• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Fotosynthese

Unterrichtseinheit

In diesen Unterrichtsstunden zum Thema Fotosynthese erarbeiten die Schülerinnen und Schüler anhand eines Erklär-Videos und Arbeitsblättern die Fotosynthesegleichung und den Ort der Fotosynthese. Außerdem befassen sie sich mit künstlicher Fotosynthese. Weiterführend beschäftigen sie sich mit dem Lichtabsorptionsspektrum von Chlorophyll sowie dem Grobschema der lichtabhängigen Teilreaktion.Die Lernenden erarbeiten anhand des Materials zunächst grundlegendes Wissen über die Fotosynthese und ihre Bedeutung. Dazu stellen sie die Fotosynthesegleichung als Wortgleichung sowie als chemische Gleichung dar. Darüber hinaus beschäftigen sie sich mit dem Ort der Fotosynthese und erkennen, warum Blätter grün sind. Optional kann das Thema der Lichtabsorption von Chlorophyll vertieft werden. Eine weitere Vertiefung findet statt, indem die Lernenden sich den Aufbau von Chloroplasten und das Grobschema der lichtabhängigen Teilreaktion mithilfe weiterführender Erklär-Videos erarbeiten. Sie lernen außerdem die Begriffe "künstliche Fotosynthese" und "Photokatalysatoren" kennen und stellen damit verbundene Zukunftsvisionen, aber auch mögliche Probleme dar. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträ gertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Fotosynthese im Unterricht Ohne die Fotosyntheseleistung wäre ein Leben auf der Erde nicht möglich – daher ist die Behandlung der Fotosynthese im Fach Biologie von besonderer Bedeutung. Aufgrund der biochemischen Vorgänge ist das Thema auch für das Fach Chemie relevant. Das Thema Fotosynthese findet sich in den Lehrplänen der Sekundarstufe I in der Unterrichtsreihe zum Lebenszyklus der Blütenpflanzen (als Wortgleichung) sowie in der Unterrichtsreihe zu Zellen und Gewebe (in ausführlicherer Form) wieder. In der Sekundarstufe II werden die Kenntnisse zur Fotosynthese – besonders auf biochemischer Ebene – vertieft. Vorkenntnisse Es wird kein spezielles Fachwissen zum Thema Fotosynthese vorausgesetzt, allerdings sollten die Schülerinnen und Schüler ab der Mittelstufe mit den chemischen Symbolen sowie dem Aufbau der Zelle vertraut sein. Die Schülerinnen und Schüler können sich mithilfe des Erklär-Videos zur Fotosynthese sowohl die Wort- als auch die chemische Gleichung erarbeiten. Das Unterrichtsmaterial bietet außerdem die Möglichkeit, das Lichtabsorptionsspektrum von Chlorophyll und – für den Einsatz in der Oberstufe – das Grobschema der lichtabhängigen Teilreaktion nachzuvollziehen. Des Weiteren bietet das Erklär-Video Einblicke in die Möglichkeiten und Probleme künstlicher Fotosynthese, sodass auch hier kein Vorwissen notwendig ist. Didaktische Analyse Das Unterrichtsmaterial zur Fotosynthese ist als erste intensivere Auseinandersetzung mit dem Thema (Sekundarstufe I) beziehungsweise als Wiederholung (Sekundarstufe II) konzipiert. Durch die Konfrontation mit einer bedeutsamen Aussage soll zunächst das Interesse am Thema Fotosynthese und der damit verknüpften Bedeutung für das Leben auf der Erde geweckt werden. Die Schülerinnen und Schüler gewinnen einen ersten Eindruck über die Fotosynthesegleichung in Worten und chemischen Symbolen. Anschließend erfahren sie, wo die Fotosynthese abläuft und wie Blätter zu ihrer Grünfärbung kommen, ehe sie sich mit der Relevanz der künstlich hergestellten Fotosynthese für die Zukunft beschäftigen. In der Oberstufe wird den Schülerinnen und Schülern die Möglichkeit gegeben, wesentliche Grundlagen der lichtabhängigen Teilreaktion zu erarbeiten, ohne jedoch ins Detail zu gehen. Eine vertiefte Behandlung der lichtabhängigen Teilreaktion sowie eine weiterführende Behandlung der Dunkelreaktion sollten im Anschluss stattfinden. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz wird eine hohe Schüleraktivität erreicht. Das Video als Medium erhält das durch den Einstieg geweckte Interesse am Thema Fotosynthese aufrecht. Schwierige Arbeitsaufträge werden durch Partnerarbeiten aufgefangen, und Diskussionsrunden zum Wissensaustausch und zur Wissenserweiterung finden im Plenum statt. Durch Vertiefungsaufgaben kann bei Bedarf eine Binnendifferenzierung beziehungsweise eine Weiterarbeit in der Oberstufe erfolgen. Fachkompetenz Die Schülerinnen und Schüler erarbeiten sich aus dem Unterrichtsmaterial die Fotosyntheseleistung und den Ort der Fotosynthese. lernen den Begriff der künstlichen Fotosynthese kennen und erarbeiten sich – anhand des Materials oder unter Einbeziehung von Vorkenntnissen – Zukunftsvisionen und mögliche Probleme der künstlichen Fotosynthese. präsentieren ihre Ergebnisse unter Verwendung der Fach- und Symbolsprache. Medienkompetenz Die Schülerinnen und Schüler können das in den Videos präsentierte Wissen nach Relevanz filtern und strukturiert darstellen. können aus informationsreichen und komplexen Vorträgen wesentliche Sachverhalte notieren und auf Abbildungen übertragen. Sozialkompetenz Die Schülerinnen und Schülerarbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken durch die geschützte Atmosphäre in Partnerarbeitsphasen ihr Selbstkonzept. diskutieren in Partner- oder Gruppenarbeiten und sind dabei in der Lage, ihre Meinung unter Nutzung von Fachwissen und Fachbegriffen begründet zu äußern. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Tierische und pflanzliche Zelle: Bau und Vergleich

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zu Tierzellen und Pflanzenzellen lernen die Schülerinnen und Schüler den Aufbau und die Zellbestandteile der zwei Zelltypen kennen. Anschließend vergleichen sie tierische und pflanzliche Zellen miteinander, um Unterschiede und Gemeinsamkeiten festzustellen. Optionale weiterführende Aufgaben und Spiele können der Festigung des Wissens dienen. Jedes Lebewesen ist aus Zellen aufgebaut, die die kleinste lebende Einheit unseres Seins darstellen. Der Aufbau und die Funktion der einzelnen Bestandteile einer Zelle sind daher ein relevantes Thema im Fach Biologie. Für das Verständnis weiterer biologischer Vorgänge ist ein Vorwissen über den Zellaufbau und über die Unterschiede zwischen tierischen und pflanzlichen Zellen unerlässlich (zum Beispiel zur Beantwortung von Fragen wie: "Warum wird Salat welk?", "Warum darf ich kein destilliertes Wasser und kein Salzwasser trinken?", "Wie und wo findet die Fotosynthese statt?"). Die Unterrichtseinheit "Tierische und pflanzliche Zelle: Bau und Vergleich" für den Biologieunterricht in der Sekundarstufe I ist auf ein bis zwei Unterrichtsstunden ausgelegt. Mithilfe der vertiefenden Aufgaben kann die Einheit auf bis zu vier Stunden ausgedehnt werden. Zum Einstieg in die Unterrichtsstunde erhalten die Schülerinnen und Schüler einen Lehrerimpuls ("Was ist eigentlich die kleinste Einheit, aus der wir aufgebaut sind?"), gefolgt von einem Bildimpuls (Bild von Mensch und von Tier). So werden sie zur Äußerung von ersten Vermutungen über den Vergleich von menschlichen und tierischen Zellen angeregt. Die Lehrkraft kann dies mit der Frage einleiten: "Gibt es Unterschiede in den Zellen von Mensch und Tier?". Anschließend wird zunächst die Pflanzenzelle näher betrachtet: Die Schülerinnen und Schüler erhalten Informationen über die Zellbestandteile und beschriften die Pflanzenzelle. Dann beschriften sie die Tierzelle und können im Anschluss daran Tier- und Pflanzenzellen miteinander vergleichen. Schnelle Schülerinnen und Schüler können eine zusätzliche Knobelaufgabe lösen. Zur Festigung dienen ein Domino-Spiel, ein Kreuzworträtsel und / oder der Bau eines 3D-Modells einer Zelle. Das Thema "Tier- und Pflanzenzelle" im Unterricht Die Lehrkraft sollte sich mit dem Bau und den genauen Funktionen der Zellbestandteile auskennen, um gegebenenfalls weiterführende Fragen der Schülerinnen und Schüler zu beantworten. Für den weiterführenden Biologie-Unterricht ist es notwendig, den Aufbau und die Unterschiede der Zellen zu kennen, um weitere Vorgänge (Plasmolyse, Fotosynthese, ...) zu verstehen und richtig zu deuten. Didaktische Analyse Die Schülerinnen und Schüler erkennen die unterschiedlichen Strukturen und Funktionen innerhalb der Zellen und lernen die Zelle so als System kennen. Dies ist auf den ersten Blick erst einmal viel und vielleicht auch nicht klar zu unterscheiden, sodass an dieser Stelle eine didaktische Reduktion stattfindet: Die Funktionen werden nur grob benannt und einige Zellorganelle werden zunächst weggelassen, da dies weiterführendes Wissen (zum Beispiel über Proteine) voraussetzt. Wird im Anschluss an die einführende Unterrichtsstunde (beziehungsweise Doppelstunde) ein Modell gebastelt, so kann man dieses im Nachhinein nutzen, um Modelle zu bewerten und Modellkritik zu üben. Dies ist auch im weiteren Verlauf des naturwissenschaftlichen Unterrichts notwendig, da Modelle stetig zur besseren Anschaulichkeit genutzt werden. Methodische Analyse Um das Leseverständnis und das eigenständige Arbeiten jedes einzelnen Schülers und jeder einzelnen Schülerin zu fördern, sollten die Arbeitsblätter in Einzelarbeit bearbeitet werden. Eine Zwischensicherung nach Bearbeitung der Pflanzenzelle bietet sich an, um sicherzustellen, dass alle Schülerinnen und Schüler alle Zellorganelle richtig beschriftet haben, da dies Voraussetzung für die weitere Bearbeitung ist. Je nach Klassenstärke und Selbständigkeit können hier auch Lösungsblätter ausgelegt werden. Schnelle Schülerinnen und Schüler haben die Möglichkeit, eine Zusatzaufgabe zu erledigen, falls sie noch vor der gemeinsamen Ergebnissicherung fertig werden. Fachkompetenz Die Schülerinnen und Schüler verstehen die Zelle als System kennen. können tierische und pflanzliche Zellen in ihren Strukturen und Funktionen beschreiben. vergleichen Tier- und Pflanzenzellen miteinander. lernen Zellmodelle kennen und bewerten. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Partnerarbeit oder Gruppenarbeit. stärken durch die geschützte Atmosphäre in Partnerarbeitsphasen ihr Selbstkonzept. diskutieren in Partner- oder Gruppenarbeiten und sind dabei in der Lage, ihre Meinung unter Nutzung von Fachwissen und Fachbegriffen begründet zu äußern.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

Virtueller Naturwissenschaftsunterricht mit dem "Virtual Lab" von BASF

Fachartikel
5,99 €

Dieser Artikel zum Thema "Einsatz eines virtuellen Labors im naturwissenschaftlichen Unterricht" informiert über die Einsatzmöglichkeiten des "Virtual Lab" von BASF im Präsenz- und Online-Unterricht. Neben den Themen, zu fördernden Kompetenzen sowie den Vor- und Nachteilen berichtet der Autor von seinen Erfahrungen mit dem Virtual Lab im Online-Unterricht. Funktionsweise des virtuellen Labors Die Themenbereiche des virtuellen Labors "Virtual Lab" sind wie ein reales naturwissenschaftliches Labor aufgebaut. Die Schülerinnen und Schüler können so virtuell mit den Gerätschaften aus einem Labor experimentieren und lernen zugleich deren Anwendung kennen. Unterstützt werden sie dabei vom virtuellen Assistenten "Dr. Blubber". Einführende Erklärvideos liefern zu jedem Thema Hintergrundwissen, Quizfragen ermöglichen einen selbstständigen Verständnistest. Zudem gibt es verschiedene Belohnungsmöglichkeiten für das erfolgreiche Absolvieren von Experimenten und Tests. Einsatzmöglichkeiten des virtuellen Labors Der Einsatz des Systems ist ab der Grundschule möglich. Je nach Thema ist für die Erklärungen Vorwissen erforderlich, weshalb sich manche Labore an die Klassenstufen der Sekundarstufe I richten, die dieses bereits erworben haben. Beim eigenständigen Einsatz müssen die Kinder grundlegende Fertigkeiten im Umgang mit dem PC (zum Beispiel Steuerung mit der Maus) haben. Die Einsatzmöglichkeiten im Überblick: Einsatz zur Präsentation eines Versuchs über Beamer oder Smartboard virtuelles Bearbeiten der Experimente in Einzel- Partner oder Kleingruppenarbeit im Präsenzunterricht Durchführung der Experimente als Aufgabe für den Fernunterricht. Hier liegt eine besondere Stärke des Systems, da die Schülerinnen und Schüler mit Labormaterial und Rohstoffen virtuell arbeiten können ohne diese reale anschaffen zu müssen. zur Vertiefung für besonders interessierte und begabte Kinder (Enrichment). als virtuelle Vorbereitung auf die reale Durchführung der Versuche im Unterricht. Themen des virtuellen Labors Folgende Laborthemen werden aktuell angeboten: Lüfte das Geheimnis des "grünen Wunders" (Fotosynthese) Der rote Fleckenteufel (Wirkweise von Buntwaschmittel untersuchen) Dem Boden auf den Grund gehen (physikalische Bodenuntersuchung) Nutze die Kraft der Sonne (Funktionsweise von Solarzellen) Probiere das süße Brot (Untersuchung der Bestandteile von Lebensmitteln) Werde zum Filterexperten (Experimente zum Bau einer Minikläranlage) Finde den richtigen Absender (Chromatograhie von Farbstiften) Besuche die Backstube Chemielabor (chemische Prozesse beim Kuchenbacken) Lass es blubbern (Wirkung Kohlenstoffdioix in Wasser) Die schäumenden Perlen (Vergleich von Dämmstoffen) Rostschutz für Lebensmittel (Stoffe gegen die Oxidation von Obst) Kompetenzerwerb Generell lassen sich durch den Einsatz des virtuellen Labors folgende Kompetenzen vermitteln: Fachkompetenz Die Schülerinnen und Schüler lernen oder sichern die Sicherheitsregeln im Labor. lernen oder sichern die Bezeichnung von Laborgeräten und deren Anwendungsgebiete sowie verschiedene Untersuchungsverfahren aus den Naturwissenschaften. lernen, wie man die verwendeten Stoffe nach dem Versuch richtig entsorgt. üben die Durchführung von Experimenten nach Anleitung. lernen die physikalischen und chemischen Hintergründe der einzelnen Themen kennen. Medienkompetenz Die Schülerinnen und Schüler üben den Umgang mit virtuellen Lernumgebungen. Sozialkompetenz (beim Einsatz als Partner- oder Gruppenarbeit) Die Schülerinnen und Schüler trainieren ihre Kommunikations- und Kooperationsfähigkeit, indem sie gemeinsam die gestellten Aufgaben im virtuellen Labor lösen. Grenzen des virtuellen Labors Die Schülerinnen und Schüler sehen zwar den Umgang mit den einzelnen Laborgeräten und Labormaterialien, es fehlt jedoch das praktische Nutzen. Dadurch wird die für die Laborarbeit nötige Fingerfertigkeit nicht und das genaue Arbeiten nur bedingt geübt. Möglicher Ablauf einer Unterrichtseinheit mit dem "Virtual Lab" Vor Einsatz des virtuellen Labors sollen die Regeln besprochen werden, die generell für die Laborarbeit gelten (Sicherheitsausrüstung, gängige Labormaterialien, genaues Lesen beziehungsweise Zuhören bei den Versuchsanleitungen, Reihenfolge beim Durchführen des Versuchs beachten). Diese werden zwar auch durch den virtuellen Assistenten vermittelt, allerdings verlängert dies die Zeit für die Durchführung einzelner Versuche massiv. Wichtig sind beim Einsatz im Präsenzunterricht klare Absprachen, was im virtuellen Labor genutzt werden darf. Das System bietet auch einige spielerische Elemente als Ergänzung. Diese sollten die Schülerinnen und Schüler aufgrund der Ablenkungsgefahr nicht nutzen dürfen. Nach der Einführung können die Lernenden in der gewünschten Sozialform den virtuellen Versuch durchführen. Damit jeder Schüler und jede Schülerin die Chance hat einen Teil zu übernehmen, sollte die Gruppengröße drei Personen nicht überschreiten. Vor Öffnen des Versuchs sollen die Schülerinnen und Schüler Vermutungen zur Fragestellung des Versuchs notieren. Im Anschluss an den Versuch werden Durchführung und Ergebnisse in der Klasse besprochen und offene Fragen geklärt. Erfahrungen des Autors zum Einsatz des Labors im Fernunterricht Der Autor dieses Artikels hat das virtuelle Labor im Rahmen eines virtuellen Biologiekurses für hochbegabte Grundschulkinder ergänzend eingesetzt. Es handelte sich um Kinder der zweiten bis vierten Klasse. Im Rahmen einer Videokonferenz wurden zuvor die Regeln für Laborarbeit und das Vorgehen bei Versuchen besprochen. Zur Anwendung kam das Labor zur Fotosynthese. In der Konferenz wurden zudem Hypothesen gesammelt, was alles für die Fotosynthese nötig ist und was dabei hergestellt wird. Die Funktionsweise des virtuellen Labors wurde mithilfe der Bildschirmübertragung erklärt. Nach der Konferenz führten die Kinder zu Hause selbstständig das virtuelle Experiment durch. In der Folgekonferenz wurden Beobachtungen und Ergebnisse besprochen. Es stellte sich heraus, dass alle Kinder gut mit dem virtuellen Labor zurechtkamen und Spaß an der Durchführung hatten. Das nötige Wissen wurde durch den Versuch und die Erklärungen des virtuellen Labors vermittelt. Zwei Versionen des Virtual Lab Neben der Schülerversion mit allen spielerischen Elementen gibt es eine Version für den Unterrichtseinsatz, bei dem das Belohnungsspiel entfernt wurde. Fazit Das "virtual Lab" von BASF bietet vielfältige Möglichkeiten zu Hause oder bei fehlender Laborausstattung in der Schule spannende Experimente durchzuführen. Es kann jedoch nicht dauerhaft den experimentellen praktischen Unterricht ersetzen. Quellen Vorstellung des Virtual Lab durch den Anbieter Informationen über die Schulversion

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Geographie / Jahreszeiten / Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe II

WebQuest "Tankstelle der Zukunft"

Unterrichtseinheit

Nach einer Internetrecherche zu verschiedenen Treibstoffen sollen die Schülerinnen und Schüler eine Vision zum Thema "Tankstelle der Zukunft" entwerfen. Die Ergebnissicherung erfolgt sowohl in Plakatform als auch in Form eines Flyers, in dem die Lernenden ihre Visionen vorstellen.Die Schülerinnen und Schüler setzen sich in dem hier vorgestellten WebQuest zunächst in Kleingruppen theoretisch mit den Eigenschaften verschiedener Treibstoffe auseinander. Sie sollen sich über Vor- und Nachteile informieren und herausfinden, welche Konsequenzen der Einsatz der Treibstoffe für die Umwelt haben kann. Innerhalb der Gruppen sollen die Lernenden im Anschluss begründet überlegen, welcher Treibstoff ihrer Meinung nach am besten für eine bevorzugte Nutzung geeignet ist. Ihre Wahl sollen sie in Form einer eigenen Vision von der "Tankstelle der Zukunft" mithilfe eines Plakats vorstellen.Der Auftrag ist so offen gestellt, dass die Schülerinnen und Schüler sich eine eigene Meinung zu der Thematik bilden können. Die Lehrperson bietet lediglich Hilfestellungen und gibt Anregungen, mischt sich aber nicht in die eigentliche Diskussion ein. Durch die Übertragung der fachchemischen Behandlung von Treibstoffen auf einen schülernahen Alltagsbezug wird die lebensnahe Relevanz des Themas verdeutlicht und eine Diskussion zur aktuellen Entwicklung von Treibstoffen angeregt. Hinweise zum Unterrichtsverlauf Internetrecherche, die Arbeit in Kleingruppen, die Entwicklung und Präsentation eines Plakats sowie die Hausaufgabe zur Erstellung eines Flyers werden hier kurz skizziert. Algensprit aus der Retorte Als Alternative zu höheren Pflanzen bieten sich Algen aus Aquakulturen zur Erzeugung von (nicht nur) Biosprit an. Fachkompetenz Die Schülerinnen und Schüler sollen sich mit dem Basiskonzept Energie am Beispiel der Verbrennung von Treibstoffen unter Nutzung der Verbrennungsenergie auseinandersetzen. wirtschaftliche Aspekte der Treibstoffnutzung hinsichtlich ihrer Nachhaltigkeit bewerten. die gesellschaftliche Relevanz von Treibstoffen erkennen. sich kritisch mit verschiedenen Energieträgern auseinandersetzen. Medienkompetenz Die Schülerinnen und Schüler sollen den Computer gezielt zur Informationsbeschaffung verwenden, indem sie wichtige Inhalte aus Online-Dokumenten erarbeiten und diese auf ihre Aufgabenstellung beziehen. Darstellungen in den Medien kritisch hinterfragen. Sozialkompetenz Die Schülerinnen und Schüler sollen Vor- und Nachteile der Nutzung unterschiedlicher Treibstoffe arbeitsteilig recherchieren und die anderen Gruppenmitglieder über ihre Rechercheergebnisse informieren. auf Basis der Recherchen die Vor- und Nachteile verschiedener Treibstoffe in Kleingruppen vergleichend diskutieren. zu ihren Diskussionsergebnissen gemeinsam ein Plakat entwerfen und präsentieren. die Vorstellungen und Ideen der anderen Gruppen aufmerksam verfolgen und miteinander vergleichen. Thema WebQuest "Tankstelle der Zukunft" Autorinnen Julia Elsen, Prof. Dr. Julia Michaelis Fach Chemie Zielgruppe Sekundarstufe II Zeitraum 6 Stunden Technische Voraussetzungen Computer mit Internetanschluss pro Arbeitsgruppe (4 Personen) Prof. Dr. Julia Michaelis von der Didaktik der Chemie der Universität Oldenburg betreute Julia Elsen bei der Bachelorarbeit "Warum WebQuest? - Erstellung von WebQuest-Materialien mit unterschiedlichen Kompetenzschwerpunkten". Gesellschaftliche und ökologische Fragen Der WebQuest thematisiert die Nutzung der Treibstoffe Benzin, Wasserstoff, Biodiesel und Autogas im Rahmen des Chemieunterrichts in der Oberstufe. Neben den fachlichen Grundlagen organischer und alternativer Treibstoffe bietet sich bei diesem Thema auch die bewertende Betrachtung der Auswahl und Nutzung einzelner Treibstoffe an, um damit die Gegenwarts- und Zukunftsbedeutung des Themas vor dem Hintergrund gesellschaftlicher und ökologischer Fragestellungen zu reflektieren. Alltagsbezug für "werdende Autofahrerinnen und -fahrer" Da der WebQuest für die Oberstufe konzipiert wurde, wird hier eine Zielgruppe angesprochen, die gerade die Fahrschule besucht oder bald besuchen wird. Die meisten Schülerinnen und Schüler in diesem Alter träumen von einem eigenen Auto und sind sich im Klaren, dass hiermit Kosten auf sie zukommen. Dabei sind sie abhängig von den Entwicklungen am Treibstoffmarkt. Die Schülerinnen und Schüler setzen sich in dem WebQuest in Kleingruppen mit fossilen und alternativen Brennstoffen auseinander. Dabei soll jedes Gruppenmitglied zu einem anderen Energieträger recherchieren und die Resultate der Gruppe vorstellen. Eine tabellarische Übersicht der Ergebnisse, die folgende Punkte berücksichtigt, wird dabei fixiert: Chemische Zusammensetzung Darstellung/Gewinnung Vor- und Nachteile der Verwendung (Kosten, Konsequenzen für die Umwelt) Diskussion und Entwicklung eines Plakats Auf Basis der Einzelrecherchen sind die Schülerinnen und Schüler aufgefordert, die Teilergebnisse vergleichend zu diskutieren und die Zukunftsbedeutung der einzelnen Treibstoffe gegeneinander abzuwägen. Ihre Diskussionsergebnisse sollen sie nutzen, um die Vorstellung einer "Tankstelle der Zukunft" zu entwerfen. Im Rahmen der Gruppenarbeit ist ein Plakat über diese Zukunftsvision anzufertigen. Die von dem Kurs angefertigten Plakate werden im Anschluss an die Gruppenarbeiten den Mitschülerinnen und Mitschülern präsentiert und im Plenum diskutiert. Wer ist aus welchen Gründen zu welchem Ergebnis gekommen? Welche Lösung erscheint besonders schlüssig? Entwicklung eines Flyers in Einzelarbeit Als Hausaufgabe sollen die Jugendlichen einen Flyer zur "Tankstelle der Zukunft" erstellen. Dies fordert von jeder Schülerin und jedem Schüler die Reflektion der Ergebnisse der Plenumsdiskussion und der Gruppenvorstellungen, um sich abschließend eine eigene Meinung bilden und eine persönliche Zukunftsvision entwickeln zu können. Durch diese Aufgabe werden die Jugendlichen auch aufgefordert, sich erneut mit allen Treibstoffen auseinandersetzen, da sie sich während der Internetrecherche ja nur mit einem Treibstoff intensiv beschäftigt haben. Bildung der eigenen Meinung Die Möglichkeit zur eigenen Meinungsbildung wird im Rahmen von Gruppenarbeiten meist nicht ausgeschöpft. Den Schülerinnen und Schülern muss bei Vergabe der Hausaufgabe klar verdeutlicht werden, dass es keine reine Wiederholungsarbeit ist, sondern dass sie ihre eigenen Gedanken einbringen sollen. Gerade durch eine solche Arbeit wird der Kompetenzbereich "Bewerten" gefördert. Exkursionen - Unterrichtsbesuche - Informationen aus erster Hand Das Bundesministerium für Bildung und Forschung (BMBF) bietet im Rahmen des Wissenschaftsjahres 2010 eine Webseite an, die Schulen und Wissenschaft unmittelbar zusammenbringen soll. Dort können Sie Kontakt zu Personen aus der Forschung aufnehmen, um sie mit Ihren Schülerinnen und Schülern an ihren Forschungseinrichtungen zu besuchen, in Ihren Unterricht einzuladen oder einfach zu ihrem Forschungsgebiet "auszufragen". Ihre Ansprechpartnerin zum Thema Algenbiotechnologie Prof. Dr. Carola Griehl ist Themenbotschafterin des Wissenschaftsjahres 2010 - Die Zukunft der Energie und Vizepräsidentin sowie "Algenforscherin" an der Hochschule Anhalt in Köthen. Sie forscht mit ihrer Arbeitsgruppe an der Entwicklung von Biodiesel aus Mikroalgen und aus Algen gewonnenen Medikamenten. Prof. Dr. Carola Griehl Auf der Webseite der Forschungsbörse zum Wissenschaftsjahr 2010 finden Sie ein Portrait von Prof. Dr. Carola Griehl und einen Link für die Kontaktaufnahme. Algen lösen Getreide als Rohstoffquelle ab Bislang wurden Biokraftstoffe vorwiegend aus Getreide hergestellt. Für die Erzeugung sind jedoch erhebliche Mengen an Ackerland, Wasser und Energie nötig, weshalb sich die alternativen Kraftstoffe bislang noch nicht durchsetzen konnten. Algen werden in offenen Aquakulturen oder in geschlossenen Photobioreaktoren gezüchtet, verbrauchen also keine Agrarfläche, zeichnen sich durch schnelles Wachstum und die Bindung des Emissionsgases Kohlenstoffdioxid per Fotosynthese aus. Bei der Vergärung erzeugtes Methan liefert Strom Die Arbeitsgruppe von Frau Prof. Griehl an der Hochschule Anhalt hat ein viel versprechendes Kreislaufsystem entwickelt, um das Potenzial der Algen noch besser auszuschöpfen: In einem Algenreaktor vergären die Algen. Das dabei entstehende Biogas besteht zu zwei Dritteln aus dem energiereichen Methan, das zur Stromerzeugung verbrannt wird. Ein Drittel des entstehenden Gases ist das Treibhausgas Kohlenstoffdioxid, das für die Produktion von Strom nicht zu gebrauchen ist. Kohlenstoffdioxid ermöglicht das Wachstum der nächsten Algengenerationen Die Anhalter Arbeitsgruppe leitet - ganz nach dem Motto "Die Guten ins Töpfchen, die Schlechten ins Kröpfchen" - das anfallende Kohlenstoffdioxid in ein Brutbehältnis für neue Algen um. Diese verwerten das klimaschädliche Gas für ihr Wachstum, indem sie es durch Fotosynthese in Biomasse umwandeln. Die neu entstandene Biomasse wird wieder in den ersten Reaktor gefüllt, um dort zu Biogas zu vergären. Mit Essensabfällen aus der Mensa reichert Prof. Griehl die Algenreste in dem Reaktor an: "Das ergibt eine gute Ausbeute." Jedenfalls im Labor. Treibstoff, Futter- und Nahrungsergänzungsmittel Aus der entstehenden Biomasse werden Öle für Biodiesel, Tierfutter und Nahrungsergänzungsmittel gewonnen. Der Bau einer Pilotanlage zur Optimierung der gesamten Prozesskette - von der Algenproduktion bis zum Endprodukt - ist in Planung. Auch die Luftfahrtindustrie hat bereits ihr Interesse an dem potenziellen Algentreibstoff signalisiert. Bevor diese Art von Treibstoff preislich mit Kerosin konkurrieren kann, ist allerdings noch viel Forschungs- und Entwicklungsarbeit nötig. Wirkstoffe gegen Alzheimer, Schnupfen- und Grippeinfektionen Es gibt noch zusätzliche medizinische Anwendungsbereiche der Algenbiotechnologie, an denen geforscht wird. So fungieren die Algen auch als Antioxidantien für Medikamente. Forschungsarbeiten der Anhalter Arbeitsgruppe zeigen die Vielfalt der Möglichkeiten, die das "grüne Gold" bietet: So konnte aus den Organismen ein potenzieller Wirkstoff gegen die Alzheimer-Krankheit extrahiert werden. Diese Substanz soll die Alzheimer-Plaques auflösen. Auch andere Krankheiten können - laut dem Pharmaunternehmen Marinomed - mithilfe von Algenwirkstoffen bekämpft werden. Auf der Suche nach Wirkstoffen, die besonders effektiv vor Schnupfen- und Grippeviren schützen, stießen die Marinomed-Gründer Eva Prieschl-Grassauer und Andreas Grassauer auf die Carragelose, eine Substanz, die in Rotalgen vorkommt. Wird sie auf die Nasenschleimhäute gesprüht, kann sie dort sehr effektiv Viren abfangen, bevor sie in den Körper eindringen. Kostensenkung durch Kreisläufe und clevere Erntemethoden Die Kreislaufsysteme der Arbeitsgruppe von Frau Prof. Griehl könnten die Kosten für die "Marinen Arzneien" senken. Wissenschaftlerinnen und Wissenschaftler beim Technologiekonzern Siemens entwickeln gerade eine Methode, die die Algenproduktion noch günstiger machen könnte: Sie wollen bei der Ernte Kosten einsparen. Die Trennung der Algen vom Medium verbraucht sehr viel Wasser und Strom. Durch einen Trick kann dies auch effizienter und kostengünstiger umgesetzt werden: Magneten in den Algenbehältern sorgen dafür, dass die Algen zum Magneten wandern und in einem Verbund an der Glaswand "kleben" bleiben. Magnetische Algen? Nicht ganz: Es werden zuvor winzige Eisenteilchen ins Wasser gemischt. Da Algen nicht wählerisch sind und sich auf jeder Fläche ansiedeln, die sich ihnen bietet, nehmen sie die Eisenteilchen sofort in Beschlag. Der Magnet zieht das Metall an und mit ihm die Algen. Wie viel Einsparung letztendlich durch diese Technik zu erwarten ist, ist noch nicht vorhersehbar.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Sonnenenergie

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema Sonnenenergie lenkt die Aufmerksamkeit auf das riesige Potenzial an kostenloser Energie, die uns die Sonne bietet, und darauf, wie dieses Potenzial genutzt werden kann. Über die Hitze der Sonne stöhnen ist das Eine, die von ihr ausgehende kostenlose Energie sinnvoll nutzen, das Andere. Fotovoltaikanlagen oder Sonnenkollektoren auf Dächern gehören unbewusst zum Umfeld vieler Kinder. Sie spielen mit Spielzeug, das mit Solarzellen angetrieben wird, oder nutzen Taschenrechner und Armbanduhren oft ohne sich darüber im Klaren zu sein, dass sie mithilfe der Sonne funktionieren. Die vorliegende Unterrichtseinheit möchte in einem multimedialen Ansatz den Blick auf diese Dinge richten, und zeigen, wo und wie Sonnenenergie unser Leben erleichtert. Einen idealen Einstieg in das Thema bietet die Sendung "Sonnenenergie - Stromausfall im Bauwagen" (ZDF - Löwenzahn). Für Kinder verständlich vermittelt sie wissenschaftliche Fakten und hat außerdem hohen Unterhaltungswert, sodass mit Spaß gelernt werden kann. Die fächerübergreifende interaktive Lerneinheit dient als Plattform für die Internetrecherche, von der aus gezielt kindgerechte Webseiten zur Lösung der Arbeitsaufträge angeklickt werden können. Verschiedene interaktive Übungen sowie Puzzles und Spiele am Computer und herkömmliche Arbeitsblätter runden die Arbeit ab. Vorbereitung und Inhalte der Lernumgebung Diese Seite bietet einige Hintergrundinformationen zum Thema Sonnenenergie und führt in die Nutzung der interaktiven Lernumgebung ein. Arbeitsmaterial zur interaktiven Lernumgebung Auf dieser Seite finden Sie Informationen zu den einzelnen Arbeitsblättern und Hinweise, wie sie im Unterricht eingesetzt werden können. Links zum Thema Internetadressen mit Informationen und weiterführenden Materialien zum Thema "Sonnenenergie" und zu den Inhalten dieser Unterrichtseinheit. Fachkompetenz Die Schülerinnen und Schüler sollen in den Fächern Sachunterricht, Deutsch, Englisch und Kunst Lernziele erreichen. Medienkompetenz Die Schülerinnen und Schüler sollen ein Video im Internet anschauen (falls im Unterricht möglich) und Informationen daraus entnehmen. gezielte Recherchen im Internet durchführen und das World Wide Web als Informationsquelle nutzen. eine interaktive Lerneinheit am Computer bearbeiten und dabei Erfahrungen mit dem Prinzip der Verlinkung machen. interaktive Übungen (HotPotatoes-Zuordnung, Kreuzworträtsel) durchführen. ein interaktives Puzzle (drag & drop) lösen. Sozialkompetenzen Die Schülerinnen und Schüler sollen Absprachen zur Benutzung der Computer-Arbeitsplätze treffen. sich als Partner über die Reihenfolge der Aufgaben einigen. sich gegenseitig helfen. Sonnenfinsternis in Bärstadt. Das seltene Ereignis soll in wenigen Stunden stattfinden und Fritz Fuchs will es unbedingt filmen. Ausgerechnet jetzt ist der Akku der Kamera leer. Aufladen funktioniert nicht - die Stromleitung ist gekappt. Solange aber die Sonne scheint, könnte man doch sie selbst als Energiequelle nutzen. Fritz werkelt und tüftelt an einer einfachen Solaranlage. Zumindest das Wasser zum Kochen wird heiß genug. Und das Akkuproblem? Die Zeit drängt. Auf der Suche nach Ersatz stößt Fritz auf riesige Sonnenkollektoren und winzige Solarzellen. Mit dem Bau seiner eigenen Solaranlage will er ein für alle Mal sein Stromproblem lösen... Die Schülerinnen und Schüler sollen erfahren, dass Sonnenenergie Wärme und Strom erzeugt. einen Steckbrief der Sonne vervollständigen. überlegen, wann sie selbst die Strahlungsenergie der Sonne gespürt haben. erkennen, wie Lupe und Hohlspiegel Licht bündeln. ein Experiment zur Lichtbündelung durchführen. erfahren, dass Schwarz Sonnenstrahlen absorbiert und Weiß sie reflektiert. ein Experiment dazu durchführen. erfahren, wie die Sonne als Energiequelle genutzt werden kann. die Vorteile der Sonnenenergie erkennen. erfahren, wie die Sonne als Heizung genutzt werden kann. den Begriff Sonnenkollektoren kennen lernen. erfahren, wie mit Spiegeln Sonnenenergie in Kraftwerken eingefangen werden kann (Parabolrinnenkraftwerk und Solarturmkraftwerk). erfahren, wie aus Sonnenenergie Strom erzeugt wird. den Begriff Fotovoltaikanlagen kennen lernen. über die Vor- und Nachteile der Sonnenenergie reflektieren und argumentieren. an einer Sonnenuhr die Zeit ablesen. Die Schülerinnen und Schüler sollen Texte den richtigen Abbildungen zuordnen. eine Tabelle ausfüllen. Rätselschriften entziffern. Lückentexte ergänzen. ein Kreuzworträtsel lösen. Satzteile richtig zuordnen (Akkusativ-Objekt). nach dem Akkusativ-Objekt fragen. einen Text lesen und weiterschreiben. in Wortreihen passende Wörter markieren. zusammengesetzte Nomen mit "Sonne" bilden. Lernwörter für ein Diktat üben. Die Schülerinnen und Schüler sollen ein englisches Lied singen. englische Wörter für das Lied kennen lernen und die Aussprache am Computer üben. Die Schülerinnen und Schüler sollen den Maler Vincent van Gogh und sein Bild "Sämann vor untergehender Sonne" kennen lernen. das Bild nachmalen. Die Strahlung der Sonne Als Sonnenenergie oder Solarenergie bezeichnet man die von der Sonne erzeugte Energie, die als Strahlung zur Erde gelangt und über Hunderte von Jahren relativ konstant ist. Ein Teil dieser Strahlungsenergie wird von bestimmten Bestandteilen der Atmosphäre reflektiert, ein weiterer Teil wird von anderen Bestandteilen der Atmosphäre absorbiert und in Wärme umgewandelt, der dritte und größte Teil geht durch die Atmosphäre hindurch und erreicht uns auf dem Erdboden. Folgen der Einstrahlung Die vordringlichste Folge der Sonnenenergie ist die Erwärmung unseres Planeten, so dass Leben überhaupt möglich ist. Ein weiterer Effekt ist die Fotosynthese der Pflanzen, so dass wir entweder direkt oder indirekt von der Sonnenenergie leben. Sie ist außerdem wichtig zur Erzeugung von Luftdruckunterschieden, die zu den Wetterphänomenen in der Atmosphäre und zum Antrieb des Wasserkreislaufs führen. Nutzung der Sonnenenergie Neben dieser natürlichen Nutzung gibt es zunehmend eine technische, vor allem im Bereich der Energieversorgung. So erzeugen beispielsweise Sonnenkollektoren warmes Wasser. In sogenannten Sonnenwärmekraftwerken kann durch aufwändige Spiegelkonstruktionen Wasserdampf und damit elektrischer Strom erzeugt werden. Solarzellen erzeugen allein durch einfallende Sonnenstrahlen Strom (Fotovoltaik). Pflanzen nutzen die Sonnenstrahlung zum Wachstum (Fotosynthese). Pflanzen und pflanzliche Abfälle wiederum können so verarbeitet werden, dass daraus nutzbare Energieträger entstehen (Rapsöl, Biogas). Die Einstrahlung der Sonne unterliegt tages- und jahreszeitlich bedingten Schwankungen, so dass zusätzliche Maßnahmen nötig sind, um die Energieversorgung konstant zu gewährleisten (Speicherung, Vernetzung mit anderen Energiequellen). Erzeugung von warmem Wasser Sonnenkollektoren auf Hausdächern erwärmen Wasser, das, in Schläuchen ins Haus geleitet und dort in einem Speicher aufbewahrt, einige Tage für Warmwasser und Heizung ausreicht. Da schwarze Flächen Sonnenstrahlen absorbieren, ist die Unterseite dieser Kollektoren entsprechend eingefärbt. Erzeugung von Strom In Fotovoltaikanlagen (Solarzellen) wird die Lichtenergie der Sonne durch die Bewegung der Ionen des Metalls Silizium direkt in elektrischen Strom umgewandelt. Um den so gewonnenen Gleichstrom ins allgemeine Netz einzuspeisen, muss er allerdings noch mittels eines Wechselrichters in Wechselstrom umgewandelt werden. Strom aus solarthermischen Kraftwerken Solarthermische Kraftwerke bündeln das Sonnenlicht mithilfe von Hohlspiegeln. Die so entstandene Hitze erzeugt Wasserdampf, der die Turbinen zur Stromerzeugung antreibt. Dabei fangen in einem Solarturmkraftwerk viele Spiegel die Sonne ein und lenken sie auf einen einzigen Punkt auf dem Turm, während in Parabolrinnenkraftwerken Sonnenstrahlen mit langen Spiegelschüsseln auf schwarze Röhren gelenkt werden und das darin befindliche Wasser erhitzen. Inhalte Die interaktive Lerneinheit (Ausschnitt siehe Abb. 1, zum Vergrößern bitte anklicken) besteht neben der Eingangsseite aus vier weiteren Hauptseiten (Sonnenenergie/ Sprache/ Sunny Song/ Dies und das), zwei Unterseiten zur Ergebniskontrolle, sechs intern verlinkten interaktiven Übungen (HotPotatoes-Übungen/Puzzle) und 24 externen Links. Die Arbeitsanweisungen auf den meisten Arbeitsblättern (bis auf die Arbeitsblätter Nummer 11 und 12) beziehen sich jeweils auf direkt aufrufbare Internetseiten, was natürlich einen Internetzugang voraussetzt. Diese Arbeitsblätter sind besonders gekennzeichnet (durch ein Computer-Symbol), auch auf dem Deckblatt. Die internen Links dagegen können auch offline bearbeitet werden. Zeitlicher Ablauf Organisation des Unterrichts und Zeitraum der Arbeit hängen von der Anzahl der jeweils vorhandenen Computer-Arbeitsplätze ab und davon, ob sie in einem Netzwerk gemeinsamen Zugang zum Internet haben. Als sinnvoll hat sich auf jeden Fall Partnerarbeit erwiesen, da sich zum einen so die Zahl der auf einen Computer wartenden Kinder halbiert und zum anderen die Partner sich gegenseitig unterstützen können. Als zusätzliches Angebot können im Bedarfsfall weitere Arbeitsblätter zur Verfügung gestellt werden, die die in der Lerneinheit angesprochenen Themen vertiefen: zum Beispiel Sachbücher zum Thema anschauen, weitere Wörter mit der Endung -ie aus Wörterbüchern suchen. Die Unterrichtseinheit ist fächerübergreifend angelegt, als Fachlehrkraft haben Sie aber auch die Möglichkeit, nur die Sachthemen zu behandeln und die Fächer Deutsch, Englisch und Kunst auszuklammern, wenn der fächerübergreifende Ansatz aus stundenplantechnischen Gründen nicht oder nur sehr schwer durchführbar ist. Organisation des Ablaufs Wichtig ist außerdem die Organisation des Unterrichtsablaufs. Absprachen bezüglich der Computer-Nutzung müssen getroffen werden, da nicht alle gleichzeitig am Rechner sitzen können. Dabei sollten Vorschläge der Kinder aufgegriffen werden, weil sie erfahrungsgemäß die Einhaltung eigener Vorschläge auch selbst überprüfen. Außerdem ist festzulegen, ob die Arbeit als Partner- oder Gruppenarbeit erfolgen soll. Anschließend muss eine entsprechende Einteilung vorgenommen werden (freie Wahl, Zufallsprinzip durch Ziehen von Kärtchen oder vom Lehrer bestimmt). Es hat sich zudem bewährt, "Computer -Experten" zu wählen, die bei Schwierigkeiten mit dem Medium als erste Ansprechpartner fungieren sollen. So können die Kinder viele Fragen unter sich klären und selbstständig arbeiten. Die Kinder sollten an offene Unterrichtsformen gewöhnt sein. Kenntnisse im Umgang mit dem Internet sind nicht unbedingt nötig, da die Links direkt über die Lerneinheit angesteuert werden und keine Internetadressen eingegeben werden müssen. Erklären sollte man auf jeden Fall, dass die Rückkehr zur eigenen Startseite über den Rückwärtspfeil des Browsers erfolgt. Jedes Kind heftet seine fertigen Arbeitsblätter und gelösten Aufgaben in einem Hefter ab, der nach Abschluss des Projekts eingesammelt und von der Lehrkraft überprüft werden kann. Hier befindet sich eine kurze Einführung in die Arbeit mit der Lernumgebung. Die Kinder können auch zwischendurch davon Gebrauch machen, um sich Dinge ins Gedächtnis zu rufen. Lösung der Rätselschrift auf dem Arbeitsblatt: mehr, jemals, kostenlos, ohne, entlegen, sinnvoll, dort, überall, über, genügend, wirkungsvoll, zusätzlich Zur Erleichterung dürfen die Kinder einen Spiegel benutzen. Diktattext: Solarenergie Die Sonne strahlt mehr Energie aus, als wir jemals verbrauchen können. Wir bekommen sie kostenlos und ohne Schaden für die Umwelt. Deshalb ist es sinnvoll, sie als Energiequelle zu nutzen. Solarmodule können überall aufgestellt werden und brauchen keine Leitung zu Kraftwerken. Deshalb können sie auch entlegene Gegenden mit Strom versorgen. Besonders wirkungsvoll sind sie dort, wo die Sonne oft scheint. In anderen Gebieten braucht man dagegen noch eine zusätzliche Stromversorgung, um auch im Winter über genügend Energie zu verfügen. (80 Wörter) Gemälde mit Sonne Hier geht es zunächst um Vincent van Gogh und sein berühmtes Bild "Sämann vor untergehender Sonne", das die Kinder anschließend nachmalen sollen. Sie lernen den Künstler kennen und schauen sich das Bild im Internet an. Entspannung Das Puzzle zeigt eine Fotovoltaikanlage auf dem Dach und dient der Entspannung. Mithilfe einfacher Mittel (Stöckchen, Stift, Sonne) wird zum Schluss die Zeit bestimmt.

  • Technik / Sache & Technik / Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II, Spezieller Förderbedarf

Wassertransport in Pflanzen digital verstehen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Wassertransport in Pflanzen" lernen die Schülerinnen und Schüler, wie man ein mobiles digitales Endgerät nutzt, um den Wassertransport in einer Pflanze besser zu verstehen. Dafür legen sie ein digitales Protokoll an und erstellen schrittweise einen passenden Lehrfilm.Das Thema Wassertransport beziehungsweise Wasserhaushalt der Pflanze wird in den Jahrgangsstufen 7 oder 8 in Verbindung mit dem Aufbau der Blütenpflanze und der Fotosynthese unterrichtet. Ziel ist es, den Schülerinnen und Schülern in Grundzügen die Wasseraufnahme, -weiterleitung und -abgabe zu verdeutlichen. Ein möglicher Weg ist es, getrennt auf die Grundorgane Wurzel, Sprossachse und Blatt einzugehen. Hierzu werden in der Regel mikroskopische Präparate der Grundorgane hergestellt oder auf fertige Präparate zurückgegriffen. Von den Schülerinnen und Schülern wird erwartet, das durch das Mikroskop Gesehene abzeichnen zu können, um ein Protokoll anzufertigen. Dies gestaltet sich sehr zeitintensiv und führt dazu, dass die Lernenden den Überblick über die Zusammenhänge sowie die Motivation verlieren. Das geht besser mit Tablets, einem digitalem Stift und passenden Apps. Das digitale Anfertigen eines zusammenhängenden Protokolls mit Aufnahmen des mit der App Flora Icognita bestimmten Realobjektes, die in der Erstellung eines auf dem Tablet selbst gezeichneten Lehrfilmes – hierfür bietet sich die kostenlose App FlipAClip an – münden, unterstützt die Schülerinnen und Schüler dabei die Zusammenhänge spielend zu erkennen und zu verstehen. Es werden so neben den Medienkompetenzen die Fachkompetenzen gefördert. Hinzu kommt, dass diese produktorientierte und kreative Herangehensweise die intrinsische Motivation der Schülerinnen und Schüler stärkt, schließlich wollen alle Schülerinnen und Schüler am Ende ein gutes Produkt abliefern, was die Durchdringung des Themas voraussetzt. Um diese Motivation weiter zu steigern, kann der beste Lehrfilm auch im Rahmen einer "Bio-Oscar"-Verleihung prämiert werden. Weil die so erstellten Ergebnisse digital gespeichert sind, bleiben sie für die Schülerinnen und Schüler jahrelang verfügbar: einerseits, um sich auf Lernkontrollen vorzubereiten, andererseits, um in höheren Jahrgangsstufen den "alten" Lehrfilm mithilfe der neu gewonnenen Erkenntnisse weiter zu bearbeiten und zu erweitern. Die Nutzung des Samsung Classroom Management, mit dem man die Arbeitsfortschritte der Schülerinnen und Schüler direkt sehen kann und die Ergebnisse blitzschnell auf die Geräte der anderen Schülerinnen und Schüler der Lerngruppe oder auf einen Bildschirm/Beamer übertragen kann, hilft ungemein, die Motivation aufrecht zu erhalten. Die Lehrkraft kann sich mittels des Tablets einen Überblick über die Fortschritte der Schülerinnen und Schüler verschaffen und kann helfend eingreifen. Man kombiniert so die händische Arbeit des Mikroskopierens und Zeichnens mit der digitalen Welt, ohne Mehraufwand für die Lehrkraft, aber mit immensem Mehrwert für die Schülerinnen und Schüler. Das Thema "Wassertransport in Pflanzen" im Unterricht Pflanzen sind als Produzenten das wichtigste Glied im Kohlenstoffkreislauf. Um zu überleben, benötigen sie Wasser, was aufwändig in der gesamten Pflanze verteilt werden muss. Vorkenntnisse Die Schülerinnen und Schüler kennen bereits aus früheren Jahrgangsstufen den Aufbau einer Blütenpflanze und kennen die Aufgaben der Grundorgane. Die Lernenden benötigen kein Vorwissen bezüglich der Nutzung der digitalen Endgeräte und der verwendeten Anwendungen, diese sind selbsterklärend. Didaktische Analyse Das Zusammenspiel der Grundorgane beim Wassertransport macht Pflanzen so faszinierend. Jedoch sind genau diese Vorgänge komplex und können von einer Lehrkraft in der Zeit, in der man eine Lerngruppe der Sekundarstufe I pro Woche sieht, nur bedingt vermittelt werden. Zudem fällt das Erstellen mikroskopischer Zeichnungen den Schülerinnen und Schülern oft schwer, die Ergebnisse lassen sich nur punktuell teilen. Hier unterstützt die Technik Lernende und Lehrkräfte in hohem Maße. Methodische Analyse Die Nutzung der App "Flora Incognita" hilft bei der Pflanzenbestimmung und gibt einen guten Ansatz, sich mit dem Thema "artificial intelligence", das der App zugrunde liegt, auseinanderzusetzen. Das Anfertigen eines digitalen Protokolls auf einem Tablet mit digitalem Stift unterstützt viele Schülerinnen und Schüler, die in der Regel Probleme mit dem Abzeichnen aus dem Mikroskop haben. Wenn man das zu zeichnende Objekt fotografiert hat und das Bild mittels Multitasking auf dem Tablet gleichzeitig sehen und zeichnen kann, sind die Ergebnisse befriedigender und motivierender. Die Nutzung der Samsung Classroom Management App erlaubt es Lehrkräften, Schülerinnen und Schülern beim Entstehungsprozess zu begleiten und Ergebnisse sekundenschnell zu teilen. Das Erstellen eines Lehrfilms, an dem die Schülerinnen und Schüler nach jedem Schritt weiterarbeiten können, ermöglicht das Verstehen der Zusammenhänge der einzelnen Schritte des Wassertransports, da man einen zusammenhängenden Film vorliegen hat. Fachkompetenz Die Schülerinnen und Schüler verstehen den Wassertransport durch eine Pflanze von der Wurzel bis zum Blatt. kennen den funktionalen Aufbau der am Wassertransport beteiligten Grundorgane einer Pflanze. erkennen die Relevanz von Wasser für Pflanzen. Medienkompetenz (Bereiche der KMK-Strategie Bildung in der digitalen Welt) Die Schülerinnen und Schüler lernen, mit einem mobilen digitalen Endgerät produktorientiert (Protokoll/Lehrfilm) zu arbeiten (Bereich 3). lernen, mithilfe einer Classroom Management Software Produkte auszutauschen (Bereich 2). lernen den Umgang mit einem digitalen Stift (Bereich 5). Sozialkompetenz Die Schülerinnen und Schüler lernen gemeinsam an einem digitalen Endprodukt zu arbeiten. bewerten ein peer-Produkt nach festgelegten Kriterien.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

Materialsammlung Biochemie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen, Anregungen und Arbeitsmaterial für den Unterricht zum Themenbereich Biochemie im Fach Biologie an weiterführenden Schulen. Das Angebot deckt die folgenden Themen ab: Proteine, Nukleinsäure, Fotosynthese und Nanotechnologie. Klicken Sie sich einfach mal durch! Das schöne in der Biologie ist der strenge Zusammenhang zwischen Struktur und Funktion von der Nano- bis zur Makroebene: Die Analyse dreidimensionaler Strukturen erweist sich stets als aufschlussreich und ist weit mehr als eine bloße "Bildbeschau". Franz Josef Scharfenberg vom Richard-Wagner-Gymnasium in Bayreuth hat die dreidimensionalen Ausarbeitungen von Eric Martz (University of Massachusetts, USA) zu unserem Blutfarbstoff für den Einsatz im deutschsprachigen Unterricht aufbereitet. Die dreidimensionale Darstellung der Proteinstrukturen, die mithilfe des kostenlosen Plugins Chime mit der Maus nach Belieben angefasst, gedreht und herangezoomt werden können, zeigen, was schon Thomas Mann wusste (woher eigentlich? - schließlich gelang das erste Beugungsbild eines Proteins Dorothy Hodgkin erst 1932): Proteine sind "unhaltbar verwickelt und unhaltbar kunstreich aufgebaute Eiweißmolekel" (aus "Der Zauberberg"). Es lohnt sich, einen genaueren Blick auf das Hämoglobin zu werfen. An diesem Beispiel lassen sich zahlreiche allgemeine Aspekte der Proteine und Enzyme herausarbeiten: Als oligomeres Protein bietet der Blutfarbstoff die Möglichkeit, alle Strukturhierarchien - von der Primär- bis zur Quartärstruktur - durchzuspielen. Von der Anordnung der Aminosäuren innerhalb der Untereinheiten - hydrophobe Aminosäureseitenketten an der Oberfläche, hydrophile im Inneren des Proteins - lässt sich leicht der Bogen zur thermodynamischen "driving force" des in der Primärstruktur kodierten Selbstfaltungsprozesses der Biopolymere schlagen. Hämoglobin ist zwar "nur" ein Transportprotein, seine in die Polypeptidketten eingebetteten Häm-Gruppen können jedoch - was die Architektur aktiver Zentren und die Modellierung ihrer katalytischen Aktivität betrifft - exemplarisch als prosthetische Gruppen der Enzyme betrachtet werden (schließlich wird Hämoglobin von Molekularbiologen gerne auch als "Enzym honoris causa" bezeichnet). Die auf dem Austausch einer einzigen Aminosäure basierende Sichelzellenanämie verdeutlicht stellvertretend für Erkrankungen wie Alzheimer oder BSE das Prinzip der auf Protein-Polymerisationen basierenden Erkrankungen. Das Startkapitel zeigt vier (zunehmend "abstrahierte") Darstellungsformen der Aminosäure Glycin. Diese "Struktursprachen" werden in den nachfolgenden Kapiteln wiederholt auf weitaus komplexere Strukturen angewendet. Das Glycin-Beispiel ist daher eine wichtige Einführung in die verschiedenen Darstellungsformen des gesamten Hämoglobin-Materials. Gezeigt werden die "ball and stick"-Projektion des Zwitterions (Vorsicht: Doppelbindungen werden nicht als solche dargestellt), eine raumfüllende Darstellung (Kalottenmodell; Abb. 1, Platzhalter bitte anklicken), die "stick"-Struktur sowie die "Aminosäure-Rückgrat"-Struktur (Hydroxylgruppe und Wasserstoffatome sind noch als "rudimentäre Stacheln" dargestellt). Wurden in dem vorausgegangenen Abschnitt die Darstellungsmöglichkeiten einer Aminosäure vorgestellt, werden diese hier auf ein Oligopeptid angewendet. Damit betritt man hier die Primärstruktur-Ebene. Als neue Darstellungsform wird schließlich das Polypeptidketten-Rückgrat vorgestellt (nicht zu verwechseln mit dem Aminosäure-Rückgrat). Zunächst wird die allgemeine Rückgrat-Struktur einer Aminosäure (ohne Seitenkette) dargestellt. Aus dieser Struktur wird das "allgemeingültige" Rückgrat eines Tripeptids aufgebaut. Die "anonymen" Einheiten werden durch Hinzufügen von Methylgruppen in ein Alanyl-alanin-alanin (Ala-Ala-Ala) umgewandelt. Um das ganze zunehmend komplexer zu machen, wird das Tripeptid in ein Lysyl-alanyl-alanin (Lys-Ala-Ala) und schließlich in ein Lysyl-alanyl-isoleucin (Lys-Ala-Ile) umgewandelt, bevor es zum Tetrapeptid ergänzt wird. Bis hierher folgen alle Darstellungen der "stick"-Struktur. Im Folgemodul haben die SchülerInnen die raumfüllende Darstellung des Tetrapeptids vor Augen (Abb. 2). Am Beispiel des Tetrapeptids wird nun verdeutlicht, wie die Biochemiker die Darstellung von Peptidketten abstrahieren, um bei der Strukturanalyse von Polypeptidketten aus mehreren Hundert Aminosäuren nicht "den Wald vor lauter Bäumen nicht mehr sehen zu können": In den beiden letzten Modulen wird daher die "Rückgrat"-Darstellung von Peptidketten eingeführt. Die erste Darstellung zeigt die Quartärstruktur des nativen Proteins mit farblich differenzierten Untereinheiten und den Häm-Komplexen (raumfüllende Darstellung, siehe Abb. 3). Das folgende Modul reduziert die Polypeptidketten auf ihr Rückgrat. Erst jetzt wird die Lage der Häm-Gruppen (raumfüllende Darstellung) klar erkennbar (und der Vorteil der diversen "Struktursprachen" deutlich). Lassen Sie Ihre SchülerInnen durch die Drehung des Moleküls den zentralen Hohlraum entdecken, in dem der Hämoglobin-Ligand 2,3-Diphosphoglycerat (DPG) bindet und dabei über eine Änderung der Quartärstruktur die Sauerstoff-Affinität des Hämoglobins senkt (DPG stabilisiert die Konformation der Desoxy-Form, indem es die beiden beta-Ketten über ionische Wechselwirkungen miteinander vernetzt). DPG wird vom Körper in Höhenlagen gebildet, wo ein niedriger Sauerstoff-Partialdruck herrscht, und erleichtert dort die Abgabe von Sauerstoff an das atmende Gewebe. Im den beiden Folgemodulen sind die Polypeptidketten komplett ausgeblendet. Das zweite der beiden Module stellt die Atomsorten der Hämgruppe farbkodiert dar. Die Lagebeziehungen der vier "freischwebenden" Häm-Gruppen verdeutlicht die tetraedrische Symmetrie (dreiseitige Pyramide) des Moleküls. Bei der Analyse der Symmetrie erweist sich wiederum das Anfassen und Drehen der Strukturen als hilfreich. Es folgt die vergrößerte Darstellung einer einzelnen Hämgruppe in raumfüllender Ansicht sowie eine Darstellung in der "stick"-Struktur, in der die Komplexbindung des zentralen Eisenatoms über die Stickstoffatome der Porphyrin-Struktur erkennbar wird. Die Besetzung der fünften Koordinationsstelle durch ein Histidin-Stickstoff der Polypeptidkette ist noch nicht berücksichtigt. An die sechste Koordinationsstelle wird nun molekularer Sauerstoff gebunden. Dabei ist deutlich erkennbar, dass die Achse des Sauerstoffmoleküls nicht senkrecht auf die Ebene des Porphyrin-Ringes ausgerichtet ist (Abb. 4; siehe auch Abb. 5 der Hintergrundinformation zu den Eigenschaften der prosthetischen Gruppe). Nun geht es wieder vom Kleinen zum Großen: Das oxygenierte Häm wird wieder in die Globin-Kette eingefügt, zunächst in eine Rückgrat-, dann in eine raumfüllende Darstellung. Die beiden letzten Darstellung zum Thema "Sauerstoffbindung" zeigen ein weiteres Details der Häm-Einbettung in das Globin und der Sauerstoffbindung: Die Positionierung hydrophiler Teile des Häms an der Oberfläche und die Ausrichtung hydrophober Bereiche zum Proteininneren. Weiterhin kommt die Besetzung der fünften Koordinationsstelle durch das sogenannte "proximale Histidin" sowie die Lage des "distalen Histidins" über dem gebundenen Sauerstoff zur Darstellung. Mehr zur Bedeutung des distalen Histidins liefert der folgende Fachliche Kommentar. Die Chime-Darstellungen heben einige Strukturmerkmale des Hämoglobins hervor, die sich zu den biochemischen Funktionen der Proteins sehr schön in Beziehung setzen lassen, auf die die vorgestellte Applikation jedoch nicht explizit hinweist. Auf der folgenden Seite finden Sie die wichtigsten Infos zu den Hämoglobin-Eigenschaften, die sich in diesen Strukturdetails abbilden: Die Proteinumgebung definiert die katalytischen Eigenschaften Warum benutzt die Natur nicht die "nackten" Hämgruppen für die Sauerstofflogistik, sondern wickelt sie in komplexe Poypeptidketten ein? Zum einen sind es die vielfältigen allosterischen Wechselwirkungen der Globine mit diversen Liganden, über die die Eigenschaften der Sauerstoffbindung durch das Häm sinnreich modelliert und den jeweiligen biologischen Erfordernissen perfekt angepasst werden - von der DPG-Bindung (siehe oben) bis hin zur Kooperativität der Sauerstoffbindung an die vier Untereinheiten des Hämoglobins. Die wichtigsten dieser "Stellschrauben" werden in Schulbüchern ausreichend thematisiert. Unberücksichtigt bleibt jedoch meist ein viel allgemeineres und enorm wichtiges Grundprinzip der Molekularbiologie und Biochemie: Die katalytischen Eigenschaften jeder prosthetischen Gruppe und jeden aktiven Zentrums werden maßgeblich von der Proteinumgebung geprägt, in die sie eingebettet sind. Man vergegenwärtige sich, dass das Häm, das im Hämoglobin zur reversiblen Sauerstoffbindung eingesetzt wird, im Atmungskettenenzym Cytochrom c als Elektronenüberträger verwendet wird! Wie die Globinkette die speziellen Bindungseigenschaften des Häms beeinflusst, wird nachfolgend an zwei Struktureigenschaften hervorgehoben, die in den Chime-Darstellungen sehr gut deutlich werden. Erst das Globin gewährleistet eine reversible Häm-Oxygenierung Frei lösliche Hämgruppen mit einem komplexierten zweiwertigem Eisen-Ion könnten Sauerstoff nur für einen sehr kurzen Moment binden. Der Sauerstoff würde das zweiwertige Eisen schnell zu dreiwertigem Eisen oxidieren, das keinen Sauerstoff mehr binden kann. Ein Zwischenprodukt dieser Oxidation ist ein "Häm-Sauerstoff-Häm-Sandwich". Die Polypeptid-"Verpackung" der Hämgruppen verhindert dies und gewährleistet damit die Verwendbarkeit der Hämgruppen als Sauerstofftransporteure im Blut. Das letzte Modul zum Thema "Hämoglobin & Häm" verdeutlicht die Lage des Häms in seiner Bindungstasche, die die Bildung von Häm-Dimeren ausschließt. Kohlenmonoxid hat eine hohe Häm-Affinität Kohlenmonoxid ist für uns ein toxisches Gas, weil es die Sauerstoffbindungsstellen des Hämoglobins vergiftet: Seine Affinität zum Hämoglobin-Eisen übertrifft die des Sauerstoffs um das 200-fache. Aus diesem Grund kann schon ein niedriger Kohlenmonoxid-Partialdruck tödliche Folgen haben. Am "nackten" Häm sähe der Vergleich noch ungünstiger aus: Zu diesem hat Kohlenmonoxid eine 25.000 mal höhere Affinität als Sauerstoff. Eine Eigenschaft, die das Pigment als Sauerstoffträger völlig unbrauchbar machen würde, denn Kohlenmonoxid ist nicht nur ein Industriebgas, sondern wird auch vom Organismus selbst erzeugt (es entsteht bei diversen katabolen Stoffwechselreakrtionen und dient auch als Botenstoff, zum Beispiel als bei der Regulation der glatten Gefäßmuskulatur). Unter normalen Umständen ist etwa ein Prozent unseres Hämoglobins mit endogen produziertem Kohlenmonoxid blockiert. Sterische Hinderung der Kohlenmonoxid-Bindung Ohne die Reduktion der Kohlenmonoxid-Affinität um das 125-fache könnte wir mit unserem Blutfarbstoff kaum leben. Aber wie schafft die Polpeptidkette dieses Kunststück? Die Natur greift an der Geometrie der Komplexierung von Sauerstoff und Kohlenmonoxid an. Während die Achse des Sauerstoffmoleküls bei der Bindung an das Eisenatom einen 120 Grad-Winkel zur Häm-Ebene bildet, steht die Achse des Kohlenmonoxid-Moleküls - bei freiem Zugang zum Häm - exakt senkrecht auf dessen Ebene. Diesen optimalen Bindungswinkel verbaut die Polypeptidkette dem Kohlenmonoxid, indem es ihm in der Häm-Bindungstasche des Globins einen sperrigen Histidin-Rest in den Weg stellt (sterische Hinderung), der den Sauerstoff nicht weiter stört. Die Position des distalen Histidins wird in dem vorletzten Modul zum Thema "Hämoglobin & Häm" sehr schön deutlich (Abb. 5). Im unteren Bereich des Bildausschnitts ist das proximale Histidin zu erkennen. Das freie Elektronenpaar des Stickstoffatoms im Histidinring besetzt eine der Koordinationsstellen des Eisenions. Die Darstellungen zum Thema "Sekundärstrukturen" stellen die Architektur der alpha-Helix in den Mittelpunkt. Die Darstellung ihrer Wechselwirkungen beschränkt sich auf die intrahelikalen Wasserstoffbrücken, die der Helix ihre Stabilität verleihen. Einzelne Darstellungen bereiten bereits das nächste Thema "Wechselwirkungen der alpha-Helix" vor, das die Interaktionen der Seitengruppen mit der wässerigen Umgebung und dem hydrophoben Proteinkern aufbereitet. Das erste Modul zeigt die Rückgrat-Struktur einer Globinkette (Tertiärstruktur) mit oxygeniertem Häm. Die alpha-helikalen Strukturabschnitte, die den Großteil des Moleküls bilden, sind farblich hervor gehoben (Abb. 6). Es folgt eine Farbvariante der ersten Darstellung ("Regenbogen-Färbung"). Die nächste Abbildung stellt eine neue "Struktursprache" der Biochemiker vor: alpha-helikale Bereiche werden von der Rückgrat-Struktur "luftschlangenartig" hervorgehoben. Diese Darstellungsform ist bei Molekularbiologen sehr beliebt, da sie bei der Analyse von Proteinstrukturen - unter anderem bei der Identifizierung von Domänen - sehr hilfreich ist. Zudem lassen sich anhand wiederholt auftretender "Sekundärstrukturmotive" Homologien und Analogien der Proteinevolution analysieren. Eine der alpha-Helices wird in ihrem Tertiärstrukturkontext (komplette räumliche Struktur einer Polypeptidkette) hervorgehoben. Dieser Kontext ist für die weitere Betrachtung wichtig (siehe "Wechselwirkungen der alpha-Helix"), da man an ihm erkennt, dass sich diese Helix an der Oberfläche des Globins befindet und sowohl mit dem wässerigen Milieu als auch mit dem Proteininneren Kontakt hat. Die Tertiärstrukturebene wird nun verlassen und auf die individuelle alpha-Helix (Sekundärstruktur) heruntergezoomt. Diese Helix wird nun in zwei andere Struktursprachen übersetzt. Zunächst in die Rückgrat-Darstellung der Polypeptidkette und schließlich in die "stick"-Darstellung ihrer Aminosäurebausteine. Das Folgemodul lässt die "driving force" der alpha-Helix-Struktur erkennen: Alle hydrophilen Teile des Polypeptid-Rückgrats (die Carbonyl-Sauerstoffatome und die Wasserstoffatome des Peptidbindungs-Stickstoff) bilden Wasserstoffbrücken miteinander. Diese vielen schwachen Wechselwirkungen verleihen der Helix ihre Stabilität. Die "Sättigung" der hydrophilen Rückgratbereiche mit hydrophilen Wechselwirkungen prädestiniert die Helix zu einem in hydrophoben Umgebungen oft verwendeten Strukturmotiv, sei es im hydrophoben Kern von Proteinen (siehe Hydrophobizität, Polarität & Ladungen") oder in Membranprotein-Abschnitten, die der Lipidphase ausgesetzt sind. Die nächste Darstellung macht deutlich, dass die Seitenketten der Aminosäuren einer Helix wie die Stufen einer Wendeltreppe immer nach außen zeigen. Besonders deutlich wird dieses wichtige Strukturprinzip, wenn man die Helix in eine Position bringt, in der man in Richtung ihrer Längsachse blickt. Während sich die Darstellungen zum Thema "Sekundärstrukturen" vor allem mit dem allgemeinen Architekturprinzip der alpha-Helix und den intrahelikalen Wasserstoffbrücken beschäftigten, veranschaulichen die Module dieses Abschnitts die Wechselwirkungen der helikalen Aminosäurereste mit dem hydrophilen Medium und dem hydrophoben Proteinkern. Die erste Darstellung zeigt das raumfüllende Kalottenmodell eines "Grenzflächenhelix"-Abschnitts. Farblich hervorgehoben sind die Stickstoff- und Sauerstoffatome der Seitengruppen und des Rückgrats. Beim Drehen und Wenden der Helix ist zu erkennen, dass es sich um eine "amphiphile Helix" handelt, d.h., dass auf einer Seite hydrophobe Reste, auf der anderen dagegen hydrophile Reste (erkennbar an den Heteroatomen) aus der Achse hervorragen. Diese Eigenschaft spiegelt die Anpassung der Aminosäuresequenz (Primärstruktur) an ihre räumliche Position im Tertiärstrukturkontext wider: Die hydrophobe Seite der Helix geht mit dem hydrophoben Proteinkern hydrophobe (van-der-Waals-)Wechselwirkungen ein und stabilisiert so die Tertiärstruktur des Proteins. Die hydrophile Seite bildet dagegen Wasserstoffbrücken mit den Wassermolekülen der Umgebung. Dieses Hydratwasser trägt dazu bei, das Protein in Lösung zu halten. Deutlicher wird dieses Prinzip in der zweiten Darstellung, die die Heteroatome des Rückgrats ausblendet. Die beiden folgenden Module zeigen dieselbe Darstellung, nur bereits entsprechend den jeweiligen Textinformationen räumlich ausgerichtet. So zeigt zum Beispiel der Blick entlang der Helixachse noch einmal deutlich deren amphipatischen Charakter (Abb. 7): Sämtliche Heteroatome der Seitenketten befinden sich in dieser Ansicht auf der rechten Seite. Die Chime-Darstellungen analysieren die Wechselwirkungen eines Globin-Molekül mit der Umgebung. Die "take home message" diese Abschnittes bildet das allgemeine Strukturprinzip löslicher Proteine: Innen hydrophob (Stabilisierung der Tertiärstruktur über van-der-Waals-Wechselwirkungen), außen hydrophil (Bindung von Hydratwasser über Wasserstoffbrücken). Die erste Darstellung zeigt die farbkodierte Verteilung hydrophober, polarer und geladener Aminosäuren auf der Globin-Oberfläche sowie die Sauerstoffatome von einem Teil des Hydratwassers. Beim Drehen des Proteins treten hydrophile und hydrophobe Oberflächenabschnitte deutlich hervor. Während die hydrophilen Bereiche mit dem Lösungsmittel Wasserstoffbrücken bilden und das Protein in Lösung halten, stabilisieren die hydrophoben Bereiche über hydrophobe Protein-Protein-Wechselwirkungen zwischen den vier Globinen eines Hämoglobin-Moleküls dessen Quartärstruktur (native Struktur eines aus mehreren Proteinuntereinheiten aufgebauten Proteinkomplexes). Der folgende Schnitt macht die Anatomie des Globins - stellvertretend für alle löslichen Proteine - deutlich. Während der Kern durch die Wechselwirkungen hydrophober Seitengruppen stabilisiert wird, ist die dem Medium ausgesetzte Oberfläche mit hydrophilen Resten gespickt. Dieses Strukturprinzip wir mithilfe von weiteren Schnittebenen verdeutlicht, die zunächst immer tiefer in das (hydrophobe) Proteininnere vordringen, um sich danach wieder seiner (hydrophilen) Oberfläche nähern (Abb. 8). Wie falten sich Proteine? Die Analyse der Strukturdarstellungen des Globins bietet sich als Ansatzpunkt für weiterführende Fragen zur Proteinstruktur an: Wie finden die linearen Aminosäureketten im lebenden Plasma ihre komplexe dreidimensionale Struktur? Und warum findet dieser Prozess in Zellen mit so hoher Effizienz, im Reagenzglas aber nur mit sehr niedrigen Ausbeuten statt? Vorhersage von Proteinstrukturen Vom Architekturprinzip der "Packung" einer Polypeptidkette lässt sich leicht der Bogen zur "driving force" ihrer Selbstfaltung schlagen. Der Selbsfaltungsprozess einer Polypeptidkette in ihre native dreidimensionale Struktur wird von ihrer Primärstruktur - also der linearen Abfolge ihrer Aminosäuresequenz - definiert. Dieser Strukturcode ist von Molekularbiologen bis heute noch nicht soweit entschlüsselt worden, dass anhand jeder Sequenz exakte Strukturvorhersagen getroffen werden können (falls das überhaupt möglich ist). In einigen Fällen lassen sich jedoch schon ganz passable Wahrscheinlichkeiten berechnen. All diese Vorhersagen basieren auf einer Bestimmung der thermodynamisch günstigsten Faltung. Das ist zum Beispiel bei einem löslichen Protein (wie vom Globin-Typ) diejenige, die über eine große Anzahl hydrophober Wechselwirkungen im Inneren und hydrophiler Wechselwirkungsmöglichkeiten an der Oberfläche verfügt. Eine gigantische Rechenaufgabe, da im Prinzip die Interaktion eines jeden Aminosäurerestes mit jedem anderen Rest analysiert werden müsste. Die Forscher schränken den Rechenaufwand jedoch erheblich ein, indem zunächst Sekundärstruktur-Wahrscheinlichkeiten analysiert werden. Auch Sequenz-Vergleiche mit Proteinen, deren Struktur bereits durch Röntgenstrukturanalysen eindeutig geklärt ist, erweisen sich als hilfreich: Die Natur verwendet nämlich beim Proteindesign sehr gerne bewährte Proteindomänen (das heißt durch Sekundärstrukturen stabilisierte globuläre Proteinabschnitte, die meist von einem Exon kodiert werden) immer wieder. Aus einem begrenzten Domänen-Repertoire hat die Natur so im Laufe der Evolution eine Vielzahl verschiedener Proteine mit vielfältigen Funktionen "zusammengepuzzelt". "Assisted Self Assembly" Das auf den bekannten Renaturierungsversuchen von Anfinsen basierende Dogma von der "Selbstfaltung" der Proteine ist seit der Entdeckung der Rolle der "Chaperone" nicht gerade ins Wanken geraten, musste jedoch vom "Self Assembly" zum "Assisted Self Assembly" modifiziert werden. Schnell hatte man erkannt, dass die in vitro beobachteten Selbsfaltungsraten viel zu niedrig sind, um eine Zelle funktionstüchtig zu halten. Zahlreiche Proteine zeigen im Reagenzglas sogar überhaupt keine Neigung, nach einer sanften Denaturierung in ihre native Struktur zurück zu finden. Der Grund dafür ist, dass jede Zelle über ein ganzes Arsenal von Chaperonen verfügt - "molekularen Anstandsdamen" - die mittlerweile auch Einzug in die Schulbuchliteratur gehalten haben. Diese Anstandsdamen (die selbst Proteine sind) erkennen "unordentlich" gefaltete Polypeptidketten, die noch keine stabilen Sekundärstrukturen oder noch keine stabile Tertiärstruktur gefunden haben. Als Symptome solcher unvollständigen oder Fehlfaltungen "fahnden" die Chaperone nach hydrophoben Resten, die an der Oberfläche falsch gefalteter Polypeptidketten exponiert werden. Chaperone entfalten diese unbrauchbaren Gebilde unter Energieverbrauch und verhelfen Ihnen somit zu einer neuen Chance, sich richtig zu falten. Sie "bugsieren" damit den Faltungsweg der Polypeptidketten sicher in die Richtung der thermodynamisch günstigsten Konformation, die in der Regel der nativen Proteinstruktur entspricht. Ursache der Sichelzellenanämie ist der Austausch eines einzigen Nukleotids im beta-Hämoglobinketten-Gen, wodurch die hydrophile Aminosäure Glutamat gegen die hydropobe Aminosäure Valin ersetzt wird. Mit fatalen Folgen: Der ausgetauschte Glutamatrest befindet sich nämlich an der Oberfläche des Proteins. Die Exposition des hydrophoben Restes setzt die Löslichkeit de Proteins vor allem im desoxygenierten Zustand stark herab und kann so die Polymerisation des Hämoglobins zu langen und unlöslichen Filamenten auslösen. Die erste Darstellung zeigt die Position des Valins auf der Oberfläche des oxygenierten Sichelzellen-Hämoglobins. Der so erzeugte "hydrophobe Fleck" ist weiß hervorgehoben. Die Desoxygenierung des Moleküls ist mit einer Konformationsänderung der Quartärstruktur verbunden, die einen zusätzlichen hydrophoben Bereich an die Oberfläche befördert (Abb. 9). Dieser ist auch beim "normalen" Hämoglobin vorhanden, wo er keinen negativen Effekt zeigt. Im Verbund mit dem neu hinzu gekommenen Valin-Rest verleiht er dem Molekül jedoch das Potenzial zur Polymerisation, sobald die Desoxy-Form eine kritische Konzentration überschreitet. Das nächste Modul zeigt den ersten Schritt der Polymerisation, die Dimerisierung zweier Moleküle über hydrophobe Wechselwirkungen (Abb. 10). Die an der Polymerisation beteiligten hydrophoben Reste und ihre Wechselwirkung wird erst dann deutlich, wenn die raumfüllende Darstellung durch die Rückgrate der Polypetidketten ersetzt wird. Die letzte Chime-Projektion zeigt eine Vergrößerung der Kontaktstellen. Die für die Sichelzellenanämie charakteristischen sichelförmigen Erythrozyten sind fragiler als ihre "Wildtyp"-Pendants, was die anämische Symptomatik verursacht. Die exponierten hydrophoben Reste wirken wie "hydrophile Lego-Noppen" oder "sticky patches", über die die Proteine zu langen Filamenten polymerisieren und so den Erythrocyten eine sichelförmige Gestalt aufzwingen. Die Sichelzellen sind im Gegensatz zu den geschmeidig-biegsamen normalen Erythrozyten nicht mehr deformierbar und verstopfen unter Sauerstoffmangelbedingungen (Höhenaufhalte, Flugreisen, Narkosen) zunächst kleine und schließlich größere Gefäße, was dann lebensbedrohliche Komplikationen verursacht. Im homozygoten Zustand führte die Krankheit noch vor kurzem im frühen Kindesalter zum Tode. Heterozygote zeigen eine deutlich abgeschwächte Symptomatik. Die Krankheit kommt fast nur bei Afrikanern vor, die aus zentralafrikanischen Regionen mit hohen Malariavorkommen stammen. In einigen Regionen tragen fast 40 Prozent der dortigen Bevölkerung das "defekte" Gen. Die Ursache dafür liegt darin, dass das Sichelzellen-Hämoglobin den Malaria-Erregern Schwierigkeiten bereitet: Heterozygote sind gegen den Malaria-Erreger besser geschützt und haben daher gegenüber den homozygot "Gesunden" einen Selektionsvorteil. Dies zeigt deutlich, wie schmal der Grat zwischen "gesund" und "krank", "nützlich" und "schädlich", sein kann und wie wichtig die genetische Vielfalt des Genpools einer Spezies für dessen Überleben ist: Genetische "Randgruppen" können an bestimmten Orten - oder zu bestimmten Zeiten! - für das Überleben der Art eine unvorhersehbare Bedeutung erlangen. Um die Moleküle der Applikation im Browser interaktiv betrachten zu können, muss der kostenlose Molekülbetrachter Chime der Firma Symyx installiert werden. Wenn dies erfolgt ist, "berühren" sie die Moleküle mit dem Mauszeiger. Wenn Sie die Maus dann bei gedrückter linker Taste bewegen, können Sie die Moleküle beliebig drehen und wenden und so von allen Blickwinkeln aus untersuchen. Um die Entfernung zum Objekt zu ändern, müssen Sie die Shift-Taste (Hochstell-Taste) gleichzeitig mit der linken Maustaste drücken. Dann kann mittels "Vor- und Zurückbewegungen" der Maus der Abstand zum Objekt variiert werden. Wenn Sie den Mauszeiger in einem Molekülfenster platzieren und mit der rechten Taste klicken, erscheint das Chime-Menü mit weiteren Funktionen. Hier können Sie zum Beispiel die Rotation der Moleküle ausschalten. Durch das Anklicken von Buttons der Hämoglobin-Lernumgebung werden die verschiedenen 3D-Darstellungen aufgerufen. Wenn Sie ein Bild bereits geladen haben und dann einen anderen Button anklicken, kann es zu Fehlern kommen. Zwar wird dann das gewünschte Molekül gezeigt, seine Darstellung entspricht dann jedoch nicht der eigentlich vorgesehen "Struktursprache". So kann zum Beispiel eine Polypeptidkette als "stick"-Struktur visualisiert werden, während die Programmierung an dieser Stelle eigentlich die Darstellung eines farbkodierten Kalottenmodells vorgesehen hat. Wenn dies passiert (oder Sie den Verdacht haben, dass dem so ist), können Sie die Seite in einem neuen Browserfenster öffnen und die gewünschte Abbildung neu laden. Alternativ kann es auch helfen, zunächst über den "Zurück-Button" des Browsers zur Übersichtseite der Hämoglobinseite zu gehen und die gewünschte Applikation erneut anzusteuern. Dynamische Arbeitsblätter sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flash-basierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Schülerinnen und Schüler sollen die ATP-Synthase als Beispiel eines Enzyms kennen lernen. den Aufbau der ATP-Synthase kennen lernen. ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend erschließen. die Möglichkeiten des Molekülbetrachters Jmol kennen und den Umgang mit dem Werkzeug lernen. am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms beschreiben. Thema ATP-Synthase - Synthese von Energieäquivalenten Autor Dr. Matthias Nolte, Dr. Thomas Engel, Dr. André Diesel, Florian Thierfeldt Fach Biologie, Chemie Zielgruppe Jahrgangsstufe 11 Zeitraum 2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit) oder Präsentationsrechner mit Beamer; Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download), Flash-Player , Quicktime-Player Struktur-Funktions-Beziehungen werden durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als ?Leitplanken? bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. ?Informations-Popups? und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:457078) Hier können Sie Kontakt mit Herrn Dr. Engel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:700245) Hier können Sie Kontakt mit Herrn Dr. Diesel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes. Weitere Materialien und Anregungen zum Unterricht finden Sie auch auf seiner Homepage www.scientific-beginner.de . (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:450955) Hier können Sie Kontakt mit Herrn Thierfeldt aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Die Schülerinnen und Schüler sollen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer verstehen. eine Sequenz aus einer Datenbank abrufen können. mit einem einfachen Visualisierungsprogramm wie RasMol umgehen können. die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen können. grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen erarbeiten. Struktur-Funktionsbeziehungen begreifen und erklären können. Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben können. Thema Proteinmodelle aus dem Internet - Beispiel Insulin Autorin Prof. Dr. Susanne Bickel Fächer Biologie, Chemie Zielgruppe Jahrgangsstufe 12/13 Zeitraum etwa 6 Stunden mit abschließender Präsentation Technische Voraussetzungen Rechner mit Internetzugang in ausreichender Zahl (Partner- oder Kleingruppenarbeit), (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:458232) (kostenloser Download aus dem Internet) Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:463298) Die Fotosynthese ist einer der bedeutungsvollsten biologischen Prozesse auf der Erde. Grüne Pflanzen wandeln Lichtenergie in chemische Energie um und speichern sie in Form energiereicher Moleküle. Diese werden dann in weiteren Stoffwechselprozessen als Energielieferanten für die Synthese von Kohlenhydraten aus den energiearmen Stoffen Kohlenstoffdioxid und Wasser verwendet. In diesem Prozess wird der für viele Lebewesen notwendige molekulare Sauerstoff gebildet. Die Fotosynthese gliedert sich somit in eine Lichtreaktion (Absorption von Lichtenergie, deren chemische Fixierung und Sauerstoffbildung) und in die lichtunabhängige Dunkelreaktion (Synthese von Glukose aus Kohlenstoffdioxid und Wasser). Die Schülerinnen und Schüler sollen die Teilreaktionen der Lichtreaktion mithilfe der Animation kennenlernen und protokollieren. die an der Reaktion beteiligten Biomoleküle und ihre Lokalisierung - innerhalb oder außerhalb der Thylakoidmembran - kennenlernen. Zusammenhänge formulieren (Kopplung der Fotosysteme) und eine Gesamtbilanz der Reaktion aufstellen. Thema Die Lichtreaktion der Fotosynthese Autor Dr. Ralf-Peter Schmitz Fach Biologie Zielgruppe Sekundarstufe II Zeitraum 1-2 Stunden für die selbstständige Erarbeitung (Einzel- oder Partnerarbeit); flexibel beim Einsatz zur Unterstützung des Unterrichtsgesprächs Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Die Lernenden nutzen die Flash-Animation im Computerraum der Schule in Einzel- oder Partnerarbeit oder auch am heimischen Rechner (Hausaufgabe, Wiederholung). Ihre Ergebnisse können sie den Mitschülerinnen und Mitschülern im Rahmen eines kleinen Vortrags vorstellen. Den Ablauf der Lichtreaktion beschreiben sie dabei mithilfe der per Beamer projizierten Animation. Alternativ zur Nutzung der Animation im Computerraum kann sie nach einem zunächst "computerfreien" Unterricht der Lehrkraft auch dazu dienen, die Lichtreaktion zusammenzufassen und das Unterrichtsgespräch im Fachraum zu unterstützen. Inhalte und Funktionen der Animation Die Teilschritte der Lichtreaktion werden visualisiert. Arbeitsaufträge und Hintergrundinformationen ermöglichen eine selbstständige Erarbeitung des Themas. Die Schülerinnen und Schüler sollen grundlegendes Wissen über den 3D-Aufbau der Rotationsmaschine ATP-Synthase erwerben (Tertiär und Quartärstruktur). prinzipielle Struktur-Funktionsbeziehungen begreifen und erklären können. die wichtigsten Mechanismen der Zelle, chemische Energie in Bewegung umzuwandeln, kennen lernen. Proteinkomplexe in ihrer Eigenschaft als Motoren begreifen. Anwendungsmöglichkeiten für Nanomotoren kennen lernen und selber Ideen entwickeln. die Natur als Vorbild für technische Umsetzungen begreifen und dadurch ein Grundverständnis für die Bionik entwickeln. Utopien und unwissenschaftliche Presseberichte analysieren und auf ihren sachlichen Gehalt reduzieren lernen. Thema Nanomotoren in Natur und Technik Autorin Prof. Dr. Susanne Bickel Fach Biologie Zielgruppe Sek II, Leistungskurs, Projektunterricht zur Biotechnologie Zeitraum 4-5 Stunden Technische Voraussetzungen Rechner mit der Möglichkeit, Filme abzuspielen (zum Beispiel RealPlayer oder Quicktime Player , kostenlose Downloads), in ausreichender Anzahl (Partnerarbeit, Kleingruppen) Planung Nanomotoren in Natur und Technik

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Feuerspuren im Satellitenbild - Dynamik von Ökosystemen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Ökosystem Wald interpretieren die Lernenden Satellitenbilder, um die Auswirkungen von Waldbränden in Griechenland zu erfassen. Dabei setzen sie sich mit der Dynamik und Stabilität von Ökosystemen auseinander und werden in die Methoden der Fernerkundung eingeführt. Ein interaktives Modul vereinfacht und veranschaulicht das Lernen. Die Materialien sind auf Deutsch und auf Englisch verfügbar und somit auch im englisch-bilingualen Unterricht einsetzbar.Waldbrände kommen in vielen Regionen der Welt als natürlicher Teil eines Kreislaufes vor, durch den die Voraussetzungen für die Nährstoffversorgung der folgenden Baumgenerationen geschaffen werden. Ihre Auswirkungen können jedoch auch verheerend sein. Anhand von Satellitenbildern können die Schülerinnen und Schüler mithilfe eines interaktiven Computer-Moduls die Folgen nachvollziehen und sichtbar machen. Materialien und Anwendungen stammen aus dem Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Die Unterrichtseinheit gibt es mit einem eigenen Computermodul auch für den Geographieunterricht: Feuerspuren im Satellitenbild - Eingriffe in Landschaften .Die vorliegende Unterrichtseinheit zum Ökosystem Wald hat zum Ziel, den Schülerinnen und Schülern den Themenkomplex "Stabilität und Dynamik von Ökosystemen" näherzubringen. Die Lernenden sollen am Ende diese Sequenz in der Lage sein, Zusammenhänge zwischen dem elektromagnetischem Spektrum, der Aufnahme und der Entstehung von Satellitenbildern sowie der Erfassung von Veränderungen innerhalb von Ökosystemen aufzuzeigen und zu verstehen. Anhand von zu verschiedenen Zeitpunkten aufgenommenen Satellitenbildern können die Jugendlichen Veränderungen der entsprechenden Region in Griechenland feststellen. Dabei lernen sie, wie die Pflanzen das Licht für die Photosynthese verwenden und welche Wellenlängenbereiche von Pflanzen reflektiert werden. Als wissenschaftliche Grundlage dient dabei die Einführung in die Methodik der Fernerkundung. Aufbau des Computermoduls Interaktive Aufgaben führen die Lernenden durch verschiedene thematische Bereiche; Quizfragen dienen zur Sicherung der Ergebnisse. Inhalte des Computermoduls Die Lernenden analysieren anhand von Satellitenbildern die Situation einer Region in Griechenland vor und nach den Waldbränden. Die Schülerinnen und Schüler können Satellitenbilder interpretieren und zur Analyse von Stabilität und Dynamik von Ökosystemen. können das elektromagnetische Spektrum und unterschiedliche Wellenlängenbereiche beschreiben. können Reflexionseigenschaften von Pflanzen vergleichen und zuordnen. können Vegetationsindizes für die Veränderungsanalyse anwenden. Die Unterrichtseinheit "Feuerspuren im Satellitenbild - Dynamik von Ökosystemen" bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus sind die durchgeführten Analysen und Manipulationen des Satellitenbildes nur mithilfe des Rechners umsetzbar. Dieser Umstand bringt den Schülerinnen und Schülern das Medium Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Das Computermodul - drei Teilbereiche Das Computermodul gliedert sich in zwei inhaltliche Bereiche: die Einführung in das Thema und den Hauptteil der Bildberechnung. Darüber hinaus wird das Modul durch einen dritten zusätzlichen Bereich ergänzt, in dem durch Videos und Tutorials der Umgang mit dem Modul vorgestellt wird. Die aktivierten Bereiche werden auf der linken Leiste eingeblendet. Während der erste Teil einen ersten Einblick in die Thematik der Waldbrände liefert und eine übergeordnete Aufgabestellung benennt, setzt sich der Hauptteil aus verschiedenen Untersequenzen zusammen, in denen jeweils Aufgabenteile mit Fragestellungen sowie Info-Boxen mit Hintergrundinformationen enthalten sind. Den Abschluss der jeweiligen Untersequenzen bildet ein Quiz. Der erste Teil des Moduls wird nach dem Start automatisch geladen. Zu Beginn ist ein Schreibtisch zu sehen, auf dem verschiedene Dokumente liegen (siehe Abbildung 1, zur Vergrößerung bitte anklicken). Die Schülerinnen und Schüler sollen sich nun nacheinander mit den drei dargestellten Dokumenten beschäftigen: einem Zeitungsartikel zu Waldbränden in Griechenland, Bildmaterial sowie der übergeordneten Aufgabestellung, die als Auftrag der EU-Kommission gestaltet ist. Durch Anklicken werden die jeweiligen Dokumente vergrößert. Nach der Bearbeitung der drei Materialien können die Jugendlichen durch Anklicken der virtuellen Computermaus in den Hauptteil des Moduls übergehen. Bildrechner Der Hauptteil ist in vier Unterbereiche unterteilt. Der erste Teil beginnt mit einem kurzen Video über den Umgang mit dem Modul. Nun können die Lernenden ein Satellitenbild im roten und infraroten Kanal, eine Satellitenkarte sowie eine Nutzungskarte laden und sich die unterschiedlichen Pixelwerte im Bild anzeigen lassen. In der dazugehörigen Info-Box (siehe Abbildung 2) wird ihnen einführendes Wissen zur Satellitenfernerkundung vermittelt. Nachdem sie das Quiz erfolgreich bestanden haben, gelangen die Lernenden in einen weiterführenden Bereich des Hauptteils. Vegetationsindex NDVI Wieder werden die Schülerinnen und Schüler durch ein kleines Video in die Vorgehensweise eingewiesen. Hier können sie zwei Satellitenbilder, eins vor den Waldbränden mit einem nach den Waldbränden, vergleichen und für den jeweiligen Zeitpunkt ein Bild des Vegetationsindex "NDVI" (Normalized Difference Vegetation Index) berechnen. In der dazugehörigen Info-Box finden sie das dazu notwendige Wissen einfach und anschaulich erklärt. Auch hier schließt dieser Teil mit einem Quiz ab und leitet in den dritten Teil weiter. Change Detection Der dritte Teil unterscheidet sich optisch nicht vom zweiten, allerdings variieren Aufgabenstellung und Info-Box, indem sie vor allem die Berechnung des Unterschiedes (change detection) der beiden Bilder in den Vordergrund stellen. Die Lösung der Aufgaben und das Bestehen des Quiz leiten in den letzten Teil über. Zeitreihenanalyse Dem letzten Teil des Moduls wird erneut ein Video-Tutorial vorangestellt. In diesem Teil liegt der Fokus auf der Zeitreihenanalyse, mithilfe welcher die Lernenden nicht nur zwei Zeitpunkte miteinander vergleichen können, sondern Bilder zu mehreren unterschiedlichen Zeitpunkten. Dies ermöglicht ihnen eine umfassendere Analyse in Bezug auf die Feuerkatastrophe, aber auch zu jahreszeitlichen Schwankungen des Ökosystems. Ein abschließendes Quiz beendet das Modul mit einer Schlussnotiz. Im Video und Tutorial-Teil können sich die Schülerinnen und Schüler zur Vorbereitung kurze Videos anschauen, um in ihrem Umgang mit dem Modul sicher zu werden. Mit jedem erfolgreich gelösten Arbeitsbereich wird ein weiteres Tutorial sichtbar, das von nun an jederzeit erneut angesehen werden kann. Die verschiedenen Tutorials lassen sich wie Karteikartenreiter am oberen Bildschirmrand anklicken (siehe Abbildung 3). Navigation im Modul Das Computermodul erlaubt auch, zwischen den zwei Hauptbereichen (Einführung und Bildrechner) zu springen. Zu Beginn ist die grüne Navigationsleiste am linken Rand noch leer. Erst nach Lesen der ersten Materialien wird das Icon für den jeweiligen Bereich sichtbar, sodass man später über die Navigationsleiste wieder dorthin zurück gelangen kann. Der Ablauf der Unterrichtsstunden mit dem interaktiven Lernmodul "Feuerspuren im Satellitenbild - Dynamik von Ökosystemen" wird durch die Struktur des Computermoduls vorgegeben. In Zweierteams können sich die Schülerinnen und Schüler die zwei Teilbereiche in drei Schulstunden erarbeiten. Der Unterricht beginnt jeweils mit einer Erläuterung des Moduls und gegebenenfalls der Aufgabenstellung. Dann folgt die selbständige Erarbeitung und Überprüfung der Kenntnisse im Quiz. Abschließend können die Ergebnisse jeder Stunde noch einmal im Plenum gebündelt werden. Stunde 1: Einführung - Waldbrände und Satellitenfernerkundung In der ersten Stunde führt das Computermodul mit zwei Dokumenten zu Waldbränden sowie der übergeordnete Aufgabestellung in die Thematik ein. Die Lernenden erhalten dort erstes Hintergrundwissen zu Waldbränden in Griechenland. Erst nach dem Lesen der Dokumente wird in den anschließenden Hauptteil weitergeleitet. Aufgabe der Schülerinnen und Schüler ist es, die Entwicklung und die Regeneration der verbrannten Flächen nachzuvollziehen und zu analysieren. Darüber hinaus beschäftigen sich die Lernenden zu Beginn des Hauptteils mit den Grundlagen der Satellitenfernerkundung und analysieren erste Grauwertbilder. Zur Überprüfung und Festigung des Gelernten ist ein Quiz integriert, das man über einen Button unten rechts im Bild erreicht. Es leitet gleichzeitig zum nächsten Modulteil über. Stunde 2 und 3: Bildrechner Veränderungsanalyse Thema der zweiten Stunde ist der Vergleich von zwei Satellitenbildern aufgrund unterschiedlicher Vitalitätszustände der Pflanzen. Das Computermodul erlaubt, die Situation in einer Region vor und nach Waldbränden gegenüberzustellen. Mithilfe eines Rechners auf der rechten Seite kann der Vegetationsindex errechnet und analysiert werden. Die Info-Box bietet den Schülerinnen und Schülern einen vertieften Einblick in die Arbeitsweisen der Satellitenfernerkundung mit Vegetationsindizes. Auch hier schließt ein Quiz den zweiten Modulteil ab und leitet in den dritten Teil über. Hier wird nun das erworbene Wissen der ersten Teile zusammengefügt und in Form der computergestützten Veränderungsanalyse (change detection) durchgeführt. Die Jugendlichen vergleichen die Satellitenbilder nicht mehr nur visuell, sondern analysieren diese mithilfe des errechneten Bildes. Die dritte Stunde geht noch einen Schritt weiter und lässt die Schülerinnen und Schüler nicht mehr nur zwei Bilder miteinander vergleichen, sondern eine Sequenz mehrerer zu verschiedenen Zeitpunkten aufgenommener Bilder (Abbildung 4, bitte anklicken). Je nachdem, wo der Mauszeiger auf der Karte positioniert wird, ändert sich der Kurvenverlauf in der Grafik am rechten Bildschirmrand. Neben durch Katastrophen verursachte Veränderungen können auch natürliche saisonal bedingte Schwankungen erfasst und analysiert werden. Ein abschließendes Quiz rundet das Modul inhaltlich ab.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Feuerspuren im Satellitenbild - Eingriffe in Landschaften

Unterrichtseinheit

In dieser Unterrichtseinheit zu Eingriffen in Landschaften interpretieren die Lernenden Satellitenbilder, um die Auswirkungen von Waldbränden in Griechenland zu erfassen. Dabei setzen sie sich mit den Ursachen und Folgen von Eingriffen in geoökologische Kreisläufe auseinander und werden in die Methoden der Fernerkundung eingeführt. Ein interaktives Modul vereinfacht und veranschaulicht das Lernen. Die Materialien sind auf Deutsch und auf Englisch verfügbar und somit auch im englisch-bilingualen Unterricht einsetzbar.Waldbrände kommen in vielen Regionen der Welt als natürlicher Teil eines Kreislaufes vor, durch den die Voraussetzungen für die Nährstoffversorgung der folgenden Baumgenerationen geschaffen werden. Ihre Auswirkungen können jedoch auch verheerend sein. Anhand von Satellitenbildern können die Schülerinnen und Schüler mithilfe eines interaktiven Computer-Moduls die Folgen nachvollziehen und sichtbar machen. Materialien und Anwendungen stammen aus dem Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Die Unterrichtseinheit gibt es mit einem eigenen Computermodul auch für den Biologieunterricht: Feuerspuren im Satellitenbild - Dynamik von Ökosystemen .Die vorliegende Unterrichtseinheit hat zum Ziel, den Schülerinnen und Schülern den Themenkomplex "Ursachen und Folgen von Eingriffen in geoökologische Kreisläufe" näherzubringen und sie in die Lage zu versetzen, Zusammenhänge zwischen elektromagnetischem Spektrum, der Aufnahme und Entstehung von Satellitenbildern und der Erfassung von Veränderungen innerhalb von Landschaften aufzuzeigen und zu verstehen. Anhand von zu verschiedenen Zeitpunkten aufgenommenen Satellitenbildern können die Jugendlichen Veränderungen der entsprechenden Region in Griechenland feststellen. Dabei lernen sie, wie die Pflanzen das Licht für die Photosynthese verwenden und welche Wellenlängenbereiche von Pflanzen reflektiert werden. Als wissenschaftliche Grundlage dient dabei die Einführung in die Methodik der Fernerkundung, mithilfe derer die Jugendlichen durch Vegetationsindizes und Veränderungsanalysen eigenständige Bewertungen vornehmen können. Aufbau des Computermoduls Interaktive Aufgaben führen die Lernenden durch verschiedene thematische Bereiche, Quizfragen dienen zur Sicherung der Ergebnisse. Inhalte des Computermoduls Die Lernenden analysieren anhand von Satellitenbildern die Situation einer Region vor und nach den Waldbränden. Die Schülerinnen und Schüler lernen Ursachen und Hintergründe von Waldbränden kennen. können Satellitenbilder interpretieren und zur Analyse von Stabilität und Dynamik von Landschaften nutzen. können das elektromagnetische Spektrum und unterschiedliche Wellenlängenbereiche beschreiben. können Reflexionseigenschaften von Pflanzen vergleichen und zuordnen. können NDVI-Zeitreihen zur Beurteilung der Dynamik und Stabilität ausgewählter Regionen anwenden. Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik "Eingriffe in Landschaften" durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus sind die durchgeführten Analysen und Manipulationen des Satellitenbildes nur mithilfe des Rechners umsetzbar. Dieser Umstand bringt den Schülerinnen und Schülern das Medium Computer ergänzend zu seiner Freizeit-Relevanz als reines Informations- und Unterhaltungsgerät auch als unterrichtlich nutzbares Werkzeug näher. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Das Computermodul - drei Teilbereiche Das Computermodul "Feuerspuren im Satellitenbild - Eingriffe in Landschaften" gliedert sich in zwei inhaltliche Bereiche: die Einführung in das Thema und den Hauptteil der Bildberechnung. Darüber hinaus wird das Modul durch einen dritten zusätzlichen Bereich ergänzt, in dem durch Videos und Tutorials der Umgang mit dem Modul vorgestellt wird. Die aktivierten Bereiche werden auf der linken Leiste des Programmfensters eingeblendet. Während der erste Teil einen ersten Einblick in die Thematik der Waldbrände liefert und eine übergeordnete Aufgabestellung benennt, setzt sich der Hauptteil aus verschiedenen Untersequenzen zusammen, in denen jeweils Aufgabenteile mit Fragestellungen sowie Info-Boxen mit Hintergrundinformationen enthalten sind. Den Abschluss der jeweiligen Untersequenzen bildet ein Quiz. Der erste Teil des Moduls wird nach dem Start automatisch geladen. Zu Beginn ist ein Schreibtisch zu sehen, auf dem verschiedene Dokumente liegen (siehe Abbildung 1, zur Vergrößerung bitte anklicken). Die Schülerinnen und Schüler sollen sich nun nacheinander mit den drei dargestellten Dokumenten beschäftigen: einem Zeitungsartikel zu den Waldbränden in Griechenland 2007, Bildmaterial sowie der übergeordneten Aufgabestellung, die als Auftrag der EU-Kommission gestaltet ist. Durch Anklicken werden die jeweiligen Dokumente vergrößert. Nach der Bearbeitung der drei Materialien können die Jugendlichen durch Anklicken der virtuellen Computermaus in den Hauptteil des Moduls übergehen. Bildrechner Der Hauptteil ist in vier Unterbereiche unterteilt. Der erste Teil beginnt mit einem kurzen Video über den Umgang mit dem Modul. Nun können die Lernenden ein Satellitenbild im roten und infraroten Kanal, eine Satellitenkarte sowie eine Nutzungskarte laden und sich die unterschiedlichen Pixelwerte im Bild anzeigen lassen. In der dazugehörigen Info-Box (siehe Abbildung 2) wird ihnen einführendes Wissen zur Satellitenfernerkundung vermittelt. Nachdem sie das Quiz erfolgreich bearbeitet haben, gelangen die Lernenden in einen weiterführenden Bereich des Hauptteils. Vegetationsindex NDVI Wieder werden die Schülerinnen und Schüler durch ein kleines Video in die Vorgehensweise eingewiesen. Hier können sie zwei Satellitenbilder, eins vor den Waldbränden mit einem nach den Waldbränden vergleichen und für den jeweiligen Zeitpunkt ein Bild des Vegetationsindex "NDVI" (Normalized Difference Vegetation Index) berechnen. In der dazugehörigen Info-Box finden sie das dazu notwendige Wissen einfach und anschaulich erklärt. Auch dieser Teil schließt mit einem Quiz ab und leitet in den dritten Teil weiter. Change Detection Der dritte Teil unterscheidet sich optisch nicht vom zweiten, allerdings variieren Aufgabenstellung und Info-Box, indem sie vor allem die Berechnung des Unterschiedes (change detection) der beiden Bilder in den Vordergrund stellen. Die Lösung der Aufgaben und das Bestehen des Quiz leiten in den letzten Teil über. Zeitreihenanalyse Dem letzten Teil des Moduls wird erneut ein Video-Tutorial vorangestellt. In diesem Teil liegt der Fokus auf der Zeitreihenanalyse, mithilfe derer die Lernenden nicht nur zwei Zeitpunkte miteinander vergleichen können, sondern Bilder zu mehreren unterschiedlichen Zeitpunkten. Dies ermöglicht ihnen eine umfassendere Analyse in Bezug auf die Feuerkatastrophe, aber auch zu jahreszeitlichen Schwankungen des Ökosystems. Ein abschließendes Quiz beendet das Modul mit einer Schlussnotiz. Im Video- und Tutorial-Teil können sich die Schülerinnen und Schüler zur Vorbereitung kurze Videos anschauen, um in ihrem Umgang mit dem Modul sicher zu werden. Dieser Bereich wird über den Button "T" in der linken Menüleiste angewählt. Mit jedem erfolgreich gelösten Arbeitsbereich wird ein weiteres Tutorial sichtbar, das von nun an jederzeit erneut angesehen werden kann. Die verschiedenen Tutorials lassen sich wie Karteikartenreiter am oberen Bildschirmrand anklicken (siehe Abbildung 3). Navigation im Modul Das Computermodul erlaubt auch, zwischen den zwei Hauptbereichen (Einführung und Bildrechner) zu springen. Zu Beginn ist die grüne Navigationsleiste am linken Rand noch leer. Erst nach Lesen der ersten Materialien wird das Icon für den jeweiligen Bereich sichtbar, so dass man später über die Navigationsleiste wieder dorthin zurück gelangen kann. Der Ablauf der Unterrichtsstunden wird durch die Struktur des Computermoduls vorgegeben. In Zweierteams können sich die Schülerinnen und Schüler die zwei Teilbereiche in drei Schulstunden erarbeiten. Der Unterricht beginnt jeweils mit einer Erläuterung des Moduls und gegebenenfalls der Aufgabenstellung. Dann folgt die selbständige Erarbeitung und Überprüfung der Kenntnisse im Quiz. Abschließend können die Ergebnisse jeder Stunde noch einmal im Plenum gebündelt werden. Stunde 1: Einführung - Waldbrände und Satellitenfernerkundung In der ersten Stunde führt das Computermodul mit zwei Dokumenten zu Waldbränden sowie der übergeordnete Aufgabenstellung in die Thematik ein. Die Lernenden erhalten dort erstes Hintergrundwissen zu Waldbränden Griechenland. Erst nach dem Lesen der Dokumente wird in den anschließenden Hauptteil weitergeleitet. Aufgabe der Schülerinnen und Schüler ist es, die Entwicklung und die Regeneration der verbrannten Flächen nachzuvollziehen und zu analysieren. Darüber hinaus beschäftigen sich die Lernenden zu Beginn des Hauptteils mit den Grundlagen der Satellitenfernerkundung und analysieren erste Grauwert-Bilder. Zur Überprüfung und Festigung des Gelernten ist ein Quiz integriert, das man über einen Button unten rechts im Bild erreicht. Es leitet gleichzeitig zum nächsten Modulteil über. Stunde 2 und 3: Bildrechner Veränderungsanalyse Thema der zweiten Stunde ist der Vergleich von zwei Satellitenbildern aufgrund unterschiedlicher Vitalitätszustände der Pflanzen. Das Computermodul erlaubt, die Situation in einer Region vor und nach Waldbränden gegenüberzustellen. Mithilfe eines Rechners auf der rechten Seite kann der Vegetationsindex errechnet und analysiert werden. Die Info-Box bietet den Schülerinnen und Schülern einen vertieften Einblick in die Arbeitsweisen der Satellitenfernerkundung mit Vegetationsindizes. Auch hier schließt ein Quiz den zweiten Modulteil ab und leitet in den dritten Teil über. Hier wird nun das erworbene Wissen der ersten Teile zusammengefügt und in Form der computergestützten Veränderungsanalyse (change detection) durchgeführt. Die Jugendlichen vergleichen die Satellitenbilder nicht mehr nur visuell, sondern analysieren diese mithilfe des errechneten Bildes. Zeitreihenanalyse Die dritte Stunde geht noch einen Schritt weiter und lässt die Schülerinnen und Schüler nicht mehr nur zwei Bilder miteinander vergleichen, sondern eine Sequenz mehrerer zu verschiedenen Zeitpunkten aufgenommener Bilder (Abbildung 4, bitte anklicken). Je nachdem, wo der Mauszeiger auf der Karte positioniert wird, ändert sich der Kurvenverlauf in der Grafik am rechten Bildschirmrand. Neben durch Katastrophen verursachte Veränderungen können auch natürliche saisonal bedingte Schwankungen erfasst und analysiert werden. Ein abschließendes Quiz rundet das Modul inhaltlich ab.

  • Geographie / Jahreszeiten
  • Sekundarstufe II
ANZEIGE