• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 3
Sortierung nach Datum / Relevanz
Kacheln     Liste

Chemische Reaktionen erkennen

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz für den Anfangsunterricht in Chemie lernen die Schülerinnen und Schüler die chemische Reaktion und ihre Bedeutung kennen. Anhand kleiner Versuche erkennen sie den Unterschied zwischen der chemischen Reaktion und dem physikalischen Vorgang.Die Schülerinnen und Schüler planen in dieser Unterrichtsstunde für den Chemie-Unterricht der Sekundarstufe I ausgehend von zwei einfachen Aufgaben Experimente, die sie anschließend durchführen. Dabei beschreiben sie die Aggregatzustände von Stoffen und erkennen sie, dass es Vorgänge gibt, die sich leicht rückgängig machen lassen, während das bei anderen nicht so einfach beziehungsweise gar unmöglich erscheint. Im Unterrichtsgespräch und begleitendem Informationstext erarbeiten sie in diesem Zusammenhang die Fachbegriffe "chemische Reaktion" und "physikalischer Vorgang". Im Sinne der individuellen Förderung durch Binnendifferenzierung im Fach Chemie stehen Arbeitsblätter mit unterschiedlichen Schwierigkeitsgraden zur Verfügung. Die Unterrichtssequenz eignet sich für den Anfangsunterricht in Chemie und kann durch die weiteren Einheiten zum Thema Feuer und Verbrennung wie Voraussetzungen für ein Feuer , Feuer löschen , Verbrennungsprodukte nachweisen und Was ist eine Flamme? fortgeführt werden. Das Thema "Chemische Reaktion erkennen" im Unterricht Im Anfangsunterricht Chemie der Sekundarstufe I geht es zunächst gar nicht um "wirkliche" Chemie, sondern eigentlich eher um Physik: Stoffeigenschaften und Trennverfahren. Diese bilden die Grundlage für das Verständnis der chemischen Reaktion als Stoffumwandlung. Im Kontext Feuer und Verbrennung wird das Basiskonzept chemische Reaktion schnell deutlich ausdifferenziert. Es macht daher Sinn, ein Grundverständnis für die chemische Reaktion schon vorher zu schaffen und die Kenntnisse aus den vorhergegangenen Unterrichtseinheiten dafür zu nutzen. Vorkenntnisse Die Lernenden kennen den Begriff "Stoff" und können Eigenschaften von Stoffen wie ihren Aggregatzustand benennen und untersuchen. Sie kennen verschiedene Trennverfahren. Die Kenntnis der Sicherheitsregeln im Chemieraum wird vorausgesetzt. Didaktische Analyse Zwei ganz alltägliche Vorgänge (Eis schmelzen und Streichholz verbrennen) werden zu Beginn genauer unter die Lupe genommen. Dadurch können die Lernenden einen entscheidenden Unterschied zwischen ihnen erkennen, wodurch die Einführung eines neuen Begriffs (chemische Reaktion) sinnvoll wird. Durch andere Beispiele die grundlegende Bedeutung der chemischen Reaktion anschießend gesichert. Methodische Analyse In den Versuchen in Stammgruppen können die Lernenden ihre Ideen und ihr Wissen teilen und (hoffentlich) ein motivierendes Erfolgserlebnis haben. Die Einführung des neuen Fachbegriffs und Basiskonzepts "Chemische Reaktion" erfolgt im Unterrichtsgespräch und durch einen Text. Zur Vertiefung dient ein Arbeitsblatt, das in Einzelarbeit gelöst wird. Während dieser Phase erhalten die Lernenden direkte Unterstützung durch die Lehrkraft, wenn nötig. Umgang mit Fachwissen Die Schülerinnen und Schüler grenzen Stoffumwandlungen als chemische Reaktionen von physikalischen Veränderungen ab. festigen ihr Wissen zum Thema Aggregatzustand. Kommunikation Die Schülerinnen und Schüler übernehmen bei Versuchen in Kleingruppen Initiative und Verantwortung verteilen, Aufgaben fair und erfüllen diese im verabredeten Zeitrahmen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Feuer und Verbrennung: Was ist eine Flamme?

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz zum Themenbereich Feuer und Verbrennung lernen die Schülerinnen und Schüler den Aufbau einer Flamme am Beispiel einer Kerzenflamme kennen. Sie erfahren, welche chemischen Reaktionen während der Verbrennung ablaufen. "Feuer und Verbrennung" ist eines der ersten Themen im Chemie-Unterricht, in dem es tatsächlich um chemische Reaktionen mit ihren Stoff- und Energieumsätzen geht. In diesem Kontext werden Grundlagen für das Verständnis von Oxidation, Reduktion und Atombau geschaffen. Damit die Lernenden die komplexen Abläufe verstehen können, müssen sie Schritt für Schritt erarbeitet werden. In dieser Unterrichtsstunde zur Frage "Was ist eine Flamme?" schauen sich die Schülerinnen und Schüler eine Flamme genau an, erkennen und zeichnen ihren Aufbau. Durch Informationen aus einem Text können sie den Aufbau der Flamme mit Fachwörtern beschriften und die ablaufenden chemischen Reaktionen benennen. Vorkenntnisse Die Lernenden kennen einfache Trennverfahren. Sie wissen, dass bei chemischen Reaktionen neue Stoffe entstehen, die nicht durch einfache Trennverfahren in die Ausgangsstoffe umgewandelt werden können. Die Lernenden kennen die Voraussetzungen für eine Verbrennung. Außerdem werden Kenntnisse der Sicherheitsregeln im Chemieraum vorausgesetzt. Didaktische Analyse Die Kerzenflamme ist allen Lernenden bekannt. In dieser Unterrichtseinheit wird sie genau unter die Lupe genommen und es werden entstehende Fragen geklärt. Dabei wird gleichzeitig das Wissen über chemische Reaktionen aufgefrischt und auf die Nutzung von Wortgleichungen hingearbeitet. Methodische Analyse Die Zeichnung der Flamme geschieht in der Stammgruppe, damit sich die Lernenden gegenseitig unterstützen können. Damit sich alle Lernenden in ihrem Tempo mit dem Inhalt beschäftigen können, wird der Info-Text über die Flamme von allen Schülerinnen und Schülern einzeln bearbeitet. Der Text liegt in differenzierter Form vor um allen Lernenden das notwendige Textverständnis zu ermöglichen. In der Partnerarbeit können die Lernenden ihr Textverständnis abgleichen und anschließend mit mehr Sicherheit bei der Besprechung im Plenum mitarbeiten. Umgang mit Fachwissen Die Schülerinnen und Schüler können Phänomene und Vorgänge mit einfachen chemischen Konzepten beschreiben und erläutern. Erkenntnisgewinnung Die Schülerinnen und Schüler können Glut- oder Flammen-Erscheinungen nach vorgegebenen Kriterien beobachten und beschreiben. Kommunikation Die Schülerinnen und Schüler können altersgemäße Texte mit chemischen Inhalten sinnentnehmend lesen und sinnvoll zusammenfassen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik

Unterrichtseinheit
14,99 €

Dieses Unterrichtsmaterial regt die Lernenden zum Bau einer Rakete aus zwei Plastikflaschen, Natron und Essig an. An diesem Experiment wird neben der Problematik um den Plastikmüll zum Umweltschutz in der Schule der Antrieb einer Rakete durch das Rückstoßprinzip sowie die chemische Reaktion von Säure und Natriumhydrogencarbonat erläutert.Mit diesem Unterrichtsmaterial lernen die Schülerinnen und Schüler am Beispiel einer Rakete das Rückstoßprinzip als praktische Anwendung des 3. Newtonschen Axioms sowie die chemische Reaktion von Backpulver und Essig kennen. Sie bauen angeleitet durch ein Video selbstständig eine Rakete, erkennen ihren Antrieb und vertiefen die Phänomene der Chemie und Physik durch begleitende Arbeitsblätter. Gleichzeitig soll das Experiment auf den seit Jahren steigenden Verbrauch von Plastikflaschen aufmerksam machen, die nur zum Teil recycelt werden, während der Rest in Müllverbrennungsanlagen oder in der Umwelt landet. Das Material eignet sich je nach Lehrplan für den fächerverbindenden Unterricht in Chemie und Physik der Sekundarstufen I und II. Das Thema "Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik" im Unterricht Am Beispiel einer Rakete erarbeiten die Lernenden mit diesem Unterrichtsmaterial weitgehend selbstständig und praxisorientiert den Antrieb in einem Experiment. Diese Form der experimentellen Erarbeitung des Rückstoßprinzips im Unterricht eignet sich in besonderer Weise, um den Schülerinnen und Schülern der Sekundarstufen nachhaltig aufzuzeigen, warum Raketen eigentlich fliegen. Vorkenntnisse Zu den wesentlichen Voraussetzungen zur Durchführung dieser Unterrichtseinheit zählt, dass die Lernenden mit Lehrvideos arbeiten sowie ein chemisches beziehungsweise physikalisches Experiment aufbauen, durchführen und auswerten können. Didaktische Analyse In diesem Unterrichtsmaterial erarbeiten die Lernenden mit dem Rückstoßprinzip und einer chemischen Reaktion Phänomene der Fächer Physik und Chemie: Während das Rückstoßprinzip in Natur und Technik als praktische Anwendung des 3. Newtonschen Axioms ein physikalisches Phänomen ist, das in der Natur und Technik zur Fortbewegung dient, gilt die Verbindung von Backpulver mit Essig (Säure mit Natron) als ein Beispiel für eine Reaktion der Chemie. Darüber hinaus setzen sich die Schülerinnen und Schüler zum Umweltschutz mit ökologischen Problemen, die beim Recycling von Plastikflaschen entstehen, auseinander und lernen ein Experiment selbstständig vorzubereiten, durchzuführen und auszuwerten. Methodische Analyse Die Auswertung der Filme geschieht sowohl im Plenum als auch in Partnerarbeit. Die Vorbereitung, Durchführung und Auswertung des Experiments erfolgt in Partner- oder Gruppenarbeit, sodass die Lernenden möglichst eigenverantwortlich und selbstständig arbeiten können. Die Lehrkraft steht in diesen Phasen beratend zur Verfügung und sollte nur unterstützend eingreifen, wenn Fragen auftauchen. Fachkompetenz Die Schülerinnen und Schüler bereiten ein Experiment im Chemie- oder Physikunterricht selbstständig vor und führen es nach Anleitung durch. lernen das Rückstoßprinzip sowie die chemische Reaktion von Natron und Essig kennen. unterscheiden ökologisch sinnvolles Recycling von Plastikflaschen von unsinniger Müllverwertung. Medienkompetenz Die Schülerinnen und Schüler entnehmen einem Video im Unterricht die wesentlichen Informationen für den Bau einer Rakete. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konzentriert und zielführend kooperativ im Team zusammen.

  • Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Reaktion von Eisen mit Kupferionen

Unterrichtseinheit

Eine kleine Flash-Animation veranschaulicht die chemischen Vorgänge bei der Reaktion von Eisenatomen mit Kupferionen im Teilchenmodell.Was läuft chemisch an der Oberfläche eines Eisennagels ab, der in eine Kupfersulfat-Lösung eintaucht? Die hier vorgestellte kurze Flash-Animation wurde für die Präsentation per Beamer im Fach- oder Unterrichtsraum und den Einsatz im Unterrichtsgespräch konzipiert. Sie dient der Visualisierung der chemischen Vorgänge bei einer Redox-Reaktion und zugleich als Ausgangspunkt für die Entwicklung der Reaktionsgleichung.Die Animation dient im Unterrichtsgespräch als Funktionsmodell, mit dem das untersuchte Phänomen präsentiert und seine Analyse und Deutung unterstützt wird. Vor dem Einsatz der Animation haben die Schülerinnen und Schüler das entsprechende Experiment selbst durchgeführt. Ihre Beobachtungen über das Auflösen des Eisennagels beziehungsweise die Verfärbung der Kupfersulfatlösung deuten auf eine Reaktion zwischen dem Feststoff Eisen und dem gelösten Kupfersulfat hin. Die Animation visualisiert die chemischen Vorgänge: Kupferionen treffen auf die Eisenatome des Nagels. Es kommt zu Elektronenübergängen. Dabei bilden sich Eisenionen, die in Lösung gehen. Die entstehenden Kupferatome scheiden sich auf dem Eisennagel ab. Zudem zeigt die Animation die Verfärbung der Lösung während der Reaktion und das abgeschiedene Kupfer auf dem Eisennagel. Der entsprechend verfärbte Nagel kann am Ende des Films mit der Maus "angefasst" und aus der Lösung gezogen werden. Informationen zur Steuerung des Films finden Sie in dem Info-PDF zur Animation auf der Website "Chemie interaktiv".Die Schülerinnen und Schüler sollen die chemischen Vorgänge bei der Reaktion von Eisen in einer Kupfersulfatlösung verstehen. eine Reaktionsgleichung der Redox-Reaktion entwickeln (Teilgleichungen und Gesamtgleichung). Thema Reaktion von Eisen in Kupfersulfat-Lösung Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Klasse 9 und 10 Zeitraum 1 Stunde, Einsatz der Animation: etwa 10 Minuten Technische Voraussetzungen Präsentationsrechner mit Beamer, Flash-Player (kostenloser Download)

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Feuer und Verbrennung: Feuer löschen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit aus der Reihe "Feuer und Verbrennung" erfahren die Schülerinnen und Schüler, wie ein Feuer gelöscht werden kann und was dabei beachtet werden muss. Anschließend bauen sie selbst einen Schaumlöscher. In dieser Doppelstunde zum Thema "Feuer löschen" knüpfen die Lernenden an ihr Wissen über die Voraussetzungen eines Feuers an und leiten verschiedene Löschwege daraus ab. Anschließend "bauen" sie mit vorgegebenem Material einen Schaumlöscher und erfahren mehr über die Funktionsweise von üblichen Schaumlöschern. In der folgenden Stunde wird erarbeitet, was beim Löschen verschiedener brennbarer Stoffe beachtet werden muss und wie sich die Lernenden selber im Falle eines Brandes verhalten sollten. Weitere Stundenplanungen und Arbeitsmaterialien für die Unterrichtsreihe "Feuer und Verbrennung" haben wir im Abschnitt "Ergänzende Materialien" für Sie verlinkt. Das Thema "Feuer löschen" im Unterricht Brände sind eine reale Gefahr für die Lernenden, die nicht unterschätzt werden sollte. Im Chemie-Unterricht ist das Thema durch die Sicherheitsunterweisungen und Versuche mit Gasbrennern und Kerzen von Anfang an gegenwärtig. Feuervermeidung und Feuerlöschen wurden auch schon vor der entsprechenden Unterrichtseinheit thematisiert. Jetzt können die Lernenden ihre Alltagserfahrungen, Warnungen der Lehrkräfte und die neu gewonnenen Kenntnisse über chemische Vorgänge bei der Verbrennung verknüpfen. Vorkenntnisse Die Lernenden kennen die Voraussetzungen für eine Verbrennung . Sie wissen, dass Verbrennungen chemische Reaktionen sind, bei denen Sauerstoff aufgenommen wird. Didaktische Analyse Feuer ist allen Lernenden bekannt und für sie auch interessant. Mit dem Löschen von Feuer haben alle bereits Erfahrungen unterschiedlichster Art gemacht, zum Beispiel beim Schauen von Serien im Fernsehen, bei der Jugendfeuerwehr oder bei eigenen Löschversuchen zuhause. In dieser Unterrichtseinheit werden ihre Kenntnisse und Vorerfahrungen aufgegriffen und genauer erklärt, was beim Löschen eines Feuers passiert. Methodische Analyse Anhand des selbst hergestellten Feuerlöschers verfolgen die Lernenden den Löschvorgang und finden heraus, was das Feuer eigentlich gelöscht hat. Durch die Filmsequenz wird das Interesse für die unterschiedlichen Löscharten bei unterschiedlichen Brennstoffen geweckt. Die Besprechung in Partnerarbeit gibt den Lernenden Sicherheit, damit sie sich bei der Besprechung im Plenum selbstbewusst beteiligen können. Umgang mit Fachwissen Die Schülerinnen und Schüler können die Bedingungen für einen Verbrennungsvorgang beschreiben. können auf dieser Basis Brandschutzmaßnahmen erläutern. Kommunikation Die Schülerinnen und Schüler können Verfahren des Feuerlöschens mit Modellversuchen demonstrieren. können Texte mit chemierelevanten Inhalten sinnentnehmend lesen. Bewertung Die Schülerinnen und Schüler können die Brennbarkeit von Stoffen bewerten. können Sicherheitsregeln im Umgang mit brennbaren Stoffen und offenem Feuer begründen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Feuer und Verbrennung: Voraussetzungen für ein Feuer

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz zum Themenbereich "Feuer und Verbrennung" lernen die Schülerinnen und Schüler die Voraussetzungen für eine Verbrennung kennen und trainieren das sichere Experimentieren im Chemie-Unterricht. Der Themenbereich "Feuer und Verbrennung" ist eines der ersten Themen im Chemie-Unterricht der Sekundarstufe I, in dem es tatsächlich um chemische Reaktionen mit ihren Stoff- und Energieumsätzen geht. In diesem Kontext werden Grundlagen für das Verständnis von Oxidation und Reduktion und Atombau geschaffen. Die Versuche, die im Unterricht gemacht werden, werden sowohl in der Durchführung als auch im "Gehalt" anspruchsvoller. Die Lernenden werden durch den vorliegenden Einstieg in das Unterrichtsthema "Feuer und Verbrennung" auf die Unterrichtsreihe eingestimmt. Beobachtungen aus dem Alltag werden in Versuchen im Chemie-Labor wiederholt und erklärt. Dabei kommt es vor allem auf das genaue Beobachten während des Versuchs an. Vorkenntnisse Die Lernenden kennen einfache Trennverfahren. Sie wissen, dass bei chemischen Reaktionen neue Stoffe entstehen, die nicht durch einfache Trennverfahren in die Ausgangsstoffe umgewandelt werden können. Sicherer Umgang mit dem Gasbrenner und Kenntnis der Sicherheitsregeln im Chemieraum werden vorausgesetzt. Didaktische Analyse Feuer ist allen Lernenden bekannt und für sie auch interessant, besonders wenn es um spektakuläre Explosionen oder bunte Flammenfärbung geht. Viele Kinder beziehungsweise Jugendliche haben im privaten Umfeld bereits Feuer gemacht (Grill, Lagerfeuer). In dieser Unterrichtseinheit werden ihre Kenntnisse und Erfahrungen aufgegriffen und alltägliche Beobachtungen erklärt. Methodische Analyse Der Einstieg in die Unterrichtseinheit "Feuer und Verbrennung" erfolgt über die Planung einer Grillparty. Dies motiviert die Lernenden dadurch, dass sie alle etwas dazu beitragen können und selbst schon Erfahrungen zu diesem Thema gemacht haben. Die Lehrperson kann währenddessen einschätzen, welche unterschiedlichen Vorstellungen und Vorkenntnisse zum Thema Verbrennung bei den Schülerinnen und Schülern bestehen. Zu jeder Voraussetzung der Verbrennung leitet ein unkomplizierter Versuch, in dem Beobachten und daraus Schlüsse zu ziehen trainiert werden. Zudem wird ein routinierter, sicherer Versuchsablauf im Hinblick auf spätere Versuche mit dem Gasbrenner unterstützt. Umgang mit Fachwissen Die Schülerinnen und Schüler können die Bedingungen für einen Verbrennungsvorgang beschreiben. Erkenntnisgewinnung Die Schülerinnen und Schüler können Glut- oder Flammenerscheinungen nach vorgegebenen Kriterien beobachten und beschreiben. Bewertung Die Schülerinnen und Schüler bewerten die Brennbarkeit von Stoffen. begründen Sicherheitsregeln im Umgang mit brennbaren Stoffen und offenem Feuer.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Fotosynthese

