• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Stellarium – ein virtuelles Planetarium für die Schule

Fachartikel

Mit Stellarium können Himmelsbeobachtungen sehr schön vorbereitet werden. Das Programm ermöglicht eine sehr realistische Darstellung der Himmelskugel mit über 600.000 Sternen. Beobachtungsort und -zeit können nach Wunsch festgelegt werden.Die grafischen Darstellungen der kostenfreien Software sind hochwertig. Als besondere Merkmale hervorzuheben sind realistische Sonnenauf- und -untergänge sowie Grafiken von Planeten, Gasnebeln oder Galaxien. Die recht realistischen Darstellungen bereiten Schülerinnen und Schüler auf das vor, was tatsächlich am Himmel zu sehen ist. So werden angemessene Erwartungen geweckt und Enttäuschungen vermieden. Beim "Spielen" mit dem Programm entdeckt man immer wieder neue potenzielle Einsatzmöglichkeiten. Ob es die Nutzung der figürlichen Darstellung von Sternbildern in der Grundschule ist oder die Veranschaulichung unterschiedlicher Tagesabläufe auf der Nord- und Südhalbkugel der Erde - Verblüffung über die Vielfalt des Programms ist vorprogrammiert!

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Beobachtung der Internationalen Raumstation (ISS)

Fachartikel

Dieser Fachartikel gibt Tipps zur Beobachtung der Internationalen Raumstation (ISS) und stellt die Webseite "Heavens Above" als Online-Werkzeug vor. "Raumstation" hört sich sehr weit weg an, irgendwo da oben… Dabei zieht die ISS nur 330 bis 400 Kilometer über unseren Köpfen ihre Bahn. Sie bietet sich als Objekt für Himmelsbeobachtungen im astronomischen Sommerloch der kurzen Nächte an, da sie sich bereits in der Dämmerung zeigt.Ein ruhig strahlendes Objekt, das in etwa vier Minuten aus südöstlicher Richtung in nordwestlicher Richtung fliegt und im Gegensatz zu Flugzeugen nicht blinkt, ist ein guter Kandidat für die ISS. Etwa eineinhalb Stunden benötigt die ISS für eine Runde um unseren Planeten. Sie ist allerdings nur in der Abend- oder Morgendämmerung sichtbar, wenn sie von der Sonne angestrahlt wird. Als Beobachtungszeitfenster kommen nur etwa zwei Stunden vor Sonnenaufgang und zwei Stunden nach Sonnenuntergang infrage. Nicht immer kommt die ISS gerade zu diesen Stunden bei uns vorbei. Man muss aber nicht auf eine Zufallsbeobachtung warten: Auf der englischsprachigen Website "Heavens Above" können Sie herausfinden, wann genau die ISS am Himmel über Ihnen zu sehen ist.

  • Geographie / Jahreszeiten / Physik / Astronomie
  • Primarstufe, Sekundarstufe I, Sekundarstufe II

Jim Knopf lernt die Evolutionstheorie

Fachartikel

Dieser Fachartikel stellt ein Video von FAZ.NET zur Evolutionstheorie vor. Zum 200. Geburtstag des Naturforschers Charles Darwin und zum 150. Jahrestag der Veröffentlichung seines Werkes "Über die Entstehung der Arten" erklärt Frau Mahlzahn in einem FAZ.NET-Video ihrem Schüler Jim Knopf in ihrer Drachenschule in Lummerland die Evolutionstheorie.2009 feiert die Wissenschaftswelt nicht nur das Internationale Jahr der Astronomie (anlässlich der ersten Himmelsbeobachtung Galileo Galileis mit einem Fernrohr), sondern auch das Darwin-Jahr. Die vor 150 Jahren veröffentlichte Theorie des britischen Naturforschers Charles Darwin (1809-1882) zur Entstehung der Arten markiert - ebenso wie Galileis Beobachtungen - einen tiefen Einschnitt in unser naturwissenschaftliches Welt- und Selbstverständnis. Zwar waren zu Darwins Zeit genetische Mutationen noch nicht bekannt, wohl aber, dass die darauf basierende natürliche Selektion ein wichtiger, wenn auch nicht der einzige, Evolutionsfaktor ist. "Die Evolutionstheorie, die versteht doch jedes Kind!" Nicht ganz so alt wie Darwin ist Michael Endes Jim Knopf, der vor über 30 Jahren erstmals über die Fernsehbildschirme flimmerte. Seither erfreuen die Bilder aus der Augsburger Puppenkiste jung und alt, wenn Jim Knopf zusammen mit Lukas dem Lokomotivführer und den beiden Lokomotiven Molly und Emma in Lummerland ihre Abenteuer bestehen. Julia Voss, Leiterin des FAZ.NET-Kunst-Ressorts, hatte die Idee, Jim Knopf im Darwin-Jahr zu reaktivieren, um sich von seiner Lehrerin Frau Mahlzahn die Evolutionstheorie erklären zu lassen. In einer sechsminütigen Videosequenz werden wesentliche fachliche Aspekte der Evolutionstheorie angesprochen und allgemein verständlich dargestellt. Zwar wurden nicht alle Fachbegriffe, die Frau Mahlzahn in ihren Erklärungen verwendet, so auch schon von Darwin benutzt. Der Film gibt jedoch einen guten Überblick über Faktoren und Abläufe der Evolution.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Primarstufe, Elementarbildung

Polarlichter - Mythen & Fakten rund ums "Himmelsfeuer"

Unterrichtseinheit

Bei der Beschäftigung mit der Aurora wird man schnell feststellen, dass die Naturerscheinung etwas Magisches hat, das alle Schülerinnen und Schüler in ihren Bann zieht - auch wenn im Unterricht die Video- oder Fotokonserve aus dem Internet die reale Begegnung ersetzen muss. "Es scheint als eine große, aus der Ferne gesehene Flamme von einem starken Feuer; von derselben schießen, dem Anschein nach in die Luft hinauf scharfe Spitzen von ungleicher Höhe und sehr unbeständig, so dass bald die eine, bald die andere höher ist, und so schwebt dieses Licht wie eine leuchtende Lobe" (Norwegischer Königsspiegel, 1250). Eines haben alle Beobachter von Polarlichtern - sei es in der Antike, dem Mittelalter oder in der Neuzeit - gemeinsam: Sie sind fasziniert und beeindruckt zu gleich. Die Magie der Naturerscheinung in das Klassenzimmer zu transferieren ist natürlich schwieriger, als den Funken bei einer realen Begegnung überspringen zu lassen. Dennoch kann über die multimediale Begegnung der Schülerinnen und Schüler mit diesem kosmischen Spektakel die Faszination geweckt werden. Es bedarf dabei keiner großen didaktischen Kunststücke, um eine Klasse zur unterrichtlichen Auseinandersetzung mit der Thematik zu motivieren. Allein die Magie der Aurora leistet hier große didaktische Dienste. Das Thema Polarlichter bietet diverse Anknüpfungspunkte für den Unterricht: Bei der Behandlung der Polarregionen (Geographie) sowie der der Entstehung des Erdmagnetfeldes (Physik) kann der "Motivations-Joker" gezogen werden. Auch die Physik der Sonne (Sonnenaktivität, Sonnenwind) kann direkt zum Polarlicht führen. Da das Weltraumteleskop Hubble auch auf anderen Planeten (Jupiter, Saturn) Polarlichter beobachtet und davon eindrucksvolle Bilder geschossen hat, sollten auch das "außerirdische" Polarlicht betrachtet werden. Hinweise zum Unterrichtsverlauf und Materialien Nordlicht-Videos und historische Texte bieten ideale Einstiegsmöglichkeiten in die Thematik. In der Erarbeitungs- und Festigungsphase kommen Arbeitsblätter zum Einsatz. Die Schülerinnen und Schüler sollen Erklärungsversuche vergangener Kulturen nachvollziehen und bewerten können. eigene (mythische, nicht naturwissenschaftliche) Konzepte zur Erklärung der Himmelsbeobachtung entwickeln können. in der Lage sein, das (naturwissenschaftliche) Grundprinzip der Entstehung von Polarlichtern erklären zu können. die unterschiedlichen Farben von Polarlichtern begründen können. Thema Polarlichter - Mythen & Fakten rund um das "Himmelsfeuer" Autor Raimund Ditter Fach Geographie (Astronomie, Physik) Zielgruppe Klasse 8-10 Zeitraum 2-4 Stunden Technische Voraussetzungen Präsentationsrechner mit Beamer, Player für das Abspielen der Aurora-Videos Texte und Bilder zur "leuchtenden Lobe" Zur Einstimmung eignet sich das Eingangszitat aus dem "Norwegischen Königsspiegel" aus dem Jahr 1250 (siehe Startseite der Unterrichtseinheit). In diesem Zusammenhang können die Schülerinnen und Schüler gefragt werden, was der Autor hier wohl zu Gesicht bekommen hat beziehungsweise welche Erscheinung er beschreiben könnte. Alternativ kann mit einem Brainstorming zu dem theatralischen Begriff "Himmelsfeuer" begonnen werden. In beiden Fällen sollte, um eine naturwissenschaftliche Fragehaltung bei den Lernenden zu wecken, die Präsentation eines solchen "schwebenden Lichtes" in Form einer Videosequenz über den Beamer erfolgen. Im Internet finden sich zahlreiche geeignete Film- und Fotomaterialien. Vermutungen der Lernenden Nach der Darbietung der Filmsequenz steht die Frage nach der Entstehung dieser Himmelserscheinung im Zentrum des Unterrichts. Zu Beginn der Erarbeitungsphase bietet es sich an, Vermutungen der Schülerinnen und Schüler einzuholen. Im Sinne eines konstruktivistischen Vorgehens sollte diese Annahmen frei geäußert und noch nicht bewertet werden. Erklärungsversuche aus Antike und dem Mittelalter Die Lernenden werden sehr rasch unterschiedlichste Erklärungsmodelle anbieten - hier bietet es sich an, ihnen Erklärungsversuche aus der Antike und aus dem Mittelalter vorzustellen (aurora_1_mythen.pdf). Im Anschluss daran ist es sinnvoll, diese Erklärungsversuche von den Lernenden bewerten zulassen, um sie gegebenenfalls zu falsifizieren. Fantasie spielen lassen Um das Geheimnis der Aurora naturwissenschaftlich zu lüften, erhalten die Schülerinnen und Schüler das zweite Arbeitsblatt (aurora_2_entstehung.pdf) mit dem entsprechenden Informationstext. Zur Illustration wird eine NASA-Grafik verwendet (Abb. 1). Als weitere multimediale Informationsquelle bietet sich einer der oben genannten Unterrichtsfilme oder der auf dem Arbeitsblatt angegebene Link zum Alpha-Centauri Film "Nordlicht" an. Im Anschluss an die Informationssichtung bearbeiten die Lernenden in Einzel- oder Partnerarbeit das dritte Arbeitsblatt (aurora_3_entstehung.pdf). Zur Ergebniskontrolle bietet es sich an, das dritte Arbeitsblatt per Overhead-Projektor oder Beamer zu projizieren, um dann mit den Schülerinnen und Schülern gemeinsam die Ergebnisse zu vergleichen und aufgeworfene Fragen zu beantworten. Das vierte Arbeitsblatt (aurora_4_farben.pdf) dient schließlich der Vertiefung und thematisiert die unterschiedliche Farbgebung der Polarlichter sowie deren Farbübergänge. Hier besteht die Möglichkeit, die Lernenden Polarlichter aus Bildergalerien im Internet heraussuchen und erklären zu lassen. Lassen Sie Ihre Schülerinnen und Schüler auf jeden Fall auch aus der ungewohnten Orbit-Perspektive einen Blick auf die irdische Aurora werfen. Erwähnenswert (und zeigenswert) sind auch Aurora-Erscheinungen anderer Planeten (siehe Links und Medien zum Thema ). So konnte das Weltraumteleskop Hubble die Dynamik von Saturns Aurora einfangen. Auch auf Jupiter beobachtete das Weltraumteleskop Aurora-Erscheinungen. Antarctica Fenster zum Universum - Das Geheimnis der Aurora Mediennummer VHS: SWR 4285927 (deutschsprachig) Antarctica Window of the universe - The mystery of the aurora Mediennummer DVD: SWR 4681804 (englischsprachig)

  • Geographie / Jahreszeiten / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Spaziergänge auf dem Mond

Unterrichtseinheit

Auf ausgewählten "Mondrouten" beobachten Schülerinnen und Schüler markante Strukturen in der Nähe der Licht-Schatten-Grenze. Zudem können interessante Konstellationen von Mond, Planeten und Sternhaufen betrachtet werden. Im Jahr 1609, etwa zwischen April und Mai, erhielt Galileo Galilei (1564-1642) Kenntnis von einem "Fernbetrachter". Er besorgte sich daraufhin eines der holländischen Brillenglasfernrohre, die nur zwei- bis dreifach vergrößerten, und arbeitete sofort an deren Verbesserung (Erhöhung der Vergrößerung durch für Brillen untypische Linsen und Reduzierung von Streulicht durch Blenden im Strahlengang). Das erste Himmelsobjekt, das er dann - vermutlich im September 1609 - beobachtete, war der Mond. Im Internationalen Jahr der Astronomie 2009 fand vom 02. bis zum 05. April weltweit die Aktion "100 Stunden Astronomie" statt, bei der die Beobachtung des Himmels im Mittelpunkt stehen sollte. Die in diesem Beitrag für diese Aktion vorgestellten "Wanderrouten" auf der Mondoberfläche können auch nach dem IYA2009 zu jeder passenden Mondphase ins Visier genommen werden. Grundlage der Wanderkarten ist der kostenfreie "Virtual Moon Atlas", mit der Sie auch eigene "Mond-Wanderkarten" erzeugen können. Spaziergänge auf dem Mond Mondgebirge mit Tälern, Krater mit Zentralbergen und Krater in den Meeren werden mithilfe von "Mondwanderkarten" gezielt aufgesucht. Zeichnen und Googeln Ein interessanter Kontrast: Lernende zeichnen auf den Spuren Galileis den Mond und erkunden mit moderner Webmapping-Technologie die Spazierwege der Apollo-Astronauten. Die Schülerinnen und Schüler sollen markante Punkte der Mondgeographie mithilfe bereit gestellter "Mondwanderkarten" aufsuchen und eine Vorstellung von der Größe der Krater gewinnen. auf den Spuren von Galileo Galilei mit einfachen optischen Hilfsmitteln Mondzeichnungen erstellen und diese mit den Skizzen Galileis und Darstellungen aus dem Werk "Sidereus Nuncius" (1610) vergleichen. den "Virtual Moon Atlas" als kostenfreies Werkzeug zur Vorbereitung von Himmelsbeobachtungen kennen lernen. als Ergänzung zu den eigenen Beobachtungen mit Google Moon die Landeplätze der Apollo-Missionen erkunden. Die Mondoberfläche erweist sich nahe der Licht-Schatten-Grenze (Terminator) als sehr eindrucksvolles Objekt für die Fernrohrbeobachtung. Verschiedene Oberflächenformationen wie Gebirge mit Tälern, Krater mit Zentralbergen oder Krater in den Meeren werden erkennbar. Es empfiehlt sich eine kleine Auswahl dieser Objekte gezielt nacheinander im Sinne eines Spaziergangs mit den Augen am Fernrohr aufzusuchen. Hier stellen wir Ihnen drei Routen vor, die während der Aktion "100 Stunden Astronomie" im IYA2009 zum Einsatz kamen. Die jeweiligen "Wanderkarten" mit Darstellungen der Mondoberfläche wurden mit der kostenfreien Software "Virtual Moon Atlas" erzeugt und können zu jeder passenden Mondphase (Mond im ersten Viertel und folgende Tage) genutzt werden. Virtual Moon Atlas, Download Auf der Softonic-Webseite können Sie die Software für den virtuellen Mondglobus kostenfrei herunterladen. Die Route des Spaziergangs ist in Abb. 1 dargestellt (Platzhalter bitte anklicken). Zahlen markieren die einzelnen Stationen. Sie können die Route farbig ausdrucken oder per Beamer im Klassenraum präsentieren. Für Schwarzweiß-Ausdrucke verwenden Sie bitte die Datei "mond_spaziergang_1_sw.gif". In dieser Datei sind die Zahlen und Pfeile weiß mit schwarzer Kontur dargestellt (gelbe Ziffern und Linien sind im Schwarzweiß-Ausdruck schlecht zu erkennen). Von den Mondalpen mit dem Alpenquertal (1) führt der Pfad zum Krater Aristoteles (2), dessen Durchmesser etwa 90 Kilometer beträgt. Der Krater ist nach dem wohl bekanntesten und einflussreichsten Philosophen der Geschichte benannt (384-322 v. Chr.). Von dort geht es zum Kaukasus (3) und schließlich hinein in das Regenmeer (Mare Imbrium). Dort wird ein Strahlenkrater mit Zentralberg namens Aristillus (4) ins Visier genommen. Dessen Namenspatron ist ein griechischer Astronom, der um 280 v. Chr. gelebt hat. Von dort aus kehren wir wieder zum Ausgangspunkt zurück. Dieser Weg (Abb. 2) beginnt bei der 104 Kilometer durchmessenden Wallebene Plato (1), die nach dem bekannten griechischen Philosophen (427-347 v. Chr.) benannt wurde. Weiter geht es zum Strahlenkrater Aristillus (2). Die nächste Station ist der von Lava überflutete Krater Archimedes (3) im Regenmeer. Sein Durchmesser beträt 83 Kilometer. Archimedes (287-212 v. Chr.) war ein bedeutender griechischer Mathematiker. Die letzte Etappe führt uns zum Krater Eratosthenes (4), dessen Kraterwände bis zu 3.570 Meter hoch sind. Der griechische Geograph und Astronom Eratosthenes lebte von 276-194 v. Chr. Ausgangspunkt dieser Route (Abb. 3) ist, wie bei der ersten Wanderung, der mit dunklem Material gefüllte Krater Plato (1). Von dort aus gilt es, dem Rand des Regenmeers folgend, das Alpenquertal (2) zu überschreiten und über den Kaukasus die Apenninen (4) zu erreichen. Die Apenninen sind das mächtigste Mondgebirge. Die Gipfel ragen zum Teil mehr als 5.000 Meter in die Höhe. Auf dem Weg entlang der Apenninen kommen wir an der Hadley-Rille (3) vorbei, für deren Beobachtung man allerdings schon ein Teleskop mit mindestens 20 Zentimetern Öffnung benötigt. Diese Rille war der Landeort der Apollo-15-Mission. Abschließend besuchen wir noch den markanten Strahlenkrater Kopernikus (5), der hexagonal erscheint und einen Durchmesser von 95 Kilometer besitzt. Dieser schöne Krater ist nach dem bekannten Astronom Nikolaus Kopernikus (1473-1543) benannt. Kaum eine andere Übung trainiert die naturwissenschaftliche Grundfertigkeit des genauen Beobachtens so gut wie das Zeichen. Es zwingt uns, wirklich genau hinzusehen und ermöglicht die Wahrnehmung vieler Details, die dem flüchtigen ersten Blick fast immer entgehen. Zudem bietet das Zeichnen des Mondes einen schönen Ansatzpunkt zum Jubiläum der Mondbeobachtung von Galilei vor 400 Jahren - denn auch er zeichnete das Gesehene! Die vor Jahrhunderten entstandenen Skizzen und Darstellungen in dem 1610 erschienenen Werk "Sidereus Nuncius" ("Sternenbote") können die Lernenden motivieren, auf den Spuren des berühmten Astronomen selbst zum Zeichenstift zu greifen (Abb. 4). Einfache Teleskope - sogar Feldstecher - zeigen bereits die Gipfel sonnenbeschienener Berge, in deren Tälern noch die Mondnacht herrscht. Praktische Hinweise zum Zeichnen am Teleskop und ein Beispiel für die schrittweise Ausarbeitung einer Darstellung der Mondoberfläche finden Sie in dem Beitrag Zeichenstunden am Teleskop . Neben der kostenfreien Software "Virtual Moon Atlas" kann auch der digitale Online-Mondglobus von Google mit den von Google Earth bekannten Funktionen genutzt und zur Vor- oder Nachbereitung der Begegnung mit dem Original am Abendhimmel genutzt werden. Die Landeplätze der Apollo-Missionen sind auf dem Google-Mond durch Astronauten markiert. Man kann per Klick auf diese Icons in die Landegebiete der Apollo-Missionen hineinzoomen und Bilder von der Mondoberfläche betrachten, die die Astronauten während ihrer Ausflüge am Boden gemacht haben. Teilweise sind auch kleine Panoramaansichten möglich - eine interessante Ergänzung zu den eigenen Bobachtungen am Teleskop.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Der Wandel historischer Weltbilder

Unterrichtseinheit

Die Lernenden recherchieren im Internet zum Themenbereich der kopernikanischen Wende sowie zum babylonischen Weltbild und zu Leben und Werk Johannes Keplers. Ihre Ergebnisse präsentieren sie ihren Mitschülerinnen und Mitschülern im Rahmen des Unterrichts oder – falls das Projekt größer aufgezogen werden soll – der Öffentlichkeit. Weltbild - Bild der Welt - sich ein Bild von der Welt machen. Dies ist ein Prozess, den der Mensch seit der Antike vollzieht. Grundlage hierfür waren seit jeher Natur- und insbesondere Himmelsbeobachtungen, die auf unterschiedlichste Art und Weise interpretiert wurden. Da ist es nicht verwunderlich, dass im Internationalen Jahr der Astronomie (IYA2009) auch diese großen Fragen in den Fokus rücken. Betrachtet man historische Weltbilder und deren Wandel im Laufe der Jahrhunderte, so beinhalten diese sowohl naturwissenschaftliche Aspekte als auch historische, religiöse und philosophische Fragestellungen. Somit ist die Bearbeitung dieses Themas im Unterricht eine gute Möglichkeit, fächerverbindend und projektorientiert zu arbeiten. Der vorliegende Unterrichtsentwurf kann sowohl im regulären Unterricht als auch (leicht abgewandelt) im Rahmen von Projekttagen mit anschließenden öffentlichen Präsentationen (zum Beispiel Tag der offenen Tür) durchgeführt werden. Der Beitrag beschreibt zunächst die Projektdurchführung im Unterricht. Für die Organisation einer - möglicherweise öffentlichen - Ausstellung im Rahmen von Projekttagen sind im Wesentlichen nur einige Punkte bei der Präsentation zu beachten, auf die im Folgenden auch hingewiesen wird. Hinweise zu Themenvergabe und Ergebnispräsentation Die Themen eigenen sich sehr gut für eine Binnendifferenzierung. Die Präsentationsform wird von den technischen Möglichkeiten und der Art der Ausstellung bestimmt. Die Schülerinnen und Schüler sollen arbeitsteilig zum Wandel historischer Weltbilder und deren Bedeutung für die jeweilige Zeit im Internet (und gegebenenfalls weiteren Quellen) recherchieren. ihre Rechercheergebnisse filtern. ihre Arbeitsergebnisse zusammenfassen und Wechselwirkungen aufzeigen. ihre Arbeitsergebnisse zusammenhängend darstellen und präsentieren (PowerPoint-Präsentationen oder Plakate) Das hier zum Download zur Verfügung gestellte Dokument "weltbilder_ergebnisse.pdf" enthält Texte von Schülerinnen und Schüler Kopernikus-Gymnasium in Wissen (Rheinland-Pfalz) zu den Themen Geozentrisches und Heliozentrisches Weltbild, Nikolaus Kopernikus und "Was Immanuel Kant bei Nikolaus Kopernikus fand". Lehrpersonen können diese Texte bei der Einarbeitung in die Thematik sehr hilfreich sein. Lehrerhandreichung - Der Wandel historischer Weltbilder Damit Ihre Schülerinnen und Schüler die Informationen auch selbst erarbeiten, stellen wir die Datei nur im Bereich "Mein LO" zur Verfügung. Nachdem die Lerngruppe auf das Thema "Wandel historischer Weltbilder" eingestimmt ist, wird sie in fünf bis sieben Arbeitgruppen unterteilt, die sich mit den folgenden Themen beschäftigen (einige Linkvorschläge für die Recherche finden Sie unter Links und Literatur zum Thema ): Das babylonische Weltbild (1) Das geozentrische Weltbild (2) Das heliozentrische Weltbild (3) Nikolaus Kopernikus (Leben und Werk) (4) Die kopernikanische Wende in der Philosophie (ohne Immanuel Kant) (5) Was Immanuel Kant bei Nikolaus Kopernikus fand (Kopernikanische Wende) (6) Johannes Kepler (Leben und Werk) (7) Verteilung der Themen Bei der Vergabe der Themen ist zu beachten, dass der Bereich der kopernikanischen Wende (Themen 2 bis 6) eine relativ geschlossene Einheit bildet. Die Themengebiete "Das babylonische Weltbild" (1) und "Johannes Kepler"(7) sind hiervon relativ unabhängig, so dass auf diese am ehesten verzichtet werden kann, falls nur fünf oder sechs Gruppen gebildet werden sollen. Plant man dagegen eine größere Ausstellung, können die Themen durch weitere Biographien ergänzt werden (zum Beispiel Galileo Galilei, Albert Einstein). Differenzierung Bei der Gruppenzusammenstellung und Themenvergabe ist darauf zu achten, dass die Arbeitsaufträge unterschiedlich anspruchsvoll sind. So haben auch leistungsschwächere Schülerinnen und Schüler bei geeigneter Themenauswahl (Themen mit höherem biographischem Anteil) die Möglichkeit, ansprechende Ergebnisse zu liefern. Die Rechercheaufgaben "Die kopernikanische Wende in der Philosophie" (5) und "Was Immanuel Kant bei Nikolaus Kopernikus fand" (6) basieren zum Großteil auf der Lektüre philosophischer Artikel. Sie sollten deshalb nur an leistungsstarke und/oder philosophisch interessierte Schülerinnen und Schüler vergeben werden. Anschauliche Darstellungen in selbstverfassten Texten Um vielschichtige Rechercheergebnisse zu erzielen, die auf mehreren Quellen basieren, sollten die Schülerinnen und Schüler etwa zwei Schulstunden zur Verfügung haben, um Informationen zu sammeln. Anschließend benötigen die Arbeitsgruppen zwei bis drei Stunden Zeit, um die herausgearbeiteten Informationen hinsichtlich ihrer Bedeutung für das jeweilige Thema zu gewichten und in selbstverfassten Texten beziehungsweise Wirkungsgefügen zu verarbeiten. (Per "copy & paste" zusammengewürfelte Plakattexte können durch stichprobenartige Google-Suchen schnell entlarvt werden.) Dabei soll es das Ziel jeder Arbeitsgruppe sein, eine anschauliche Darstellung ihres Themenschwerpunkts zu erstellen. Dies kann sowohl in Form von PowerPoint-Präsentationen als auch in Form von Plakaten erfolgen. PowerPoint-Präsentation: Falls die technische Ausstattung der Schule es zulässt und ein Lernziel der Unterrichtseinheit die Softwarenutzung sein soll, ist als Arbeitsergebnis eine PowerPoint-Präsentation zu bevorzugen. Nach Abschluss der Gruppenarbeit werden die einzelnen Arbeitsergebnisse präsentiert. Dies erfolgt, indem die einzelnen Gruppen dem Plenum ihre jeweilige Präsentation zeigen und erläutern. Somit entsteht eine Art Gruppenpuzzle. Plakat -Präsentation Sind die technischen Vorraussetzungen für PowerPoint-Präsentationen an der Schule nicht gegeben oder soll das Endergebnis der Gruppenarbeit eine öffentliche Ausstellung (zum Beispiel im Eingangsbereich der Schule, bei Schul- oder Stadtfesten beziehungsweise bei nichtschulischen Kooperationspartnern) sein, so ist die Plakatvariante zu bevorzugen. Zunächst erfolgt auch hier eine klassen- beziehungsweise kursinterne Präsentation. Hierzu bietet es sich an, die Plakate im Klassenraum zu verteilen und wie bei einer Ausstellung gemeinsam einen Rundgang zu machen. Dabei erläutert die jeweilige Gruppe an ihrem Plakat die wesentlichen Ergebnisse ihrer Arbeit. Das hier zum Download zur Verfügung gestellte Dokument "weltbilder_ergebnisse.pdf" enthält Texte von Schülerinnen und Schüler Kopernikus-Gymnasium in Wissen (Rheinland-Pfalz) zu den Themen Geozentrisches und Heliozentrisches Weltbild, Nikolaus Kopernikus und "Was Immanuel Kant bei Nikolaus Kopernikus fand". Lehrpersonen können diese Texte bei der Einarbeitung in die Thematik sehr hilfreich sein. Lehrerhandreichung - Der Wandel historischer Weltbilder Damit Ihre Schülerinnen und Schüler die Informationen auch selbst erarbeiten, stellen wir die Datei nur im Bereich "Mein LO" zur Verfügung. Aufgaben und Preise für das Publikum Wird die Form der Plakatpräsentation im Rahmen einer öffentlichen Ausstellung gewählt, ist es außerdem empfehlenswert, dass jede Gruppe ein oder zwei Fragen entwickelt, die mithilfe ihres Plakats in einem Wort oder mit einer Satzgruppe beantwortet werden können. Stellt man die Fragen aller Gruppen anschließend zu einem Fragebogen zusammen, entsteht ein Quiz, mit dem man die Besucher der Ausstellung "zwingen" kann, die oft "textlastig" wirkenden Plakate genauer zu studieren. (Im Vorfeld sollten die Lernenden allerdings darauf hingewiesen werden, ihr Poster mit passenden Fotos oder Grafiken zu "beleben".) Der Anreiz, vor allem für jüngere Besucherinnen und Besucher, erhöht sich, wenn man für richtig ausgefüllte Fragebögen Urkunden oder kleine Sachpreise bereithält. Wegen des höheren Aufwandes (ein Quiz und Urkunden entwerfen, Preise besorgen) eignet sich diese Präsentationsvariante besonders für Projekttage mit einem sich anschließenden "Tag der offen Tür". Herlferich, Christoph Geschichte der Philosophie, DTV, München 2005, Seite 136-146 Kant, Immanuel Prolegomena zu einer jeden künftigen Metaphysik, die als Wissenschaft wird auftreten können; In: Kritik der praktischen Vernunft und andere kritische Schriften, Könemann Verlagsgesellschaft mbH, Köln 1995, Seite 7-170 Kopernikus, Nikolaus Über die Kreisbewegung der Himmelskörper, In: Denken, das de Welt verändert - Teil 1, Herder Verlag, Freiburg 1991, Seite 156-175 Kepler, Johannes Weltharmonik, In: Denken, das de Welt verändert - Teil 1, Herder Verlag, Freiburg 1991, Seite 249-266

  • Physik / Astronomie / Geschichte / Früher & Heute / Religion / Ethik
  • Sekundarstufe II

Allgemeine Hinweise zur Planetenbeobachtung

Unterrichtseinheit

Mit bloßem Auge (visuell) und mit fotografischen Mitteln lassen sich Planetenbewegungen am Fixsternhimmel beobachten, dokumentieren und verstehen. Wertvolle Dienste leisten dabei Planetarium- und Bildbearbeitungssoftware. Schülerinnen und Schüler aller Altersstufen können bei der visuellen und fotografischen Beobachtung der Planeten unseres Sonnensystems "Himmelsmechanik live" erleben und dokumentieren. Informationen zur Sichtbarkeit der Planeten am Abendhimmel finden Sie unter Links und Literatur. Zur Vorbereitung der Beobachtungen können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Die linke Abbildung zeigt den Saturn, aufgenommen von einer Schülergruppe am Observatorium Hoher List in der Eifel. Visuelle Beobachtungen sind mit der Planetarium-Software Stellarium planbar, nachvollziehbar und vertiefbar. Die kostenlose Bildbearbeitungssoftware Fitswork erlaubt die Rekonstruktion von Planetenbahnen am Sternenhimmel aus Fotos, die Lernende mit einfachen Digitalkameras anfertigen können. Im Unterricht sollen den Schülerinnen und Schülern Medien, Materialien und Kenntnisse an die Hand gegeben werden, die sie zur eigenständigen Himmelsbeobachtung anregen und befähigen. Die Resultate solcher Beobachtungen werden im Unterricht zusammengetragen, ausgewertet und diskutiert. Fachliche Voraussetzungen Was sind Ekliptik, rückläufige Bewegungen und Planetenschleifen? Warum haben nur Merkur und Venus Phasen wie der Mond? Allgemeine Hinweise zum Auffinden von Planeten Mit der kostenfreien Software Stellarium können Sie den Sternhimmel mit den Positionen der Planeten zu jeder Zeit an Ihrem Standort darstellen. Materialien für die Beobachtung - Beispiel 2010 Die Himmelskarten aus dem Jahr 2010 sind natürlich nicht mehr verwendbar. Sie sollen jedoch als Anregung für die Erstellung aktueller eigener Materialien dienen. Rekonstruktion von Planetenbahnen aus Fotografien Zu verschiedenen Zeitpunkten aufgenommene Himmelsfotos werden mit der kostenfreien Software Fitswork addiert. Die Bewegung eines Planeten wird dabei als "Spur" deutlich. Die Schülerinnen und Schüler verstehen, warum und wie sich die Planeten am Himmel in unmittelbarer Nähe der Ekliptik bewegen. simulieren Planetenbewegungen mit Planetarium-Software. finden die Planeten Venus, Mars, Jupiter und Saturn am Nachthimmel auf. dokumentieren den Lauf der Planeten Venus, Jupiter und Saturn, basierend auf eigenen Beobachtungen. lernen einfache Verfahren der digitalen Bildbearbeitung kennen und wenden diese an. Erdrotation und die Bewegung der Fixsterne Die Erde rotiert um eine Achse, die durch ihre beiden geographischen Pole führt. Die Erdrotation erfolgt von Westen nach Osten, also - von Norden auf die Erde gesehen - gegen den Uhrzeigersinn. Die Folge davon ist, dass der Sternenhimmel damit alle Himmelsobjekte für einen irdischen Beobachter einmal in etwa 24 Stunden auf einem Kreis von Osten nach Westen rotieren. Die Mittelpunkte aller dieser Kreise liegen auf der ins Weltall verlängerten Erdachse. Die Positionen der Sterne relativ zueinander ändern sich während eines Menschenlebens so gut wie nicht erkennbar. Deshalb heißen Sterne auch "Fixsterne": Sie scheinen an der rotierenden Himmelskugel ihren festen Platz zu haben. Entstehung des Sonnensystems Um die Bewegung der Planeten am Himmel verstehen zu können, sind einige grundlegende Kenntnisse über die Struktur des Sonnensystems erforderlich. Unser Sonnensystem entstand vor etwa vier Milliarden Jahren aus einer rotierenden, flachen Gas- und Staubscheibe. Aus der protoplanetaren Scheibe entstanden die Körper unseres Sonnensystems. Abb. 1 zeigt dies in einer künstlerischen Darstellung der NASA (Grafik zur Vergrößerung bitte anklicken). Planeten übernehmen den Drehimpuls der Staubscheibe Beinahe die gesamte Masse dieser Staubscheibe konzentrierte sich in der Sonne, in deren Innerem die enormen Gravitationskräfte die Bedingungen für den Ablauf von Kernfusionen herstellen. In den äußeren Bereichen der Staubscheibe "verklumpte" die dort ursprünglich vorhandene Materie zu den als Planeten, Kleinplaneten und Kleinkörpern des Sonnensystems bekannten Objekten. Die Planeten tragen den Großteil des Drehimpulses der ursprünglichen Staubscheibe und bewegen sich deshalb mit gleichem Umlaufsinn mehr oder weniger in derselben Ebene. Ihre Bahnen sind Ellipsen mit der Sonne in einem der Brennpunkte. Die Formen dieser Ellipsenbahnen weichen nur geringfügig von der Kreisform ab. Sonne, Mond und Planeten bewegen sich auf der Ekliptik Die Bahn, die die Sonne im Verlauf eines Jahres an der "Himmelskugel" beschreibt, wird Ekliptik genannt. Damit kann man die Ekliptik auch auffassen als Schnittkreis der Himmelskugel mit der Ebene, in der die Erde die Sonne umrundet. Durch die Entstehung der Planeten und der Sonne aus der flachen Staubscheibe unterscheiden sich die Bahnebenen der Planeten nicht allzu sehr von einander. Betrachtet man von der Erde aus andere Planeten (oder unseren Mond), dann müssen sie sich also - mehr oder weniger - auf oder nahe der Ekliptik bewegen. In unseren nördlichen Breiten stellt sich die Ekliptik als Bogen am südlichen Himmel dar, der von Osten kommend nach Süden ansteigt, um dann zum Westhorizont abzufallen. Bewohnerinnen und Bewohner der Südhalbkugel müssen sich nach Norden richten, um einen Blick auf die Ekliptik zu werfen. Die Zeit um die "Opposition" ist die günstigste Beobachtungszeit Wie wir auf der Erde die Bewegung eines Planeten in der Nähe der Ekliptik wahrnehmen, hängt davon ab, welchen Planeten wir betrachten. Am einfachsten sind die Bewegungen der außerhalb der Erdbahn liegenden Planeten Mars, Jupiter, Saturn, Uranus und Neptun zu verstehen. Wir sehen, wie sich diese Planeten vor dem Fixsternhimmel nahe der Ekliptik von West nach Ost beziehungsweise von "rechts nach links" bewegen. Wenn einer dieser Planeten seine Opposition erreicht (Abb. 2), ist er der Erde am nächsten und am hellsten. Er ist dann die ganze Nacht über am Himmel zu beobachten. Im Zeitraum um die Konjunktion herum befinden sich die Planeten am Taghimmel und sind nicht zu sehen. Rückläufigkeit und Schleifen Wenn ein äußerer Planet seine Opposition erreicht und auf der "Innenbahn von der Erde überholt" wird, ändert er für einige Zeit die Bewegungsrichtung relativ zum Fixsternhimmel und wird "rückläufig". Bedingt durch die Geometrie der Konstellationen beschreiben die Bahnen von Mars und der äußeren Planeten um die Zeit der Opposition herum "Schleifen" an der Himmelskugel. Dies wird durch einige Animationen im Internet sehr gut veranschaulicht: Untere und Obere Konjunktion Die innerhalb der Erdbahn kreisenden Planeten Merkur und Venus "pendeln" von uns aus gesehen zwischen der größten westlichen und der größten östlichen Elongation hin und her (Abb. 3). Im Gegensatz zu Mars und den äußeren Planeten ist bei Venus und Merkur zwischen der unteren und der oberen Konjunktion zu unterscheiden. In den Zeiten um beide Konjunktionen befinden sich die Planeten nahe bei der Sonne am Taghimmel und sind nicht zu beobachten (ähnlich der "Neumondsituation"). Planetentransite Wenn sich Merkur oder Venus zum Zeitpunkt der unteren Konjunktion genau zwischen Erde und Sonne befinden, ist ein sogenannter Transit zu beobachten: Der Planet wandert als schwarzes Scheibchen über die Sonnenscheibe. Aufgrund der nicht ganz identischen Bahnebenen der Planeten geschieht dies jedoch nur selten (aus demselben Grund haben wir auch nicht bei jedem Neumond eine Sonnenfinsternis). Abb. 4 zeigt den Venustransit von 2004, aufgenommen von einer Schülergruppe am Gymnasium Isernhagen (Niedersachsen). Der nächste Venustransit am 6. Juni 2012 ist, wenn die Sonne in Mitteleuropa aufgeht, schon fast beendet. Der nächste Merkurtransit am 09. Mai 2016 kann dagegen vollständig beobachtet werden. Phasen der Venus Im Gegensatz zu den anderen Planeten zeigen Venus und Merkur aufgrund ihrer Bewegung innerhalb der Erdbahn - wie der Mond - Phasen: Während der größten östlichen Elongation (siehe Abb. 3) ist eine "abnehmende Halbvenus" als auffälliger Abendstern zu beobachten. Zum Zeitpunkt der größten westlichen Elongation ist eine "zunehmende Halbvenus" als Morgenstern zu sehen. Vor oder nach der unteren Konjunktion erscheint Venus (kurz nach Sonnenuntergang beziehungsweise kurz vor Sonnenaufgang) als große, aber sehr schmale und wegen der geringen Leuchtkraft am noch hellen Himmel nicht ganz einfach zu findende Sichel (die Sichelform ist dann bereits in einem guten Feldstecher erkennbar). Um die obere Konjunktion herum erscheint das Planetenscheibchen dagegen voll beleuchtet, aber sehr klein (und ist dadurch ebenfalls in der Dämmerung nicht sehr auffällig). Durch das Zusammenspiel der Parameter Entfernung und Beleuchtung (Phase) des Planeten kommen die großen Helligkeitsschwankungen der Venus zustande. An einem bestimmten Punkt zwischen unterer und oberer Konjunktion erstrahlt Venus in ihrem "höchsten Glanz". Abb. 5 zeigt die Entwicklung der abnehmenden Venus bis hin zur scharfen Sichelform. Die Aufnahmen stammen von Jens Hackmann. Weitere Fotos finden Sie auf seiner Homepage: Schwer zu beobachten: Merkur Der flinke, uns auf seiner "Innenbahn" schnell überholende Merkur (wegen seiner Schnelligkeit hervorragend als "Götterbote" geeignet) zeigt die gleichen Phasen wie Venus, ist aber seltener und schwieriger zu beobachten: Er "ertrinkt" oft im Dunst der horizontnahen Luftschichten. Mit bloßem Auge sichtbar: Merkur, Venus, Mars, Jupiter und Saturn Neulinge tun sich häufig schwer damit, einen bestimmten Planeten am Himmel überhaupt zu finden und eindeutig zu erkennen. Es gibt jedoch gute Hilfsmittel, um dies auch unerfahrenen Beobachtern zu ermöglichen. Informationen zur Sichtbarkeit der Planeten am Abendhimmel finden Sie unter Links und Literatur. Zur Vorbereitung der Beobachtungen können mithilfe kostenfreier Planetarium-Software ( Stellarium , Cartes du Ciel ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Die schon im Altertum bekannten Planeten Merkur, Venus, Mars, Jupiter und Saturn sind mit bloßem Auge gut sichtbar. Die Beobachtung von Uranus und Neptun erfordert ein Fernrohr und den geübten Beobachter. Planeten halten sich nahe der Ekliptik auf und "flackern" nicht Planeten sucht man aus den bereits beschriebenen Gründen in der Nähe der Ekliptik, die als Bahn von Sonne und Mond am Himmel leicht auszumachen ist. Wenn man dann noch beachtet, dass Fixsterne funkeln, Planeten aber in einem ganz ruhigen Licht erscheinen und recht hell sind, sollte die letzte Hürde auf dem Weg zum Auffinden von Planeten leicht zu überwinden sein. Die Suchprozedur kann mit einer drehbaren Sternkarte unterstützt werden. Stellarium - vielseitig und einfach zu bedienen Die Himmelsrotation und die ihr überlagerten Planetenbewegungen lassen sich mit der Software Stellarium hervorragend simulieren und veranschaulichen. Stellarium ist ein kostenloses und einfach zu bedienendes Planetarium-Programm. Nach dem Programmstart gibt man Beobachtungsort und Beobachtungszeit ein (erster und zweiter Button der linken Menüleiste, die aufgeht, wenn man den Mauszeiger an den linken Bildschirmrand bewegt). Die Software zeigt dann den entsprechenden Himmelsanblick im Süden. Neben den Fixsternen werden auch die Planeten und wahlweise andere Objekte (Galaxien, Gasnebel, Sternhaufen) angezeigt. Um in andere Richtungen oder höhere Regionen über dem Horizont zu "blicken", bewegt man die Maus bei gedrückter linker Taste in die entsprechende Richtung. Drehen am Scrollrad der Maus vergrößert oder verkleinert die Himmelsdarstellung. Aufsuchkarten selbst erstellen und ausdrucken Zur Vorbereitung einer Planetenbeobachtung gibt man in Stellarium die geplante Beobachtungszeit ein, steuert mit der Maus wie beschrieben den gewünschten Himmelsausschnitt an und erzeugt per Screenshot einen Sternkartenausdruck, der den gewünschten Planeten mit seiner Fixsternumgebung zeigt. Ein solcher Ausdruck ist für wenig erfahrene Himmelsbeobachter die optimale Aufsuchhilfe für Planeten. Stellarium - ein virtuelles Planetarium für die Schule Die kostenfreie Planetarium-Software ermöglicht eine sehr realistische Darstellung der Himmelskugel. Beobachtungsort und -zeit können nach Wunsch festgelegt werden. Cartes du Ciel - Download Auch mit dieser freien Software lassen sich ausdruckbare Sternkarten erzeugen und durch vielfältige Einstellungsmöglichkeiten astronomische Beobachtungen vorbereiten. Planetensichtbarkeiten Für viele Schülerinnen und Schüler werden das Auffinden und die visuelle Beobachtung von Planeten schon eigenständige, neue Erfahrungen sein. Es liegt nahe, die dazu erworbenen Fertigkeiten zu einer vertieften Beschäftigung mit Planeten und dabei insbesondere mit deren Bahnen relativ zum Fixsternhimmel fruchtbar zu machen. Neben den von der Natur vorgegebenen Beobachtungsmöglichkeiten schränken schulische Rahmenbedingungen die Planetenauswahl und mögliche Beobachtungszeiträume ein. Lässt man nur Beobachtungen am nicht zu späten Abend zu, dann ergeben sich aus der Tabelle "Planetensichtbarkeit im Jahr 2010" (tabelle_planetensichtbarkeit_2010.pdf) fünf mit unterschiedlichen Farben hervorgehobene Projektmöglichkeiten: Merkur kann in den Tagen um den 4. April herum am Abendhimmel beobachtet werden (dunkelrot). Venus bietet im Zeitraum März bis September eine nur mäßige Abendsichtbarkeit (blau). Mars kann von Januar bis Mai gut verfolgt werden (orange). Jupiter bietet eine gute Abendsichtbarkeit von August bis Dezember (rot). Saturn lässt sich von Februar bis Juni beobachten (grün). Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Die diesjährige Abendsichtbarkeitsperiode der Venus ist wenig spektakulär. Gezielte abendliche Beobachtungsaufträge für Schülerinnen und Schüler ergeben sich im Jahr 2010 nicht, denn die Beobachtungsmöglichkeit ist im Wesentlichen auf die Zeit der späten Dämmerung beschränkt. Eine Stunde nach Sonnenuntergang erreicht die Venus auch im Zeitraum um die größte östliche Elongation Höhen von nur wenig mehr als 10 Grad über dem West- beziehungsweise Westnordwesthorizont. Ursache dafür ist der Umstand, dass im Frühjahr und Frühsommer der Winkel zwischen Ekliptik und Westhorizont sehr gering ist. Die scheinbare Bahn der Venus am Himmel liegt sehr flach und gewinnt deshalb während der kurzen Abendsichtbarkeit des Planeten kaum Höhe über dem Horizont. Weitere Informationen zur Venus finden Sie in dem Beitrag Venus - Beobachtung der Phasen unseres Nachbarn . Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Der Rote Planet ist in den ersten Monaten des Jahres 2010 eindeutig der "Star" am Abendhimmel. Die für schulische Beobachtungsprojekte günstige Zeit um die Marsopposition am 29. Januar 2010 reicht vom Jahresbeginn bis in den April/Mai. Ein großer Teil seiner diesjährigen Oppositionsschleife und seine Rückläufigkeit im Sternbild Krebs sind für irdische Beobachterinnen und Beobachter zur "Primetime" in den ersten Nachtstunden bequem zu verfolgen. Bis Ende März (Umstellung von der Winterzeit auf die Sommerzeit) können wegen des noch zeitigen Beginns der Dunkelheit auch jüngere Schülerinnen und Schüler in die Marsbeobachtung eingebunden werden. Abb. 8 (zur Vergrößerung bitte anklicken) zeigt die Bahn des Roten Planeten im Zeitraum Oktober 2009 bis Mai 2010. Weitere Hinweise zur Marsbeobachtung finden Sie auch in dem Artikel Mars - Beobachtung einer Planetenschleife . Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Pünktlich zum neuen Schuljahr und zum früheren Nachtbeginn wird Jupiter ab August/September für den Rest des Jahres zum dominierenden Objekt am Abendhimmel. Seine Opposition ist am 21. September, Rückläufigkeit und Oppositionsschleife im Sternbild Fische sind am frühen Abend leicht mit bloßem Auge zu beobachten. Beinahe zeitgleich mit Jupiter durchläuft im Jahr 2010 der Planet Uranus seine Opposition im selben Himmelsbereich. Um den 22. September nähern sich Jupiter und Uranus bis auf 0,8 Grad, also auf weniger als zwei Monddurchmesser! Auch unerfahrene Beobachterinnen und Beobachter können Uranus dann mit einfachsten Ferngläsern zweifelsfrei identifizieren. Allgemeine Tipps zur Beobachtung des Gasriesen finden Sie auch in dem Artikel Jupiter und der Tanz der Galileischen Monde . Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Von Februar bis Juni ist Saturn am Abendhimmel vertreten. Während dieses Zeitraums beschreibt er den rückläufigen Teil seiner Oppositionsschleife im Sternbild Jungfrau. Die Schleife hat eine Ausdehnung von nur etwa 6 Grad, was verglichen mit den gut 20 Grad bei der Marsschleife nicht sehr üppig ist. Daneben gewinnt Saturn zu den besten Abendzeiten mit etwa 20 bis 30 Grad keine wirklich großen Höhen über dem Horizont. Anregungen zur Beobachtung von Saturn finden Sie auch in dem Artikel Saturn - ein Blick auf den Ringplaneten vergisst man nicht . Die Planetenbahnen für das gesamte Jahr 2010 befinden sich in den entsprechenden Grafiken alle komplett über dem Horizont. Die Planetenbahnen in den mit der Software GUIDE 8.0 erstellten Grafiken (Merkur, Venus, Mars, Jupiter und Saturn) wurden nachträglich etwas stärker hervorgehoben. Den GUIDE-Karten liegen entsprechend gewählte Beobachtungszeiten zugrunde, welche man den Legenden links unten in den Abbildungen entnimmt. Genau denselben Himmelsausschnitt findet man über dem Horizont, wenn man 15 Tage später schon eine Stunde früher oder 15 Tage früher erst eine Stunde später beobachtet. Um für beliebige Daten und Uhrzeiten beurteilen zu können, ob ein bestimmter Planet hinreichend hoch über dem Horizont stehen wird, bedient man sich am einfachsten der kostenfreien Software Stellarium. Hinweise liefern die folgenden Beiträge: Erste Schritte zur Orientierung am Sternhimmel Mithilfe der Software Stellarium "experimentieren" Lernende am Rechner mit dem Sternhimmel, bevor sie eine drehbare Sternkarte basteln und erproben (Klasse 5-10). Mit Stellarium wird eine Sternkarte des Bereichs erzeugt, in dem sich der betrachtete Planet während der gesamten Beobachtungszeit aufhalten wird. In einem hinreichend großen Ausdruck der Sternkarte tragen die Schülerinnen und Schüler dann in geeigneten Zeitabständen die von ihnen per Augenschein bestimmten Positionen des beobachteten Planeten händisch ein. Die Sternkarte darf zu diesem Zweck natürlich nur Fixsterne und keine Planeten enthalten. Dazu entfernt man vor dem Ausdruck im Himmels- und Anzeige-Optionsfenster (dritter Button von oben in der linken Symbolleiste) die Häkchen in den entsprechenden Kontrollkästchen. Wenn man die mit Stellarium per Screenshot erstellten Sternkarten mit Bildbearbeitungssoftware invertiert, das heißt in eine Negativ-Darstellung umwandelt, erhält man Toner sparende Ausdrucke, in deren weißen Himmelshintergründen händische Ergänzungen leicht vorgenommen werden können. Die Positionen eines Planeten am Fixsternhimmel können zu verschiedenen Zeitpunkten fotografisch festgehalten werden. Nach dem Beobachtungszeitraum werden aus den Einzelbildern dann die Bahnen der Planeten am Himmel rekonstruiert. Anhaltspunkte für die Wahl der Aufnahmezeitpunkte können Sie für das Jahr 2010 den in diesem Beitrag zur Verfügung gestellten Himmelskarten entnehmen (siehe oben). Belichtungszeit, Blendenöffnung und Sensor-Empfindlichkeit Für das Fotografieren eignen sich insbesondere Digitalkameras, die manuell einstellbare Belichtungszeiten von einigen Sekunden erlauben. Man montiert die Kamera auf ein Stativ und wählt für erste Versuche eine möglichst kurze Brennweite (Weitwinkel). Dann belichtet man bei hoher Empfindlichkeit und größtmöglicher Blendenöffnung (also bei kleinster Blendenzahl) für etwa 10 Sekunden. Am besten stellt man den Selbstauslöser ein, damit die Kamera beim manuellen Auslösen nicht wackelt. Auf diese Art gewonnene Fotos zeigen schon deutlich mehr Sterne, als mit bloßem Auge sichtbar sind. Sternbilder sind für den Anfänger wegen der Vielzahl der Sterne auf solchen Bilder kaum zu erkennen. Da Digitalfotos sofort beurteilt werden können, können nach kurzer Probierphase Belichtungszeit, Blendenöffnung und Sensor-Empfindlichkeit so gewählt werden, dass nur die hellsten in den Sternkarten vorhandenen Sterne abgebildet werden. Brennweite und Bildausschnitt Man wählt für die (eventuell über Monate) geplante Aufnahmeserie durch Brennweitenvariation den Bildausschnitt so, dass der beobachtete Planet den "abgelichteten" Himmelsausschnitt im Beobachtungszeitraum nicht verlässt. Bei der Festlegung des sinnvollen Ausschnittes hilft wiederum Planetarium-Software. Alle Fotos einer Aufnahmeserie sollten mit ungefähr gleicher Brennweite aufgenommen werden. Die nach dem beschrieben Verfahren erhaltenen Fotos werden ungefähr so aussehen wie die Bilder in Abb. 9 (Platzhalter bitte anklicken). Die drei Darstellungen zeigen Saturn im Sternbild Löwe am 2. Februar, 23. April und 23. Mai 2009 (jeweils um 22 Uhr MEZ). Es handelt sich dabei um Screenshots aus dem Programm Stellarium. Saturn ist jeweils mit einem gelben "S" markiert. Solche Bilder - egal ob Screenshots oder Fotos - lassen sich im Prinzip mit jeder Bildbearbeitungssoftware durch Addition weitgehend passgenau übereinander legen. Sämtliche Fixsterne in den Bildern fallen bei der Addition zusammen. Der beobachtete Planet dagegen ändert mit jeder Aufnahme seine Position. Im Summenbild der drei Teilabbildungen aus Abb. 9 erscheinen daher die drei Planetenbilder als eine "Spur", mit der die Planetenbahn leicht zu rekonstruieren ist (siehe Abb. 10). Fitswork ist eine kostenlose Software, die speziell für die Bearbeitung astronomischer Aufnahmen entwickelt wurde und eine große Vielfalt an Bearbeitungs- und Auswertemöglichkeiten bietet. Bei der Überlagerung von Sternfeldaufnahmen mit Planeten geht man wie folgt vor: Man öffnet zwei der zu addieren Bilddateien. Dann identifiziert man zwei Sterne, die in beiden Bildern zu finden und eindeutig Bilder derselben Sterne sind. Die gewählten Sterne sollten nicht zu dicht beieinander liegen, da anhand ihrer Position beide Fotos vor der Addition so verschoben, gedreht, gestreckt oder gestaucht werden, dass alle Fixsterne möglichst passgenau übereinander liegen. Eventuelle Verzerrungen in den Bildern wegen unterschiedlicher Aufnahmebrennweiten werden dabei weitgehend ausgeglichen. Mit der linken Maustaste klickt man beide Sterne in beiden Bildern in derselben Reihenfolge an. Dabei ist es sinnvoll, die Vergrößerung der Bildschirmdarstellung zu erhöhen, um den Schwerpunkt eines Sternbilds gut zu treffen (Rechtsklick auf "Zoom" links unten im aktiven Bildfenster). Die Sterne werden bei dieser Markierung mit verschieden farbigen Kreuzen gekennzeichnet. Anschließend bringt man dasjenige Bild in den Vordergrund, dessen Format (Größe und Ausrichtung) man beibehalten möchte, und klickt dann im Menü "Bearbeiten" die Funktion "Bild addieren (mit Verschiebung)" an. Das entstehende Summenbild wird gespeichert. Um das nächste Bild zu addieren, wiederholt man einfach die Prozedur und speichert das neue Summenbild wieder ab. Prinzipiell lassen sich so beliebig viele Bilder überlagern. Abb. 10 (Platzhalter bitte anklicken) zeigt das Ergebnis der Überlagerung der Einzelbilder aus Abb. 9. Dabei wurde ein brauchbarer Ausschnitt mit dem kompletten Sternbild Löwe gewählt, der Bildkontrast bearbeitet und die Saturnpositionen mit den Ziffern 1 bis 3 versehen, die die Reihenfolge der Aufnahmen wiedergeben. Mehrfachbilder von Sternen im Randbereich der Abbildung sind auf verzerrt dargestellte Himmelsausschnitte durch die Software Stellarium zurückzuführen. Den Gestaltungsmöglichkeiten der Summenbilder (zum Beispiel Aufnahmedaten in die Beschriftung einbringen, Planetenbahnen einfügen) sind kaum Grenzen gesetzt. Mithilfe der Bilder im Ordner "saturn_addition.zip" (Bildbeispiele aus Abb. 9 und Abb. 10) können Sie oder Ihre Schülerinnen und Schüler die Prozedur der Bildaddition schon einmal als "Trockenübung" durchführen. Der Ordner enthält drei mit Stellarium erzeugte Screenshots, die den Planeten Saturn zu verschiedenen Zeitpunkten im Sternbild Löwe zeigen (1_saturn_02_feb_2009_22h.jpg, 2_saturn_23_apr_2009_22h.jpg, 3_saturn_23_mai_2009_22h.jpg). Außerdem enthält der Ordner das Ergebnis der ersten (12_addition_saturn.jpg) und der zweiten Bildaddition (123_addition_saturn.jpg) sowie ein mögliches Endergebnis: einen Bildausschnitt mit dem Sternbild Löwe und drei Positionen des Saturn. Aus einer genügend großen Anzahl von Einzelaufnahmen lässt sich so die Spur des Planeten durch das Sternbild rekonstruieren. Bei der Betrachtung aufgezeichneter Planetenbahnen wird man in jedem Fall erkennen, dass sich die Planeten am Fixsternhimmel nicht immer gleich schnell und nicht auf regelmäßigen Bögen bewegen. Von den für Bahnbeobachtungen gut geeigneten Planeten ist die Geschwindigkeit der Venus am größten. Aufnahmen im Abstand weniger Tage lassen Positionsänderungen bereits gut erkennen.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Erste Schritte zur Orientierung am Sternhimmel

Unterrichtseinheit

Die kostenfreie Planetarium-Software Stellarium und die hier bereit gestellten Materialien zum Basteln einer drehbaren Sternkarte bilden eine ideale Grundlage für den Einstieg in die Orientierung am Himmel. Viele Menschen, vor allem Kinder, sind vom Anblick des nächtlichen Sternenhimmels fasziniert. Nur wenige kennen jedoch die wichtigsten Sternbilder und die Möglichkeiten, deren Kommen und Gehen am Himmel zur räumlichen und zeitlichen Orientierung zu nutzen. Diese Unterrichtseinheit stellt Methoden und Materialien für eine solche Orientierung bereit. Im Unterricht entdecken die Schülerinnen und Schülern bei der spielerischen Arbeit mit der Software Stellarium die Sternbilder und die - je nach Jahreszeit und Beobachtungsort - unterschiedlichen Himmelsanblicke. Unterstützt von der drehbaren Sternkarte werden bei späteren Beobachtungen am realen Nachthimmel diese Aspekte wieder entdeckt. Mit älteren Schülerinnen und Schülern können sowohl mit Stellarium als auch mit drehbaren Sternkarten Betrachtungen zum äquatorialen Himmelskoordinatensystem angestellt werden. Stellarium Die Open Source Software Stellarium ist ein einfach zu bedienendes Hilfsmittel für erste Schritte zur Orientierung am Sternhimmel. Das Programm erlaubt es zum einen, die zufällige Anordnung der Sterne durch die bekannten Sternbilder mit der Merkhilfe "Sternbildlinien" zu strukturieren. Zum anderen ermöglicht es Stellarium, Veränderungen des sichtbaren Himmelsausschnitts in Abhängigkeit von der Beobachtungszeit und vom Beobachtungsort zu erkennen. Daneben kann Stellarium das in der Astronomie oft verwendete äquatoriale Himmelskoordinatensystem veranschaulichen. Die Drehbare Sternkarte zum selber Basteln Die Orientierung bei realen nächtlichen Himmelsbeobachtungen erfolgt zumeist nicht mittels Computer, sondern mit einer drehbaren Sternkarte. Eine solche Sternkarte wird von den Schülerinnen und Schülern im Verlauf der beschriebenen Unterrichtseinheit selbst hergestellt, ihre Handhabung wird geprobt, und die mit Stellarium gewonnenen Erkenntnisse werden am Original-Sternhimmel wieder entdeckt und nachvollzogen. "Trockenübungen" mit Stellarium Mithilfe von Stellarium "experimentieren" Schülerinnen und Schüler mit dem Himmel, lernen Sternbilder und das "bewegliche äquatoriale Koordinatensystem" der Himmelskugel kennen. Orientierung am Himmel mit der drehbaren Sternkarte Hier finden Sie Kopiervorlagen, mit denen Schülerinnen und Schüler eine eigene Sternkarte basteln können, sowie eine Bauanleitung und Hinweise zur Nutzung der Karte. Die Schülerinnen und Schüler sollen sich in die Planetarium-Software Stellarium einarbeiten. Sternbilder kennen lernen und diese später mit einer drehbaren Sternkarte am Abendhimmel wieder finden. den mit den Jahreszeiten wechselnden Himmelsanblick mit Stellarium entdecken und diesen Wechsel mit der drehbaren Sternkarte nachvollziehen. die Veränderung des Sternhimmels beim Wechsel des Beobachtungsortes erfahren. eine drehbare Sternkarte aus einfachen Vorlagen selbst herstellen. das Gradnetz des äquatorialen Koordinatensystems am Himmel kennen lernen. Thema Erste Schritte zur Orientierung am Sternhimmel Autor Peter Stinner Fächer Naturwissenschaften ("Nawi"), Geographie, Klassenprojekte Zielgruppe Klasse 5-10 Zeitraum etwa 2-3 Unterrichtsstunden Technische Voraussetzungen Computer für Einzel- und Partnerarbeit, im Idealfall Präsentationsrechner mit Beamer; Laminiergerät, Schere, Locheisen oder Lochzange (Durchmesser 4 mm) zur Herstellung drehbarer Sternkarten Software Stellarium (Planetarium-Software, kostenfreier Download) Den Tag zur Nacht machen Die Software Stellarium ist im Wesentlichen intuitiv bedienbar. Die wichtigsten Funktionen und die Menüsteuerung stellen wir Ihnen kurz im Bereich Fachmedien vor (siehe Stellarium ? ein virtuelles Planetarium für die Schule ). Nach dem Start zeigt Stellarium den der Systemzeit des Rechners entsprechenden Himmelsanblick. In der Schule wird dies normalerweise der Taghimmel sein. Die Sonne bewegt sich mit "realistischer" Geschwindigkeit, also sehr langsam. (Mehrfaches) Betätigen von Button 19 im unteren Menü der Software (Abb. 1, zur Vergrößerung bitte anklicken) beschleunigt die Himmelsbewegung. Mit Button 17 stellt man die Geschwindigkeit wieder auf "normal". Die Schülerinnen und Schüler werden sehen, wie Gestirne im Osten aufgehen, ihren Bahnbogen am Himmel beschreiben und im Westen untergehen. Mit Button 16 lässt sich dieser Vorgang rückwärts abspulen, Nummer 18 setzt den Himmelsanblick zurück auf die Systemzeit des Rechners. Zirkumpolarsterne im Visier Verkleinert man den Maßstab der Himmelsansicht (mit dem Scrollrad der Maus nach unten scrollen), dann erscheinen auch Sterne in größerer Höhe über dem Horizont. Die Schülerinnen und Schüler werden sehen, dass manche Sterne nie untergehen: die Zirkumpolarsterne. Bei unserer geographischen Breite von etwa 50 Grad sind dies alle die Sterne, die um weniger als 50 Grad vom Polarstern entfernt sind. Alles dreht sich um den Polarstern Um den kompletten sichtbaren Himmel darzustellen, scrollt man zunächst nach unten, bis das Bild sich nicht weiter verkleinert. Ziehen des Mauszeigers (bei gedrückter linker Maustaste!), ausgehend von der Bildschirmmitte um wenige Zentimeter nach unten, liefert dann die Projektion des gesamten Himmels auf einen Kreis. Man beschleunigt die Himmelsbewegung und erkennt sofort, dass der komplette Sternhimmel sich um einen über dem Nordhorizont befindlichen Stern dreht - den Polarstern. Der Polarstern ist entgegen landläufiger Meinung nicht der hellste Stern am Himmel und für Anfänger erst einmal gar nicht so leicht aufzufinden. Mithilfe der auffälligen Sternbilder Großer Wagen und Kassiopeia, die beide zirkumpolar und deshalb in jeder Nacht sichtbar sind, gelingt dies jedoch meist problemlos (Abb. 2). Der Polarstern weist in sehr guter Näherung die geographische Nordrichtung. Die Drehung der zirkumpolaren Sternbilder Kassiopeia und Großer Wagen wird sehr schön durch eine Animation bei Wikimedia Commons dargestellt, die auch als Grundlage für Abb. 2 verwendet wurde: Wikimedia Commons: Zirkumpolar ani.gif Animiertes GIF zur Bewegung der zirkumpolaren Sterne Sternbilder sind zufällige Anordnungen von Sternen im dreidimensionalen Raum, projiziert an die Oberfläche der scheinbaren "Himmelskugel". Sterne eines Sternbildes haben in der Regel ganz unterschiedliche Entfernungen von der Erde. Einige der wichtigsten Sternbilder begegneten uns oben bereits im Zusammenhang mit dem Aufsuchen des Polarsterns: Kassiopeia, Großer Wagen und Kleiner Wagen. Die beiden letzteren sind Teile der größeren Sternbilder Großer Bär und Kleiner Bär. Mit Button 1 in der unteren Menüleiste von Stellarium (siehe Abb. 1) lassen sich so genannte "Sternbildlinien" als Strukturierungs- und Merkhilfen einblenden. Button 2 liefert zusätzlich die Sternbildnamen und mit Nummer 3 kann man figürliche Darstellungen der Sternbilder einblenden. Der Wechsel der Jahreszeiten am Himmel Über den zweiten Button von oben in der linken Menüleiste (Abb. 3) kann man die Beobachtungszeit und damit den Himmelsanblick mit den Jahreszeiten variieren. Das unterschiedliche Aussehen des Sternenhimmels in verschiedenen Jahreszeiten, in denen verschiedene Konstellationen den Südhimmel dominieren, wird unmittelbar einsichtig: Frühling* Der Frühlingshimmel wird vom Sternbild Löwe geprägt. *Sommer* Das "Sommerdreieck" mit den hellsten Sternen aus Leier (Wega), Schwan (Deneb) und Adler (Atair) dominiert den Nachhimmel im Sommer. *Herbst* Die "Andromeda-Kette" mit dem "Pegasus-Quadrat" prägt den Anblick des Nachthimmels im Herbst. *Winter Neben dem Sternbild Orion sind die hellen Sterne des "Wintersechsecks" sehr auffällig (Capella im Fuhrmann, Aldebaran im Stier, Rigel im Orion, Sirius im Großen Hund, Prokyon im Kleinen Hund, Kastor und Pollux in den Zwillingen). Reise zu fernen Orten mit Stellarium Die Erklärung dieser jahreszeitlichen Änderungen erfordert einige Zeit und vertiefte Kenntnisse von Erdbahngeometrie und den Eigenschaften der Erdrotation. Hochinteressant ist es nun, die Schülerinnen und Schüler über geeignete Ortseingaben (oberes Icon in der linken Menüleiste, siehe Abb. 3) mit Stellarium in entfernte Länder - insbesondere solche der Südhalbkugel - "reisen" und sich vom dortigen Sternhimmel faszinieren zu lassen. Projiziert man das Gradnetz der Erde vom Erdmittelpunkt aus an die Himmelskugel, erhält man am Himmel das äquatoriale Koordinatensystem (Abb. 4). In Stellarium kann dieses der Himmelsdarstellung per Mausklick hinzugeschaltet werden (Button 4 der unteren Menüleiste, siehe Abb. 1). Das äquatoriale Koordinatensystem ist fest mit dem Himmel verbunden, rotiert also von der Erde aus gesehen um den Polarstern. Stellarium zeigt diese Rotation eindrucksvoll. Man spricht auch vom "beweglichen Äquatorialsystem". Die beiden Koordinaten heißen jetzt nicht mehr Länge und Breite, sondern Rektaszension (RA) und Deklination (DEC). Deklination Die Deklination wird wie auf der Erde in Winkelgraden von -90 Grad bis +90 Grad angegeben. Die Nulllinie der Deklinationsmessung ist der Himmelsäquator, also die zentrische Projektion des Erdäquators an die Himmelskugel. Rektaszension Die Rektaszension wird in Stunden und Minuten angegeben. Da 360 Grad in etwa 24 Stunden Rektaszension entsprechen, entspricht eine Stunde in Rektaszension einem Winkel von 15 Grad. Rektaszensionswerte steigen von West nach Ost. Der Nullpunkt der Rektaszensionsskala liegt im Sternbild Widder. Er ist der so genannte Frühlingspunkt, also der Punkt, in dem die Sonne zu Frühlingsbeginn am Himmel steht. Der Frühlingspunkt ist der Schnittpunkt vom Himmelsäquator mit der Ekliptik, der scheinbaren Bahn der Sonne am Himmel. Der zweite Schnittpunkt von Himmelsäquator und Ekliptik ist der Herbstpunkt. Zu den Zeitpunkten, an denen die Sonne in ihrem scheinbaren Lauf diese Schnittpunkte überquert, herrscht die Tagundnachtgleiche (Äquinoktium). Materialien Die Dateien "grundblatt_sternkarte.jpg", "deckblatt_sternkarte.jpg" und "planetenzeiger_sternkarte.jpg" sind für den Ausdruck auf DIN-A4-Papier beziehungsweise Folie ausgelegt. Die Grafiken sollten vor dem Ausdruck in ihren Größen nicht verändert werden, damit alle Teile später zusammen passen. Ausdrucken, Schneiden, Kleben und Laminieren Beim Erstellen einer drehbaren Sternkarte aus diesen Elementen gehen die Schülerinnen und Schüler wie folgt vor: Grundblatt Das Grundblatt wird auf gewöhnliches Papier farbig ausgedruckt und entlang des äußeren Kreises ausgeschnitten. Eine Laminierung (am besten mit 125 Mikrometer starkem Material) macht die Sternkarte feuchtigkeitsbeständig. Überstehende Laminierung schneidet man ab, lässt aber etwa fünf Millimeter über den äußeren Kreis des Grundblatts stehen. Deckblatt Das Deckblatt kopiert man auf möglichst kräftige, dicke Transparentfolie. Beide Teile werden längs der äußeren Begrenzungslinien ausgeschnitten und mit zweiseitigem Klebeband passgenau zusammengefügt. Dabei müssen sich die Teile knapp zwei Zentimeter überlappen. (Dafür hat sich zum Beispiel Doppelband-Fotostrip von Tesa bewährt.) Das Zusammenfügen der beiden Deckblattteile ist erfahrungsgemäß der einzige Bastelschritt, bei dem jüngere Schülerinnen und Schüler Hilfe benötigen. Planetenzeiger Die "Planetenzeiger" kopiert man ebenfalls auf Transparentfolie und schneidet den Ausdruck in die zehn vorgesehenen Streifen. Zur Versteifung werden die so erhaltenen Planetenzeiger laminiert. Montage der drehbaren Sternkarte Alle drei Teile werden nun mit einem Locheisen (Durchmesser vier Millimeter) oder einem ähnlichen Werkzeug gelocht und dann in der Reihenfolge Grundblatt-Deckblatt-Planetenzeiger mit einer Musterklammer oder einer Hohlniete drehbar verbunden. Beim Grundblatt geht das Loch genau durch den Polarstern in der Mitte, beim Deckblatt durch das Kreuz im Kreismittelpunkt und beim Planetenzeiger durch das "X" auf der Skala (etwa acht Millimeter oberhalb der 80-Grad-Marke). Einstellen von Datum und Uhrzeit Die PowerPoint-Präsentation "sternkarte_handhabung.ppt" erläutert das Einstellen der drehbaren Sternkarte nach Datum und Uhrzeit. Man dreht das Deckblatt so, dass das Datum auf dem Grundblatt und die Uhrzeit auf dem Deckblatt mit dem Zeitpunkt der Beobachtung übereinstimmen. Die PowerPoint-Präsentation zeigt dies beispielhaft für den 15. Juli um 24:00 Uhr und den 20. September um 01:00 Uhr. Der geschwärzte Teil des Deckblatts verdeckt nun den Teil des Sternenhimmels, der sich unter dem Horizont befindet, der also aktuell nicht sichtbar ist. Die beiden letzten PowerPoint-Folien illustrieren, wie die drehbare Sternkarte - je nach Beobachtungsrichtung - zu halten ist, damit der beobachtete Teil des Himmels genauso wie der entsprechende Bereich der Sternkarte orientiert ist. Simulationen mit der Sternkarte Eine "Reise" auf die Südhalbkugel der Erde (wie mit Stellarium) ist mit der drehbaren Sternkarte nicht möglich. Diese zeigt nur den Himmel für Orte mit etwa 50 Grad nördlicher Breite. Zwei Effekte, die die Schülerinnen und Schüler zuvor mit Stellarium kennen gelernt haben, können sie aber auch mit der drehbaren Sternkarte erneut simulieren: Himmelsdrehung Der sichtbare Himmelsausschnitt ändert sich beim Drehen des Deckblatts im Uhrzeigersinn, während man das Grundblatt fest hält. Man simuliert damit die scheinbare Himmelsdrehung. Wechsel der Jahreszeiten Dreht man nun das Grundblatt bei festem Deckblatt gegen den Uhrzeigersinn, dann erhält man einen Eindruck von der Änderung des sichtbaren Himmelsausschnitts im Laufe der Jahreszeiten. Unsere Sternkarte hat keine eigene Rektaszensionsskala. Jüngere Schülerinnen und Schüler würde dies nur verwirren. Es gibt aber einen eindeutigen Zusammenhang zwischen dem Rektaszensions-Wert eines Himmelsobjekts und dem Wert auf der Datumsskala des Sternkartengrundblatts. Dieser Zusammenhang ist in der Grafik "tabelle_umrechnung_RA_datum.jpg" in Tabellenform dargestellt. Will man diese Option nutzen, empfiehlt es sich einen Ausdruck der Tabelle vor dem Laminieren auf die Rückseite des Sternkarten-Grundblatts zu kleben. Zum Auffinden eines Himmelsobjekts nach Koordinaten stellt man zuerst den Planetenzeiger auf den Datumswert, der laut Tabelle dem Rektaszensionswert des Objekts entspricht. Beim Deklinationswert des Objekts auf dem Zeiger befindet sich dann das gesuchte Objekt auf der Sternkarte.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I

Saturn - einen Blick auf den Ringplaneten vergisst man nicht

Unterrichtseinheit

In der Unterrichtseinheit "Saturn" nehmen die Lernenden den Ringplaneten unter Beobachtung. Die Observation der Saturnringe mit eigenen Augen hinterlässt einen bleibenden Eindruck. Auch der außergewöhnliche Mond Titan kann mit einfachen Mitteln gesichtet werden. Ein Blick auf den Gasriesen lohnt sich besonders während der Monate um die jährlichen Oppositionen. Mit dem Erscheinungsbild des Saturn und seines eindrucksvollen Ringssystems sind wir bestens vertraut: Im Internet und in Fernsehsendungen begegnen uns immer wieder Bilder der Raumsonden Voyager und Cassini. Und trotzdem löst der Blick mit dem eigenen Auge auf das Original - auch in vergleichsweise kleinen Amateurgeräten - Verwunderung, Überraschung und Faszination aus. Zur Vorbereitung und Auswertung von Saturn-Beobachtungen steht eine ganze Palette digitaler Werkzeuge kostenfrei zur Verfügung. Der fachliche Hintergrund kann mithilfe von Internetrecherchen und interaktiven Online-Anwendungen im Computerraum oder am heimischen Rechner abwechslungsreich und auch spielerisch vertieft werden. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Die Beschäftigung mit dem Thema Saturn kann im Rahmen einer Astronomie AG oder des Differenzierungsunterrichts methodisch und inhaltlich sehr vielseitig gestaltet werden: Neben Internetrecherchen und der Nutzung des Rechners als Werkzeug gilt es die positiven Effekte eines gemeinsamen Naturerlebnisses mitzunehmen. Inhaltlich spannt sich der Bogen von den Beobachtungen und Zeichnungen Galileo Galileis (1564-1642) und Christiaan Huygens' (1629-1695) bis hin zur Landung einer Sonde auf der Oberfläche des Saturnmonds Titan im Jahr 2005 und den Ergebnissen der Cassini-Mission. Beobachtung der Saturnringe Was sieht man von den Ringen mit welcher Ausrüstung? Wie entstehen die verschiedenen Ringstellungen? Welche Ausstattung benötigt man für fotografische Dokumentationen? Der Saturnmond Titan Titan ist bereits mit leichtem Gerät sichtbar. Er ist der einzige Mond des Sonnensystems mit einer Atmosphäre. Dies macht ihn zum Spekulationsobjekt der Exobiologie. Virtuelle Exkursionen Mit Online-Anwendungen von ZDF und NASA können Schülerinnen und Schüler das Saturnsystem virtuell erkunden. Eigene Beobachtungen werden mit Stellarium vorbereitet. Die Schülerinnen und Schüler beobachten gemeinsam den Abendhimmel und finden mithilfe einer Aufsuchkarte (Planetariumsoftware) den Planeten Saturn. sehen mithilfe eines Spektivs (wie es zum Beispiel Hobby-Ornithologen verwenden) oder eines Amateurteleskops (Schulteleskop, Volkssternwarte) das Ringsystem des Planeten mit eigenen Augen. verstehen die Entwicklung der Ringöffnung im Laufe eines Saturnjahres und schulen so ihr räumliches Vorstellungsvermögen. identifizieren den Saturnmond Titan am Himmel und lernen die Ergebnisse der Huygens-Mission kennen. wissen, was Galileo Galilei (1564-1642) und Christiaan Huygens (1629-1695) mit den Teleskopen ihrer Zeit gesehen und wie sie ihre Beobachtungen interpretiert haben. informieren sich mithilfe von Internetrecherchen und interaktiven Online-Anwendungen über Saturn und Titan, seinen größten Mond. lernen Stellarium und Bildbearbeitungssoftware als Werkzeuge zur Vorbereitung kennen und nutzen diese. Zudem erlernen sie die Dokumentation und Auswertung astronomischer Beobachtungen. Der Besuch einer Volkssternwarte lohnt sich! Betrachtet man den gelblich leuchtenden Saturn in einem fest montierten Fernglas bei 15-facher Vergrößerung, kann man bei entsprechender Ringstellung bereits eine elliptische Form erkennen. Im Jahr der Veröffentlichung dieses Artikels hat sich sich dieser Effekt allerdings nicht eingestellt, denn zur Zeit der Opposition im Jahr 2010 beträgt die Ringöffnung nur 3,2 Prozent. Bei 40-facher bis 60-facher Vergrößerung sieht Saturn dann daher wie ein "Durchmesser-Symbol" aus - das Ringsystem erscheint als Strich. Dieser Anblick lässt sich bereits mit einem guten Spektiv erzielen, wie es von Hobby-Ornithologen verwendet wird. Eine Volkssternwarte in Ihrer Nähe finden Sie mithilfe des German Astronomical Directory: German Astronomical Directory (GAD) Hier finden Sie eine Zusammenstellung astronomischer Vereine, Sternwarten und Planetarien von David Przewozny. Form und Atmosphäre Eine Kantstellung der Ringe begünstigt die Wahrnehmung der abgeplatteten Gestalt des Planeten (siehe Abb. 1). Diese ist eine Folge der Kombination aus geringer mittlerer Dichte (in Wasser würde Saturn schwimmen) und schneller Rotation (ein Saturntag dauert weniger als elf Stunden). Der Äquatordurchmesser beträgt 120.000 Kilometer, der Poldurchmesser nur 108.000 Kilometer. Wolkenbänder sind in kleineren Amateurgeräten (ohne Bildbearbeitung) nicht zu erkennen. Das heißt aber nicht, dass es in der Saturnatmosphäre ruhig zugeht - hier treten Windgeschwindigkeiten von 1.800 Kilometern pro Stunde auf! Der Planet wendet uns seine Südhalbkugel maximal zu. Seine Ringe sind maximal geöffnet. Etwa 7,5 Jahre später blicken wir auf die Ebene der Ringe, die dann nur als Strich erscheinen und für kurze Zeit verschwinden. Nach weiteren etwa 7,5 Jahren wendet uns der der Planet seine Nordhalbkugel maximal zu, und die Ringe erscheinen wiederum weit geöffnet. In den nächsten Jahren schließen sich die Ringe für uns wieder, bis wir nach 7,5 Jahren wiederum ihre Kante betrachten. Danach öffnen sie sich und nach dreißig Jahren ist ein "Ringzyklus" vollendet: Saturn wendet uns wieder seine Südhalbkugel bei maximal geöffneten Ringen zu. Das gute alte Zeichnen trainiert wie kaum eine andere Übung die naturwissenschaftliche Grundfertigkeit des genauen Beobachtens. Das Zeichnen zwingt uns, wirklich genau hinzusehen und ermöglicht die Wahrnehmung vieler Details, die dem in der Regel flüchtigen ersten Blick fast immer entgehen. Zeichenstunden am Teleskop Lernende auf den Spuren Galileis: Objekte werden studiert und die naturwissenschaftlichen Grundtechniken des genauen Beobachtens und Protokollierens geübt. Im Rahmen der Beschäftigung mit dem Thema Saturn sollten die Schülerinnen und Schüler auch die Meilensteine der Saturnforschung kennen lernen und insbesondere wissen, was Galileo Galilei (1564-1642) und Christiaan Huygens (1629-1695) mit den Teleskopen ihrer Zeit gesehen und wie sie ihre Beobachtungen interpretiert haben. Informationen dazu bieten die folgenden Internetseiten: astronomy2009.org: Darstellung der Venusphasen von Galileo Galilei Die Darstellung von 1623 zeigt Saturn, Jupiter, Mars und die Phasen der Venus (aus: Il saggiatore, In Roma, appresso Giacomo Mascardi). Galilei deutete die Ringe als "Henkel". Astrolexikon: Die Erforschung des Saturn Meilensteine in der Saturnforschung; hier finden Sie unter anderem eine Skizze von Christiaan Huygens, der als erster die Natur der Saturnringe verstand. Titan ist schon in einem lichtstarken Feldstecher als leicht rötlicher Begleiter des Ringplaneten zu sehen. Mit einem Durchmesser von 5.150 Kilometern ist er nach dem Jupitermond Ganymed der zweitgrößte Mond im Sonnensystem. Auch die anderen größeren Saturnmonde, wie Dione und Rhea, sind für mittlere Amateurteleskope kein Problem. Insgesamt kennt man heute etwa 60 Saturntrabanten. Die Positionen der fünf hellsten Saturnmonde kann man über ein Applet auf der Webseite der Western Washington University für jeden gewünschten Zeitpunkt anzeigen lassen: Western Washington University Planetarium Das Java-Applet zeigt die Position der fünf größten Saturnmonde. Beachten Sie die verschiedenen Darstellungsmöglichkeiten („Direct view“, Inverted view“, „Mirror reversed“). Maßanfertigung von Himmelskarten Stellarium ist ein ideales Werkzeug zur Vorbereitung astronomischer Beobachtungen. Mit der kostenfreien und plattformunabhängigen Software können Sie den Sternhimmel zu jeder Zeit an jedem Ort simulieren. Abb. 11 zeigt als Beispiel einen Blick auf den Kölner Abendhimmel am 22. März 2010 um etwa 21:00 Uhr in Richtung Südosten. Klicken Sie zur Vergrößerung des Ausschnitts die Himmelskarte an. Saturn hat seine Opposition erreicht und ist unterhalb des Löwe in dem eher unscheinbaren Sternbild Jungfrau nicht zu verfehlen. Die astronomischen Jahrbücher informieren über die Positionen von Planeten und Monden: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Iridium-Flares: spektakuläre "Leuchtkugeln" am Himmel

Unterrichtseinheit

Dieser Unterrichtsvorschlag fokussiert Iridium Flares: Antennen der so genannten Iridium-Satelliten reflektieren das Sonnenlicht zur Erdoberfläche und können insbesondere in der Dämmerung außergewöhnliche Leuchterscheinungen erzeugen. So kann man auch an den langen Sommerabenden interessante - wenn auch nicht astronomische - Phänomene am Himmel beobachten. Erblickt man einen Iridium-Flare zufällig und unvorbereitet, kann einem schon etwas unheimlich zumute werden. Die fast spukhafte, etwa fünf bis zwanzig Sekunden andauernde Erscheinung beginnt mit einem punktförmigen Aufleuchten, das sich sekundenschnell verstärkt, dabei fast grell werden kann, und dann ebenso schnell wieder abklingt und verschwindet. Die Lichtquelle bewegt sich, wirkt aber nicht sternschnuppenartig. Wenn Sie so etwas schon einmal beobachtet haben, war wohl kein UFO oder Netzhautriss die Ursache, sondern die Reflexion des Sonnenlichts durch eine der stark reflektierenden Antennen eines Kommunikations-Satelliten. Ausweichobjekte für die kurzen Sommernächte Das Auftreten der hier vorgestellten nicht-astronomischen "Artefakte", die man zum Beispiel zurzeit der kurzen Nächte im Sommer alternativ zu astronomischen Objekten in der Dämmerung (oder sogar am Tag) mit dem bloßen Auge beobachten kann, lässt sich auf den Internetseiten "Heavens above" und "CalSky" (siehe Internetadressen) für jeden Beobachtungsort berechnen. So haben auch jüngere Schülerinnen und Schüler Gelegenheit, an Sommerabenden interessante Erscheinungen am Himmel zu beobachten, ohne sich die halbe Nacht um die Ohren schlagen zu müssen. Erstellung der Prognose Jüngeren Lernenden sollte die Erstellung der Flare-Prognosen in der Schule demonstriert und erläutert werden (Beamerpräsentation, Computerraum), damit diese gegebenenfalls am heimischen Rechner die Koordinaten ihres Standortes möglichst exakt eingeben können. Da die maximale Helligkeit der Flares nur in einem etwa zwei Kilometer schmalen Streifen zu sehen ist, kann eine typische "Schülerpopulation" die Helligkeit eines Flares sehr unterschiedlich wahrnehmen, wenn das Ereignis an verschiedenen Standorten beobachtet wird. Allgemeine Informationen und Tipps zum Fotografieren Informationen zu Entstehung, Häufigkeit und Helligkeit der "Leuchtkugeln" sowie Hinweise zur Fotografie von Iridium-Flares Die Schülerinnen und Schüler erhalten Kenntnis von der Existenz der Iridium-Satelliten. lernen Online-Rechner als Werkzeuge zur Vorhersage künstlicher Himmelserscheinungen kennen und nutzen. dokumentieren Iridium-Flares fotografisch (optional). Die Satelliten wurden für den Aufbau eines weltweiten Sprach- und Datenübermittlungssystem, das ohne Funkstationen auf dem Boden auskommt, in den Orbit geschossen. Ursprünglich waren 77 Satelliten geplant. 77 ist die Ordnungszahl des chemischen Elements Iridium, das der Namensgeber für das Projekt war. Zurzeit sind allerdings nur 66 Satelliten aktiv. Das System nahm 1998 den Betrieb auf und wurde wirtschaftlich schnell zum Flop - Ursachen waren hohe Gesprächskosten und teure Endgeräte. Nach dem Konkurs übernahm im Jahr 2001 die neu gegründete Firma Iridium Satellite LLC das System. Bis zu 1.000 Mal heller als Sirius Die Iridium-Satelliten tragen drei Antennen, die eine Länge von 188 Zentimetern und eine Breite von 86 Zentimetern haben. Diese kleinen, aber stark reflektierenden Flächen werfen, wenn sie im richtigen Winkel stehen, das Sonnenlicht als schmalen Lichtkegel auf die Erdoberfläche. Am Boden ist die Reflexion in einem Streifen von etwa zwei Kilometern mit maximaler Helligkeit zu beobachten. Ein Iridium-Flare kann dabei 1.000 Mal heller strahlen als Sirius, unser hellster Stern. Abbildung 1 (zur Vergrößerung anklicken) zeigt ein Foto von Claus Seifert. Zu sehen ist ein Flare des Iridiumsatteliten Nr. 70. Im Hintergrund befinden sich der Sternhaufen M 44 (Praesepe im Sternbild Krebs, rechts) und der Kopf des Sternbilds Löwe (links). Das Licht der Sonne kann auch über einen Umweg vom Mond zum Satelliten und von dort zur Erde gelenkt werden. Diese Flares sind jedoch entsprechend lichtschwach. Wann kann man Iridium-Flares beobachten? Wie alle Leuchterscheinungen, die von Reflexionen im Orbit verursacht werden, sind Iridium-Flares vorzugsweise am Abend (kurz nach Sonnenuntergang) sowie am frühen Morgen (kurz vor Sonnenaufgang) zu sehen. Aufgrund der hohen Umlaufbahn der Satelliten (780 Kilometer) können die Lichtblitze in den Sommermonaten während der gesamten Nacht auftreten. Sehr helle Flares können sich sogar gegen das Tageslicht durchsetzen, sind allerdings weniger beeindruckend als Flares in der Dämmerung oder bei Nacht. Wie oft sind Flares zu sehen? Bei 66 Satelliten ist die Wahrscheinlichkeit für die Chance auf ein Flare-Ereignis Nacht für Nacht (an jedem Ort) recht hoch - so lange nur das Wetter mitspielt. Etwa alle acht Minuten fliegt ein Satellit der Flotte auf einer der in Nord-Süd-Richtung verlaufenden Umlaufbahnen an derselben Stelle am Himmel vorbei. Im Schnitt kann man pro Nacht mehr als drei Iridium-Flares sehen, die heller sind als der Stern Vega (Leier) - immerhin der hellste Stern des Sommerdreiecks. Mit einer auf ein Stativ montierten digitalen oder analogen Spiegelreflexkamera (lichtstarke Objektive mit Festbrennweite sind von Vorteil) hat man gute Chancen, mit relativ einfachen Mitteln interessante Aufnahmen machen zu können. Wichtig bei der Flare-Fotografie ist ein Draht- oder Fernauslöser. Die Kamera muss zur vorherberechneten Zeit in die richtige Richtung und Höhe zeigen. Der Anstieg der Helligkeit eines Flares ist oft zu niedrig, um mit dem Auge erkennt zu werden. Um den Anfang des Schauspiels nicht zu verpassen, sollte man daher der Flare-Prognose "blind" vertrauen und zum Beispiel zehn bis fünfzehn Sekunden vor Erreichen der berechneten Maximalhelligkeit auslösen. Wenn man deutlich über die Flare-Zeit hinaus belichtet, hinterlassen auch die Sterne entsprechende Lichtspuren. Wie das Ergebnis aussehen kann, zeigt das Foto von Mario Weigand in Abbildung 2. Hilfreiche Tipps zur Flare-Fotografie erhält man in den diversen Astronomie-Foren.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Orientierung am Nachthimmel mithilfe digitaler Medien

Unterrichtseinheit

Im Rahmen dieser Unterrichtseinheit lernen die Schülerinnen und Schüler verschiedene Möglichkeiten kennen, sich am nächtlichen Sternhimmel zu orientieren. Mithilfe einer interaktiven Sternenbrille werden diese Aspekte bei späteren Beobachtungen am realen Nachthimmel praktisch erprobt und vertieft. Der Anblick des nächtlichen Sternhimmels hat die Menschheit seit Anbeginn der Zeit fasziniert. Die ersten Hochkulturen, zum Beispiel die Maya, beschäftigten eine eigene Kaste von Gelehrten, die sich ausschließlich mit dem Sternhimmel befassten. Die Astronomie gilt deshalb als eine der ältesten Wissenschaften. Für die Kulturen Mesopotamiens und Griechenlands waren die Sterne der Sitz der Götter und die Sternbilder sind eng mit der griechischen Mythologie verknüpft. Heute kennen nur noch wenige die Sternbilder und die Möglichkeiten, den nächtlichen Himmel zur räumlichen Orientierung zu nutzen. Orientierungshilfen entdecken und nutzen Der Himmel bietet viele Orientierungshilfen. Anhand der Mondbahn, der Planeten und der Sternbilder lässt sich, eine klare Nacht vorausgesetzt, die eigene Position bestimmen. Mithilfe der interaktiven Sternenbrille "Universe2go" werden Sternbilder, Planeten oder Deep-Sky-Objekte direkt in das Blickfeld der Schülerinnen und Schüler eingeblendet. Bei der spielerischen Arbeit mit der Sternenbrille und der dazugehörigen Smartphone-App entdecken sie unterschiedliche Sternbilder und lernen, sich daran zu orientieren. Ein Quizmodus kann zur individuellen Lernkontrolle genutzt werden. Ablauf Ablauf der Unterrichtseinheit "Orientierung am Nachthimmel" Im Rahmen einer nächtlichen Exkursion erarbeiten die Schülerinnen und Schüler in Gruppen Aufgaben rund um den Themenkomplex räumliche Orientierung. Hintergrundinformationen Hintergrundinformationen und Vorbereitung Bevor Sternenbrille und App am nächtlichen Sternhimmel eingesetzt werden, sollten eine paar Vorbereitungen getroffen werden. Fachkompetenz Die Schülerinnen und Schüler können sich mithilfe verschiedener Sternbilder am nächtlichen Himmel orientieren. können den zeitlichen Verlauf des Mondes am Nachthimmel analysieren und dabei ihre eigene Position bestimmen. sind in der Lage, die wichtigsten Sternbilder mit der interaktiven Brille "Universe2go" am Nachthimmel wiederzufinden. können sich den tages- und jahreszeitlichen Wechsel des Sternhimmels mithilfe von Universe2go erschließen. sind in der Lage, den Himmels mithilfe eines äquatorialen Koordinatensystems sinnvoll einzuteilen. Medienkompetenz Die Schülerinnen und Schüler können digitale Medien zur Orientierung am Nachthimmel nutzen. sind in der Lage, eine Smartphone-App für Augmented Reality anzuwenden. Sozialkompetenz Die Schülerinnen und Schüler arbeiten und recherchieren in Partner- beziehungsweise Gruppenarbeit. Motivierendes Bildmaterial Als Einstieg in die Unterrichtseinheit bietet es sich an, den Schülerinnen und Schülern zunächst mittels Beamer einige besonders schöne oder beeindruckende Sternbilder zu präsentieren. Passende Public-Domain-Bilder finden Sie zum Beispiel bei der Foto-Community Pixabay . Stummer Impuls Eine weitere motivierende Einstiegsmöglichkeit besteht in einem ersten Kennenlernen des Universe2go bei Tage. Phantasiereise oder Abenteuergeschichte Für Schülerinnen und Schüler der Sekundarstufe I eignen sich auch eine Phantasiereise durchs Weltall oder eine Abenteuergeschichte als motivierender Einstieg ins Thema. Götter- und Heldensagen Auch die griechischen Götter- und Heldensagen - von denen die Namensgebung der Sternbilder stammt - können insbesondere jüngere Schülerinnen und Schüler motivieren, sich mit Sternbildern zu befassen. Einführung in den Themenkomplex "Räumliche Orientierung bei Nacht" Der Nachthimmel bietet viele Orientierungshilfen. Mithilfe der Mondbahn, der Planeten und der Sternbilder lässt sich, eine klare Nacht vorausgesetzt, die eigene Position bestimmen: Mond und Mondphasen Relativ einfach lässt sich die Himmelsrichtung bei Vollmond bestimmen. Der Vollmond steht nämlich der Sonne genau gegenüber. Der Mond befindet sich um 18 Uhr im Osten, um 24 Uhr im Süden und um 6 Uhr im Westen (Winterzeit). Bei Sommerzeit muss man eine Stunde abziehen. Sternbilder Anhand von Sternbildern kann man Himmelsrichtungen gut bestimmen. Ein wichtiges Sternbild des Nordhimmels ist der große Bär. Sieben sehr helle Sterne im großen Bären bilden den großen Wagen, er sieht aus wie ein viereckiger Kasten mit Griff. Wenn man die beiden Sterne, die die Rückseite des Kastens bilden, durch eine gedachte Linie verbindet und diese Linie fünf Mal in die gleiche Richtung nach oben verlängert, gelangt man zu an einem leuchtenden Stern. Das ist der Polarstern. Er zeigt ziemlich genau an, wo Norden ist. Planeten Nach dem Mond ist die Venus das hellste Objekt am nächtlichen Himmel. Die Venus ist nur am Morgen- oder Abendhimmel sichtbar und nie gegen Mitternacht. Die Venus befindet sich abends in west-nordwestlicher Richtung und morgens in nordost-östlicher Richtung. Der Planet Jupiter ist nachts ebenfalls mit bloßem Auge zu erkennen. Die sichtbaren Planeten wandern im Laufe von 24 Stunden auf einem Bogen von Osten über Süden nach Westen am Himmel. Universe2go: Auch bei Tageslicht einsetzbar Lehrkräfte können Universe2go im Klassensatz kostenfrei ausleihen . Die Universe2go-Leihgeräte sind mit frontseitigen, abnehmbaren Blenden ausgestattet, sodass die App auch problemlos bei Tageslicht verwendet werden kann - in diesem Fall natürlich ohne echte Sterne im Bild. Dies erleichtert die Einarbeitung im Klassenzimmer vor der Exkursion bei Dunkelheit. Die Unterrichtseinheit ist somit auch ohne nächtliche Exkursion durchführbar. Die App installieren und ausprobieren Als Vorbereitung auf die nächtliche Exkursion setzen sich die Schülerinnen und Schüler in Partnerarbeit mit der Universe2go-App auseinander und installieren diese auf ihren eigenen Smartphones (" BYOD - Bring Your Own Device"). Die App ist ein einfach zu bedienendes Hilfsmittel für erste Schritte zur Orientierung am Sternhimmel. Nach der Hintergrundinformationen und Vorbereitung steht dem Einsatz nichts mehr im Wege. Die Lernenden testen die App und machen sich mit der interaktiven Brille vertraut. Die Lehrkraft gibt Hilfestellungen, falls erforderlich. Universe2go als mobiles Planetarium Bei einer nächtlichen Exkursion kommt Universe2Go als mobiles Planetarium zum Einsatz. Universe2go führt die Nutzerinnen und Nutzer anhand zahlreicher Audiosequenzen durch den Sternhimmel. Je nach Zielgruppe können unterschiedliche Modi gewählt werden. Für den ersten Einsatz mit einer Schulklasse empfiehlt sich der "Starter-Modus". Wird dabei ein Objekt am Himmel länger als zwei Sekunden angepeilt, startet automatisch ein erklärender Audiotext. Gruppenarbeit mit Universe2Go Mithilfe von Universe2Go bearbeiten die Schülerinnen und Schüler in arbeitsgleicher Gruppenarbeit acht Übungsaufgaben rund um den Themenkomplex "Räumliche Orientierung bei Nacht". Bei der Einteilung der Gruppen sollte darauf geachtet werden, dass in jeder Gruppe mindestens ein besonders interessierter beziehungsweise schneller Lernender dabei ist. Die Ergebnisse werden in der Nachbereitung im Plenum vorgestellt, verglichen und gesichert. Es bietet sich an, die Klasse in vier Gruppen aufzuteilen, sodass in der Nachbereitung jeweils zwei Aufgaben pro Gruppe vorgestellt werden können. Zusatzaufgabe für Flitzer Auch die Position des Mondes kann zur Orientierung hilfreich sein. Die Zusatzaufgabe für besonders schnelle Gruppen auf dem Arbeitsblatt thematisiert die Orientierung mit dem Mond und dient zur inneren Differenzierung. Da die Berechnungen etwas aufwendiger sind, eignet es sich für die interessierten Schülerinnen und Schüler. Individuelle Lernkontrolle mittels Quiz Am Ende der Exkursion kann der Quizmodus von Universe2go zur individuellen Lernkontrolle genutzt werden. Der Sternhimmel bietet sich geradezu an, um an einem Sternenquiz teilzunehmen. Wo ist das Sternbild "Schwan"? Wo die "nördliche Krone"? Man hat jeweils drei Versuche, um das gesuchte Sternbild am Nachthimmel zu finden. Präsentation der Ergebnisse Die in der Erarbeitungsphase individuell von den Gruppen erarbeiteten Ergebnisse werden auf Gruppenplakaten festgehalten und nun im Plenum präsentiert. Um Wiederholungen zu vermeiden, stellt jede Gruppe ihre Ergebnisse zu jeweils zwei der Aufgaben vor. Sicherung im Plenum Zur Vertiefung und Sicherung des Gelernten werden die Gruppenergebnisse noch einmal gemeinsam im Plenum besprochen und verglichen. Die Ergebnisse werden gesammelt, generalisiert und auf einem neuen Plakat als Gesamtergebnis der Klasse festgehalten. Reflexion: Abschlussdiskussion (optional) Univers2go ist ein gutes Beispiel für Augmented Reality . Weitere Anwendungen von Augmented Reality sind zum Beispiel "Google Glass" oder "Head-up-Displays" in Kraftfahrzeugen und Flugzeugen. Abschließend kann - wenn noch Zeit bleibt - über diese moderne Technologie diskutiert werden: Welche sozialen Auswirkungen wird der Einsatz dieser Technik haben? Ihr eigenes Universe2go können Sie im Klassensatz kostenfrei ausleihen . Mit dem Ausleihen von Universe2go erhalten Sie auch die Lizenz zur Nutzung der dazugehörigen App. Den Freischaltcode finden Sie in der Verpackung. Technische Voraussetzungen Die App Universe2go wird von folgenden Betriebssystemen unterstützt: Android Version 10.0 oder höher Apple iOS Betriebsystem 12.0 oder höher Die Größe des Smartphones darf die Maße von 147 mal 74 mal 11 mm nicht überschreiten. Die exakten Maße finden Sie auch in der Betriebsanleitung Ihres Smartphones. Eine Liste getesteter Smartphones steht auf der Internet-Seite des Herstellers zur Verfügung. Installation und erste Schritte Es ist empfehlenswert, die App vor dem Einsatz im Freien auf den Smartphones zu installieren. Die Software ist in den App Stores von Google Play und iTunes zu finden. Die deutsche Version hat 322 MB (vor der Installation Speicherplatz prüfen!). Positionieren Sie das Smartphone möglichst in der Mitte der Brille und passen Sie das Passepartout dementsprechend an. Eine ausführliche Beschreibung finden Sie in der mitgelieferten Anleitung des Herstellers. Danach muss das Smartphone nicht mehr aus der Brille entnommen werden. Die Steuerung über Kopfbewegung sollte vor dem ersten Einsatz geübt werden. Die Auswahl erfolgt über "Kopf zur Seite neigen". Die Lautstärke der Smartphones der Schülerinnen und Schüler sollte bei Partner- oder Gruppenarbeit reduziert werden. Kalibrierung Die Bildschirm-Kalibrierung justiert das Smartphone an der Brille und muss nur einmal ausgeführt werden. Soll sie ein weiteres Mal ausgeführt werden, muss dazu in der App die Menü-Option "Einstellungen" und dann unter "Allgemein" das Häkchen "Kalibrierung zurücksetzen" gewählt werden. Anschließend kann das Planetarium gestartet werden. Der Audiotext "Hilfe-Audio zurücksetzen" sollte ebenfalls aktiviert werden. Vor jedem Wechsel muss die Brille unbedingt individuell für jede Nutzerin und jeden Nutzer angepasst werden. Dazu muss eine Sternenkalibrierung durchgeführt werden. Das Smartphone muss hierfür nicht entnommen werden: Richten Sie die Brille nach unten zum Boden und starten Sie so den Menü-Modus. Wählen Sie hier "Sternenkalibrierung" aus und folgen Sie den Anweisungen. Im Display erscheint nun der Zielkreis, der auf einen hellen Stern ausgerichtet werden muss. Halten Sie das Objekt dann für etwa zwei Sekunden im Zielkreis.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Beobachtung von Kleinplaneten - Beispiel Vesta

Unterrichtseinheit

Am Beispiel der Opposition des Planatoiden Vesta im Jahr 2010 wird dargestellt, wie die seltene Chance, einen Kleinplaneten (fast) mit bloßem Auge sehen zu können, für ein schulisches Beobachtungsprojekt genutzt werden kann. Asteroiden (Kleinplaneten, Planetoiden) kennt man üblicherweise nur als Strichspuren auf länger belichteten Himmelsfotos. Pro Jahr werden im Mittel nur um die 20 von ihnen so hell, dass man sie mit einem großen Fernglas sehen kann. Darunter nimmt der Kleinplanet Vesta eine Sonderstellung ein: Bei einer optimalen Opposition kann er eine Helligkeit von etwa sechster Größenklasse (6 mag) erreichen, sodass er unter sehr dunklem Himmel gerade noch mit bloßem Auge erkennbar ist. Bei weniger guten Sichtbedingungen, mit denen sich Beobachterinnen und Beobachter in Deutschland meist abfinden müssen, genügt aber schon ein einfacher Feldstecher, um Vesta entdecken zu können. Mithilfe von Sternkartenausdrucken oder einer einfachen Foto-Ausrüstung kann man die Bewegung von Vesta relativ zu den Fixsternen verfolgen und dokumentieren. Mit kostenfreier Software lässt sich die Bewegung des Planetoiden mit einem Blink-Komparator erkennen und als GIF-Animation visualisieren. Die dazu in diesem Beitrag vorgestellten Methoden sind natürlich auch zur Verfolgung anderer bewegter Himmelsobjekte geeignet (Mond, "normale" Planeten, Kometen). Die mittlere synodische Periode, also die Zeit von einer Opposition zur nächsten, beträgt bei Vesta etwa 504 Tage. Informationen zur Sichtbarkeit von Vesta und anderen Kleinplaneten finden Sie unter Links und Literatur . Ein Projekt zur Beobachtung und Dokumentation der Bewegung des Kleinplaneten Vesta kann sich über einige Wochen erstrecken. Aber schon innerhalb eines Tages kann die Bewegung von Vesta nachgewiesen werden. Sinnvoll sind auch einzelne Beobachtungsabende mit Schülerinnen und Schülern zum Auffinden von Vesta und zum Kennenlernen der Sternbilder in ihrer Umgebung auf der Ekliptik. Planeten, Zwergplaneten und Kleinkörper Worin unterscheiden sich nach der Definition der Internationalen Astronomischen Union Planeten von Zwergplaneten? Was fällt unter den Begriff "Kleinkörper im Sonnensystem"? Kleinkörper im Sonnensystem Kurze Informationen zum Asteroidengürtel und den Trojanern sowie zum Kuipergürtel und zur Oortschen Wolke jenseits der Neptunbahn Vesta und ihre Opposition im Februar 2010 Allgemeine Hinweise zur Erforschung der Kleinplaneten sowie eine Lichtkurve und eine Sternkarte mit der Oppositionsschleife von Vesta Tipps und Materialien zur Beobachtung & Auswertung Sternkarten zum Download, Fototipps und Kurzanleitungen zur Nutzung von Blink-Komparatoren und GIF-Animationen bei der Beobachtung von (Klein-)Planeten Ergebnisse der fotografischen Dokumentation Neben Fotos der 2010er Opposition von Vesta finden Sie hier auch Hinweise zur Aufnahmetechnik und zur Bildbearbeitung. Die Schülerinnen und Schüler sollen die Kleinplanetengürtel im Sonnensystem kennen lernen. einen Asteroiden während seiner Opposition am Sternhimmel visuell auffinden. die Bewegung eines Asteroiden relativ zum Fixsternhimmel fotografisch dokumentieren. Software ("Blink-Komparator") zum Aufspüren von bewegten Himmelsobjekten nutzen. aus einer über mehrere Tage aufgenommen Fotosequenz eine GIF-Animation erstellen, die die Bewegung des Kleinplaneten zeigt. Thema Beobachtung von Kleinplaneten - Beispiel Vesta Autor Peter Stinner Fächer Astronomie, Geographie, Naturwissenschaften ("NaWi"), Astronomie-AGs, Klassenprojekte Zielgruppe Klasse 8 bis Jahrgangsstufe 13 Zeitraum variabel, einzelne Beobachtungsabende oder Beobachtungsprojekte über mehrere Wochen Technische Voraussetzungen Feldstecher (8 bis 10-fache Vergrößerung) oder Spektiv; Computer für die Einzel- und Partnerarbeit bei der Beobachtungsvorbereitung (Planetarium-Software) sowie für die Arbeit mit einem Blink-Komparator und für das Erstellen von GIF-Animationen; digitale Spiegelreflexkamera mit Fotostativ, eventuell genügt auch eine einfache digitale Sucherkamera. Software Planetarium-Software, zum Beispiel Stellarium (kostenfreier Download); Astroart als Blink-Komparator (kostenfreier Download der Demoversion), GiftedMotion zur Konstruktion animierter GIF-Grafiken (kostenloser Download) Planeten Im Jahr 2006 hat die Internationale Astronomische Union (IAU) die unsere Sonne umkreisenden Körper durch präzise Begriffsdefinitionen neu geordnet. Planeten sind demnach Himmelskörper, die über eine ausreichend große Masse verfügen, um durch ihre Eigengravitation eine annähernd runde Form auszubilden (hydrostatisches Gleichgewicht). Daneben müssen Planeten durch ihre Gravitationskraft die Umgebung ihrer Bahn von anderen Objekten "freigeräumt" haben, das heißt, es dürfen keine weiteren Körper auf ähnlichen Umlaufbahnen vorkommen. Da Pluto letztere Bedingung nicht erfüllt - er ist eines von vielen Objekten im Kuipergürtel jenseits der Neptunbahn - wurde er vom Planeten zum Zwergplaneten "degradiert". Zwergplaneten Vertreter der Gattung Zwergplanet haben zwar aufgrund ihrer ausreichend großen Massen eine annähernd runde Form ausbilden können, waren aber nicht in der Lage, die Umgebungen ihrer Bahnen von anderen Körpern zu bereinigen. Zwergplaneten sind demnach Ceres (ein ehemals als Planetoid klassifiziertes Objekt des Asteroidengürtels zwischen Mars und Jupiter), der "Ex-Planet" Pluto (ohne seinen Begleiter Charon) und Eris (ein Objekt, das drei Mal weiter von der Sonne entfernt ist als Pluto). Die neuen Großteleskope und verbesserte Beobachtungstechniken lassen die Entdeckung weiterer Zwergplaneten für die nahe Zukunft erwarten. Zu diesen Objekten zählen Himmelskörper, die nicht der Definition eines Planeten oder Zwergplaneten entsprechen, aber die Sonne umkreisen: Kometen Asteroiden und Kuipergürtelobjekte (identisch zu Kleinplaneten, Planetoiden), die nicht Zwergplaneten oder Planeten sind Meteoroiden (treten diese Kleinkörper in die Erdatmosphäre ein, erzeugen sie die als Meteore bekannten Leuchterscheinungen; erreichen sie die Erdoberfläche, werden sie als Meteorite bezeichnet) Monde, die die Planeten umkreisen, bilden eine eigene Objektklasse. Der Asteroidengürtel zwischen Mars und Jupiter 90 Prozent der Planetoiden diesseits der Neptunbahn befinden sich im Asteroiden- oder Hauptgürtel. Das ist der Bereich des Sonnensystems zwischen den Bahnen von Mars und Jupiter. Im Mittel ist Mars etwa 1,5 Astronomische Einheiten (AE) von der Sonne entfernt. Der durchschnittliche Abstand zwischen Jupiter und Sonne beträgt etwa 5,2 AE. Eine "Astronomische Einheit" entspricht der mittleren Entfernung Sonne-Erde (etwa 150 Millionen Kilometer). "Bauschutt" des Sonnensystems Die frühere Vorstellung, der Asteroidengürtel sei in der Entwicklungsgeschichte des Sonnensystems durch das Zerbersten eines größeren Planeten entstanden, ist heute überholt. Man geht vielmehr davon aus, dass die Gravitationskräfte von Jupiter ein Zusammenballen der Asteroiden zu einem Planeten verhindert haben. "Typische" Asteroiden beschreiben Bahnen, die weder die Mars- noch die Jupiterbahn kreuzen. Trojaner Die Trojaner-Planetoiden bewegen sich auf der Jupiterbahn. Die eine "Population" folgt dem Gasriesen um etwa 60 Grad nach, die andere eilt ihm um 60 Grad voraus. Jenseits der Neptunbahn befindet sich nahe der Ebene der Ekliptik und in einer Entfernung von ungefähr 30 bis 50 Astronomischen Einheiten zur Sonne der Kuipergürtel. Man schätzt, dass er mehr als 70.000 Objekte mit Durchmessern von mehr 100 Kilometern enthält. Der Kuipergürtel gilt als Ursprungsort von Kometen mit einer mittleren Periodenlänge. Die Ausdehnung der Oortschen Wolke liegt in der Größenordnung von etwa 300.000 Astronomischen Einheiten. Die Bahnebenen ihrer Objekte sind vollkommen unregelmäßig verteilt. Die Oortsche Wolke umgibt unser Sonnensystem daher im Gegensatz zum Kuipergürtel kugelschalenförmig. Die Zahl ihrer Objekte wird auf bis zu eine Billion geschätzt. Die Oortsche Wolke gilt als Ursprungsort langperiodischer Kometen. Oortsche Wolke und Kuipergürtel gehen vermutlich ineinander über. Vesta gehört zu einer Gruppe von Objekten, deren eindeutige Zuordnung zur Gattung der "Zwergplaneten" oder "Kleinkörper" auf der Basis der verfügbaren Daten zurzeit noch nicht möglich ist. Zu dieser Gruppe gehören unter anderem folgende Objekte: Objekte des Asteroidengürtels Vesta, Pallas und Hygeia Objekte des Kuipergürtels Orcus, Quaoar, Sedna und Varuna Bilder des Hubble-Weltraumteleskops Abb. 4 zeigt eine Aufnahme des Hubble-Weltraumteleskops von Vesta (oben links) und ein daraus abgeleitetes Computer-Modell (rechts). Das untere Bild stellt ein aus den Aufnahmen abgeleitetes Höhenprofil der Oberfläche dar. Höher gelegene Bereiche erscheinen weiß und rot, tiefere blau bis violett. Raumsonden besuchen Asteroiden Der Asteroid (243) Ida erhielt im Jahr 1993 Besuch von der Erde: Auf ihrem Weg zum Jupiter passierte die Raumsonde Galileo den Asteroiden und übermittelte bei dieser Gelegenheit Bilder. Diese zeigen einen sehr unregelmäßig geformten Kleinkörper von etwa 60 Kilometern Länge mit einer "mondartigen", von Kratern zernarbten Oberfläche. Zu Vesta ist zurzeit eine Sonde unterwegs. Sie ist das erste Ziel der Raumsonde Dawn, die am 27. September 2007 gestartet wurde und Vesta im August 2011 erreichen soll. Die Sonde wird in eine Umlaufbahn um Vesta einschwenken und den Planetoiden über mehrere Monate erkunden. Danach wird Dawn den Zwergplaneten Ceres erforschen. Wikipedia: Raumsonde Dawn Dawn ist die erste Raumsonde, deren Hauptaufgabe die Untersuchung von Objekten des Asteroidengürtels ist. Die astronomische Helligkeitseinheit "Magnitude" Helle Objekte haben kleine Magnituden, schwache dagegen große. Die Helligkeit des Sterns Vega ist definitionsgemäß 0,0 mag. Ein Stern mit 1,0 mag ist etwa um den Faktor 2,5 lichtschwächer als Vega, ein Objekt wie Vesta mit etwa 6 mag etwa um den Faktor 250 (250 = 2,5^6). Helligkeitskurve Das Perihel ist der sonnennächste, das Aphel der sonnenfernste Punkt eines die Sonne umkreisenden Objekts. Befindet sich ein Planet oder Planetoid zum Zeitpunkt seiner Opposition im Perihel, spricht man von einer Perihel-Opposition. Von der Erde aus betrachtet erreicht die scheinbare Helligkeit des Objekts dann ihr Maximum. Mit einer Magnitude von 5,4 ist Vesta bei Perihel-Oppositionen unter günstigen Bedingungen mit bloßem Auge erkennbar. Bei der Opposition in der Nacht vom 16. auf den 17. Februar 2010 erreichte Vesta immerhin 6,4 mag und gelangte damit in den Grenzbereich der visuellen Erkennbarkeit. Abb. 6 (Platzhalter bitte anklicken) zeigt die Lichtkurve des Kleinplaneten. Im Zeitraum von Dezember 2009 bis April 2010 war Vesta mit einfachen Feldstechern gut erkennbar. Oppositionsschleife In den Tagen um seine Opposition herum fand man den Asteroid problemlos am Himmel, denn er hielt sich dann sehr nahe beim markanten Stern Algieba im Sternbild Löwe auf (Abb. 7, Platzhalter bitte anklicken). An den markierten Positionen war der Planetoid jeweils zum ersten Tag des Monats beziehungsweise zur Monatsmitte zu finden. Da das Sternbild Löwe Mitte Februar schon bald nach Einbruch der Dunkelheit hinreichend hoch am Himmel steht, waren die Bedingungen für schulische Vesta-Beobachtungsprojekte in den ersten Monaten des Jahres 2010 ideal. Die mittlere synodische Periode, also die Zeit von einer Opposition zur nächsten, beträgt bei Vesta etwa 504 Tage. Die nächsten Oppositionstermine finden Sie bei Wikipedia: "Herantasten" über den Löwen Die Tage um die Vesta-Opposition herum waren frei von störendem Mondlicht, denn am 14. Februar 2010 war Neumond. Mit etwas Glück konnte Vesta dann mit bloßem Auge gesichtet werden. Beim Aufsuchen des Planetoiden helfen Himmelskarten wie "uebersicht_loewe_algieba.jpg", die den Sternhimmel am 16. Februar 2010 um 21:00 Uhr Mitteleuropäischer Zeit (MEZ) zeigt. Schülerinnen und Schüler konnten damit die markante Figur des Löwen über dem Osthorizont schnell finden und auch Algieba, den "Halsstern" des Löwen, identifizieren. Der "Halsstern" Algieba In der Nähe von Algieba hielt sich Vesta auf - vor dem 16. Februar links unterhalb des Sterns, danach rechts oberhalb davon. Die vergrößerte Ausschnittkarte in der "ausschnitt_algieba.jpg" (Grenzgröße: 7,0 mag) half bei der Identifizierung von Vesta: Mit einer Helligkeit von gut 6 mag hob sich der Asteroid eindeutig von den schwächsten der auf der Karte verzeichneten Sternen ab. Einfacher ausgedrückt: Das Objekt in der Nähe von Algieba, welches in der Sternkarte "ausschnitt_algieba.jpg" nicht verzeichnet ist, war Vesta. Feldstecher, Stativ, Spektiv Unter aufgehelltem Himmel in der Nähe von Ortschaften ist Vesta nicht mit bloßem Auge aufzufinden. Mit einem einfachen Feldstecher ist der Asteroid allerdings auch dort bereits gut zu entdecken. Als hilfreich erweist sich dabei die Montierung des Feldstechers auf ein Fotostativ. Ohne Verwendung einer solchen Beobachtungshilfe kann das Bild unruhig sein und heftig wackeln. Steht kein Stativ zur Verfügung, sollte man die Ellenbogen bei der Feldstecherbeobachtung auf ein Fensterbrett, einen Tisch oder eine Mauer aufstützen um ein ruhiges und gut zu beurteilendes Bild zu sehen. Gut geeignet sind auch Spektive (15 bis 60-fache Vergrößerung), wie sie von vielen Hobby-Ornithologen verwendet werden. Eintragen der Vesta-Positionen in eine Sternkarte Wenn die Schülerinnen und Schüler bei jeder Sichtung von Vesta deren Position in eine Sternkarte eintragen, können sie daraus die Oppositionsschleife des Himmelskörpers rekonstruieren. Für händische Einträge sollten Negativ-Sternkarten wie "ausschnitt_algieba_negativ.jpg" verwendet werden. Abb. 8 zeigt einen Ausschnitt aus dieser Karte. Der Himmelshintergrund ist weiß gehalten, die Sterne sind als schwarze Kreise dargestellt. Ihre Helligkeit wird durch die verschieden großen Kreisdurchmesser veranschaulicht. Technische Ausrüstung Für eine anschauliche und dauerhafte Dokumentation der Bewegung des Kleinplaneten bieten sich die Möglichkeiten der digitalen Fotografie an. Die erforderliche technische Ausrüstung ist recht einfach. Eine auf einem Fotostativ fest montierte digitale Spiegelreflexkamera liefert ausgezeichnete Ergebnisse. Die inzwischen weitverbreiteten Kameras der unteren Preisklasse enthalten Sensoren der Größe von 23 mal 15 Millimeter, was etwa dem halben Kleinbildformat entspricht. Ein Objektiv von 50 Millimetern Brennweite erfasst einen Himmelsausschnitt mit einer Diagonalen von etwa 25 Grad. Damit wird das Sternbild Löwe formatfüllend erfasst. Unter bestimmten Umständen sind auch preiswerte digitale Sucherkameras brauchbar. Belichtungszeit und Blendenöffnung müssen allerdings manuell einstellbar sein. Außerdem muss die Autofokusfunktion ein Fokussieren an hellen Sternen erlauben. Belichtungszeit, Blende, Empfindlichkeit Bei Belichtungszeiten von bis zu 30 Sekunden macht sich die Himmelsdrehung kaum bemerkbar - die Bilder der Sterne weichen daher nur leicht von der Kreisform ab. Bei einer Belichtungszeit von 30 Sekunden, einer Blende von 2,5 und einer Empfindlichkeit ISO 1600 bildet man bereits Sterne jenseits der Magnitude 9 ab. Vesta war Mitte Februar 2010 mit etwa 6 mag um ein Mehrfaches heller, also auch mit lichtschwächeren Objektiven unproblematisch abzubilden. Längere Brennweiten liefern kleinere, vergrößerte Bildausschnitte, bringen aber unweigerlich strichförmige Sternabbildungen mit sich. Dieser Effekt tritt - als lediglich ästhetische Einschränkung - auch dann ein, wenn man mit weniger lichtstarken Objektiven länger belichten muss. Zum Aufsuchen des Planetoiden Vesta auf den selbst gemachten Fotos vergleicht man die Region, in der sich der Kleinplanet aufhält, mit den Karten virtueller Planetarien, die den Himmelsanblick zum Zeitpunkt des Fotografierens simulieren ( Stellarium oder Cartes du Ciel ). Um die Bewegung von Vesta relativ zum Fixsternhimmel zu veranschaulichen, werden zwei oder mehrere Fotos von unterschiedlichen Beobachtungstagen benötigt. Diese werden mit dem Auge oder mithilfe eines sogenannten Blink-Komparators verglichen. Die Einzelbilder können auch zu einer GIF-Animation weiterverarbeitet werden. Was macht ein Blink-Komparator? Ein Blink-Komparator dient dem Vergleich zweier Fotografien: Er spürt Himmelsobjekte auf, die in der zwischen den Aufnahmen liegenden Zeit ihre Position verändert haben. Die beiden zu vergleichenden Aufnahmen werden "passend" übereinandergelegt und in schneller Folge abwechselnd sichtbar gemacht. So machen sich Asteroiden und Kometen aufgrund Ihrer Bewegung vor dem unbewegten Fixsternhintergrund durch ein Hin- und Herspringen bemerkbar. Die kostenlose Demoversion der Software Astroart enthält einen solchen Blink-Komparator. Astroart Hier können Sie die Demoversion der Bildbearbeitungssoftware mit Blink-Komparator-Funktion kostenfrei herunterladen. Trockenübungen mit AstroArt Das ZIP-Archiv "bilder_blink_komparator_animation.zip" enthält die Grafiken "vesta_11_02_2010_22h.jpg" und "vesta_21_02_2010_22h.jpg". Sie wurden mit der Planetarium-Software Stellarium erzeugt und zeigen Himmelsauschnitte um den Stern Algieba im Sternbild Löwe am 11. und 21. Februar 2010 um 22.00 Uhr. Mithilfe dieser Bilder können sich Lehrpersonen und Lernende mit den Funktionen des Blink-Komparators von AstroArt in einer "Trockenübung" vertraut machen. Dazu werden beide Bilder in Astroart geöffnet, nachdem im Fenster "Öffnen" der Dateityp von "FITS" auf "jpg" umgestellt wurde. Im "View"-Menü wählen Sie das Schaltfeld "Blink" (Abb. 9, linker roter Pfeil im Astroart-Screenshot; Platzhalter bitte anklicken). Im Vordergrund werden jetzt abwechselnd die beiden geöffneten Bilder eingeblendet. Mithilfe der Schaltfelder im zusätzlich erschienen kleinen Fenster (oben rechts in Abb. 9) können die normalerweise etwas gegeneinander verschobenen Bilder aufeinander zentriert werden. Am einfachsten erledigt man dies mit einem Mausklick auf das im "Blink"-Fenster" durch den rechten roten Pfeil markierte Schaltfeld. Alternativ können die Bilder auch mithilfe der vier Pfeiltasten ausgerichtet werden. Fixsterne erscheinen jetzt beim Blinken stets an (nahezu) derselben Position. Bewegte Objekte wie Vesta springen dagegen bei jedem Bildwechsel hin und her. GiftedMotion - kostenfrei und einfach zu bedienen Um die Bewegung von Vesta oder anderer Himmelsobjekte per Blink-Komparator zu veranschaulichen, muss jedes Mal die Software Astroart gestartet, die Bilder geladen und der Komparator aktiviert werden. Zudem sind die Bilder dann noch auszurichten. Diesen mehrfachen Aufwand erspart man sich, wenn man die Bewegung des Zielobjekts in einer animierten Grafik "konserviert". Dazu bietet sich die intuitiv zu bedienende und kostenfreie Software GiftedMotion an. Abb. 10 zeigt ein Endergebnis: Die Animation wurde aus drei Stellarium-Screenshots erstellt (einzelbilder_animation.zip). Sie zeigen die Positionen von Vesta zu drei verschiedenen Zeitpunkten und damit die Bewegung des Kleinplaneten vor dem Fixsternhintergrund. Der helle Stern in der Bildmitte ist der "Halsstern" des Löwen, Algieba. Erstellung der Animation Zuerst werden die zu der Animation zu verarbeitenden Bilder vorbereitet: Durch Drehen werden alle Fotos so ausgerichtet, dass sie denselben Himmelsausschnitt zeigen. Dieser Schritt kann entfallen, wenn schon beim Fotografieren durch eine geeignete Ausrichtung der Kamera für eine einheitliche Bildausrichtung gesorgt wurde. Dann schneidet man aus allen Bildern den für die Animation vorgesehen Bereich möglichst genau gleich aus. Die so entstanden Bilder werden mit GiftedMotion geöffnet (Abb. 11, Schaltfläche 1). Mit den grünen Pfeilen wird die Bildfolge in der Animation festgelegt. "X Offset" und "Y Offset" ermöglichen Verschiebungen der einzelnen Bilder gegeneinander. Die "Zeit (ms)"-Eingabe bestimmt, wie lange das jeweils markierte Bild in jedem Animationsdurchlauf erscheint. Schaltfläche 3 startet die Animation, mit Schaltfläche 4 kann sie zur weiteren Bearbeitung angehalten werden. Mit Schaltfläche 5 erfolgt die endgültige Speicherung der fertigen Animation als animierte GIF-Datei. Eine solche Animation kann ohne spezielle Software per Doppelklick aktiviert werden. Bevor die Animation schließlich exportiert wird, können unter "Settings" (Schaltfläche 2) noch verschiedene Einstellungen vorgenommen werden. Die 2010er Opposition des Kleinplaneten Vesta ist Geschichte. Die hier vorgestellten Ergebnisse sollen als Anregung für vergleichbare Beobachtungen dienen. An den Abenden des 16. und des 18. Februar war der Himmel im Westerwald nur gering bewölkt, und am 20. Februar gab es größere Wolkenlücken. So konnte die Bewegung von Vesta in der Nähe von "Algieba", dem Halsstern des Löwen, fotografisch verfolgt werden. Das in Abb. 12 (Platzhalter bitte anklicken) gezeigte Foto entstand in der Oppositionsnacht am 16. Februar 2010 zwischen 20:33 Uhr und 20:44 Uhr. Zu besseren Orientierung sind einige helle Sterne im Sternbild Löwe mit Namen versehen. Zusätzlich wurde das Bild um die üblichen Sternbildlinien ergänzt. Dadurch lässt sich das Foto besser dem aufgenommenen Himmelsausschnitt zuordnen (Abb. 13). Bei der Dokumentation eigener Beobachtungen sollte der kleine Himmelsausschnitt mit dem Zielobjekt auch in einen größeren "Kontext" gesetzt werden. Abb. 13 zeigt, wie dies aussehen kann. Der Himmelsausschnitt, den das Foto aus Abb. 12 zeigt, ist in Abb. 13 mit einem gelben Rahmen markiert. Der orange umrandete Ausschnitt mit Algieba und Vesta ist der Himmelsbereich, der auch in Abb. 14 und 15 eingegangen ist. Der Sternhimmel im Hintergrund wurde mit der Planetarium-Software Stellarium erzeugt. Die Bildfolge in Abb. 14 veranschaulicht die Bewegung von Vesta über einen Zeitraum von vier Tagen: Neben einem Ausschnitt aus Abb. 12 vom 16. Februar 2010 findet man entsprechende Bildausschnitte aus Aufnahmen von 18. und vom 20. Februar. Alle drei Einzelbilder wurden etwa um dieselbe Uhrzeit aufgenommen. Vesta ist jeweils mit einem Kreis gekennzeichnet. Gleiches gilt für die animierte GIF-Grafik in Abb. 15. Kamera und Filter Die für die Abb. 12 bis 15 verwendeten Himmelsfotos wurden mit vergleichsweise einfachen technischen Mitteln aufgenommen. Eine digitale Spiegelreflexkamera (Canon EOS1000D, Objektiv EF 50mm f/1,8) war auf einem gewöhnlichen Fotostativ montiert. Zur Verbesserung der Abbildungsqualität wurde auf Blende 2,5 leicht abgeblendet. Fokussiert wurde per Notebook und Live-View der Kamera. Ein Astronomik-CLS-Filter ("City Light Supression"-Filter) der Firma Gerd Neumann blendete die künstliche Himmelsaufhellung durch weitgehende Blockierung der Linien von Quecksilber- und Natriumdampflampen teilweise aus. Ohne CLS-Filter hätten die sehr schwachen Sterne zwar nicht erfasst werden können, an der eindeutigen Darstellung von Vesta hätte sich aber nichts geändert. Zur Rauschminderung wurde nach jeder Aufnahme kameraintern ein Dunkelbild subtrahiert. Belichtungszeit, Empfindlichkeit, Bildbearbeitung Mit einer Belichtungszeit von sechs Sekunden wurden bei einer Empfindlichkeit von ISO 1600 bereits Sterne abgebildet, die mit bloßem Auge nicht mehr sichtbar sind. Durch die kurze Belichtungszeit erscheinen die Sterne im Bild noch punktförmig. Sternstrichspuren infolge der Himmelsdrehung wurden so vermieden. Abb. 12 ist das Ergebnis der Bildaddition von 40 Aufnahmen (je sechs Sekunden Belichtungszeit) mit der kostenfreien Software Fitswork. Damit ergab sich ein 240 Sekunden lang belichtetes Bild, ohne dass die Sternabbildungen zu Strichen wurden. Mittels Bildbearbeitung (hier Adobe Photoshop Elements 2.0) erfolgten Kontrastanhebung, Farbstichkorrektur, Erstellen von Bildausschnitten sowie deren Drehung für die Abb. 13 bis Abb. 15. Auslösung und Fokussierung ohne Kamera-Software Mit Komfortverlust beim Fotografieren kann auf die Timer-Steuerung per Kamera-Software vom Notebook aus verzichtet werden. Man muss dann nur mehrfach per Hand auslösen, zur Vermeidung von Verwackelungen am besten mit Auslöseverzögerung per Selbstauslöserfunktion der Kamera. Bei Kameras ohne Live-View, das heißt, ohne Möglichkeit der Fokussierung an einem Echtzeitbild, fokussiert man per Autofokus an einem hellen Objekt (zum Beispiel dem Mond oder einer Straßenlampe), um dann die Kamera auf das zu fotografierende Sternfeld zu schwenken und die Aufnahmeserie zu starten. Vergleicht man die Positionen von Vesta zu ein und derselben Zeit auf einem Foto (Abb. 16, links) und im entsprechen Screenshot der Software Stellarium (Abb. 16, rechts), dann fällt sofort auf, dass sich Vesta an unterschiedlichen Orten befindet. Die Fotografie zeigt die reale Vesta-Position. Die Darstellung bewegter Objekte mit Stellarium kann also fehlerhaft sein. In Abb. 16 weichen die Vesta-Positionen um etwa 0,2 Grad voneinander ab. Dies entspricht fast einem halben Monddurchmesser. Um die Oppositionszeit benötigt Vesta laut Stellarium immerhin mehr als 15 Stunden, um sich um 0,2 Grad weiter zu bewegen. Wenn man die Beobachtung bewegter Objekte mit Stellarium vorbereitet, sollte man sich also auf diese mögliche Fehlerquelle einstellen - spätestens dann, wenn der gesuchte Himmelskörper nicht an der vorhergesagten Position zu finden ist. Internetadressen Beobachtungen von Kleinplaneten sollten Sie auf die Zeiträume um deren Oppositionen legen: Vesta Mit zirka 516 Kilometern mittlerem Durchmesser ist Vesta der zweitgrößte Asteroid und drittgrößte Himmelskörper im Asteroiden-Hauptgürtel. Pallas Mit einem mittleren Durchmesser von 546 Kilometern ist Pallas der größte Asteroid und der zweitgrößte Himmelskörper im Asteroiden-Hauptgürtel. Juno Dieser Asteroid des Asteroiden-Hauptgürtels wurde als dritter Asteroid entdeckt und nach der höchsten römischen Göttin benannt. Ceres (Zwergplanet) Der Zwergplanet mit einem Äquatordurchmesser von 975 Kilometern ist das größte Objekt im Asteroiden-Hauptgürtel. Literatur Die astronomischen Jahrbücher informieren über die aktuellen Sichtbarkeiten und weitere Kleinplaneten: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE