• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Chemische Reaktionen erkennen

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz für den Anfangsunterricht in Chemie lernen die Schülerinnen und Schüler die chemische Reaktion und ihre Bedeutung kennen. Anhand kleiner Versuche erkennen sie den Unterschied zwischen der chemischen Reaktion und dem physikalischen Vorgang.Die Schülerinnen und Schüler planen in dieser Unterrichtsstunde für den Chemie-Unterricht der Sekundarstufe I ausgehend von zwei einfachen Aufgaben Experimente, die sie anschließend durchführen. Dabei beschreiben sie die Aggregatzustände von Stoffen und erkennen sie, dass es Vorgänge gibt, die sich leicht rückgängig machen lassen, während das bei anderen nicht so einfach beziehungsweise gar unmöglich erscheint. Im Unterrichtsgespräch und begleitendem Informationstext erarbeiten sie in diesem Zusammenhang die Fachbegriffe "chemische Reaktion" und "physikalischer Vorgang". Im Sinne der individuellen Förderung durch Binnendifferenzierung im Fach Chemie stehen Arbeitsblätter mit unterschiedlichen Schwierigkeitsgraden zur Verfügung. Die Unterrichtssequenz eignet sich für den Anfangsunterricht in Chemie und kann durch die weiteren Einheiten zum Thema Feuer und Verbrennung wie Voraussetzungen für ein Feuer , Feuer löschen , Verbrennungsprodukte nachweisen und Was ist eine Flamme? fortgeführt werden. Das Thema "Chemische Reaktion erkennen" im Unterricht Im Anfangsunterricht Chemie der Sekundarstufe I geht es zunächst gar nicht um "wirkliche" Chemie, sondern eigentlich eher um Physik: Stoffeigenschaften und Trennverfahren. Diese bilden die Grundlage für das Verständnis der chemischen Reaktion als Stoffumwandlung. Im Kontext Feuer und Verbrennung wird das Basiskonzept chemische Reaktion schnell deutlich ausdifferenziert. Es macht daher Sinn, ein Grundverständnis für die chemische Reaktion schon vorher zu schaffen und die Kenntnisse aus den vorhergegangenen Unterrichtseinheiten dafür zu nutzen. Vorkenntnisse Die Lernenden kennen den Begriff "Stoff" und können Eigenschaften von Stoffen wie ihren Aggregatzustand benennen und untersuchen. Sie kennen verschiedene Trennverfahren. Die Kenntnis der Sicherheitsregeln im Chemieraum wird vorausgesetzt. Didaktische Analyse Zwei ganz alltägliche Vorgänge (Eis schmelzen und Streichholz verbrennen) werden zu Beginn genauer unter die Lupe genommen. Dadurch können die Lernenden einen entscheidenden Unterschied zwischen ihnen erkennen, wodurch die Einführung eines neuen Begriffs (chemische Reaktion) sinnvoll wird. Durch andere Beispiele die grundlegende Bedeutung der chemischen Reaktion anschießend gesichert. Methodische Analyse In den Versuchen in Stammgruppen können die Lernenden ihre Ideen und ihr Wissen teilen und (hoffentlich) ein motivierendes Erfolgserlebnis haben. Die Einführung des neuen Fachbegriffs und Basiskonzepts "Chemische Reaktion" erfolgt im Unterrichtsgespräch und durch einen Text. Zur Vertiefung dient ein Arbeitsblatt, das in Einzelarbeit gelöst wird. Während dieser Phase erhalten die Lernenden direkte Unterstützung durch die Lehrkraft, wenn nötig. Umgang mit Fachwissen Die Schülerinnen und Schüler grenzen Stoffumwandlungen als chemische Reaktionen von physikalischen Veränderungen ab. festigen ihr Wissen zum Thema Aggregatzustand. Kommunikation Die Schülerinnen und Schüler übernehmen bei Versuchen in Kleingruppen Initiative und Verantwortung verteilen, Aufgaben fair und erfüllen diese im verabredeten Zeitrahmen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Selbstbau einer Farbstoffsolarzelle

Unterrichtseinheit
14,99 €

Die Unterrichtseinheit liefert einen Einblick in den Aufbau und die Funktion einer Farbstoffsolarzelle und ermöglicht es Schülerinnen und Schülern, mittels experimenteller Versuche die chemischen Abläufe innerhalb der Grätzelzelle zu verstehen. Optional kann ein Vergleich zur Photosynthese gezogen werden oder abschließend mittels einer methodischen Diskussion die Bedeutung der Farbstoffzelle als Alternative zu herkömmlichen Solarzellen diskutiert werden. Die Unterrichtseinheit kann für den Chemieunterricht in der in Sekundarstufe II eingesetzt werden und lässt sich in alle Rahmenlehrpläne der Bundesländer einbetten. Thematisch orientiert sie sich an einem Thema, das insbesondere in den letzten Jahren viel Aufmerksamkeit erregt hat und aus unserem Alltag nicht mehr wegzudenken ist – der nachhaltigen Erzeugung von Strom . Zu Beginn können sich die Schülerinnen und Schüler mithilfe des Arbeitsblattes 1 den Bau sowie die Funktion einer Farbstoffsolarzelle erarbeiten. Dabei werden auch die chemischen Vorgänge in der Zelle thematisiert. In einer anschließenden praktischen Phase können sie eine Grätzelzelle selbstständig zusammenbauen und im weiteren Verlauf den Effekt der Variation der Farbstoffe auf die Leistung der Zelle untersuchen. Die verschiedenen Experimente können dabei entweder eigenständig geplant oder nach einer von der Lehrkraft vorgegebenen Vorgehensweise durchgeführt werden. Darüber hinaus liegt ein besonderer Fokus auf der Einschätzung möglicher Gefahrenquellen und der gezielten Übung des Verfassens eines Versuchsprotokolls. Abschließend werden die Ergebnisse gemeinsam besprochen und diskutiert. Zum Abschluss der Einheit kann in einer Vertiefungsstunde ein Vergleich der Farbstoffsolarzelle mit der Photosynthese erfolgen. Optional bietet sich die Möglichkeit, die Bedeutung organischer Farbstoffzellen als Alternative zu herkömmlichen Solarzellen zu behandeln. Dies im Rahmen einer methodischen Diskussion erfolgen, in die auch aktuelle Forschungsergebnisse und potenzielle zukünftige Einsatzmöglichkeiten einbezogen werden können. Dabei werden die Recherchefähigkeit sowie das selbständige Forschen und Experimentieren der Schülerinnen und Schüler gezielt gefördert. Zudem lernen sie, innerhalb einer Gruppe eigenverantwortlich zu arbeiten und Arbeitsprozesse zu organisieren. Das Forschungsgebiet der Solartechnik hat in den letzten Jahren im Zuge der intensiv geführten umweltpolitischen Debatten über Nachhaltigkeit und erneuerbare Energien enorm an Bedeutung gewonnen. Das vorliegende Material ist realitätsnah gestaltet und bietet an verschiedenen Stellen einen Lebensweltbezug, durch den die Lernenden zum kritischen Denken angeregt werden. Die Unterrichtseinheit eignet sich ideal für den Chemieunterricht der Sekundarstufe II. Thematisch stellt sie eine vertiefende Ergänzung zum Themenblock "Elektrochemie und Redoxgleichgewichte" dar, der in allen Lehrplänen enthalten ist. Da die Einheit biologische mit chemisch-physikalischen Themen verbindet, kann sie aber auch fächerübergreifend als Exkurs in den Fächern Biologie oder Physik genutzt werden. Das Themengebiet der Redoxchemie sollte bereits bekannt sein. Außerdem sollten die Schülerinnen und Schüler in der Lage sein, themenbezogen selbstständig in verschiedenen Quellen zu recherchieren und Informationen kritisch zu bewerten. Für die Versuchsdurchführung ist es erforderlich, vorab den sicheren Umgang mit Chemikalien sowie die Handhabung eines Multimeters zu besprechen. Die Versuchsvorschrift enthält alle wichtigen Informationen zur Durchführung. Mithilfe von Arbeitsblatt 1 können sich die Schülerinnen und Schüler die chemischen Grundlagen sowie den Aufbau und die Funktion einer Grätzelzelle selbst erarbeiten und damit optimal auf den Versuch vorbereiten. Das Experiment kann jedoch auch ohne die vorherige Bearbeitung des Arbeitsblattes durchgeführt werden. Das Thema lässt sich im Anschluss optional vertiefen, indem die Schülerinnen und Schüler den Elektrolyten oder den Farbstoff variieren und die verschiedenen Zellen miteinander vergleichen. Hierbei kann die Vorgehensweise je nach Zielsetzung variabel angepasst werden. Um die Titandioxidschicht optimal zu benetzen, sollten die Beeren zuvor mit einem Mörser zerkleinert werden. Durch die Zugabe kleiner Wassermengen lässt sich eine gleichmäßige Flüssigkeit erzeugen, durch die der Farbstoff gut verteilt werden kann. Je nach Gruppenstärke und Vorwissen kann dies durch selbstständiges Experimentieren oder durch Hilfestellung erarbeitet werden. Auch die Wahl der Herangehensweise kann im Anschluss gemeinsam reflektiert und diskutiert werden. Die Lehrkraft sollte vor der Durchführung der Versuchsreihe sicherstellen, dass alle benötigten Materialien und Chemikalien vorhanden sind. Fachkompetenz Die Schülerinnen und Schüler lernen den Aufbau und die Funktionen einer Grätzelzelle kennen. beschreiben Reaktionen in der Grätzelzelle und vergleichen diese mit Reaktionen während der Photosynthese. bauen eine eigene Zelle und ermitteln experimentell den Einfluss verschiedener Materialien und Bedingungen auf die Leistung der Zelle. Medienkompetenz Die Schülerinnen und Schüler erfassen Inhalte aus verschiedenen Informationsquellen. können Medieninhalte analysieren und kritisch bewerten. Sozialkompetenz Die Schülerinnen und Schüler stärken während der Gruppenarbeit ihre Kommunikations- und Teamfähigkeit. können ihr Wissen auf fächerübergreifende Fragestellungen anwenden. Ehrmann, A. and Błachowicz, T. (2020), Solarstrom aus Früchtetee . Phys. Unserer Zeit, 51: 196-200. https://doi.org/10.1002/piuz.202001578 Ungiftige, wiederverwendbare Farbstoffsolarzelle : https://www.hsbi.de/presse/pressemitteilungen/ungiftige-wiederverwendbare-farbstoffsolarzelle Strom aus Licht : https://daten.didaktikchemie.uni-bayreuth.de/cnat/kunststoffe/solarzelle_l.htm Strom aus Licht: Wir stellen eine organische Solarzelle her : https://daten.didaktikchemie.uni-bayreuth.de/cnat/kunststoffe/solarzelle_s1.htm Erweiterung für die Leistungsbestimmung : https://daten.didaktikchemie.uni-bayreuth.de/cnat/kunststoffe/solarzelle_s2.htm Letzter Abruf der Internetadressen: 14.02.2025

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Strukturen organischer Moleküle

Unterrichtseinheit

Die Präsentation virtueller 3D-Moleküle per Beamer während des Unterrichtsgesprächs rückt die Objekte visuell und kognitiv in den Focus. Die Präsentation unterstützt die Arbeit mit „klassischen“ 3D-Molekülmodellen. Lernende können auch zuhause auf die Molekül-Viewer im Web zurückgreifen, den Unterrichtsstoff rekapitulieren und Molekülstrukturen experimentell erkunden.Molekülmodelle werden im Unterricht in der organischen Chemie notwendig, wenn den Schülerinnen und Schülern eine räumliche Vorstellung vom Molekülbau vermittelt werden soll. Dies kann sehr gut über Molekülbaukästen erfolgen, wenn jede Schülerin und jeder Schüler die Möglichkeit hat, selbstständig 3D-Modelle aufzubauen und dabei ein Verständnis für die räumliche Organisation der Atome in Molekülen zu entwickeln. Im Unterrichtsgespräch wird der Aufbau von Molekülen in Bezug auf ihre äußere und innere Struktur verbalisiert. Die Visualisierung durch die ?klassische? Verfahrenweise, das Hochhalten von Kugelgitter-Modellen zur Verknüpfung des konkreten Objektes mit entsprechenden Begriffen, ist in seiner Wirkung durch die geringe Größe der Modelle jedoch begrenzt. Eine wirksamere Alternative bietet hier die großflächige Projektion virtueller und dynamischer (manipulierbarer) 3D-Moleküle per Beamer. Dadurch rückt das Objekt im Unterrichtsgespräch visuell und kognitiv stärker in den Focus der Schülerinnen und Schüler. Technik, Stoffauswahl und Dynamik der 3D-Modelle Screenshots veranschaulichen die Möglichkeiten zur Schaffung einer Grundlage für das Verständnis von Struktur und Reaktion mithilfe von 3D-Modellen. Die Schülerinnen und Schüler sollen mithilfe der Molekül-Viewer verstehen, dass Moleküle nicht aus kleinen Kugeln und Stäbchen sondern aus sich durchdringenden Atomen bestehen und eine charakteristische Oberfläche haben. den Zusammenhang zwischen Molekülstrukturen und -oberflächen und den chemischen Eigenschaften und Reaktionen der Stoffe erkennen. Strukturisomerie und Stereoisomerie mithilfe "klassischer" Vertreter anschaulich begreifen (Isomere von Propanol und Butanol, Enantiomere der Milchsäure). Thema Strukturen organischer Moleküle Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe einfache organische Moleküle: ab Klasse 10; komplexere Moleküle: ab Jahrgangstufe 11; anorganische Moleküle: ab Klasse 10 Technische Voraussetzungen Präsentationsrechner mit Internetanschluss, Beamer, Java Runtime Environment (kostenloser Download) Die hier vorgestellten und für den Unterricht konzipierten Online-Angebote der Website "Chemie interaktiv" zur Darstellung von 3D-Molekülen wurden mit dem Open-Source-Tool Jmol entwickelt. Zur Nutzung der Angebote benötigen Sie lediglich das kostenlose Plugin Java Runtime Environment . Die präsentierten Moleküle lassen sich im Browser in drei Dimensionen mit der Maus beliebig drehen und wenden. "Chemie interaktiv" bietet vier verschiedene Möglichkeiten, die Moleküle zu präsentieren: Viewer A: Projektion eines Moleküls in einer quadratischen Präsentationsfläche. Viewer B: Projektion eines lang gestreckten Moleküls in einer rechteckigen, horizontalen Präsentationsfläche, zum Beispiel für die Darstellung eines Phospholipids. Viewer C: Projektion und Vergleich von zwei Molekülen in übereinander liegenden Präsentationsflächen. Viewer D: Projektion und Vergleich von zwei nebeneinander liegenden Molekülen. Über Buttons oberhalb der 3D-Modelle (siehe Abb. 1) kann zwischen den verschiedenen Viewern (A-D) gewechselt werden. Nach einem Wechsel müssen die Moleküle neu ausgewählt werden. Das Angebot der auswählbaren Moleküle wird kontinuierlich ergänzt. Zurzeit stehen neben Alkanen (Methan bis Decan) einige Alkohole (unter anderem die Isomere von Propanol und Butanol), einfache Aldehyde (Methanal bis Propanal), Propanon, einige Carbonsäuren (zum Beispiel die Enantiomere der Milchsäure) sowie einige Biomoleküle (Chlorophyll a, beta-Carotin, Cholesterin, Phospholipid) und anorganische Verbindungen zur Verfügung (unter anderem einige Säuren und Gase). Modellwechsel Die Moleküle werden, nachdem sie über das Pull-down-Menü zur Stoffauswahl ausgewählt wurden, zunächst im Kugelstäbchen-Modell dargestellt. Über das Menü lassen sie sich in komplett ausgefüllte Raummodelle (Kalotten-Modelle) umwandeln oder auch nur als Draht- oder Stab-Modell darstellen. Um die Vielfalt der Möglichkeiten darzustellen, zeigt Abb. 1 (Platzhalter bitte anklicken) ein Modell der L-Milchsäure im Kugelstäbchen- und ein Modell der D-Milchsäure im "75 Prozent Kalotten-Modell". Zudem stehen viele weitere Funktionen zur Verfügung, zum Beispiel die Möglichkeit zur Wahl der Hintergrundfarben oder die Darstellung der van-der-Waals-Radien durch "Dots" (hierfür empfiehlt sich ein schwarzer Hintergrund). Struktur - Eigenschaft - Funktion Durch den Wechsel vom Kugelstäbchen- zum Kalotten-Modell wird den Schülerinnen und Schülern bewusst, dass die Moleküle nicht einfach nur aus kleinen Kugeln und Stäbchen (als Abstandshalter), sondern aus nebeneinander liegenden, sich durchdringenden Atomen (Kalotten) bestehen und dadurch eine charakteristische Moleküloberfläche erhalten. Abb. 2 (Platzhalter bitte anklicken) zeigt Darstellungen von 1-Propanol und Propanal im "Oberflächen-Modus", 1-Propanol zusätzlich mit durchscheinendem Kugelstäbchen-Modell. Die Überführung zweidimensionaler Strukturformeln an der Tafel in charakteristische Oberflächen in der 3D-Projektion schafft eine Grundlage für das Verständnis chemischer Reaktionen (zum Beispiel Exposition funktioneller Gruppen, Polarisierungen und Landungsverteilungen in Molekülen) sowie für biologisch-physiologische Vorgänge im Zellgeschehen (enzymatische Reaktionen, membrangebundene Reaktionen, Rezeptorbindungen, hydrophile oder lipophile Eigenschaften) oder im gesamten Organismus (Hormonwirkungen an Zielorganen, Antigen-Antikörperreaktionen).

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Feuer und Verbrennung: Voraussetzungen für ein Feuer

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz zum Themenbereich "Feuer und Verbrennung" lernen die Schülerinnen und Schüler die Voraussetzungen für eine Verbrennung kennen und trainieren das sichere Experimentieren im Chemie-Unterricht. Der Themenbereich "Feuer und Verbrennung" ist eines der ersten Themen im Chemie-Unterricht der Sekundarstufe I, in dem es tatsächlich um chemische Reaktionen mit ihren Stoff- und Energieumsätzen geht. In diesem Kontext werden Grundlagen für das Verständnis von Oxidation und Reduktion und Atombau geschaffen. Die Versuche, die im Unterricht gemacht werden, werden sowohl in der Durchführung als auch im "Gehalt" anspruchsvoller. Die Lernenden werden durch den vorliegenden Einstieg in das Unterrichtsthema "Feuer und Verbrennung" auf die Unterrichtsreihe eingestimmt. Beobachtungen aus dem Alltag werden in Versuchen im Chemie-Labor wiederholt und erklärt. Dabei kommt es vor allem auf das genaue Beobachten während des Versuchs an. Vorkenntnisse Die Lernenden kennen einfache Trennverfahren. Sie wissen, dass bei chemischen Reaktionen neue Stoffe entstehen, die nicht durch einfache Trennverfahren in die Ausgangsstoffe umgewandelt werden können. Sicherer Umgang mit dem Gasbrenner und Kenntnis der Sicherheitsregeln im Chemieraum werden vorausgesetzt. Didaktische Analyse Feuer ist allen Lernenden bekannt und für sie auch interessant, besonders wenn es um spektakuläre Explosionen oder bunte Flammenfärbung geht. Viele Kinder beziehungsweise Jugendliche haben im privaten Umfeld bereits Feuer gemacht (Grill, Lagerfeuer). In dieser Unterrichtseinheit werden ihre Kenntnisse und Erfahrungen aufgegriffen und alltägliche Beobachtungen erklärt. Methodische Analyse Der Einstieg in die Unterrichtseinheit "Feuer und Verbrennung" erfolgt über die Planung einer Grillparty. Dies motiviert die Lernenden dadurch, dass sie alle etwas dazu beitragen können und selbst schon Erfahrungen zu diesem Thema gemacht haben. Die Lehrperson kann währenddessen einschätzen, welche unterschiedlichen Vorstellungen und Vorkenntnisse zum Thema Verbrennung bei den Schülerinnen und Schülern bestehen. Zu jeder Voraussetzung der Verbrennung leitet ein unkomplizierter Versuch, in dem Beobachten und daraus Schlüsse zu ziehen trainiert werden. Zudem wird ein routinierter, sicherer Versuchsablauf im Hinblick auf spätere Versuche mit dem Gasbrenner unterstützt. Umgang mit Fachwissen Die Schülerinnen und Schüler können die Bedingungen für einen Verbrennungsvorgang beschreiben. Erkenntnisgewinnung Die Schülerinnen und Schüler können Glut- oder Flammenerscheinungen nach vorgegebenen Kriterien beobachten und beschreiben. Bewertung Die Schülerinnen und Schüler bewerten die Brennbarkeit von Stoffen. begründen Sicherheitsregeln im Umgang mit brennbaren Stoffen und offenem Feuer.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Feuer und Verbrennung: Feuer löschen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit aus der Reihe "Feuer und Verbrennung" erfahren die Schülerinnen und Schüler, wie ein Feuer gelöscht werden kann und was dabei beachtet werden muss. Anschließend bauen sie selbst einen Schaumlöscher. In dieser Doppelstunde zum Thema "Feuer löschen" knüpfen die Lernenden an ihr Wissen über die Voraussetzungen eines Feuers an und leiten verschiedene Löschwege daraus ab. Anschließend "bauen" sie mit vorgegebenem Material einen Schaumlöscher und erfahren mehr über die Funktionsweise von üblichen Schaumlöschern. In der folgenden Stunde wird erarbeitet, was beim Löschen verschiedener brennbarer Stoffe beachtet werden muss und wie sich die Lernenden selber im Falle eines Brandes verhalten sollten. Weitere Stundenplanungen und Arbeitsmaterialien für die Unterrichtsreihe "Feuer und Verbrennung" haben wir im Abschnitt "Ergänzende Materialien" für Sie verlinkt. Das Thema "Feuer löschen" im Unterricht Brände sind eine reale Gefahr für die Lernenden, die nicht unterschätzt werden sollte. Im Chemie-Unterricht ist das Thema durch die Sicherheitsunterweisungen und Versuche mit Gasbrennern und Kerzen von Anfang an gegenwärtig. Feuervermeidung und Feuerlöschen wurden auch schon vor der entsprechenden Unterrichtseinheit thematisiert. Jetzt können die Lernenden ihre Alltagserfahrungen, Warnungen der Lehrkräfte und die neu gewonnenen Kenntnisse über chemische Vorgänge bei der Verbrennung verknüpfen. Vorkenntnisse Die Lernenden kennen die Voraussetzungen für eine Verbrennung . Sie wissen, dass Verbrennungen chemische Reaktionen sind, bei denen Sauerstoff aufgenommen wird. Didaktische Analyse Feuer ist allen Lernenden bekannt und für sie auch interessant. Mit dem Löschen von Feuer haben alle bereits Erfahrungen unterschiedlichster Art gemacht, zum Beispiel beim Schauen von Serien im Fernsehen, bei der Jugendfeuerwehr oder bei eigenen Löschversuchen zuhause. In dieser Unterrichtseinheit werden ihre Kenntnisse und Vorerfahrungen aufgegriffen und genauer erklärt, was beim Löschen eines Feuers passiert. Methodische Analyse Anhand des selbst hergestellten Feuerlöschers verfolgen die Lernenden den Löschvorgang und finden heraus, was das Feuer eigentlich gelöscht hat. Durch die Filmsequenz wird das Interesse für die unterschiedlichen Löscharten bei unterschiedlichen Brennstoffen geweckt. Die Besprechung in Partnerarbeit gibt den Lernenden Sicherheit, damit sie sich bei der Besprechung im Plenum selbstbewusst beteiligen können. Umgang mit Fachwissen Die Schülerinnen und Schüler können die Bedingungen für einen Verbrennungsvorgang beschreiben. können auf dieser Basis Brandschutzmaßnahmen erläutern. Kommunikation Die Schülerinnen und Schüler können Verfahren des Feuerlöschens mit Modellversuchen demonstrieren. können Texte mit chemierelevanten Inhalten sinnentnehmend lesen. Bewertung Die Schülerinnen und Schüler können die Brennbarkeit von Stoffen bewerten. können Sicherheitsregeln im Umgang mit brennbaren Stoffen und offenem Feuer begründen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Warum ist "Kerrygold"-Butter so weich?

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zur organischen Chemie nutzen die Lernenden ein Molekül-Zeichenprogramm, recherchieren im Internet und führen selbst entwickelte Experimente durch, um der chemischen Natur der streichweichen Butter auf die Spur zu kommen. Das mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnete Material, das sich für den Präsenz- und Distanzunterricht eignet, gibt es hier mit Musterlösungen und einer Handreichung für Lehrkräfte mit nur einem Klick zum Download.Die Unterrichtseinheit "Warum ist die 'Kerrygold'-Butter so weich?" ermöglicht, ausgehend von einer Alltagsfrage, wissenschaftspropädeutisches Arbeiten im Unterricht. Die Schülerinnen und Schüler lernen den Unterschied zwischen qualitativen und quantitativen Experimenten kennen. Inhaltlich stehen Ester und die elektrophile Addition im Mittelpunkt. Exkurse zu Butter-Farbstoffen und Iodzahl sind möglich. Die Unterrichtseinheit wurde mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnet. Didaktische Analyse Diese Unterrichtseinheit ermöglicht im Rahmen des Themas Butter die Behandlung von ganz verschiedenen Inhalten und Methoden der Chemie, die vielleicht auf den ersten Blick keinen fachsystematisch sinnvollen Zusammenhang versprechen. Wählt man den Zeitpunkt der Unterrichtseinheit jedoch geschickt, kann man die kontextgebundene Einführung neuer Inhalte und fachwissenschaftlicher Methoden mit integrierten Wiederholungen, zum Beispiel zur Vorbereitung auf das Abitur oder auch im Rahmen eines Projektunterrichts, sehr schön verknüpfen. Das Material untergliedert sich in acht Teile mit unterschiedlichen Arbeits- und Rechercheaufträgen für Schülerinnen und Schüler. Dabei kommen verschiedenste Sozialformen und Zugänge zum Tragen, die es ermöglichen, gruppenspezifisch zu differenzieren und in Präsenz oder Distanz zu unterrichten. Fachkompetenz Die Schülerinnen und Schüler erleben, wie sich aus einer einfachen Frage eine kleine Forschungsreihe entwickelt. können einen Strukturformel-Editor nutzen, um auf molekularer Ebene Antworten auf eine chemische Fragestellung zu finden. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet und wählen themenbezogene und aussagekräftige Informationen aus. können zwischen qualitativen und quantitativen Versuchen unterscheiden. Sozialkompetenz Die Schülerinnen und Schüler entwickeln gemeinsam ein Experiment.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Kohlenstoff: das chemisch vielseitigste Element

Unterrichtseinheit

In dieser Unterrichtssequenz zum Thema Kohlenstoff erarbeiten die Lernenden in verschiedenen Sozialformen und anhand eines Erklärvideos die Besonderheit und Bedeutung von Kohlenstoff, dem chemisch vielseitigsten Element. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Schülerinnen und Schüler erarbeiten anhand dieses Unterrichtsmaterials die Besonderheit des Elements Kohlenstoff. Dazu betrachten sie den Atombau, die Vielfalt an Bindungsmöglichkeiten und Verbindungen und die Allotrope von Kohlenstoff. Im Anschluss kann optional der Kohlenstoffkreislauf erarbeitet werden. Durch das Erklärvideo zum Kohlenstoff, auf dessen Inhalt dieses Material basiert, erhalten die Schülerinnen und Schüler auch einen Einblick in die Arbeitsweise der dort vorgestellten Nobelpreisträger. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier Die Forschung der Nobelpreisträger im Unterricht . Das Thema Kohlenstoff im Unterricht Das Thema Kohlenstoff ist für jeden Unterricht, der Aspekte aus der organische Chemie behandelt, grundlegend und damit besonders relevant für das Schulfach Chemie. Als Grundbaustein aller organischen Stoffe, die in unserem Alltag in vielseitiger Weise vertreten sind, kann den Lernenden auch die Alltagsrelevanz von Kohlenstoff aufgezeigt werden. Vorkenntnisse Die Schülerinnen und Schüler sollten das Schalenmodell nach Bohr kennen und für jedes Element zeichnen können. Die Oktettregel und Kenntnisse zur Bindigkeit werden zur Lösung der Aufgaben benötigt. Die Schülerinnen und Schüler sollten des Weiteren in der Lage sein, zu einer Summenformel mögliche Strukturformel zu zeichnen. Der Begriff der Allotropie wird im Material verwendet und knapp erläutert; er wird also nicht als Grundwissen vorausgesetzt. Didaktische Analyse Das Arbeitsmaterial ist als erste fachliche Konfrontation der Schülerinnen und Schüler mit dem Thema Kohlenstoff konzipiert. Die Lernenden gewinnen neben fachlichen Grundlagen zu dem Element (Atombau, Bindungsmöglichkeiten und Allotrope) einen Eindruck der Bedeutung und Besonderheit von Kohlenstoff. Dies wird dadurch erreicht, dass eine zentrale Fragestellung diesbezüglich den Rahmen des Unterrichts bildet und nach (fast) jeder Aufgabenstellung aufgegriffen wird. Somit erkennen die Lernenden die hohe Fachrelevanz des Themas. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz wird eine hohe Schüleraktivität erreicht. Verschiedene Sozialformen regen die Lernenden zu Austausch und Diskussionen an. Das Video als Medium erhält das Interesse am Thema aufrecht. Schwierige Arbeitsaufträge werden durch Partnerarbeiten aufgefangen. Durch Vertiefungsaufgaben kann eine Binnendifferenzierung erfolgen. Fachkompetenz Die Schülerinnen und Schüler erarbeiten die Besonderheit von Kohlenstoff durch Reflexion ihrer Ergebnisse aus verschiedenen Aufgabenstellungen. zeichnen unter Verwendung ihres Vorwissens zum Schalenmodell nach Bohr sowie zu der Oktettregel das Atommodell von Kohlenstoff und seine Bindungsmöglichkeiten. stellen den Kohlenstoffkreislauf schlüssig und unter Gebrauch der Fachsprache dar. Medienkompetenz Die Schülerinnen und Schüler können das in einem Video dargestellte Wissen nach Relevanz filtern und strukturiert wiedergeben. üben sich darin, Informationen aus geschriebenen Sätzen in einer schematischen Darstellung wiederzugeben. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken ihr Selbstkonzept durch die geschützte Atmosphäre in den Partnerarbeitsphasen. diskutieren in Partner- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Chemie
  • Sekundarstufe I, Sekundarstufe II

OLED - Innovative Lichtquelle der Zukunft

Unterrichtseinheit

Organische Leuchtdioden (OLEDs) besitzen enormes Zukunftspotenzial als energieeffiziente Beleuchtungsmittel. Neben einem deutlich geringeren Energieverbrauch als bei LED-Displays weisen OLEDs eine hervorragende Bildqualität und noch viele weitere Vorteile auf.Organische Leuchtdioden (OLEDs) revolutionieren derzeit die Beleuchtungsindustrie. Energiesparlampen und Halogenstrahler - in wenigen Jahren werden diese Lichtquellen vielleicht vergessen sein. Bei OLEDs handelt es sich um dünne Folien, die tagsüber transparent sind und nachts in allen denkbaren Farben leuchten. Organische Leuchtdioden sind hocheffiziente Lichtquellen, die viele positive Eigenschaften haben: sie sind äußerst energiesparend, leuchten großflächig, sind extrem dünn und außerdem voll dimmbar. Außerdem haben OLEDs keine Verzögerungszeit beim Einschalten und sie sind so flexibel und transparent herzustellen, dass man sie sogar in Fensterscheiben integrieren kann. Relevanz des Themas Die Unterrichtseinheit kann beispielsweise zu einer längeren Unterrichtsreihe in Physik zum Thema "Licht" eingegliedert werden. Zunächst müssen im Unterricht wichtige Grundlagen der Strahlen- und Wellenoptik sowie der Quantenphysik erarbeitet werden. Zu den vorab zu behandelnden Themen sollten unter anderem die Reflexion, Brechung, Brechungsgesetz, Beugung und Interferenz von Licht sowie der Welle-Teilchen-Dualismus des Photons gehören. Die Schülerinnen und Schüler sollen sich mit aktuellen Forschungsergebnissen zur Bedeutung von OLEDs für neue optische Licht- und Speichermedien auseinandersetzen und diese auswerten. Hintergrundinformationen zu OLEDs Hier finden Sie nähere Informationen zu OLEDs und Biolumineszenz von Leuchtkäfern sowie zu Perspektiven für die Medizinforschung. Fachkompetenz Die Schülerinnen und Schüler sollen den Aufbau und das Funktionsprinzip einer Organischen Leuchtdiode verstehen und beschreiben können. ein Thema selbstständig recherchieren und beschreiben können. wichtige Anwendungsbereiche für OLEDs kennenlernen. in reduzierter Form wissenschaftliche Neuentwicklungen für OLEDs bewerten. Medienkompetenz Die Schülerinnen und Schüler sollen eine interaktive Lernumgebung bedienen können. Informationen zur Thematik aus einem Text entnehmen, wesentliche Aussagen verstehen und in eigenen Texten wiedergeben können. die Nutzungsmöglichkeiten des Internets kennen- und anwenden lernen. Thema Organische Leuchtdioden aus Kohlenstoff Autorin Jana Haberstroh Fächer Physik, Chemie, Biologie, Technik, Naturwissenschaften Zielgruppe ab Klasse 7 Zeitraum circa 2-3 Unterrichtsstunden Technische Voraussetzungen Internetzugang (am besten für je 2 Personen), Beamer Der deutsche Chemiker Herbert Naarmann hat bereits 1969 Strom leitende Polymere - die Vorstufe der OLED - beobachtet, doch es sind noch ganze 21 Jahre vergangen, bis eine Forschergruppe in Cambridge erstmals eine Leuchtdiode herstellte. Die verwendeten organischen Halbleiterschichten waren nur etwa 100 Nanometer dick, also zehntausend Mal dünner als ein Millimeter. Alleine die Leuchteffizienz und Lebensdauer der OLEDs blieben jahrelang hinter der Konkurrenz zurück. Immer wieder entdeckten Forscher "Nebenwirkungen", wie zum Beispiel die Verkürzung der Lebensdauer durch kleinste Verunreinigungen. Auch der Aufbau wurde immer komplizierter. Um gegen Luftfeuchtigkeit resistent zu werden, müssen die OLEDs hinter Glas geschützt werden. Aufbau einer organischen Leuchtdiode Ein transparentes Substrat (Glas, Quarz oder Polymerfolie) dient als Basis für den Aufbau. Die Anode, eine ITO-(Indium-Zinn-Oxid-) Schicht ist elektrisch leitfähig und für sichtbares Licht durchlässig. Das Licht entsteht in den "aktiven" organischen Schichten, wenn dort Paare von Elektronen und "Löchern" rekombinieren und jeweils ein Photon erzeugen. Das Licht wird durch das optisch transparente Substrat abgestrahlt. Um eine hohe Effizienz zu erreichen, werden für den Transport von Ladungsträgern eine oder mehrere zusätzliche Schichten aufgebracht. Schließlich wird als Kathode ein optisch nicht transparenter Metallkontakt aufgedampft. Beim Anlegen einer äußeren Spannung von weniger als 5 Volt zwischen Kathode und Anode kommt es zur Emission von Licht, dessen Farbe von den eingesetzten aktiven Materialien abhängt. Die Chemie der OLEDs Die OLED basieren auf organischen Kohlenstoffmolekülen, also Verbindungen aus mehreren Kohlenstoffteilchen mit anderen Elementen. Setzen sich mehrere gleiche Molekülketten aneinander, dann entstehen sogenannte Polymere. Diese verhalten sich wie Halbleiter, was zur Folge hat, dass sie elektrischen Strom leiten. Und mit diesem bringt man die Folien zum Leuchten. Die Lichtfarben bestehen aus Kohlenstoff-Ringstrukturen, in die ein metallisches Zentralatom integriert wird - beispielsweise Edelmetalle wie Platin oder Iridium. Der OLED-Regenbogen Die OLEDs leuchten beim Anlegen einer Spannung, ob gelb, grün, rot oder blau - alle Farben sind möglich. Die Farbe der Emission wird anders als bei den anorganischen LEDs durch die Energielücke des Halbleiters bestimmt (durch die Energie, die frei wird, wenn ein Elektron und ein "Loch" zusammentreffen und rekombinieren). Diese Energie und damit die Farbe der Emission kann durch die Wahl des organischen Materials gezielt verändert werden. Innerhalb weniger Jahre hat man bereits sämtliche Farben von Rot über Grün bis Blau realisiert. Die Entwicklung ist bereits so weit fortgeschritten, dass erste vollfarbige Bildschirmprototypen hergestellt werden konnten. LED versus OLEDs Anders als bei den anorganischen LEDs wird weißes Licht durch Mischen der Grundfarben rot, blau und gelb erzeugt. Blau ist die Achillesferse der weißen OLED - dieser Farbstoff ist am kurzlebigsten. Multitalent OLED Der größte Markt für OLEDs ist der Bereich "Display", das heißt, OLEDs werden beispielsweise für Fernseher oder Displays von Mobiltelefonen eingesetzt. Displays aus organischen Leuchtdioden benötigen keine Hintergrundbeleuchtung und ermöglichen einen geringen Stromverbrauch. Sie ermöglichen zudem einen größeren Betrachtungswinkel. Zukunftsvision leuchtende Tapeten Organische Leuchtdioden dienen sogar als Basis für Tapeten, die Licht erzeugen und sogar, je nach Stimmung, die Farbe wechseln können. Diese gedruckte Elektronik wird im Fachjargon Polytronik genannt. Die Leuchtfolie emittiert ein für das Auge angenehmes, monochromatisches Kaltlicht, das auch bei Staub, Rauch oder Nebel besser sichtbar sein soll als jede andere Lichtquelle. Die Glühwürmchen sind die OLEDs des Tierreiches. Sie können ihr gelbliches Licht, welches in der Paarungszeit werbewirksam eingesetzt wird, ein- und ausschalten. Forscherinnen und Forscher haben die dahinter stehenden Grundlagen der Lumineszenz analysiert und festgestellt, dass einige natürliche Polymere Halbleitereigenschaften haben und somit für den Transport elektrischer Ladungen geeignet sind. Solche konjugierten Polymere können mittlerweile künstlich und genau spezifiziert hergestellt werden. Halbleiter und andere elektrische Bauteile sind also bald nicht mehr auf Kristallstrukturen angewiesen, sondern können aus Kunststoffen gefertigt werden. In der medizinischen Forschung benutzt man ebenfalls Zellen oder Bakterien mit integiertem Luciferase-Gen. Injiziert man beispielsweise einer Maus Salmonellen-Erreger, die das Luciferase-Gen tragen, so breiten sich die Erreger in ihrem Körper aus. Infusiert man eine Luciferinlösung, so kann man diese Ausbreitung durch das entstehende Licht von außen verfolgen, ohne die Maus zu töten. Analog verhält es sich mit markierten Karzinomen bei denen man die Metastasenbildung und Verbreitung optisch durch das emittierte Licht verfolgen kann.

  • Physik / Astronomie / Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

Aufbau und Wirkung von Tensiden

Unterrichtseinheit

Die Unterrichtseinheit für das Fach Chemie der Klassen 12-13 vermittelt vertiefendes Wissen zur Stoffklasse der Tenside. Die Lernenden befassen sich mit dem chemischen Aufbau und der Wirkung von Tensiden anhand des Struktur-Eigenschafts-Konzepts. Experimente zur Oberflächenspannung und Mizellenbildung vertiefen das Verständnis der Abläufe auf molekularer Ebene. Auch gesundheitliche und ökologische Aspekte sowie die Osmose-Reinigung als nachhaltige Alternative zum Tensideinsatz werden thematisiert. Tenside sind in modernen Reinigungsmitteln kaum noch wegzudenken. Nicht nur die Profis aus dem Gebäudereiniger-Handwerk sind auf sie angewiesen. Auch im Alltag haben Tenside viele Einsatzbereiche – und das nicht nur beim Waschen und Putzen. Die praktischen Helfer bringen aber auch Herausforderungen mit sich: Sie können Umwelt und Gesundheit belasten, insbesondere, wenn sie nicht fachgerecht eingesetzt werden. Umso wichtiger ist ein fachgerechter sowie bewusster Umgang mit diesen Stoffen. Die Lernenden erhalten ein weitreichendes Wissen rund um die Stoffklasse der Tenside. In diesem Zusammenhang werden zunächst grundlegende Kenntnisse über den chemischen Aufbau von Tensiden sowie ihre Eigenschaften besprochen. Dadurch lernen die Schülerinnen und Schüler die Anwendung des Struktur-Eigenschafts-Konzeptes kennen. ( Arbeitsblatt 1 ) Im weiteren Verlauf der Einheit wird dann auf die Waschwirkung im Detail und die damit verbundenen reinigungstechnischen Eigenschaften von Tensiden eingegangen. Dabei wird zum einen die Herabsetzung der Oberflächenspannung durch waschaktive Substanzen anhand eines Experiments thematisiert und zum anderen die Ausbildung von Mizellen sowie deren Struktur behandelt. In diesem Zusammenhang wird auch die Wirkweise von Tensiden als Emulgatoren und Dispersionsmittel angesprochen. ( Arbeitsblatt 2 ) Im Anschluss werden anhand fächerübergreifender Aufgabenstellungen die ökologischen und gesundheitlichen Aspekte von Tensiden beleuchtet und so ein Bezug zum Thema Nachhaltigkeit geschaffen. Der Fokus liegt dabei auf der durch Tenside hervorgerufenen Umweltbelastung und dem Kennenlernen verschiedener Zertifikate, die dabei helfen sollen, nachhaltige Produkte zu identifizieren. Darüber hinaus wird das nachhaltige Verfahren der Osmose-Reinigung erarbeitet. ( Arbeitsblatt 3 ) Das Thema Tenside ist aus dem Alltag eines jeden Menschen nicht mehr wegzudenken. Das Anwendungsgebiet der Tenside erstreckt sich über alle Lebensbereiche der Schülerinnen und Schüler. Neben den offensichtlichen Anwendungsbereichen wie der Kosmetikindustrie oder den Haushaltsreinigern, werden Tenside auch als Emulgatoren für Lebensmittel oder in der Farb- und Lackindustrie genutzt. Vor allem aber auch mit Blick auf die Themen Nachhaltigkeit und Umweltschutz sollten sich die Schülerinnen und Schüler mit der Bedeutung eines ressourcenschonenden Umgangs mit Reinigungsmitteln auseinandersetzen und ihren eigenen Konsum kritisch reflektieren. Diese Unterrichtseinheit kann in den Rahmenlehrplan der Sekundarstufe II eingeordnet und für das Fach Chemie genutzt werden. Sie bietet detailliertes Wissen über Tenside in naher Anlehnung an den Alltag. Das Material besitzt ebenso fächerübergreifende Aspekte und ermöglicht damit das Konzept Bildung für nachhaltige Entwicklung (BNE) in den Unterricht zu integrieren. Ein gewisses chemisches Vorwissen bezüglich der organischen Chemie wird für die Bearbeitung der Aufgaben vorausgesetzt. So sollten Kenntnisse über funktionelle Gruppen sowie Bau- und Ordnungsprinzipien organischer Stoffe bereits vorliegen. Für das Lösen der verschiedenen Aufgabenstellungen stehen Arbeitsblätter mit Infotexten zur Verfügung. In einigen Aufgabenstellungen wird zusätzlich die eigene Recherchefähigkeit entwickelt und auch das kritische Hinterfragen gefördert. Kleine Experimente unterstützen dabei, die zuvor besprochenen theoretischen Kenntnisse zu vertiefen. Ein breites Spektrum an Lernmethoden und Sozialformen ermöglicht es den Unterricht abwechslungsreich und interessant zu gestalten. Fachkompetenz Die Schülerinnen und Schüler kennen den chemischen Aufbau und die daraus resultierenden Eigenschaften von Tensiden. können die Wirkungsweise von Tensiden und deren Waschwirkung erklären. wenden das Struktur-Eigenschafts-Konzept an. kennen Gefahren und Risiken beim Tensideinsatz. vergleichen Ökosiegel, die zur Kennzeichnung von Reinigungsmitteln eingesetzt werden. beurteilen Tenside in Hinblick auf Nachhaltigkeit. kennen nachhaltige Alternativen zum Tensideinsatz (Osmose-Reinigung). führen chemische Experimente eigenständig durch. nutzen ihr Wissen, um fächerübergreifende Fragestellungen zu beantworten. setzen sich kritisch mit den ökologischen Aspekten von Tensiden auseinander und bewerten den oft vermehrten Einsatz. Medienkompetenz Die Schülerinnen und Schüler nutzen verschiedene Medienangebote für ihre Recherche. wählen digitale Inhalte selbstständig aus und hinterfragen diese vorher kritisch. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren sachlich und bearbeiten verschiedene Aufgabenstellungen in Zusammenarbeit mit anderen Schülerinnen und Schülern. Verwendete Literatur M. Baum, S. Schwarzer (2013). Wie dünn ist eine Seifenblase? Ein experimenteller Zugang zu Mikro- und Nanoschichten, Chemkon, 20, Nr.1, 25-28, DOI: 10.1002/ckon.201210193. M. Böhme, T. Fotschki, C. Liersch, C. Pfaller, U. Steggewentz (2022). Fachwissen Gebäudereinigung. Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG. S.321 ff. M. Lutz. (2023). Fachbuch Gebäudereinigung, Verlag, S. 39 ff.

  • Chemie
  • Sekundarstufe II

Wasser und seine chemischen Eigenschaften

Unterrichtseinheit

Die Unterrichtseinheit für das Fach Chemie der Klassen 8–9 vermittelt den Schülerinnen und Schülern Kenntnisse zu den chemischen Eigenschaften von Wasser. Die Lernenden untersuchen den Zusammenhang zwischen dem molekularen Aufbau von Wasser und seinen besonderen Eigenschaften. Anhand von Experimenten analysieren sie Phänomene wie Oberflächenspannung, Löslichkeit und Wasserhärte und setzen diese in Beziehung zu Alltagsbeispielen. Wasser begegnet uns in unserem täglichen Leben. Es ist eine unverzichtbare Lebensgrundlage und ein großer Bestandteil des menschlichen Körpers. Ein bewusster Umgang mit Wasser hilft den Rohstoff zu schonen. Deshalb ist es besonders wichtig, das Bewusstsein bei alltäglichen Routinen wie beispielsweise dem Zähneputzen oder dem Nutzen der Spül- und Waschmaschine zu stärken. Durch die Erweiterung der Kenntnisse über die außergewöhnlichen chemischen Eigenschaften von Wasser und seinen Besonderheiten, wird die Bedeutung des Wassers hervorgehoben und im Denken und Handeln der Schülerinnen und Schüler verankert. Sie werden sensibilisiert und erfahren, dass ein sorgsamer Umgang mit diesem wertvollen Rohstoff unerlässlich ist. Die Unterrichtseinheit liefert einen allgemeinen Überblick über die chemischen Eigenschaften dieses besonderen Moleküls. Sie vermittelt ein grundlegendes Verständnis für die Wechselwirkungen zwischen den einzelnen Wassermolekülen sowie den daraus resultierenden Eigenschaften und geht dabei auch auf die Elektronegativität von Elementen ein. Des Weiteren wird die Besonderheit hervorgehoben, dass Wasser als einziger Stoff auf natürliche Weise in allen drei Aggregatzuständen vorkommt. Das Phänomen der Dichteanomalie wird dabei didaktisch reduziert anhand eines Beispiels aus dem Alltag betrachtet. Abschließend wird die Wichtigkeit und Notwendigkeit hervorgehoben, die Trinkwasserqualität regelmäßig zu überwachen. Dabei wird auf verschiedene Optionen eingegangen, die Qualität von Wasser zu verbessern und so zu einem nachhaltigen Umgang mit Wasser beizutragen. Das vorliegende Unterrichtsmaterial eignet sich für den Unterricht in der Sekundarstufe I im Fach Chemie. Es kann als Material für die Themen "Stoffe und Eigenschaften“ beziehungsweise "Aggregatzustände“ oder "umweltbezogene Chemie“ herangezogen werden und hebt die Bedeutung von Wasser hervor. Die Unterrichtseinheit bietet einen klaren Lebensweltbezug und regt an verschiedenen Stellen zum Denken an. Neben verschiedenen Lernmethoden und Sozialformen liefert sie auch eine vertiefende Zusatzaufgabe, die optional bearbeitet werden kann. Deshalb eignet sich die Einheit insbesondere auch für heterogene Lerngruppen. Das erste Arbeitsblatt kann als eine allgemeine Einführung in das Thema Wasser genutzt werden. Der Fokus liegt zunächst auf dem chemischen Aufbau sowie dem damit verbundenen Dipolcharakter von Wasser. Anhand eines Experiments werden die Oberflächenspannung und die intermolekularen Kräfte zwischen den Molekülen verdeutlicht. Die Schülerinnen und Schüler setzen sich außerdem mit der Bedeutung von Wasser im Alltag auseinander. Weiterhin können die besonderen Eigenschaften von Wasser mit Hilfe des zweiten Arbeitsblattes behandelt werden. Dabei wird auf die verschiedenen Aggregatzustände des Wassers eingegangen. Das dritte Arbeitsblatt hebt die Wichtigkeit einer regelmäßigen Überprüfung der Wasserqualität hervor. Es können zwei Experimente durchgeführt werden, die zum einen auf die Wasserhärte eingehen und zum anderen die kalklösende Wirkung von Essigsäure verdeutlichen. Außerdem werden verschiedene Möglichkeiten hervorgehoben, die Wasserqualität zu verbessern. Eine abschließende Aufgabe regt zum Nachdenken an und soll das Bewusstsein für einen umweltfreundlichen und wertschätzenden Umgang mit Wasser stärken. Die Schülerinnen und Schüler erhalten im Laufe der Unterrichtseinheit durch visuelle Darstellungen und praxisnahe Beispiele aus ihrem Alltag ein weitgehendes Verständnis für die Bedeutung von Wasser. Ein spezielles Vorwissen wird für die Bearbeitung der Aufgabenstellung nicht benötigt, da das benötigte Wissen in den Infotexten vermittelt wird. Ein grundlegendes Wissen in Bezug auf die Vorbereitung und Durchführung der Experimente wird vorausgesetzt. Die allgemeine Vorgehensweise bei Experimenten (Frage stellen, Vermuten, Versuch durchführen und beobachten, Ergebnisse notieren, Auswertung) sollte zuvor wiederholt werden. Fachkompetenz Die Schülerinnen und Schüler lernen die chemische Struktur und die damit verbundene Polarität von Wasser kennen. erlangen detailliertes Wissen über die verschiedenen Eigenschaften des Wassers. befassen sich mit der Wasserhärte sowie der Aufbereitung von Trinkwasser. Medienkompetenz Die Schülerinnen und Schüler nutzen verschiedene Medienangebote für ihre Recherche. lernen verschiedene Medien zu unterscheiden und sie kritisch zu hinterfragen. Sozialkompetenz Die Schülerinnen und Schüler bearbeiten Aufgabenstellungen gemeinsam mit einer Partnerin oder einem Partner oder innerhalb einer Gruppe. verbessern ihre Diskussionsfähigkeit, indem sie ihre Meinung äußern und mit Argumenten unterstützen. wenden ihr Wissen auf fächerübergreifende Fragen an. lernen praktische Versuche vorzubereiten, präzise zu beobachten und ihre Beobachtungen zu dokumentieren. Verwendete Literatur E. Riedel, C. Janiak (2007). Anorganische Chemie. Walter de Gruyter GmbH & Co. KG, S. 542.

  • Chemie
  • Sekundarstufe I
ANZEIGE