Unterrichtseinheit

In diesen Unterrichtsstunden zum Thema Fotosynthese erarbeiten die Schülerinnen und Schüler anhand eines Erklär-Videos und Arbeitsblättern die Fotosynthesegleichung und den Ort der Fotosynthese. Außerdem befassen sie sich mit künstlicher Fotosynthese. Weiterführend beschäftigen sie sich mit dem Lichtabsorptionsspektrum von Chlorophyll sowie dem Grobschema der lichtabhängigen Teilreaktion.Die Lernenden erarbeiten anhand des Materials zunächst grundlegendes Wissen über die Fotosynthese und ihre Bedeutung. Dazu stellen sie die Fotosynthesegleichung als Wortgleichung sowie als chemische Gleichung dar. Darüber hinaus beschäftigen sie sich mit dem Ort der Fotosynthese und erkennen, warum Blätter grün sind. Optional kann das Thema der Lichtabsorption von Chlorophyll vertieft werden. Eine weitere Vertiefung findet statt, indem die Lernenden sich den Aufbau von Chloroplasten und das Grobschema der lichtabhängigen Teilreaktion mithilfe weiterführender Erklär-Videos erarbeiten. Sie lernen außerdem die Begriffe "künstliche Fotosynthese" und "Photokatalysatoren" kennen und stellen damit verbundene Zukunftsvisionen, aber auch mögliche Probleme dar. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträ gertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Fotosynthese im Unterricht Ohne die Fotosyntheseleistung wäre ein Leben auf der Erde nicht möglich – daher ist die Behandlung der Fotosynthese im Fach Biologie von besonderer Bedeutung. Aufgrund der biochemischen Vorgänge ist das Thema auch für das Fach Chemie relevant. Das Thema Fotosynthese findet sich in den Lehrplänen der Sekundarstufe I in der Unterrichtsreihe zum Lebenszyklus der Blütenpflanzen (als Wortgleichung) sowie in der Unterrichtsreihe zu Zellen und Gewebe (in ausführlicherer Form) wieder. In der Sekundarstufe II werden die Kenntnisse zur Fotosynthese – besonders auf biochemischer Ebene – vertieft. Vorkenntnisse Es wird kein spezielles Fachwissen zum Thema Fotosynthese vorausgesetzt, allerdings sollten die Schülerinnen und Schüler ab der Mittelstufe mit den chemischen Symbolen sowie dem Aufbau der Zelle vertraut sein. Die Schülerinnen und Schüler können sich mithilfe des Erklär-Videos zur Fotosynthese sowohl die Wort- als auch die chemische Gleichung erarbeiten. Das Unterrichtsmaterial bietet außerdem die Möglichkeit, das Lichtabsorptionsspektrum von Chlorophyll und – für den Einsatz in der Oberstufe – das Grobschema der lichtabhängigen Teilreaktion nachzuvollziehen. Des Weiteren bietet das Erklär-Video Einblicke in die Möglichkeiten und Probleme künstlicher Fotosynthese, sodass auch hier kein Vorwissen notwendig ist. Didaktische Analyse Das Unterrichtsmaterial zur Fotosynthese ist als erste intensivere Auseinandersetzung mit dem Thema (Sekundarstufe I) beziehungsweise als Wiederholung (Sekundarstufe II) konzipiert. Durch die Konfrontation mit einer bedeutsamen Aussage soll zunächst das Interesse am Thema Fotosynthese und der damit verknüpften Bedeutung für das Leben auf der Erde geweckt werden. Die Schülerinnen und Schüler gewinnen einen ersten Eindruck über die Fotosynthesegleichung in Worten und chemischen Symbolen. Anschließend erfahren sie, wo die Fotosynthese abläuft und wie Blätter zu ihrer Grünfärbung kommen, ehe sie sich mit der Relevanz der künstlich hergestellten Fotosynthese für die Zukunft beschäftigen. In der Oberstufe wird den Schülerinnen und Schülern die Möglichkeit gegeben, wesentliche Grundlagen der lichtabhängigen Teilreaktion zu erarbeiten, ohne jedoch ins Detail zu gehen. Eine vertiefte Behandlung der lichtabhängigen Teilreaktion sowie eine weiterführende Behandlung der Dunkelreaktion sollten im Anschluss stattfinden. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz wird eine hohe Schüleraktivität erreicht. Das Video als Medium erhält das durch den Einstieg geweckte Interesse am Thema Fotosynthese aufrecht. Schwierige Arbeitsaufträge werden durch Partnerarbeiten aufgefangen, und Diskussionsrunden zum Wissensaustausch und zur Wissenserweiterung finden im Plenum statt. Durch Vertiefungsaufgaben kann bei Bedarf eine Binnendifferenzierung beziehungsweise eine Weiterarbeit in der Oberstufe erfolgen. Fachkompetenz Die Schülerinnen und Schüler erarbeiten sich aus dem Unterrichtsmaterial die Fotosyntheseleistung und den Ort der Fotosynthese. lernen den Begriff der künstlichen Fotosynthese kennen und erarbeiten sich – anhand des Materials oder unter Einbeziehung von Vorkenntnissen – Zukunftsvisionen und mögliche Probleme der künstlichen Fotosynthese. präsentieren ihre Ergebnisse unter Verwendung der Fach- und Symbolsprache. Medienkompetenz Die Schülerinnen und Schüler können das in den Videos präsentierte Wissen nach Relevanz filtern und strukturiert darstellen. können aus informationsreichen und komplexen Vorträgen wesentliche Sachverhalte notieren und auf Abbildungen übertragen. Sozialkompetenz Die Schülerinnen und Schülerarbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken durch die geschützte Atmosphäre in Partnerarbeitsphasen ihr Selbstkonzept. diskutieren in Partner- oder Gruppenarbeiten und sind dabei in der Lage, ihre Meinung unter Nutzung von Fachwissen und Fachbegriffen begründet zu äußern. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Warum ist "Kerrygold"-Butter so weich?

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zur organischen Chemie nutzen die Lernenden ein Molekül-Zeichenprogramm, recherchieren im Internet und führen selbst entwickelte Experimente durch, um der chemischen Natur der streichweichen Butter auf die Spur zu kommen. Das mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnete Material, das sich für den Präsenz- und Distanzunterricht eignet, gibt es hier mit Musterlösungen und einer Handreichung für Lehrkräfte mit nur einem Klick zum Download.Die Unterrichtseinheit "Warum ist die 'Kerrygold'-Butter so weich?" ermöglicht, ausgehend von einer Alltagsfrage, wissenschaftspropädeutisches Arbeiten im Unterricht. Die Schülerinnen und Schüler lernen den Unterschied zwischen qualitativen und quantitativen Experimenten kennen. Inhaltlich stehen Ester und die elektrophile Addition im Mittelpunkt. Exkurse zu Butter-Farbstoffen und Iodzahl sind möglich. Die Unterrichtseinheit wurde mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnet. Didaktische Analyse Diese Unterrichtseinheit ermöglicht im Rahmen des Themas Butter die Behandlung von ganz verschiedenen Inhalten und Methoden der Chemie, die vielleicht auf den ersten Blick keinen fachsystematisch sinnvollen Zusammenhang versprechen. Wählt man den Zeitpunkt der Unterrichtseinheit jedoch geschickt, kann man die kontextgebundene Einführung neuer Inhalte und fachwissenschaftlicher Methoden mit integrierten Wiederholungen, zum Beispiel zur Vorbereitung auf das Abitur oder auch im Rahmen eines Projektunterrichts, sehr schön verknüpfen. Das Material untergliedert sich in acht Teile mit unterschiedlichen Arbeits- und Rechercheaufträgen für Schülerinnen und Schüler. Dabei kommen verschiedenste Sozialformen und Zugänge zum Tragen, die es ermöglichen, gruppenspezifisch zu differenzieren und in Präsenz oder Distanz zu unterrichten. Fachkompetenz Die Schülerinnen und Schüler erleben, wie sich aus einer einfachen Frage eine kleine Forschungsreihe entwickelt. können einen Strukturformel-Editor nutzen, um auf molekularer Ebene Antworten auf eine chemische Fragestellung zu finden. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet und wählen themenbezogene und aussagekräftige Informationen aus. können zwischen qualitativen und quantitativen Versuchen unterscheiden. Sozialkompetenz Die Schülerinnen und Schüler entwickeln gemeinsam ein Experiment.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

MINT-Town – spielbasierte Förderung von kritischem Denken in der Chemie

Unterrichtseinheit

Die Lernenden erlangen – beziehungsweise erweitern – Fähigkeiten im Bereich des kritischen Denkens mithilfe der spielbasierten Lernumgebung MINT-Town. In den drei browserbasierten Szenarien der Lernumgebung werden sie mit einem fachübergreifenden (Eutrophierung eines Teiches) und zwei chemiespezifischen Problemkontexten (Synthese von Apfelester & Hydrolyse von Fetten) konfrontiert, welche sie im Laufe der Szenarien schrittweise lösen.In dieser Unterrichtseinheit spielen die Schülerinnen und Schüler die digitale Lernumgebung MINT-Town. MINT-Town besteht aktuell aus drei inhaltlich aufeinander aufbauenden Teilen, in denen die Lernenden jeweils mit einem Problemkontext konfrontiert werden, welchen sie schrittweise lösen müssen. Dabei durchlaufen die Lernenden Phasen des Problemlösens (Problem verstehen, Problem charakterisieren, Problem lösen) und müssen verschiedene Teilfähigkeiten des kritischen Denkens (zum Beispiel Analyse von Argumenten, Beobachten, logisches Schlussfolgern) einsetzen, um zu einer Problemlösung zu gelangen. Die Lernumgebung kann sowohl lokal als auch mobil in gängigen Windows- und Android-Browsern ausgeführt werden. Zum Spielen wird eine Internetverbindung benötigt. Im ersten Szenario "MINT-Town Tutorial" machen sich die Schülerinnen und Schüler zunächst mit der Steuerung vertraut und werden dann mit dem Problem eines eutrophierten Teiches konfrontiert. Sie sammeln durch Interaktion mit der virtuellen Welt, darin enthaltenen Gegenständen sowie Nicht-Spieler-Charakteren Informationen, welche ihnen bei der Charakterisierung und der anschließenden Lösung des Problems helfen. Das zweite Szenario "Apfelhain" konfrontiert die Spielenden mit einer Situation, in der Wespen mithilfe von Apfelester weggelockt werden müssen. Dieser steht allerdings nicht einfach zur Verfügung, sondern muss zunächst aus einer Carbonsäure und einem Alkohol mithilfe einer Kondensationsreaktion synthetisiert werden. Die Spielenden müssen auch hier schrittweise alle nötigen Informationen sammeln und auf dieser Basis in einer Multiple-Choice Abfrage geeignete Schlussfolgerungen auswählen, um die passende Lösungsstrategie zu finden. Diese wird nach dem Sammeln aller notwendigen Gegenstände in Form einer Ester-Synthese im virtuellen Labor umgesetzt. Die Spielenden müssen ihr Produkt anschließend virtuell herausdestillieren, indem sie die richtige Siedetemperatur herausfinden und angeben. Danach kontrollieren sie das Produkt mit dem Brechungsindex, welchen sie in einem Laborbuch abgleichen können. Die Schülerinnen und Schüler lernen hier neben den fachlichen Inhalten auch wichtige Vorgehensweisen bei einer Laborsynthese (virtuell) kennen. Sie kommen dadurch zudem zu der Erkenntnis, dass nach einer Synthese nicht immer gleich das fertige Produkt vorliegt, sondern weitere Schritte nötig sind, um dieses in reiner Form zu erhalten. In einem abschließenden Dialog mit einem Nicht-Spieler-Charakter reflektieren die Spielenden noch einmal ihre Vorgehensweise bei der Problemlösung. Im dritten Szenario "Bergregion" werden die Spielenden mit einer neuen Problemsituation konfrontiert, in der sie durch den Einsatz von Nitroglycerin einen Tunnel freisprengen sollen. Das Nitroglycerin liegt allerdings nicht von Anfang an vor, sondern muss von einem Nicht-Spieler-Charakter synthetisiert werden. Von diesem werden die Spielenden im Rahmen einer Quest losgeschickt, um Glycerin zu beschaffen, welches mithilfe einer sauren Ester-Hydrolyse aus einem fetten Öl (Raps) gewonnen werden soll. Auch in diesem Szenario gibt es verschiedene Multiple-Choice-Abfragen, in denen beispielsweise das Problem schrittweise charakterisiert oder eine Quelle auf Glaubwürdigkeit untersucht werden muss. Die Spielenden gelangen gegen Ende des Szenarios zu der Erkenntnis, dass die saure Hydrolyse die entgegengesetzte Reaktion der Ester-Synthese ist, und viele chemische Reaktionen nicht nur in eine Richtung ablaufen. Wie man dieses chemische Gleichgewicht beeinflussen kann, wird hier noch nicht thematisiert.Sowohl das "Tutorial" als auch das Szenario "Apfelhain" sind so aufgebaut, dass sie sich vorwissensunabhängig bearbeiten lassen. Das Szenario "Bergregion" knüpft hingegen thematisch an das Szenario "Apfelhain" an, sodass ein separater Einsatz nur zu empfehlen ist, wenn das Thema Ester-Synthese vorher im Unterricht behandelt wurde. Die chemiespezifischen Szenarien "Apfelhain" und "Bergregion" lassen sich beispielsweise im "Rahmenlehrplan Teil C Chemie" für Berlin/Brandenburg im Themenbereich 3.12 "Ester – Vielfalt der Produkte aus Alkoholen und Säuren" der Klassenstufe 10 verorten (Senatsverwaltung für Bildung, Jugend und Familie, 2015). Sie fokussieren das "Basiskonzept der chemischen Reaktion". Nach dem Spielen beider Teilszenarien sollten die Lernenden ein erstes Verständnis dafür entwickelt haben, dass nicht alle chemischen Reaktionen vollständig ablaufen und sich einige Reaktionen umkehren lassen. Die Faktoren zur Beeinflussung des Gleichgewichts zwischen Hin- und Rückreaktion werden in den Lernumgebungen nicht thematisiert. Zudem werden zwar Summenformeln und funktionelle Gruppen der eingesetzten Stoffe benannt, auf konkrete Reaktionsgleichungen wird aber zugunsten allgemeiner Wortgleichungen verzichtet. Es empfiehlt sich, entweder nach dem Spielen beider Teilszenarien oder nach jedem einzelnen Teilszenario eine Sicherungsphase durchzuführen, in der allgemeine Erkenntnisse entsprechend festgehalten werden. Denkbar wäre auch ein Einsatz in der Qualifikationsphase (11) in den Themenbereichen 3.1.4 "Grundlagen der organischen Chemie", 3.1.5 "Organische Stoffe als Energielieferanten" oder in der Sekundarstufe II (12–13) als Einstieg in den Themenbereich "3.2.5 Chemisches Gleichgewicht" (Senatsverwaltung für Bildung, Jugend und Familie Berlin; Ministerium für Bildung, Jugend und Sport des Landes Brandenburg, 2021), um die "Umkehrbarkeit chemischer Reaktionen als Voraussetzung für das chemische Gleichgewicht" aufzugreifen. Erforderliche digitale Kompetenzen der Lehrenden (nach dem DigCompEdu-Modell) Die Lehrenden sollten in der Lage sein, die digitale Lernumgebung so in ihren Unterricht einzubetten und mit entsprechenden Sicherungsphasen thematisch nachzubereiten, dass die Lernenden einen möglichst großen Lerneffekt haben. Es wird empfohlen, die Szenarien wenigstens einmal selbst getestet oder im besten Fall komplett durchlaufen zu haben (3.1 Lehren). Zudem ist ein grundlegendes Verständnis für den Umgang mit dem jeweiligen Endgerät (Computer, Mobiles Device) nötig. Da die Umgebung im Browser ausgeführt wird, sollte das jeweilige Gerät eine Verbindung mit dem Internet aufweisen. Die Lehrenden sollten gewährleisten, dass allen Lernenden unabhängig von ihrer digitalen Affinität zu den eingesetzten Endgeräten oder von anderen besonderen Bedürfnissen ein Zugang zu der digitalen Lernumgebung ermöglicht wird (5.1 Digitale Teilhabe). Sofern mit dem „Tutorial“ begonnen wird, eignet sich die Lernumgebung grundsätzlich für Selbstgesteuertes Lernen (3.4), welches je nach individuellem Bedarf der Lernenden durch die Lehrenden unterstützt werden kann (5.2 Differenzierung und Individualisierung). Fachkompetenz Die Schülerinnen und Schüler beschreiben chemische Reaktionen anhand von Wortgleichungen. beschreiben Vorgänge, bei denen sich Stoffeigenschaften ändern. beschreiben die Umkehrbarkeit chemischer Reaktionen. 21st Century Skills Die Schülerinnen und Schüler erlangen/festigen Teilkompetenzen des kritischen Denkens. lösen schrittweise Probleme in authentischen Kontexten. Medienkompetenz Die Schülerinnen und Schüler analysieren, interpretieren und bewerten Informationen und Daten kritisch. arbeiten selbstständig mit einer digitalen spielbasierten Lernumgebung. verwenden eine strukturierte Sequenz zur Lösung eines Problems.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Funktion einer galvanischen Zelle

Unterrichtseinheit

Das hier vorgestellte Flash-Programm zeigt den Aufbau einer galvanischen Zelle aus einer Zink- und einer Kupferhalbzelle. Die chemischen Abläufe bei einer Stromentnahme werden dynamisch dargestellt.Die Beamerprojektion der Animation unterstützt das Unterrichtsgespräch und soll genutzt werden, um die im vorhergehenden Experiment demonstrierte Erzeugung elektrischer Energie in einer Teilchenmodellanimation zu veranschaulichen. Dabei wird deutlich, durch welche chemischen Vorgänge der Strom erzeugt wird. Neben den an den Elektroden stattfindenden Reaktionen wird auch die Diffusion der Ionen durch das Diaphragma dargestellt. Dadurch wird der Ladungstransport von Halbzelle zu Halbzelle innerhalb der Lösungen gewährleistet. Mithilfe der projizierten Animation werden die Teilgleichungen sowie die Redoxgleichung für den Gesamtumsatz an der Tafel entwickelt. Die Materialien der Unterrichtseinheit werden durch einen Beitrag aus der GDCh-Wochenschau-Artikel zum Thema (Gesellschaft Deutscher Chemiker e.V.) ergänzt: Unfreiwillig trägt fast jeder Mensch eines oder mehrere galvanische Elemente im Mund. Was können Chemikerinnen und Chemiker für einen korrosionsarmen Zahnersatz tun?Am Präsentationsrechner können Lehrerinnen und Lehrer die Flash-Folie als Unterrichtsmedium im Unterrichtsgespräch einsetzen. Das Experiment verdeutlicht den Lernenden die technische Möglichkeit zur Gewinnung elektrischer Energie aus chemischen Reaktionen. Die Animation lässt sich ebenfalls in einer selbstständigen Computer-Schülerarbeit einsetzen, zum Beispiel als Analyseinstrument beim Schülerpraktikum. Die in den Schülergruppen am Rechner erarbeiteten Ergebnisse zur Funktion des galvanischen Elements lassen sich abschließend im Schülervortrag computergestützt präsentieren und erläutern. Hinweise zum Einsatz der Animation im Unterricht Screenshots veranschaulichen die Funktionen der interaktiven Flash-Animation. Während der Präsentation werden die Reaktionsgleichungen an der Tafel fixiert. GDCh-Wochenschau-Artikel zum Thema Unfreiwillig trägt fast jeder Mensch eines oder mehrere galvanische Elemente im Mund. Wie finden Chemikerinnen und Chemiker einen korrosionsarmen Zahnersatz? Die Schülerinnen und Schüler sollen den Aufbau einer galvanischen Zelle aus zwei Halbzellen mit verschiedenen Metallelektroden, die in entsprechende Metallsalzlösungen eintauchen, beschreiben. anhand der Animation zur galvanischen Zelle erkennen, dass beim Verbinden beider Halbzellen mittels eines elektrischen Leiters zeitgleich und kontinuierlich in der einen Halbzelle ein Oxidations- und in der anderen ein Reduktionsvorgang an den Metallelektroden abläuft. erkennen, dass der Elektronenübergang zwischen beiden Teilvorgängen durch den elektrischen Leiter vermittelt wird. die dynamischen Teilchenmodellszenarien an den Elektroden in Reaktionsgleichungen umsetzen. aus der Animation ableiten, dass die Kombination und räumliche Trennung geeigneter Reduktions- und Oxidationsmittel chemische Energie speichert und diese durch Anschluss eines Verbrauchers in nutzbare elektrische Energie umgewandelt werden kann. Thema Funktion einer galvanischen Zelle Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Klasse 9/10, Jahrgangsstufe 12 (Wiederholung) Zeitraum 1 Stunde Technische Voraussetzungen Präsentationsrechner mit Beamer, Flash-Player (ab Version 8, kostenloser Download) Beschriftung der Zelle Die Animation beginnt die Präsentation mit einem Einblick in den Aufbau und die chemische Zusammensetzung eines galvanischen Elements. Ein Zinkblech taucht in eine Zinksulfatlösung und ein Kupferblech in eine Kupfersulfatlösung ein. Beide Systeme (Halbzellen) sind durch ein poröses Diaphragma voneinander getrennt (kombiniert). Die Beschriftung der Darstellung (Abb. 1, Platzhalter bitte anklicken) lässt sich über das obere Icon in der Buttonleiste (rechts außen) ein- beziehungsweise ausblenden. Stromfluss Durch Anklicken des Schalters (rechts unten in Abb. 2) wird der Stromkreis geschlossen (alternativ über die Space-Taste). Durch ein erneutes Anklicken des Schalters wird der Stromkreis unterbrochen und die Teilchensymbole werden ausgeblendet. Bei geschlossenem Stromkreis stoppt die Space-Taste die Bewegung der Teilchensymbole beziehungsweise startet sie bei erneuter Betätigung. Die Animation zeigt die chemischen Vorgänge an den Metallblechen (Elektroden) und den dadurch entstehenden Stromfluss. Die leuchtende Glühlampe zeigt den Verbrauch elektrischer Energie an. Anhand der projizierten Animation lassen sich die Teilgleichungen sowie die Redoxgleichung für den Gesamtumsatz an der Tafel entwickeln. Um jeder Schülerin und jedem Schüler die Elektrodenvorgänge deutlich vor Augen zu führen, lässt sich die Animation nach dem Stoppen über die Space-Taste mithilfe der Pfeil-Tasten langsam vor- oder zurückspulen. So kann jeder Elektrodenvorgang in angemessenem Tempo visualisiert werden. Die Teilvorgänge werden parallel zu diesem Vorgehen an der Tafel fixiert. Anode: Zinkatome werden oxidiert In der Zinkhalbzelle werden Zinkatome oxidiert und gehen als Zink-Ionen in Lösung. Dabei werden zwei Elektronen über das Zinkblech zum Verbraucher abgeführt: Zn (s) → Zn 2+ (aq) + 2e - Kathode: Kupferionen werden reduziert In der Kupferhalbzelle werden dem Kupferblech zugeführte Elektronen auf die Kupferionen der Lösung übertragen. Durch die Reduktion dieser Kupferionen scheidet sich elementares Kupfer auf der Kathodenoberfläche ab: Cu 2+ (aq) + 2e - → 2 Cu (s) Darstellung des Ladungstransports Die Animation zeigt neben den Reaktionen an den Elektroden auch die Diffusion von Ionen durch das Diaphragma und damit den Ladungstransport in der Lösung, der die Aufrechterhaltung der Elektroneutralität in beiden Halbzellen gewährleistet. Die Erzeugung elektrischer Energie findet nur statt, wenn der Transport elektrischer Landungen im gesamten System (im gesamten Stromkreis) möglich ist: im metallischen Leiter und im Elektrolyten. Da positiv geladene Kupferionen an der Kupferelektrode entladen werden, wandern negativ geladene Sulfationen in die Zinkhalbzelle. Gleichzeitig wandern positiv geladene Zinkionen aus der Zinkhalbzelle in die Kupferhalbzelle. "Alterung" des Galvanischen Elements Durch die Veränderungen an den Elektroden (die allerdings in der Animation nicht gezeigt werden) lässt sich die Alterung des apparativen Systems erläutern und die Stromabnahme prognostizieren. Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Einen für diese Unterrichtseinheit relevanten Artikel stellen wir hier kurz vor. Der vollständige Beitrag steht als PDF-Download zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Potentialdifferenz im Mund Metallische Werkstoffe höchst unterschiedlicher Art sind aus der modernen Zahnheilkunde nicht fortzudenken. Mit zunehmendem Lebensalter und einem immer breiter werdenden Angebot dieser Werkstoffe ist die Wahrscheinlichkeit groß, dass im Mund Legierungen unterschiedlicher Zusammensetzung auftauchen. Sind sie hinsichtlich ihres Korrosionsverhaltens deutlich verschieden (also edler oder unedler), kann es bei direktem metallischen Kontakt zur Ausbildung eines Lokalelementes im Mund kommen - jeder unfreiwillige Biss auf ein Stück Aluminiumfolie mit einem Zahn, der eine metallische Krone oder ein Inlay aufweist, erinnert mit dem kribbelnden Gefühl im Mund an die auftretende Potentialdifferenz (elektrische Spannung). Der dann fließende Strom steht in direktem Zusammenhang mit der Korrosion und schließlich der Auflösung des unedleren Materials. Falls es bei der Einbringung von Zahnersatz zu ähnlichen Phänomenen kommt, ist wegen der lang andauernden Einwirkung und der oftmals biologisch bedenklichen Wirkung der freigesetzten Metalle die potentiell negative Auswirkung bedenklich. Durch sorgfältige Planung und Verarbeitung lassen sich derartige Fehler allerdings weitgehend vermeiden. Korrosion im Mund Galvanische Elemente bilden sich aber auch in anderer und kaum vermeidbarer Weise aus: Jeder metallische Werkstoff im Mund kann Bestandteil eines Belüftungselements werden. In ihm findet die korrosive Metallauflösung vor allem in für die Luft und den darin enthaltenen Sauerstoff schlecht zugänglichen Spalten statt, während die kathodische Sauerstoffreduktion an gut zugänglichen Oberflächen abläuft. Damit verbundene Phänomene wie Lochfraß oder Risskorrosion sind in der Technik wohlbekannt. Offenbar ist also jeder metallische Werkstoff im Mund - sofern er Kontakt mit Speichel hat - der Korrosion ausgesetzt. Dieses elektrochemische Phänomen kann mit elektrochemischen Methoden gut studiert werden. Die Artikel beschreibt (sehr detailliert), wie Chemikerinnen und Chemiker die Anfälligkeit verschiedener Legierungen untersuchen - ein wichtiger Schritt auf dem Weg zum korrosionsarmen Zahnersatz.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Biotechnologische Verfahren: PCR und Antigen-Schnelltests

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler das Grundprinzip und die Einsatzmöglichkeiten der Polymerase-Kettenreaktion (PCR) und der Antigen-Schnelltests kennen. Die Schülerinnen und Schüler lernen in dieser Unterrichtseinheit beide Verfahren (PCR und Antigen-Schnelltests) sowie Vor- und Nachteile der Methoden kennen und erfahren, in welchem Zusammenhang diese eingesetzt werden. Außerdem erarbeiten sie sich, wie präzise die Methoden eine Infektionskrankheit (zum Beispiel COVID-19) nachweisen können. Die Unterrichtseinheit ist Teil des Materialpakets " Impfungen: kleiner Piks – große Wirkung ", das in Zusammenarbeit mit dem Fonds der Chemischen Industrie (dem Förderwerk des Verbandes der Chemischen Industrie e. V.) entstanden ist. Das Materialpaket beinhaltet vier weitere Unterrichtseinheiten zu den Themen " Funktionsweise des Immunsystems ", " Schutz- und Heilimpfungen ", " Impfstofftypen " und " Globalisierung als Treiber von Pandemien? " sowie einen einführenden Leitartikel . Relevanz des Themas Die Polymerase-Kettenreaktion (PCR) ist eine Methode/ein Verfahren zur Vervielfältigung von Erbsubstanz. Während diese Methode unter anderem zu den Standardmethoden in der medizinischen Diagnostik zur Vervielfältigung von Virus-Erbgutgehört, war das Verfahren vor dem Beginn der COVID-19-Pandemie nur wenigen Menschen ein Begriff. Da die PCR jedoch zu Beginn der Pandemie die einzige zuverlässige Methode zum Nachweis einer Infektion war, wurde der Begriff schnell auch derbreiten Bevölkerung bekannt. Dabei wird die PCR nicht nur zur Diagnose von Krankheiten verwendet: Sie wird beispielsweise auch zur Analyse von Verwandtschaftsverhältnissen und in der Kriminalistik verwendet, um DNA-Spuren zu analysieren und mögliche Täterinnen und Täter zu finden. Im Verlauf der Pandemie wurden auch sogenannte Schnelltests zum Nachweis einer Infektion mit SARS-CoV-2 entwickelt und zugelassen. Mittlerweile sind sie ein häufig benutztes Verfahren, um Infektionen auszuschließen. Der entscheidende Vorteil gegenüber der PCR-Methode ist, dass ein Testergebnis bereits nach rund 15 Minuten vorliegt. Im Gegenzug sind Schnelltest weniger genau, weshalb nach einem positiven Schnelltest immer auch ein PCR-Test erfolgen muss, um eine Infektion zweifelsfrei belegen zu können. Das Grundprinzip des Schnelltests wird allerdings nicht nur beim Nachweis von Infektionskrankheiten verwendet. Beispielsweise basieren auch Schwangerschaftstests auf demselben Prinzip. Didaktisch-methodische Analyse In der Unterrichtseinheit erarbeiten sich die Lernenden einen Großteil durch eigenständige Recherche selbst. Dabei werden sie durch kurze Informationstexte zu Beginn jeder Aufgabe unterstützt. Dennoch sind sie angehalten, unklare Begrifflichkeiten und essenzielle Informationen zum Bearbeiten der Aufgaben selbstständig zu recherchieren, zu strukturieren und zu bewerten. Im Sinne der Differenzierung können alle möglichen Begriffe der Abbildung auf Arbeitsblatt 2 bereits vor dem Bearbeiten der Aufgabe genannt werden, sodass die Lernenden bei der Begriffswahl eingeschränkter sind. Dies bietet sich vor allem für leistungsschwächere Schülerinnen und Schüler an. Fächerverbindend zum Mathematikunterricht berechnen die Lernenden außerdem Prozentwerte zum Abschluss des Arbeitsblatts. Dabei erkennen sie, dass Schnelltests zwar ein schnelles Ergebnis liefern, es aber durchaus vorkommen kann, dass Personen zu Unrecht positiv oder negativ getestet werden, und dass dies vor allem bei großen Testgruppen ein entscheidender Faktor sein kann. Der Lehrkraft ist es freigestellt, ob sie die Lösungen mit der gesamten Lerngruppe bespricht. Alternativ kann sie auch die richtigen Lösungen zum eigenständigen Kontrollieren auslegen. Vorkenntnisse Die Lernenden sollten Vorkenntnisse im Bereich der Genetik und speziell im Aufbau und in der Vervielfältigung von DNA besitzen. Um zu verstehen, welche "Materialien" für eine PCR verwendet werden und wie diese abläuft, sollten die Lernenden die wesentlichen Bestandteile der DNA sowie notwendige Enzyme und biochemische Abläufe bei der Vervielfältigung der Erbsubstanz kennen. Für die Berechnung der falsch-negativen und falsch-positiven Schnelltest sind die Grundlagen der Prozentrechnung ausreichend und lassen sich auch mittels Dreisatzes einfach darstellen. Das Material eignet sich zum Einsatz im naturwissenschaftlichen Unterricht in den Jahrgangsstufen 11 bis 13. Fachkompetenz Die Schülerinnen und Schüler beschreiben die Grundprinzipien biologischer Arbeitstechniken und biotechnologischer Verfahren (PCR und Antigen-Schnelltests) zum Nachweis von Krankheiten und weiterer Einsatzmöglichkeiten. erläutern den Ablauf der Polymerase-Kettenreaktion und von Antigen-Schnelltests. analysieren mögliche Fehler bei der Durchführung von Schnelltests und bewerten die Zuverlässigkeit. Medienkompetenz Die Schülerinnen und Schüler nutzen das Smartphone oder den PC zur Recherche. Sozialkompetenz Die Schülerinnen und Schüler helfen sich gegenseitig bei Fragen und Problemen. bereiten ihre Ergebnisse adressatengerecht auf.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Röntgenkristallographie: Aufbau und Funktionsweise komplexer…

Unterrichtseinheit

In dieser Unterrichtssequenz zum Thema Röntgenkristallographie erarbeiten die Schülerinnen und Schüler anhand eines Videos und eigener Internetrecherchen den Nutzen und das Prinzip der Röntgenkristallographie. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden. Dieses Unterrichtsmaterial leitet die Schülerinnen und Schüler zur Erarbeitung wesentlicher Informationen über die Röntgenkristallographie an. Dazu werden zwei zentrale Fragen an die Lernenden gestellt, deren Beantwortung anhand eines Lehrvideos und einer selbstständigen Recherchearbeit erfolgen soll. Für die Recherchearbeit werden hilfreiche Internetadressen angeboten. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Röntgenkristallographie im Unterricht Die "Röntgenkristallographie" oder auch "(Röntgen-)Strukturanalyse" kann im Zusammenhang mit verschiedensten Themen im naturwissenschaftlichen Unterricht angesprochen werden. Durch die Behandlung dieses Themas gewinnen die Schülerinnen und Schüler einen Einblick in naturwissenschaftliche Arbeitsmethoden sowie ein realistisches Verständnis über die mühsame Aufklärung von Molekülstrukturen, die im Unterricht ganz selbstverständlich genutzt werden. Vorkenntnisse Da dieses Thema in mehreren Unterrichtsreihen der naturwissenschaftlichen Fächer eingegliedert werden kann, wird für das Unterrichtsmaterial kein spezielles Vorwissen vorausgesetzt. Die Konzipierung der Unterrichtsstunde ermöglicht den Lernenden eine Recherche entsprechend ihrem individuellen Leistungsstand und Vorwissen. Somit kann diese Unterrichtsstunde – im Biologie-, Chemie- oder Physik-Unterricht der Sekundarstufen – in jeder Klassenstufe und Schulart eingesetzt werden. Es wird allerdings eine hohe Kompetenz im Umgang mit dem Internet vorausgesetzt. Didaktische Analyse Das Interesse der Schülerinnen und Schüler an der Röntgenkristallographie kann anhand einer einführenden Frage über die Aufklärung von Strukturen (bio-)chemischer Moleküle – wie beispielsweise ein Molekül, das in der Vorstunde besprochen wurde – geweckt werden. In der anschließenden Erarbeitungsphase fokussieren sich die Schülerinnen und Schüler auf die Beantwortung zwei wesentlicher Fragen, um das Thema in seiner Komplexität einzugrenzen. Die Sicherungsphase kann entsprechend der Klassenstufe oder dem Leistungsniveau durchgeführt werden, hierzu macht das Material keine Vorgaben. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtsstunde zur Röntgenkristallographie wird eine hohe Schüleraktivität erreicht. Die selbstständige Recherchearbeit und das Medium Video erhöhen die Lernbereitschaft und das Interesse am Thema. Die Erarbeitungsphase soll möglichen heterogenen Vorkenntnissen und Leistungen gerecht werden: Durch selbstständige Recherchearbeiten können die Aufgaben entsprechend der individuellen Leistung bearbeitet werden. Hierfür bietet sich Einzelarbeit an, jedoch kann eine Partnerarbeit aufgrund der Komplexität des Themas durchaus sinnvoller sein. Fachkompetenz Die Schülerinnen und Schüler erarbeiten den Nutzen und das Prinzip der Röntgenkristallographie. stellen ihre Ergebnisse schlüssig und unter Gebrauch der Fachsprache dar. erhalten einen Einblick in naturwissenschaftliche Arbeitsweisen und reflektieren den selbstverständlichen Gebrauch naturwissenschaftlicher Ergebnisse. Medienkompetenz Die Schülerinnen und Schüler können das in einem Video dargestellte Wissen nach Relevanz filtern und strukturiert wiedergeben. üben sich darin, aus komplexen und informationsreichen Internetquellen wesentliche Sachverhalte herauszuschreiben. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paararbeit. stärken ihr Selbstkonzept durch die geschützte Atmosphäre in der Paararbeitsphase. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE