkel naturgemäß recht klein ist. Kenntnisse über astronomische Koordinatensysteme oder sphärische Trigonometrie sind nicht nötig. Es sollte Wert darauf gelegt werden, alle Schritte durch manuelle Tätigkeiten an einem räumlichen Modell (Globus mit aufgesetztem Horizontsystem, Mond in einiger Entfernung davon) zu veranschaulichen. Hinweise zur Aufnahme der Fotos Wir haben den Parallaxenwinkel pi auf fotografischem Weg gemessen. Ideal für die Auswertung ist ein Paar von zwei Aufnahmen des Mondes und der Hintergrundobjekte - hier Jupiter und Saturn -, die an den beiden Positionen A und B exakt zum gleichen Zeitpunkt gemacht werden. Wenn merklich Zeit zwischen den Aufnahmen liegt, weil zum Beispiel die Bewölkung an den Aufnahmestandorten dies erzwingt, könnte das Ergebnis durch die Bewegung des Mondes vor dem Hintergrund (etwa 15 Grad in 24 Stunden) verfälscht werden. Sollte diese Gefahr bestehen, so fotografiert man an einem oder an beiden Standorten mehrfach zu verschiedenen Zeitpunkten, etwa in jedem geeigneten Wolkenloch, und rekonstruiert dann jeweils die Position des Mondes für einen vereinbarten Zeitpunkt aus diesen Aufnahmeserien durch eine lineare Interpolation. Auswertung der Fotos Legt man zwei zeitgleich entstandene Bilder von den Standorten A und B so übereinander, dass die beiden Planetenbilder aufeinander liegen, so sind die Mondbilder gegeneinander verschoben. Diese Verschiebung kann man in den Parallaxenwinkel pi umrechnen, wenn man einen passenden Umrechnungsfaktor hat. Man erhält ihn aus einer Messung des Winkelabstandes delta der beiden Hintergrundobjekte am Himmel und dem Abstand ihrer Abbilder auf den auszuwertenden Fotos. Der Parallaxenwinkel ergibt sich dann per Dreisatz. Zur Kontrolle des Verfahrens kann man damit den Winkeldurchmesser des Mondes bestimmen: er muss etwa 0,5 Grad betragen. Messung des Winkels zwischen den Planeten Für die Messung des Winkels delta zwischen den Planeten Jupiter und Saturn haben wir in unserem Projekt einen improvisierten "Jakobsstab" benutzt (Abb. 4). Er besteht aus Stativmaterial und Längenmessgeräten aus der Physik-Sammlung. Das Durchblicksloch sollte möglichst klein sein. Man schaut durch die Öffnung und verschiebt die Markierungen auf dem Querstab so lange, bis die Peilung zu den Planeten passt. Dann lässt sich der Winkel delta messen beziehungsweise errechnen. Diese Winkelmessung sollte etwa zeitgleich mit den fotografischen Aufnahmen erfolgen. Messung von Azimut- und Höhenwinkel zum Aufnahmezeitpunkt Während wir zur Messung des Parallaxenwinkels pi mindestens zwei zeitgleich aufgenommene Fotografien von verschiedenen Standorten benötigen, kann der zweite Winkel im Dreieck an nur einem der Beobachtungsorte, zum Beispiel am Punkt A, ermittelt werden. Dazu bestimmt man die Position des Mondes im Horizontsystem (Azimut- und Höhenwinkel) zum Aufnahmezeitpunkt. Daraus lässt sich später der Winkel zwischen den Verbindungslinien zum Mond und zum zweiten Standort B mithilfe eines Globus ermitteln. Das kann man so machen: Man legt eine ebene, leichte und dünne Platte, zum Beispiel eine Winkelmessscheibe, wie sie für Schülerübungen in der Optik verwendet wird, horizontal ausgerichtet (Wasserwaage, Dosenlibelle, Untertasse voll Wasser ... ) auf eine feste Unterlage und markiert darauf mithilfe eines Kompasses die Nord-Süd-Richtung. Dabei muss unbedingt die lokale Missweisung beachtet werden, besonders wenn ein Partner im südlichen Afrika beteiligt ist. Dort erreicht nämlich die Missweisung auf Grund einer geomagnetischen Anomalie beträchtliche Werte. Durch ein Lot vom Himmelspol auf den Horizont oder mithilfe einer Landkarte und Landmarken am Horizont lässt sich das Ergebnis überprüfen. Nun befestigt man mit Knetgummi auf dieser Linie das Ende eines dünnen Stäbchens, zum Beispiel einen Schaschlik-Spieß, und richtet das Stäbchen genau auf den Mond, sodass es im Mondlicht keinen Schatten mehr wirft. Dann kann man den Höhenwinkel eta und den Azimutwinkel gamma mit einem Geodreieck messen (Abb. 5). Diese Messung muss man für jeden Aufnahmezeitpunkt wiederholen und protokollieren. Natürlich kann man für die Messungen von Azimut und Höhe auch einen vertikal stehenden Schattenstab benutzen. Dann lässt sich der Azimutwinkel direkt auf der Winkelmessscheibe ablesen. Der Höhenwinkel muss aus der Schattenlänge und der Stablänge berechnet oder an einem Faden von der Stabspitze zum Ende des Stabschattens abgelesen werden. Auch einen Theodolithen kann man verwenden, wenn man damit einen hinreichend großen Höhenwinkel messen kann. Rekonstruktion der Richtungen und Winkelmessung am Globus In einem letzten Schritt wird nun mit doppelseitigem Klebeband die Platte mit der Vorrichtung zur Bestimmung von Höhen- und Azimutwinkel auf einem Globus am Aufnahmeort A angeklebt. Auf den Ort A fällt der Fußpunkt A' des Stäbchens. Dann liegt die Platte in der Tangentialebene an den Globus in A, also in der Horizontebene von A (Abb. 6). Natürlich muss auch die Nord-Süd-Linie die Tangente an den Längenkreis durch A bilden. Wenn nun Azimut- und Höhenwinkel noch oder wieder passend eingestellt sind, so wird die Position des Mondes relativ zum Globus bei der Aufnahme reproduziert. Eine große "Schiebelehre" wird nun so angelegt, dass die Spitzen ihres "Schnabels" auf den Punkten A und B liegen. Ihre Kante bildet mit dem Stäbchen den gesuchten Winkel alpha, der nun mit einem Geodreieck gemessen werden kann (Abb. 7). Nicht notwendig, aber sehr sinnvoll ist es, auch am Ort B den Azimut- und den Höhenwinkel zum Aufnahmezeitpunkt zu messen und die Richtung zum Mond von Punkt B aus ebenfalls auf dem Globus zu rekonstruieren. Wenn diese Richtungen dann sehr voneinander abweichen, ist irgendwo ein Fehler passiert. Wir haben auf diese Weise die große Kompassmissweisung in Johannesburg "entdeckt". Bestimmung von Azimut- und Höhenwinkel aus Tabellendaten Falls Azimut- und Höhenwinkel nicht messbar sind, kann man sie aus Tabellenwerten der Mondephemeriden, der geographischen Breite und der Sternzeit des Aufnahmeortes rekonstruieren. Das gelingt - wenn auch etwas mühsam - mit den Formeln der sphärischen Geometrie. Zwar nicht so genau, aber anschaulicher und für Schülerinnen und Schüler nicht nur manuell begreifbarer, ist ein Kartonmodell. Abb. 8 zeigt die Mondposition (rotes Kügelchen) im Horizontsystem von Thessaloniki am 12. November 2000 um 20:00 Uhr Weltzeit. Dazu wurde auf der Horizontebene zunächst ein Sektor der Äquatorebene um den Winkel von 90 Grad minus geographische Breite gegenüber der Horizontebene geneigt aufgeklebt. Auf der Äquatorebene sind aus gelbem Karton zwei orthogonal zueinander stehende Sektoren für den Stundenwinkel und die Deklination des Mondes befestigt. Die Deklination des Mondes (hier 18 Grad) erhält man aus einem astronomischen Jahrbuch (Kosmos Himmelsjahr, Ahnerts Astronomisches Jahrbuch), ebenso die Rektaszension (hier 4 h 08 min). Der Stundenwinkel ergibt sich dann aus der Beziehung Stundenwinkel = Sternzeit - Rektaszension. Mit der Sternzeit 1 h 01 min, die man ebenfalls einem Jahrbuch entnimmt und auf den Aufnahmeort und -zeitpunkt umrechnet, erhält man den Stundenwinkel von -3 h 07 min, wie in Abb. 8 näherungsweise abzulesen ist. Mit einem Geodreieck misst man nun Azimut- und Höhenwinkel im Horizontsystem. Das Kartonmodell kann man anstelle der Winkelmessscheibe mit dem Schaschlikstäbchen zur Auswertung auch direkt auf den Globus kleben. Prinzipiell macht man dabei allerdings einen kleinen Fehler: Die Angaben für Deklination und Rektaszension beziehen sich auf einen Beobachter im Erdmittelpunkt, während das Kartonmodell auf der Erdoberfläche sitzt. Der so ermittelte Winkel BAM wird also entsprechend verfälscht. Der Fehler dürfte aber angesichts der begrenzten Genauigkeit des Modells zu vernachlässigen sein. Die Länge der Dreiecksseite AB, das heißt die Entfernung zwischen den Beobachtungspunkten wird, wie in Abb. 7 gezeigt, mit einer großen Schiebelehre auf einem Globus ausgemessen und mithilfe des Globus-Maßstabes berechnet. Die Entfernung BM ergibt sich nun leicht aus dem Sinussatz: Es ist sinnvoll, an dieser Stelle weitere Werte für pi, alpha und die Länge von AB in die Berechnung der Mondentfernung einzusetzen und die Auswirkungen auf das Ergebnis zu diskutieren. Dabei sollte sich als kritische Größe der Parallaxenwinkel herausstellen. Beobachtungsnacht Um sicher auswertbares Fotomaterial zu erhalten, wurde die Begegnung des Mondes mit den Planeten Jupiter und Saturn im Abstand von vier Wochen in zwei Vollmondnächten dokumentiert. Am 12. November 2000 standen neun Kollegen in Brasilien, Südafrika, Griechenland und Deutschland mit ihren Schülerinnen und Schülern bereit, um den Mond und die beiden Planeten zu fotografieren. Allerdings spielte das Wetter nur in Thessaloniki und Johannesburg mit: Lediglich Max Ruf (Deutsche Schule Johannesburg) und Wolfgang Hofbauer (Deutsche Schule Thessaloniki) gelangen auswertbare Aufnahmen. Die folgenden vier Abbildungen zeigen je zwei Bilder von diesen Standorten. Das jeweils erste zeigt die Originalaufnahme mit den ergänzten Aufnahmedaten. In der jeweils zweiten Abbildung ist das digitalisierte Foto mit einem Bildbearbeitungsprogramm zu einer Schwarz-Weiß-Grafik verarbeitet worden. Der Grauton, bei dem die Entscheidung zwischen Schwarz und Weiß liegt, wurde dazu so gewählt, dass der Mondrand optimal zu erkennen ist. Damit die Planeten Jupiter und Saturn bei der Bildbearbeitung nicht verloren gingen, wurden diese vorher retuschiert. Winkelabstand und geographische Koordinaten Den Winkelabstand Jupiter-Saturn hat Max Ruf in Johannesburg zu delta = 10,5° gemessen. Die geographischen Koordinaten der Aufnahmeorte sind: Johannesburg: 26° 12' südlicher Breite, 28° 06' östlicher Länge Thessaloniki: 40° 36' nördlicher Breite, 23° 06' östlicher Länge Bilder aus Johannesburg Bilder aus Thessaloniki Bestimmung der Mondparallaxe am Bildschirm Abb. 13 zeigt eine Montage, in der die beiden Aufnahmen aus Abb. 10 und Abb. 12 so gedreht und zentrisch gestreckt wurden, dass die Verbindungsstrecken Jupiter-Saturn horizontal liegen und gleich lang sind. Nun können die Schülerinnen und Schüler die Mondparallaxe am Bildschirm mit der folgenden Anleitung ermitteln: Markiere auf dem Monitor mit einem abwaschbaren Folienschreiber die Positionen von Jupiter, Saturn und Mond aus der oberen Aufnahme. Verändere nicht die Position deines Kopfes! Schiebe das zweite Bild mithilfe der Scroll-Leiste auf dem Bildschirm in die Position, in der Jupiter und Saturn auf "ihren" Markierungen liegen. Zeichne den "zweiten Mond" auf den Bildschirm. Wenn die Scroll-Funktion zu grob arbeitet, kopiere das Bild zuerst auf eine leere neue Seite eines Webseiten-Editors oder eines Bildbearbeitungsprogramms. Verfahre dann so, wie oben beschrieben. Bestimme auf dem Bildschirm den Abstand Jupiter-Saturn und den Abstand der Mondbilder. Der Abstand Jupiter-Saturn entspricht einem Winkelabstand von [ ... ] Grad. Berechne per Dreisatz den Winkelabstand pi der beiden Mondbilder. Bestimmung der Mondparallaxe mithilfe von Ausdrucken Alternativ zu der beschriebenen Bestimmung der Mondparallaxe am Bildschirm können Ausdrucke der Bilder durch die entsprechende Funktion des Druckprogramms auf den gleichen Abstand Jupiter-Saturn gebracht werden. Man kann dazu auch einen Fotokopierer verwenden. Ein Bild wird auf eine Folie kopiert oder per Hand übertragen. Dann wird die Folie auf das zweite Bild gelegt und die Mondparallaxe wie zuvor beschrieben bestimmt. In der Physik-AG der IKS Neumünster haben wir die beiden Fotos vom 12. November 2000 aus Thessaloniki und Johannesburg ausgedruckt und übereinander gelegt. Jupiter und Saturn hatten dort einen Abstand von 171 Millimetern. Die beiden Mondpositionen lagen 18 Millimeter voneinander entfernt. Daraus ergab sich ein Parallaxenwinkel von pi = 10,5° (18 / 171) = 1,1°. Am großen Globus aus dem Erdkunde-Fachraum haben wir als nächstes die Richtung zum Mond von Thessaloniki aus mithilfe der Winkelmessscheibe rekonstruiert (Abb. 14a) und den Winkel Johannesburg-Thessaloniki-Mond zu 103 Grad gemessen. Gleichzeitig ergab sich der Abstand Johannesburg-Thessaloniki zu 36,4 Zentimetern bei einem Globusdurchmesser von 63,2 Zentimetern (Abb. 14b). Mit dem Erddurchmesser von 12.740 Kilometern konnten wir die wahre Entfernung JT Johannesburg-Thessaloniki errechnen: 12.740 km (36,4 / 63,2) = 7.340 km Um den Sinussatz anwenden zu können, benötigten wir noch den Winkel Mond-Johannesburg-Thessaloniki. Er betrug 180° - 103° - 1,1° = 75,9°. Nun konnten wir alles in den Sinussatz einsetzen und erhielten die Entfernung TM Thessaloniki-Mond: (sin 75,9° / sin 1,1°) 7.340 km = 372.500 km. Fertig (Abb. 15)! Später haben wir erfahren, dass der von uns benutzte Messwert von 85 Grad für den Azimutwinkel um 10 Grad zu groß war. Er beträgt nur 75 Grad. Dadurch muss mit einem kleineren Basiswinkel gerechnet werden. Da dieser nahe bei 90 Grad liegt, wo die Sinuskurve nur eine geringe Steigung hat, wirkt sich dieser Fehler aber kaum auf das Ergebnis aus. Der Mond liegt zwar - in astronomischen Maßstäben - vor unserer Haustür. Dennoch ist die in Zahlen gefasste Entfernung nicht mehr anschaulich. Hilfreicher sind für die Veranschaulichung sind grafische Darstellungen, wie zum Beispiel die folgenden, die uns der Amateur-Astronom Thomas Borowski freundlicherweise zur Verfügung gestellt hat:

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II

Der Storchenzug im Internet

Unterrichtseinheit

Der Zug der Weißstörche fasziniert alle Altersgruppen. Im Internet kann man die Vögel auf ihrer Reise von Norddeutschland nach Afrika oder nach Spanien verfolgen. Auf hochauflösenden Karten sieht man, wo sie sich gerade befinden. Die Vergleiche verschiedener Individuen und ihrer Zugwege aus verschiedenen Jahren zeigen spannende Abweichungen vom klassischen Schulbuchwissen und liefern viele Anregungen für eigene Fragestellungen und Untersuchungen.Was suchen Störche aus deutschen Feuchtgebieten am Südrand der Sahara? – Im Storchenzug-Projekt werden Weißstörche auf ihrem Flug nach Afrika und zurück über die Satellitentelemetrie verfolgt. Mithilfe kleiner Sender auf dem Rücken und GPS (Global Positioning Systems) werden die Tiere tagesaktuell geortet. Der NABU beziehungsweise die NAJU bieten darüber hinaus einen täglichen Blog mit Kommentaren und viele geografische und landestypische Informationen zur Reiseroute an. Die in dieser Unterrichtseinheit vorgestellten Materialien und Arbeitsblätter geben Anregungen zur offenen Erforschung des Vogelzugs für Schülerinnen und Schüler verschiedener Klassenstufen: Für die Klassen 5 und 6 kann man eher phänomenologisch affektive Lehrziele verfolgen, in der Oberstufe systematisch ökologischen, verhaltens- und evolutionsbiologischen Fragen nachgehen. Einsatz der Arbeitsblätter und Inhalte Bei den hier angebotenen Materialien handelt sich um offene Arbeitsblätter , die zu differenzierter Arbeit mit dem Thema Storchenzug anregen sollen. Ausgehend von konkreten Fragen oder offenen Problemstellungen wird erwartet, dass sich die Lernenden eigene Wege suchen, die Fragen zu beantworten und weitere Fragen zu stellen. Endgültige Antworten und abschließende "Merksätze" sind nicht beabsichtigt. Die Lehrkraft muss sich in die Rolle des "Mitforschers" begeben und allenfalls Hilfen geben, einen Gedanken zu formulieren und Ergebnisse als solche zu erkennen, wie zum Beispiel diese: "Der Weg nach Südafrika kann direkt oder über den Tschad führen." "Auf dem Wegzug machen die Störche im Tschad oder im Sudan drei bis vier Wochen Pause, auf dem Rückzug geht es in einem Rutsch nach Hause." "Penelope zog in den drei beobachteten Jahren jedes Mal auf einem etwas anderen Weg." Mögliche Themen Der Vogelzug kann in verschiedenen inhaltlichen Zusammenhängen behandelt werden, darunter die folgenden: Überwinterung Arten- und Biotopschutz Orientierung Methoden der Erforschung von Tierwanderungen Flugleistungen Das Storchenzugprojekt bietet in außergewöhnlich anschaulicher und ansprechender Weise eine Fülle aktueller Daten über den Vogelzug. Die Probleme der "wandernden Tiere", der Energieeffizienz beim Fliegen, der Evolution des Zugverhaltens können damit vertiefend behandelt werden. Affektive Lehrziele und neue Medien – virtuelle Begleitung vertrauter Individuen Ein emotionaler Aspekt der Vogelkunde kam bisher bei den traditionellen Unterrichtsmethoden durch die Winterfütterung oder durch die Beobachtung von wegziehenden und heimkehrenden Arten ins Spiel. Mit der Online-Verfolgung von Störchen kann man nun einen unmittelbaren Bezug zu einzelnen Tieren aufbauen, der an die Alltagserfahrung Jugendlicher anknüpft: Man "begleitet" namentlich bekannte Individuen auf ihrer Reise. Seit der Saison 2009/2010 wird während der Brutzeit an einem Storchennest eine Webcam eingerichtet. Die Schülerinnen und Schüler können sich mit "ihrem Patentier" somit schon im Sommer anfreunden. Auf der Website Storchennest.de bietet der NABU (Naturschutzbund Deutschland e. V.) ausführliches Bildmaterial an. So können mit der virtuellen Begleitung alle oben genannten Themen behandelt und mit affektiven Lehrzielen verbunden werden. Überraschende Ergebnisse Die Störche verhalten sich überhaupt nicht schematisch, sondern bieten zahlreiche Anlässe zu Fragen: "Warum biegt Penelope nach Westen in Richtung Tschad ab?" "Peterchen macht zwei Wochen Pause – was findet er während dieser Zeit zu fressen?" "Welche Rolle spielt das Wetter?" Die von den Lernenden untersuchten Daten sind authentisch und die Ergebnisse zum Teil auch für Wissenschaftlerinnen und Wissenschaftler neu ( Berthold, Querner 2002 ). Wetter, physische Geographie und politische Situation Wichtige Zusatzinformationen können von den Lernenden über das Internet gesammelt und ausgewertet werden, zum Beispiel Wetterdaten oder Satellitenbilder. Entfernungen können mithilfe von Online-Flugstreckenrechnern bestimmt werden. Geografische Fragen stellen sich fast automatisch bei der Verfolgung der Störche. So können politische und physische Themen aufgegriffen werden. Das zeigt die Aussage eines am Telemetrieprojekt beteiligten Forschers: "Mit Sendern versehene Störche sind im Libanon, in Israel und in Ägypten besonders gefährdet, da sie wegen der kleinen Antennen als 'Spione' angesehen und beschossen werden". Höhenkarten, Wetterdaten und Geoinformationssysteme (GIS) werden als Werkzeuge benutzt, um die Biologie "unserer Störche" zu verstehen.Die Schülerinnen und Schüler vollziehen die Zugwege von Oststörchen und Weststörchen mit ihren Varianten nach. erforschen die Unterschiede zwischen Individuen und Zugjahren. übertragen die Zugstrecken genau und differenziert in Karten – und dies unter Beachtung von Meerengen und Gebirgspässen! bestimmen die Leistungen der Störche auf ihrem Zug: Höhen, Strecken, Geschwindigkeiten. nehmen Entfernungsschätzungen und -messungen mithilfe des Atlas und von Entfernungsrechnern aus dem Internet vor. gewinnen einen Bezug zur physischen und politischen Geografie des Zugwegs. gehen mit geografischen Längen und Breiten um. stellen Bezüge zwischen dem Verhalten der Störche und ihren Lebens- und Ruheräumen her.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Messung der Eigenbewegung von Teegarden's Star

Unterrichtseinheit

Die als Fixsterne bezeichneten Himmelsobjekte erweisen sich bei näherem Hinsehen durchaus nicht als ortsfest, sondern zeigen eine "Eigenbewegung". Für sonnennahe Sterne lässt sich diese Bewegung mit einfachen astrometrischen Methoden erfassen. Auch Astronomie-Neulinge können mit den hier zur Verfügung gestellten Materialien motivierende Ergebnisse erzielen. Zunächst werden einige Grundlagen zu den Themen sonnennahe Sterne, Himmelskoordinaten, Sternhelligkeiten und zum Begriff der Parallaxe erläutert. Diese sind notwendig zum Verständnis der darauf folgenden praktischen Übung: CCD-Bilder von Teegarden's Star, die im Abstand von einem Jahr aufgenommenen wurden, werden mit der kostenlosen Software Fitswork bearbeitet. Anschließend wird aus den Bildern die Positionsänderung des betrachteten Sterns ermittelt. Andreas Gerhardus und Steffen Straub haben das hier vorgestellte Verfahren zur Bestimmung der Eigenbewegung von Sternen während ihres Schülerpraktikums am Argelander-Institut für Astronomie der Universität Bonn unter Anleitung von Dr. Michael Geffert erlernt. Sie praktizierten die Methode am Beispiel von Teegarden's Star und erzielten gute und leicht nachvollziehbare Ergebnisse. Aus diesem Grund stellen wir hier das Projekt "Messung der Eigenbewegung von Teegarden's Star" astronomisch interessierten Lehrerinnen und Lehrern als Anregung für den eigenen Unterricht oder für die Bearbeitung in der Astronomie-AG vor. Die dafür benötigten CCD-Bilder wurden uns freundlicherweise von Dr. Michael Geffert zur Verfügung gestellt. Fachliche Voraussetzungen Zu Beginn der Unterrichtseinheit werden einige elementare astronomische Begriffe eingeführt, die im weiteren Verlauf hilfreich oder erforderlich sind. Bezugssystem und Positionsberechnung Der Berechnung der Eigenbewegung von Teegardens' Star auf der Grundlage von CCD-Bildern geht die Positionsbestimmung "unbewegter" Sterne eines Bezugssystems voraus. Darstellung der Ergebnisse und Fehlerbetrachtung Die Rektaszensions- und Deklinationskoordinaten von Teegarden's Star und eines Vergleichssterns ohne messbare Eigenbewegung werden in Diagrammen dargestellt. Die Schülerinnen und Schüler sollen verschiedene sonnennahe Sterne kennen lernen. die Begriffe Parallaxe und Eigenbewegung verstehen. aus CCD-Aufnahmen die Koordinaten von Sternen ermitteln. die Eigenbewegung von Teegarden's Star aus vorhandenen CCD-Aufnahmen bestimmen. Diagramme erstellen, in denen die ermittelte Eigenbewegung veranschaulicht wird. Um die Positionsbestimmung am Himmel zu ermöglichen, ist die Himmelskugel genauso wie die Erde in ein Gradnetz unterteilt (Abb. 1). Dieses Gradnetz ist fest mit der Himmelskugel verbunden, es rotiert also scheinbar. Den Längenkreisen auf der Erde entsprechen die Rektaszensionskreise am Himmel, den Breitenkreisen die Deklinationskreise. Erste Schritte zur Orientierung am Sternhimmel In diesem Artikel finden Sie weitere Informationen, Anregungen und Materialien zur Orientierung am Himmel. Deklination Die Deklination (DE) wird in Winkelgraden von -90 Grad bis +90 Grad gemessen. Weil bei der Bestimmung der Eigenbewegung von Sternen sehr kleine Winkel betrachtet werden, müssen die Schülerinnen und Schülern auch die Begriffe "Bogenminute" (1 Bogenminute = 1/60 Grad) und "Bogensekunde" (1 Bogensekunde = 1/60 Bogenminute) kennen. Rektaszension Die Rektaszension (RA) wird traditionell nicht in Grad sondern in Stunden, Minuten und Sekunden angegeben. Dabei entsprechen 360 Grad den 24 Stunden eines Tages und somit 15 Grad einer Stunde. Eine Minute in Rektaszension entspricht damit (15/60) = 0,25 Grad. Eine Sekunde in Rektaszension ist gleichbedeutend mit (15/3.600) = (1/240) Grad. Die Umrechnung der Rektaszension (RA = hh.mm.ss) in Winkelgrad erfolgt gemäß der Formel: Winkel (in Grad) = 15 [hh+(1/60)**mm+(1/3.600) ss] Hierbei stehen hh für Stunden, mm für Minuten und ss für Sekunden. Diese sind nicht mit Bogenminuten beziehungsweise Bogensekunden zu verwechseln. Die Bewegung der Erde um die Sonne hat zur Folge, dass ein erdnaher Stern im Verlauf eines Jahres seine scheinbare Position vor dem Hintergrund weit entfernter Fixsterne verändert. Dabei ist die Parallaxe des erdnahen Sterns definiert als halber Öffnungswinkel des Kegels, dessen Mantel der Sehstrahl von der Erde zum nahen Stern in einem Jahr festlegt. Abb.2 veranschaulicht die Verschiebung der scheinbaren Sternposition innerhalb eines halben Jahres. Aus der Parallaxe eines Sterns, die man mithilfe von Fotos bestimmt, die im Abstand von einem halben Jahr aufgenommen werden, lässt sich mit trigonometrischen Verfahren unter Kenntnis des Abstands Sonne-Erde die Entfernung des Sterns zur Sonne beziehungsweise zur Erde berechnen. Das Phänomen der Parallaxe kann man Schülerinnen und Schülern mit einem einfachen Experiment sehr gut veranschaulichen: Hält man einen Daumen in Augenhöhe und schließt abwechselnd das linke und das rechte Auge, so scheint der Daumen seine Position vor dem Hintergrund zu verändern. Dabei nimmt die Parallaxe mit zunehmender Entfernung des Daumens vom Auge ab. Im Gegensatz zur Parallaxe hat die Eigenbewegung eines Sterns ihre Ursache in einer tatsächlichen Veränderung des Sternenortes. Weil der Effekt der Eigenbewegung sehr klein ist, wird sie in Deklination und Rektaszension in Bogensekunden angegeben. Die Messung der Eigenbewegung von Sternen erfolgt mithilfe von Fotografien, die im Abstand von ganzzahligen Vielfachen eines Jahres aufgenommen werden. Abb. 3 zeigt ein Beispiel: Die beiden Bilder wurden im Abstand mehrerer Jahre aufgenommen. Deutlich ist die Positionsänderung des markierten Sterns vor dem Hintergrund zu erkennen. Die Erde befindet sich nach einem Jahr wieder am selben Ort. Deshalb wird das Ergebnis nicht durch die parallaxenbedingte Bewegung verfälscht. Scheinbare Helligkeit ( m ) Die scheinbare Helligkeit eines Sterns ist diejenige, die ein Beobachter auf der Erde registriert. Sie wird in Größenklassen oder Magnituden angegeben (Symbol: hochgestellter Kleinbuchstabe m). Dabei leuchten die Sterne umso schwächer, je höher ihre Größenklasse ist. Die Magnitudenskala ist logarithmisch eingeteilt: Ein Stern erster Größenklasse ist definitionsgemäß 100-mal lichtstärker als einer der sechsten Klasse. Weil nun 100 = 2,512 5 gilt, bedeutet eine Größenklasse Unterschied also ein Helligkeitsverhältnis von 2,512. Die scheinbare Helligkeit kann auch Werte annehmen, die kleiner als Null sind. Der Nullpunkt der Magnitudenskala entspricht der Helligkeit von Alpha Centauri, dem sonnennächsten Stern. Das menschliche Auge kann maximal Objekte bis zu einer scheinbaren Helligkeit der sechsten Größenklasse erkennen. Es ist zu beachten, dass die Lichtintensität der Sterne mit der Entfernung natürlich abnimmt. Absolute Helligkeit ( M ) Um Sternhelligkeiten besser vergleichen zu können, wurde die absolute Helligkeit eingeführt (Symbol: hochgestellter Großbuchstabe M). Darunter versteht man die Helligkeit eines Sterns, die auf der Erde wahrgenommen würde, wenn er sich in einer genormten Entfernung von 10 Parsec befände (1 Parsec = 3,3 Lichtjahre). Die folgende Formel beschreibt den Zusammenhang zwischen scheinbarer Helligkeit m und absoluter Helligkeit M sowie der Entfernung r (in Parsec): m - M = -5 + 5 lg(r) Die Erarbeitung von Informationen zum Thema "Sonnennahe Sterne" eignet sich sehr gut zur selbstständigen Schülertätigkeit in Form einer Internet-Recherche. Dabei sollen Informationen über verschiedene sonnennahe Sterne zusammengetragen werden. Es ist empfehlenswert, den Lernenden unter anderem die drei sonnennächsten Sterne als Ziel der Recherche vorzugeben: Alpha Centauri Barnards Pfeilstern Wolf 359 Sirius und Teegarden's Star Weitere wichtige sonnennahe Sterne sind der bekannte Sirius (Fixstern mit der größten scheinbaren Helligkeit) auf Platz 6 und Teegarden's Star auf Platz 23 in der Entfernungsskala. Im Idealfall finden die Schülerinnen und Schüler auch heraus, warum Teegarden's Star bei seiner Entdeckung im Jahr 2003 für großes Aufsehen sorgte: Seine Entfernung wurde zunächst fälschlicherweise auf 7,5 Lichtjahre geschätzt, womit er der Stern mit der drittgeringsten Entfernung zur Sonne gewesen wäre. Die wichtigsten "Eckdaten" sonnennaher Sterne haben wir in dem Dokument "sonnennahe_sterne.pdf" zusammengestellt. Bei ihren Recherchen nach sonnennahen Sternen werden die Schülerinnen und Schüler häufig auf den Begriff "Roter Zwerg" stoßen. Dieser Begriff kann auch direkt als Rechercheziel vorgegeben werden. Lernende kann dieses Thema motivieren, sich auch über die Unterrichtseinheit hinaus mit der Astronomie zu beschäftigen. Die Größe von Roten Zwergen im Vergleich zu anderer Sternentypen veranschaulicht Abb. 4. Rote Zwerge zeichnen sich durch die folgenden Eigenschaften aus: Rote Zwerge sind sehr kleine Sterne. Die Kernfusion in ihrem Inneren ist nur schwach. Die rote Farbe entsteht, weil ihr Strahlungsmaximum im roten Spektralbereich liegt (Spektralklasse M). Die Oberflächentemperatur ist gering (2.200-3.800 Grad Kelvin; die Oberflächentemperatur der Sonne beträgt etwa 5.800 Grad Kelvin). Rote Zwerge haben eine enorme Lebensdauer von bis zu 13 Milliarden Jahren. Etwa 70 Prozent der Sterne in der Milchstraße sind Rote Zwerge. Notwendigkeit eines Bezugssystems Zum prinzipiellen Nachweis der Eigenbewegung von Teegarden's Star ist zunächst die Festlegung eines Bezugssystems aus Sternen erforderlich, welche bekanntermaßen (Literaturangaben) eine zu vernachlässigende Eigenbewegung aufweisen. Dann ist zu entscheiden, ob Teegarden's Star sich relativ zu den Sternen des Bezugssystems messbar bewegt. Zum Ausschluss systematischer Fehler im Auswerteverfahren wird die an Teegarden's Star durchgeführte Prozedur zur Messung der Eigenbewegung zusätzlich an einem Vergleichsstern wiederholt, der gemäß der Literatur keine Eigenbewegung zeigen sollte. CCD-Bilder und Bildbearbeitung Die hier zum Download zur Verfügung gestellten CCD-Bilder ("einzelbilder.zip") sind - sortiert nach den Aufnahmezeitpunkten - auf vier Ordner verteilt. Alle Bilder sind bereits bezüglich Dunkelbildsubtraktion und Flat-Field korrigiert. Sie haben die in der Astronomie übliche Orientierung: Norden ist oben, Westen ist rechts. Die im Folgenden beschriebene Bildbearbeitungs- und Auswerteprozedur wird von den Lernenden für alle Bilder aus jedem der vier Ordner separat durchgeführt. Sämtliche Schritte der Bildbearbeitung erfolgen mit der kostenlosen Software Fitswork. Zur Rauschminderung und zum Ausgleich von Bildungenauigkeiten durch Luftunruhen werden alle Bilder eines Ordners aus "einzelbilder.zip", also alle Aufnahmen eines bestimmten Aufnahmedatums, addiert und zu einem Summenbild gemittelt. Dabei geht man wie folgt vor: Nach dem Start des Programms öffnet man die ersten beiden Bilder eines Ordners. Diese werden nun addiert: Dazu sucht man sich zwei gut erkennbare Sterne, die auf beiden Bilder vorhanden sind. Man markiert nun nacheinander in beiden Bildern den ersten Stern, indem man bei gedrückter linker Maustaste einen kleinen rechteckigen Rahmen um den Stern zieht. Beide Rahmen erscheinen in derselben Farbe. Man wiederholt die Prozedur in beiden Bildern für den zweiten Stern. Beide Sterne sollten möglichst weit auseinander liegen, denn sie dienen der punktgenauen Anpassung und Überlagerung beider Bilder. Abb. 5 (Platzhalter bitte anklicken) zeigt den entsprechenden Screenshot: Die beiden als Fixpunkte der Bildausrichtung gewählten Sterne sind durch farbige Rechtecke markiert. Dann wählt man im Menüpunkt "Bearbeiten" den Unterpunkt "Bild addieren (mit Verschiebung)". Das jetzt angezeigte Bild ist die Summe der ersten beiden Bilder. Zu diesem Summenbild addiert man schrittweise alle weiteren Bilder des jeweiligen Ordners. Auf beschriebene Weise gewinnt man aus jedem der vier Ordner ein Summenbild. Nur auf diesen vier Summenbildern basiert die weitere Auswertung. Wer die Prozedur des Addierens auslassen möchte, findet die fertigen Summenbilder im Downloadpaket "summenbilder.zip". Die Aufnahmezeitpunkte der Bilder sind an den jeweiligen Dateinamen erkennbar. Koordinaten der Bezugssterne Nach der Bildaddition gilt es nun, die Positionen von Teegarden's Star und des Vergleichssterns im System der Bezugssterne zu bestimmen. Die Koordinaten der Bezugssterne 1 bis 6 (grüne Ziffern in Abb. 6) sind in den Tabellen des Dokuments "bezuggssterne_positionsbestimmung.pdf" zu finden. Orientierung der Bilder Alle Bilder der Downloadmaterialien sind so orientiert, dass die langen, horizontalen Seiten parallel zu den Deklinationskreisen am Himmel liegen. Die kurzen, vertikalen Seiten sind entsprechend parallel zu den Rektaszensionskreisen. In allen Bildern nimmt die Rektaszension von rechts nach links, also von West nach Ost, zu. Orientierung des Koordinatensystems bei Fitswork Damit die im Folgenden beschriebene Positionsberechnung für Teegarden's Star überschaubar wird, weist man jedem in die Berechnung eingehenden Stern zunächst die Pixelkoordinaten X und Y zu. Bei Fitswork hat das (X/Y)-Koordinatensystem seinen Ursprung in der linken oberen Bildecke. Die X-Achse ist nach rechts, die Y-Achse nach unten orientiert. Ermittlung der Pixelkoordinaten eines Sterns Die Ermittlung der Pixelkoordinaten eines Sterns verläuft in Fitswork wie folgt: Man bewegt den Cursor, der in Abb. 7 (Platzhalter bitte anklicken) als gelbes Kreuz dargestellt ist, im auszuwertenden Bild auf den betrachteten Stern. In diesem Fall ist "Vergleichsstern 6" aus Abb. 6 markiert. Am rechten Bildrand erscheint oben eine Vergrößerung des Bildausschnitts um die Cursorposition. Darunter werden die Intensitätsverteilungen dieses Ausschnitts in X- und Y-Richtung dargestellt. Im Textfeld darunter steht bei "max" die größte Pixelhelligkeit im Bild des betrachteten Sterns. Am unteren Rand des Fitswork-Fensters erscheinen ganz links die X- und Y-Koordinaten der aktuellen Cursorposition, sowie die Helligkeit des Pixels am Ort des Cursors. Man bewegt den Cursor vorsichtig innerhalb des Sterns, bis der in der rechten Leiste angegebene maximale Intensitätswert angezeigt wird. Die zugehörigen Cursorkoordinaten X und Y sind die Pixelkoordinaten des Sterns, die in die weitere Auswertung eingehen. Koordinatenbestimmung In zwei zu unterschiedlichen Zeitpunkten aufgenommen Fotos werden die Positionen von Teegarden's Star im System unserer Bezugssterne bestimmt. Aus den unterschiedlichen Orten von Teegarden's Star schließt man dann auf die Geschwindigkeit seiner Eigenbewegung. Die Koordinaten von Teegarden's Star und von zwei Bezugssternen (siehe Abb. 7) werden im (X/Y)-Koordinatensystem der Software Fitswork - wie oben beschrieben - ermittelt. In Verbindung mit den Daten aus Tabelle 2 (siehe Datei "bezugssterne_positionsbestimmung.pdf") können dann die Koordinaten von Teegarden's Star im Rektaszension/Deklination-System berechnet werden. Der Vergleich der letzteren Koordinaten in beiden Bildern liefert in Verbindung mit dem Zeitintervall zwischen den beiden Aufnahmezeitpunkten für die Bilder die Geschwindigkeit der Eigenbewegung von Teegarden's Star. Auswertungsbeispiel Bei den Downloadmaterialien finden Sie ein detailliertes Auswertungsbeispiel (auswertung_beispiel.pdf). Die dargestellte Rechnung basiert auf den Summenbildern vom August der Jahre 2005 und 2007 und verwendet als Bezugssterne die Sterne 2 und 6 aus Abb. 6. Der so gewonnene Wert der Eigenbewegung (etwa 9 Bogensekunden pro Jahr) ist größer als der Literaturwert von 5,1 Bogensekunden pro Jahr. Auf diese Abweichung wird im Rahmen der "Fehlerbetrachtung" eingegangen. Vergleichsstern ohne Eigenbewegung Nach dem gleichen Verfahren bestimmt man die Positionen eines Vergleichssterns für die beiden relevanten Zeitpunkte. Wir schlagen dafür den in Abb. 6 entsprechend gekennzeichneten Stern vor. Er hat, wie alle Sterne im Bildfeld (außer Teegarden's Star), im Rahmen unserer Messgenauigkeit keine Eigenbewegung. Wenn sich für den Vergleichsstern aus beiden CCD-Bildern, die ja zu unterschiedlichen Zeiten aufgenommen wurden, mehr oder weniger die selben Koordinaten in Rektaszension und Deklination ergeben, ist davon auszugehen, dass das Auswerteverfahren fehlerfrei praktiziert wurde. Aufbau der Diagramme Damit man die ermittelte Eigenbewegung von Sternen direkt erkennen kann, werden die gemessenen Wertepaare (Messzeitpunkt/Rektaszension beziehungsweise Messzeitpunkt/Deklination) für Teegarden's Star und den Vergleichsstern in getrennten Diagrammen (für Rektaszension und für Deklination) aufgetragen. In jedem der Diagramme erscheinen vier Messpunkte für die vier verschiedenen Aufnahmezeiten (August 2005, August 2006, August 2007, Oktober 2007). Auf der X-Achse wird der Zeitraum von August 2005 bis Oktober 2007, und auf der Y-Achse jeweils die Rektaszension beziehungsweise Deklination in geeigneten Intervallen aufgetragen. Eigenbewegung von Teegarden's Star Die ersten drei Messpunkte für Teegarden's Star (Abb. 8) liegen in beiden Diagrammen nahezu auf einer Geraden. Das bedeutet, dass der Stern seine Position mit konstanter Geschwindigkeit verändert. Der vierte Messpunkt muss in den Diagrammen von dem erhaltenen linearen Graphen abweichen: Weil die ihm zugrunde liegenden Bilder statt im August im Oktober aufgenommen wurden, werden die Messwerte hier durch den Parallaxeneffekt verfälscht. Vergleichsstern ohne Eigenbewegung Beim Vergleichsstern (Abb. 9) liegen alle Messpunkte in beiden Diagrammen auf nahezu waagerechten Geraden. Der gewählte Vergleichsstern besitzt keine messbare Eigenbewegung. Dies gilt auch für den jeweils vierten Messpunkt, weil sich der Effekt der Parallaxe aufgrund der großen Entfernung des Sterns nicht bemerkbar macht. Während unseres Praktikums im Argelander-Institut für Astronomie in Bonn hatten wir genug Zeit für die Auswertung einer wesentlich größeren Datenmenge. Pro Aufnahmezeitpunkt mittelten wir bis zu 50 Einzelaufnahmen. Die Berechnungen der Koordinaten für Teegarden's Star wurden für jedes Summenbild auf der Basis mehrerer Paare von Bezugssternen durchgeführt. Bei sechs Bezugssternen gibt es für jeden Aufnahmezeitpunkt "sechs über zwei", also 15 Möglichkeiten. Wir verwendeten dazu die leider nicht kostenfreie Software Astroart. Als Mittelwert zahlreicher Einzelrechnungen ermittelten wir für die Eigenbewegung von Teegarden's Star einen Wert von 5 Bogensekunden pro Jahr. Dieser Wert kommt dem Literaturwert von 5,1 Bogensekunden pro Jahr recht nahe. Er ist durchaus mit den oben genannten 9 Bogensekunden pro Jahr verträglich, wenn man bedenkt, dass dieses Ergebnis nur auf einer von etwa 45 möglichen Auswertungen beruht. Um zuverlässigere Werte für die Eigenbewegung zu erhalten, ist also eine Vielzahl von Einzelrechnungen nach dem oben beschriebenen Verfahren durchzuführen. Die Ergebnisse der Einzelrechnungen sind dann zu mitteln. Hier setzt der erforderliche Zeitaufwand im Unterricht natürlich Grenzen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE