• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

AstroFarmer: die Wachstumsbedingungen von Pflanzen erforschen

Unterrichtseinheit

In dieser Unterrichtseinheit erforschen die Schülerinnen und Schüler, wie die Luft, das Wasser, die Erde, die Temperatur und der Zugang zu Nährstoffen das Wachstum von Pflanzen beeinflussen. Die verschiedenen Faktoren werden anschließend auf das Wachstumsverhalten von Pflanzen im Weltall übertragen. In den sechs Übungen dieser Lerneinheit erforschen die Lernenden, welche verschiedenen Faktoren das Wachstum von Pflanzen beeinflussen. Die Schülerinnen und Schüler entdecken, dass Pflanzen Luft, Licht, Wasser, Nährstoffe und gleichbleibende Temperaturen benötigen, um wachsen zu können. Sie werden beobachten, was mit Pflanzen passiert, wenn einige dieser Faktoren variieren. Um die Mechanismen hinter dem Pflanzenwachstum und die biologischen Abläufe besser verstehen zu können und für die Lernenden anschaulicher zu machen, werden einfach gehaltene Versuche durchgeführt. Abschließend übertragen sie das Erlernte dann auf die Kultivierung von Pflanzen im All. Die Unterrichtseinheit wurde im Rahmen der Projekte ESERO Germany und "Columbus Eye - Live-Bilder von der ISS im Schulunterricht" an der Ruhr-Universität Bochum entwickelt. Pflanzen sind für die Ökosysteme unserer Erde wichtig. Sie sind eine Nahrungsquelle für Tiere und wandeln bei der Photosynthese Kohlenstoffdioxid in Sauerstoff um. Diese Übungsreihe veranschaulicht den Lernenden, was Pflanzen benötigen, um zu überleben und gesund zu sein. Die Hauptfaktoren Zugang zu Luft, Licht, Wasser, Nährstoffen, eine passende und nicht zu stark schwankende Temperatur werden in verschiedenen Experimenten selbst ermittelt. Des Weiteren werden die eigenen, gesammelten Messwerte und Erfahrungen anschließend zusammengefasst und auf die wichtigsten Voraussetzungen für ein Pflanzenwachstum auf dem Mond übertragen. Die Unterrichtseinheit kann im Klassenzimmer über einen längeren Zeitraum durchgeführt und immer wieder in den Unterricht eingebaut werden. Aufgrund der Wachstumszeit der Pflanzen bietet es sich an, in regelmäßigen Abständen auf das Projekt im Unterricht zu verweisen. Altersgruppe: 8 bis 12 Jahre Unterrichtsfach: Naturwissenschaften (Sachunterricht, Biologie, NAWI) Schwierigkeitsgrad: Mittel Benötigte Zeit: 3 bis 4 Unterrichtsstunden Benötigte Materialien: Kresse-Samen, Radieschen-Samen, Blumen mit weißen Blüten Die Schülerinnen und Schüler lernen, dass Pflanzen Wasser, Licht, Luft, Nährstoffe und passende Temperaturen benötigen, um zu wachsen. verstehen, dass die Umwelt sich verändern und gefährlich für lebendige Organismen werden kann. lernen, dass es möglich ist, Pflanzen ohne Erde anzubauen. führen einfache Tests beziehungsweise Experimente genau durch. erkennen Variablen und ändern diese bei Bedarf. interpretieren Beobachtungen und leiten Ergebnisse aus ihnen ab. lösen Probleme alleine oder in der Gruppe.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Geographie / Jahreszeiten / Physik / Astronomie
  • Primarstufe, Sekundarstufe I

Mond-Unterschlupf: Schutzräume auf der Erde und im All

Unterrichtseinheit

In dieser Unterrichtseinheit für den fächerverbindenden Unterricht in den Naturwissenschaften und Kunst beziehungsweise Werken analysieren die Schülerinnen und Schüler die Bedeutung von Schutzräumen auf der Erde und im Weltall. Sie vergleichen die Umweltbedingungen auf der Erde und auf dem Mond und entwerfen einen eigenen Schutzraum für den Mond. Die European Space Agency (ESA) arbeitet an neuen Missionen zum Mond, um die dortige Umwelt zu erforschen und neue Technologien zu entwickeln, die eines Tages bei der Etablierung einer Mondbasis helfen könnten. Vielleicht werden schon in den nächsten zwei Jahrzehnten Astronauten auf dem Mond leben. In der Projektreihe "Mond-Unterschlupf: Schutzräume auf der Erde und im All" analysieren die Schülerinnen und Schüler, wie wichtig es ist, Schutzräume auf der Erde und im Weltraum zu haben. Sie vergleichen die Umweltbedingungen auf der Erde und auf dem Mond und entwerfen einen eigenen Schutzraum für den Mond. Diesen können sie dann aus Materialien, die mit dem Mondboden vergleichbar sind, nachbauen. Altersklasse : 8- bis 12-Jährige Material : Arbeitsblätter Schwierigkeitsgrad : mittel benötigte Unterrichtszeit : insgesamt 90 Minuten Durchführungsort : Klassenzimmer benötigte Materialien : Bastelmaterial (wie Sand, Lehm, Schaumstoff, Plastik, Ballons) Kosten pro Klasse : gering (0-10 Euro) Thematischer Hintergrund: Leben auf dem Mond Der Weltraum außerhalb unseres Heimatplaneten ist eine extrem feindselige Umgebung für den Menschen. Im Gegensatz zur Erde hat der Mond keine Atmosphäre (er befindet sich im Vakuum), das heißt, es gibt keine Luft zum Atmen. Darüber hinaus besteht wegen der mangelnden Atmosphäre nicht einmal Schutz vor der Kollision mit kleinsten Meteoroiden (wie Staub und Gestein, die im gesamten Sonnensystem vorhanden sind) oder vor der schädlichen Strahlung der Sonne. Ein Tag auf dem Mond dauert 27,3 Erdtage. Es gibt also immer 14 Tage Tageszeit, gefolgt von 14 Tagen Nachtzeit. Die Temperaturunterschiede zwischen Tag und Nacht sind extrem. Die Temperatur kann je nach Standort tagsüber bei +123 °C und bis zu -233 °C in der Nacht liegen. Der Bau einer Infrastruktur auf dem Mond würde bedeuten, dass viele Materialien von der Erde genommen werden müssten, was enorme Transportkosten bedeuten würde. Daher untersuchen Ingenieure neue Bautechniken, zum Beispiel den 3D-Druck mit lokalen Materialien wie Mondboden (Regolith). Methodische Hinweise In dieser Unterrichtseinheit untersuchen die Schülerinnen und Schüler verschiedene Schutzräume auf der Erde und stellen sich vor, wie ein zukünftiger Schutz auf dem Mond aussehen könnte. Die Aufgaben und Übungen bieten eine Einführung in die Umweltbedingungen auf dem Mond und vergleichen sie mit den Bedingungen, die auf unserer Erde herrschen. Die Schülerinnen und Schüler erfassen die Bedeutung der Erdatmosphäre und die Herausforderungen der Weltraumforschung. Vertiefende methodische Hinweise finden Sie im Dokument mondunterschlupf-schutzraeume-erde-all-alle-materialien.pdf, das am Ende dieser Seite kostenlos heruntergeladen werden kann. Die Schülerinnen und Schüler erkennen die Bedeutung von Zufluchtsorten für den Schutz vor der Umwelt. stellen eine Beziehung zwischen Umweltbedingungen und bekannten Unterschlupfarten her. verstehen, dass die Atmosphäre für das Leben auf der Erde wichtig ist. erkennen, dass die Erde und der Mond sehr unterschiedliche Umweltbedingungen haben. führen die Identifikation einiger notwendiger Merkmale eines Schutzraums auf dem Mond durch. bauen die Fähigkeit aus, in einer Gruppe zu arbeiten und kreativ zu denken.

  • Geographie / Jahreszeiten / Physik / Astronomie / Technik / Sache & Technik
  • Primarstufe, Sekundarstufe I

Das Eis schmilzt: Wie lassen sich die Auswirkungen schmelzenden Eises…

Unterrichtseinheit

Bei dieser Aufgabensammlung erkunden die Schülerinnen und Schüler die Auswirkungen der Erderwärmung und der Eisschmelze auf die Erde. Sie lernen den Unterschied zwischen Land- und Meereis kennen und untersuchen die jeweiligen Effekte bei deren Schmelze. Im Rahmen der Unterrichtseinheit mit der Forscherfrage "Wie lassen sich die Auswirkungen schmelzenden Eises untersuchen?" werden die Kenntnisse von Schülerinnen und Schüler zum Thema Erderwärmung gefördert. Die Lernenden konzentrieren sich dabei auf die direkten Auswirkungen und Folgen der Erderwärmung und der Eisschmelze. Die Einheit beginnt mit einer Diskussion, welche Arten von Eis es gibt und wie diese sich voneinander unterscheiden. Daran schließt ein praktischer Versuch an, um zu untersuchen, wie schmelzendes Eis die Temperatur der Atmosphäre verändert. Zuletzt analysieren die Lernenden die Satellitenbilder eines Gletschers in den vergangenen 30 Jahren und errechnen, wieviel davon in einem bestimmten Zeitraum geschmolzen ist. Die Unterrichtseinheit wurde im Rahmen der Projekte ESERO Germany und "Columbus Eye - Live-Bilder von der ISS im Schulunterricht" an der Ruhr-Universität Bochum entwickelt. Aktuell sind etwa 10 Prozent der Erdoberfläche mit Eis bedeckt, aber das war nicht immer so. Während der Erdgeschichte gab es mehrere Eiszeitalter, die eintraten, wenn die Temperatur der Erde fiel und das Eis sehr viel mehr ihrer Oberfläche bedeckte. Die Temperatur der Erde ändert sich natürlich im Laufe der Zeit. Derzeit steigt sie, doch diesmal ist die Veränderung nicht ganz natürlich, sondern ist durch menschliche Aktivität verursacht. Ziel der Unterrichtseinheit ist es, den Schülerinnen und Schülern den Unterschied zwischen Land- und Meereis zu erklären und Verständnis dafür zu entwickeln, dass die Eiskappen schmelzen. Sie sollen anhand von Experimenten erforschen und anschließend beschreiben, weshalb schmelzendes Landeis zu einem ansteigenden Meeresspiegel beiträgt, während sich schmelzendes Meereis nicht auf den Meeresspiegel auswirkt. Altersgruppe: 8 bis 12 Jahre Schwierigkeitsgrad: leicht Zeitbedarf: 60 bis 90 Minuten Kosten für Versuche: 10 bis 15 Euro Die Schülerinnen und Schüler erfahren, wo auf der Erde Eis zu finden ist und dass die Eismenge auf der Erde abnimmt. verstehen den Unterschied zwischen Land- und Meereis. lernen, dass schmelzendes Meereis den Meeresspiegel nicht beeinflusst, das schmelzende Landeis jedoch schon. beschreiben anhand von Satellitenbildern den Rückgang des Columbia-Gletschers in den letzten 30 Jahren. verbessern ihre experimentellen Fähigkeiten. beschreiben und erläutern beobachtete physikalische Auswirkungen während und nach ihrem eigens geplanten Versuch.

  • Geographie / Jahreszeiten
  • Primarstufe, Sekundarstufe I

Zukunft der Erde: Nachhaltigkeit (be)greifen

Unterrichtseinheit

Die Kinder widmen sich in dieser Unterrichtseinheit der Frage "Wie funktioniert eigentlich unsere Erde?". Die Erkenntnisse und Erfahrungen, die sie beim Erforschen dieser facettenreichen Thematik machen, sollen ihr Bewusstsein dafür stärken, dass sie ihre Umwelt aktiv erkunden, beeinflussen und mitgestalten können.Erde, Feuer, Wasser und Luft sind Grundbausteine der Vielfalt des Lebens auf unserem Planeten. Die vier Elemente wirken in der Natur aufeinander ein: Gemeinsam treiben sie den Wasserkreislauf an, bestimmen unser Wetter und unser Klima. Sie spenden Energie, lassen Pflanzen wachsen und erhalten die Produktion von Sauerstoff aufrecht. Jedes Lebewesen und jedes Element spielt eine bestimmte Rolle. Alles ist vernetzt und verwoben. Die Natur befindet sich dabei im Gleichgewicht: Pflanzen produzieren energiereiche Stoffe, Tiere und Menschen konsumieren diese als Nahrung. Reste werden von Pilzen und Bakterien abgebaut und wieder in Nährstoffe umgewandelt - ein perfekter Stoffkreislauf, angetrieben von der Energie der Sonne, gespeist vom Lebensquell Wasser und geschützt von einer mit Luft gefüllten Atmosphäre. Durch das gemeinsame Erforschen und Erleben der Elemente bauen die Mädchen und Jungen Naturwissen auf und entwickeln ein Wertebewusstsein und Verantwortungsgefühl für ihre Umwelt. Die Kinder lernen zu verstehen, dass alles, was sie tun, eine Auswirkung hat. Jeder kann so die Zukunft mitgestalten.Kinder streben unentwegt danach, ihre Welt zu entdecken. Sie ordnen neue Erfahrungen in ihr bisheriges Weltbild ein und verknüpfen aktuelles mit schon vorhandenem Wissen. Gelingt dieses Einpassen nicht, müssen Vorstellungen überprüft, Wissens- und Denkstrukturen neu angepasst werden. Der Prozess bewusster Erkenntnis beginnt daher stets mit einer Frage, auf die die Kinder in ihrem bisherigen Wissens- und Erfahrungsschatz keine befriedigende Antwort finden. In der alltäglichen Begegnung mit Naturphänomenen entstehen bei den Kindern viele Fragen. Den Erwachsenen fällt eine Antwort oft gar nicht so leicht. Sie können sich selbst mit den Kindern auf einen gemeinsamen Weg des Erforschens und Entdeckens begeben und die Mädchen und Jungen bei der Suche nach eigenen Antworten unterstützen. Versuche zu den vier Elementen Hier finden Sie zahlreiche Vorschläge zum Ausprobieren und Experimentieren, mit denen die Kinder die Bedeutung und die Funktion der vier Elemente erforschen können. Wir retten die Welt Auch Kinder können die Welt retten. Zeigen Sie ihnen, welchen Beitrag sie zur Erhaltung unserer Erde leisten können. Die Schülerinnen und Schüler werden für das Thema Umwelt- und Klimaschutz sensibilisiert. lernen das Thema Nachhaltigkeit und seine Bedeutung anhand konkreter Alltagsfragen kennen. lernen die Bezüge des Klimaschutzes und des Konzepts der Nachhaltigkeit zu ihrer eigenen Lebenswelt kennen. entwickeln eine persönliche Motivation, für den Klimaschutz aktiv zu werden. Die Stiftung "Haus der kleinen Forscher" Die gemeinnützige Stiftung "Haus der kleinen Forscher" engagiert sich mit einer bundesweiten Initiative für die Bildung von Kindern im Kita- und Grundschulalter in den Bereichen Naturwissenschaften, Mathematik und Technik. Sie unterstützt mit ihren Angeboten pädagogische Fachkräfte dabei, Mädchen und Jungen bei ihrer Entdeckungsreise durch den Alltag zu begleiten. Partner der Stiftung sind die Helmholtz-Gemeinschaft, die Siemens Stiftung, die Dietmar Hopp Stiftung und die Deutsche Telekom Stiftung. Gefördert wird sie vom Bundesministerium für Bildung und Forschung. Die "Tage der kleinen Forscher" Jedes Jahr richtet die Stiftung "Haus der kleinen Forscher" einen "Tag der kleinen Forscher" aus. An diesem Tag geben deutschlandweit Kinder in Kitas, Horten und Grundschulen naturwissenschaftlichen Phänomenen und Fragestellungen nach: Was hält mich gesund? Woher kommt der Strom? Bei dieser Unterrichtseinheit geht es darum, die Natur unmittelbar zu fühlen und zu erkunden. Kinder und Erwachsene sind hier Lernpartner, die mit gegenseitiger Wertschätzung in einen lebendigen Austausch treten - so erschließen sie sich gemeinsam Wissen. Die Lehrkräfte und pädagogischen Fachkräfte geben den Kindern Anregungen und bieten Hilfestellungen an, ohne den Fragen der Mädchen und Jungen vorzugreifen. In einem Lernumfeld, in dem auch Erwachsene bereit sind, offen Fragen zu stellen, Ungewohntes auszuprobieren und Fehler zuzulassen, können alle Beteiligten kreative Entdeckungen machen. Entscheidend ist der direkte Austausch zwischen pädagogischer Fachkraft und dem Kind: Pädagoginnen und Pädagogen reflektieren mit den Mädchen und Jungen, ermuntern sie, ihre Beobachtungen zu formulieren und festzuhalten. In der gemeinsamen Erörterung der individuellen Entdeckungen entstehen neues Wissen und bewusste Erkenntnis. Zudem werden im Gespräch die Motivation und Selbstwirksamkeit der Kinder gestärkt. Weil sie als Lernpartner ernst genommen werden, fühlen sich die Kinder kompetent, verschiedene Wege auszuprobieren und sich darüber zu äußern. Die Kinder erleben Vertrauen und Zutrauen durch Erwachsene und erfahren beim gemeinsamen Forschen einen Zugewinn an Selbstbewusstsein und innerer Stärke. Überlegen Sie mit den Kindern, was sie zum Leben brauchen und was eher stört. Die Mädchen und Jungen können konkrete Grundmaterialien wie Steine, Erde, Essen und Wasser sammeln oder Dinge wie die Sonne, Häuser, Freunde, Spielzeug etcetera benennen. Untersuchen Sie die Materialien und Äußerungen der Kinder gemeinsam etwas genauer. Welche davon braucht man wirklich, um eine Welt zu gestalten? Wie hängen sie zusammen? Welche stören das Gleichgewicht? Gibt es Alternativen? Schreiben oder zeichnen Sie mit den Kindern alles auf ein großes Blatt Papier und malen Sie Linien, wenn Dinge miteinander in Verbindung stehen. Die Bedeutung der Erde Erde, so wird der Planet genannt, auf dem wir Menschen leben. Erde ist aber auch der Boden, auf dem wir stehen. Diesem Boden verdanken wir eine einzigartige Vielfalt an Pflanzen und Tieren. Der Boden versorgt uns mit Nahrungsmitteln, filtert und speichert Grundwasser, ist Grundlage für Wälder, Wiesen, Wüsten und andere Lebensräume. Er liefert Baumaterial für Häuser, Straßen und Fabriken. Wir nutzen Bodenschätze als Rohstoffe für die Energieversorgung und die Industrie. Experiment 1: Die "Kleintierfalle" Die Kinder entdecken, wieviele verschiedene Tiere in der Erde leben. Dafür werden ein Küchensieb, ein großer Trichter, ein Karton und ein paar Papiertaschentücher benötigt. Damit der Karton für die Tierchen gemütlich wird, muss er zunächst mit schwarzem Papier ausgekleidet werden. In den Deckel bohren die Kinder ein Loch, durch das der Trichter gesteckt werden kann. Legen Sie angefeuchtete Papiertaschentücher an die Stelle im Karton, über der die Trichteröffnung von oben einmündet. Auf den Trichter wird anschließend das Sieb gelegt und eine Schaufel voll Erde hineingefüllt. Die Erde muss nun mit Licht beschienen werden. Das kann gemäßigtes Tageslicht oder auch eine künstliche Lichtquelle sein. Licht und Wärme treiben die Bodenlebewesen nach unten, wo sie schließlich durch das Sieb auf das feuchte Papier fallen. Nach einem Tag sind sie auf dem weißen Papier gut zu entdecken. Experiment 2: Boden für unser tägliches Brot Das meiste, was wir essen, hat seinen Ursprung im Erdreich. Boden ist aber nicht gleich Boden. Manche Böden können zum Beispiel nur wenig Wasser speichern. Nicht jeder Boden stellt Nährstoffe in ausreichender Menge zur Verfügung. Die Kinder füllen ein paar Blumentöpfe mit jeweils unterschiedlichen Bodenarten (Waldboden, Ackerboden, Kies, Sand, Lehm oder Komposterde) und stecken in jede Bodenprobe einen Keimling, beispielsweise von einer Bohnenpflanze. Kann der Keimling in allen Bodenarten gleich gut gedeihen? Was brauchen Pflanzen noch, um optimal zu wachsen? Die Bedeutung des Feuers Feuer gibt es schon sehr lange auf der Erde: Blitze zuckten über den Himmel und ließen trockene Bäume in Flammen aufgehen. Die Menschen hüteten das Feuer als wertvollen Schatz, der Energie in Form von Wärme und Licht spendete. Heute sehen unsere "Feuer" anders aus - moderne Heizsysteme und Lichttechniken wärmen uns und erhellen unseren Alltag. Dahinter steckt wertvolle Energie, die wir auch für viele andere Dinge nutzen. Experiment 1: Der Feuerball im Weltall Entdecken Sie zusammen mit den Mädchen und Jungen die Kraft der Sonne: Fangen Sie an einer brandgeschützten Stelle mit einer Lupe die Sonnenstrahlen ein, zeichnen Sie Brandmuster in eine Holzplatte oder entfachen Sie ein kleines Feuer. Am besten eignet sich dafür eine Fresnel-Lupe mit flacher Linse, die in Ringe unterteilt ist. Achtung: Feuerexperimente dürfen immer nur gemeinsam mit Erwachsenen durchgeführt werden! Die Lupe als Brennglas darf keinesfalls auf sich selbst, andere Personen oder auf leicht entflammbare Kleidung gerichtet werden. Um die Augen zu schützen, setzen die Kinder Sonnenbrillen auf. Experiment 2: Licht für die Pflanzen Säen Sie mit den Kindern in drei Schälchen Kresse aus: Eine Schale stellen Sie offen auf die Fensterbank, die zweite decken Sie mit einem Karton ab, so dass kein Sonnenlicht an die Samen kommt, und über die dritte Schale stülpen Sie eine Glasschale als "Glashaus". Bitte das Gießen nicht vergessen. Was können die Mädchen und Jungen in den nächsten Tagen beobachten? Die Bedeutung des Wassers Wasser ist farblos, geruchlos, geschmacklos - und doch die wichtigste Flüssigkeit der Erde, denn ohne Wasser gäbe es kein Leben. Drei Viertel unseres Planeten sind mit Wasser bedeckt, und trotzdem ist es nicht im Überfluss vorhanden, da die für uns nutzbaren Wasservorräte begrenzt sind. Sauberes Wasser ist besonders lebenswichtig und als Trinkwasser ein kostbares Gut, mit dem bewusst und sorgsam umgegangen werden muss. Unser Körper besteht zu etwa 65 Prozent aus Wasser, viele Pflanzen haben sogar einen Wassergehalt von über 75 Prozent. Maximal vier Tage kann ein Mensch ohne Flüssigkeit überleben. Experiment 1: Die Wassergüte bestimmen Mithilfe kleiner Wassertiere lässt sich die Qualität von Wasser feststellen. Denn manche Tiere mögen nur sehr sauberes Wasser, andere lieber verschmutztes. Mit einem Kescher (einem feinen Küchensieb am längeren Stock) holen die Kinder den Schlamm vom Grund eines kleinen Gewässers nach oben. Vorsichtig spülen sie den überschüssigen Schlamm aus dem Sieb. Die Wassertierchen kommen in eine Schüssel mit Wasser. So lassen sie sich unter der Lupe genauer betrachten und die Wassergüte kann bestimmt werden. In sauberem Wasser findet man Strudelwurm, Larven von Eintags-, Stein- und Köcherfliegen. In leicht verschmutztem Wasser leben Schneckenegel, Flohkrebse, Fischegel und die Spitzschlammschnecke. In stark verschmutztem Wasser findet man Rollegel, Wasserasseln und Larven von Waffelfliegen. In sehr stark verschmutztem Wasser sind der Schlammröhrenwurm, die Rattenschwanzlarve und die Zuckermückenlarve zu Hause. Im Internet können Sie nach Bildern der Wassertierchen recherchieren. Experiment 2: Der Wasserkreislauf Die Wassermenge auf der Erde bleibt immer dieselbe. Kein Wassertropfen geht verloren, keiner kommt hinzu. Gestalten Sie zusammen mit den Kindern eine kleine Klimastation, an der Sie über einen langen Zeitraum den Kreislauf des Wassers beobachten: Schichten Sie Holzkohle (gegen Schimmel), Kieselsteine und ungedüngte Erde der Reihe nach in ein großes Einweckglas, bis dieses zu einem Drittel gefüllt ist. Nun pflanzen Sie Moos oder den Ableger einer Zimmerpflanze ein und lassen die Mädchen und Jungen die kleine Landschaft mit Tannenzapfen, Schneckenhäusern oder Steinen gestalten. Gießen Sie einmal kräftig mit destilliertem Wasser (das verhindert Kalkränder am Glas), verschließen Sie das Glas mit einem Deckel oder einer Frischhaltefolie mit Gummi und stellen es an einen hellen Platz. Was passiert im Glas, was mit dem Wasser? Beobachten Sie mit den Kindern das Klimaglas über einen längeren Zeitraum und dokumentieren Sie Ihre "Wetterbeobachtungen" mittels Fotos oder Zeichnungen. Tun Sie das zu Beginn, nach einer Woche, nach drei Wochen, nach zwei Monaten. Gestalten Sie mehrere Klimagläser für unterschiedliche Orte: Was passiert mit dem Glas, wenn es im dunklen Schrank oder im Sommer im Garten steht? Die Bedeutung der Luft Luft ist nicht nichts - das wissen alle kleinen Forscherinnen und Forscher. Doch was ist Luft, was kann und macht sie? Für uns Menschen ist Luft lebensnotwendig: Wir können vier Wochen ohne Nahrung auskommen, maximal vier Tage ohne Wasser, aber nur knapp zwei Minuten ohne Luft. Die Erde schwimmt in einem Meer von Luft. Sie wird von einer Luftschicht, der so genannten Atmosphäre, umgeben. Diese Luft besteht aus Stickstoff (78 Prozent), Sauerstoff (21 Prozent) sowie Spuren von Edelgasen (1 Prozent) und macht in dieser speziellen Mischung ein Leben auf der Erde erst möglich. Experiment 1: Sauerstoff-Produktion Pflanzen produzieren Sauerstoff, den wir Menschen zum Leben brauchen. Mit der Wasserpflanze Wasserpest, die es in der Zoohandlung gibt, lässt sich die Sauerstoff-Aktivität einer Grünpflanze sichtbar machen. Geben Sie die Pflanze in einen transparenten Glasbehälter und fügen Sie Wasser hinzu. Jetzt können die Kinder kleine Luftbläschen aufsteigen sehen - dabei handelt es sich um Sauerstoff. Experiment 2: Treibhauseffekt Der sogenannte Treibhauseffekt hat großen Einfluss auf die Temperatur auf der Erde. Seit der industriellen Revolution hat der Treibhauseffekt durch CO2 Emissionen stark zugenommen. Deshalb spricht man vom Klimawandel. Doch wie lässt er sich erklären? Legen Sie zwei Thermometer an einen sonnigen Platz. Nach einer Stunde lesen Sie mit den Kindern die Temperaturen ab. Dann stülpen Sie über eines der beiden Thermometer eine Schüssel aus Glas. Nach einer weiteren Stunde messen Sie wieder und vergleichen die Temperaturen. Suchen Sie mit den Mädchen und Jungen nach anderen Beispielen, an denen man den Treibhauseffekt beobachten kann. Hintergrund Einige Lebensmittel wirken indirekt stärker auf das Klima ein als andere - zum Beispiel tierische Produkte wie Rindfleisch und Milchprodukte. Hinter einem Kilo Rindfleisch stehen etwa 13,5 Kilogramm CO2. Im Vergleich dazu verursacht saisonales, regionales Freilandgemüse nur etwa 150 Gramm pro Kilo. Aktion Gemeinsam mit den Kindern wird die Klimabilanz der Lebensmittel unter die Lupe genommen und bewusst eine Auswahl an Leckerbissen zusammengestellt, die auch dem Klima "schmecken". Welche Obst- und Gemüsesorten haben gerade Saison? Welche Produkte stammen aus der Region? Daraus wird ein leckeres und nahrhaftes Frühstück. Hintergrund "Von der Wiege zur Wiege" lautet die Formel für zukunftsfähige Produkte: Sie bestehen zum Beispiel aus nachwachsenden Rohstoffen wie Mais, der zu Verpackungsmaterial verarbeitet wird. Sie sind leicht zu zerlegen und aus ihren Altstoffen können restlos neue Produkte entstehen. Alte Produkte sind die Wiege für neue. Und sobald diese alt geworden sind und ausgedient haben, sind sie wiederum die Wiege für neue Produkte. Aktion Die Kinder nehmen den eigenen Abfall unter die Lupe: Was könnte man wie vermeiden? Können die Kinder Müll trennen - vor allem Altpapier, Verpackungen, Kompost, Glas und Sondermüll wie Batterien? Suchen Sie mit den Kindern auf Papierprodukten nach Zertifizierungen oder Zeichen, die für 100 Prozent Altpapier stehen. Stellen Sie einmal selbst Papier aus Altpapier her. Anleitungen hierzu gibt es im Internet. Die kleinen Forscherinnen und Forscher gehen auf die Suche nach Strom- und Energieverbrauchern. Sie messen den unterschiedlichen Stromverbrauch von elektrischen Geräten mit einem einfachen Strommessgerät. Vielleicht können die Kinder von zu Hause eines mitbringen. Oder der örtliche Stromversorger oder die Verbraucherzentrale stellen ein Leihgerät zur Verfügung. Überprüfen Sie die Raumtemperaturen, achten Sie auf Lichtquellen und Stand-by-Lämpchen. Legen Sie gemeinsam ein "Energie-Tagebuch" an und dokumentieren Sie mit den Mädchen und Jungen hier alle Ergebnisse und Ideen zum Stromsparen mit Fotos, Zeichnungen und Tabellen. Entwickeln Sie für die anderen Kinder und Eltern eine Mitmach-Ausstellung zum Thema "Energie sparen".

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Geographie / Jahreszeiten / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Von einer Reise zum Mars und wieso der Mond nicht auf die Erde fällt

Kopiervorlage

In diesem Arbeitsmaterial lernen die Schülerinnen und Schüler die Mathematik als Hilfsmittel zum Erforschen der klassischen Himmelsmechanik kennen. Wie groß und schwer ist die Erde? Wie kann man die Geschwindigkeitsentwicklung einer Rakete verfolgen? Wie lange dauert eine Reise zum Mars? Dies sind nur ein paar exemplarische Fragen, für die die Schülerinnen und Schüler sich im Rahmen dieser Unterrichtsreihe selbst das nötige Wissen zur Beantwortung erarbeiten. Die Unterrichtseinheit wurde im Rahmen der Projekte ESERO Germany und "Columbus Eye - Live-Bilder von der ISS im Schulunterricht" an der Ruhr-Universität Bochum entwickelt. Die Himmelsmechanik stellte einen Meilenstein in der Beschreibung und Erklärung von Planetenkonstellationen dar. Den Grundstein legte Johannes Kepler, der es ermöglichte, mit den nach ihm benannten "Keplerschen Gesetzen" erstmals die Himmelsbewegungen zu begründen. Isaac Newton bettete die Keplerschen Gesetze in eine allgemeine Theorie der Mechanik ein, mit der die mechanischen Probleme vorerst als gelöst galten. Die Vermessung der Erde Nach einer kurzen historischen Einführung zum Aufbau der Erde berechnen die Lernenden in mehreren Übungsaufgaben mithilfe von Vektoren die Bewegungen von Himmelskörpern und die Masse der Erde. Das Eulerverfahren Die Schülerinnen und Schüler betrachten das Eulerverfahren, das nach dem Mathematiker und Physiker Leonhard Euler benannt ist. Mithilfe dieses Verfahrens lassen sich Punkt für Punkt die Bewegungen von Körpern beschreiben. In mehreren Übungsaufgaben wird diese Erkenntnis vertieft. Kegelschnitte Die Lernenden erfahren, dass die Planeten sich im Sonnensystem nicht auf kreisförmigen, sondern auf ellipsenförmigen Bahnen um die Sonne bewegen. In diesem Kapitel werden verschiedene Punkte auf der Umlaufbahn der Erde um die Sonne berechnet. Das Ganze wird mithilfe von Zeichnungen anschaulich dargestellt. Dynamik Die Schülerinnen und Schüler werden mit der Bedeutung der Zentripetalkraft für die weiteren Aufgaben konfrontiert. Durch die Übungsaufgaben wird die Formel für die Zentripetalkraft hergeleitet und mehrere Bahngeschwindigkeiten damit berechnet. Eine Reise zum Mars In diesem Kapitel berechnen die Lernenden unter einigen vereinfachenden Annahmen mehrere Zeitdaten, die mit der Reise zum Mars verbunden sind. Durch mehrere Abbildungen wird das Ganze verdeutlicht. Raketenantrieb Für den Raketenantrieb liegt das physikalische Gesetz der Impulserhaltung zugrunde. Es wird die Geschwindigkeitsentwicklung einer Rakete unter verschiedenen Annahmen berechnet. Fachkompetenz Die Schülerinnen und Schüler können die Mathematik zum Lösen von astrophysikalischen Fragestellungen benutzen. lernen die Leistungen von Newton und Kepler kennen und zu würdigen. können Bewegungen in komplizierten Kraftfeldern mithilfe des Eulerverfahrens rechnerisch modellieren.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II

Weltall, Planeten und Raumfahrt – eine Reise zu den Sternen

Kopiervorlage

Dieses Materialpaket enthält ein Booklet mit Arbeitsblättern rund um das Thema "Weltall, Planeten und Raumfahrt", die mit Computer oder mobilen Endgeräten interaktiv bearbeitet werden können. Die Lernenden erkunden unser Sonnensystem, Sterne und Sternbilder sowie das Leben von Astronautinnen und Astronauten auf der ISS. Dabei eignet sich dieses Booklet ideal auch für die offene Stationen- oder Wochenplanarbeit sowie für Vertretungsstunden. Das Weltall , Sterne und Planeten faszinieren Menschen seit hunderten von Jahren. Heute steht uns die modernste Technik zur Verfügung, um unser Universum näher zu erforschen. Forscherinnen und Forscher auf der ganzen Welt versuchen, immer mehr über die Entstehung des Universums, entfernte Planeten und das Leben im Weltraum herauszufinden. Ein wichtiges Ziel: Herauszufinden, ob es uns Menschen auch möglich ist, jenseits unserer Erde zu leben. Mithilfe dieses Arbeitsmaterials, das sich ideal auch für Stationen- oder Wochenplan-Arbeiten sowie Vertretungsstunden eignet, gehen die Schülerinnen und Schüler selbst auf Entdeckungsreise. Das Booklet zum Thema "Weltall, Planeten und Raumfahrt" regt sie dazu an, zu den Planeten unseres Sonnensystems zu recherchieren, Sonne, Mond und Sterne zu erkunden sowie Leben und Arbeit von Astronautinnen und Astronauten näher kennenzulernen. Links und QR-Codes leiten die Lernenden bei der gezielten, altersangemessenen Internet-Recherche an. So wird nicht nur das Fachwissen, sondern auch die Medienkompetenz der Schülerinnen und Schüler geschult. Ein breites Angebot an Medien und Materialien sorgt dabei für Abwechslung. Ergänzend zum Arbeitsmaterial "Weltall und Raumfahrt" können die kindgerechten Erklär-Videos der ESA und auch das Lernspiel Multiverso , in dem Lernende unser Sonnensystem erforschen können, eingesetzt werden. Das Thema "Weltall, Planeten und Raumfahrt" im Unterricht Auch ohne technische Hilfsmittel lassen sich Sterne, Planeten und andere Himmelskörper beobachten. Da sie weit entfernt und nicht unmittelbar erfahrbar sind, üben sie eine besondere Faszination auf Kinder aus. Daher ist es besonders spannend, im Unterricht zu erforschen, wie unser Universum entstanden ist, wo wir Menschen darin leben und wie mit lebensweltlicher Forschung immer mehr Schritte in Bezug auf das Leben von Menschen außerhalb der Erde gemacht werden. Auch der Beruf Astronautin oder Astronaut begeistert viele Schülerinnen und Schüler. Besonders spannend ist es daher, von echten Astronauten mehr über das Berufsbild und den Alltag auf der Internationalen Raumstation (ISS) zu erfahren. Didaktisch-methodische Analyse Zum Einstieg in das Thema "Weltraum, Planeten und Raumfahrt" können Bilder, Videos oder Simulationen unseres Sonnensystems eingesetzt werden. So wird das Vorwissen der Schülerinnen und Schüler angeregt und es können erste Informationen zum Thema gesammelt werden. Auch ein astronomisches Ereignis kann als Aufhänger für diese Unterrichtseinheit dienen. Im Internet finden Sie schnell Daten zu aktuellen astronomischen Höhepunkten. Die Schülerinnen und Schüler könnten sich also gezielt auf die nächste partielle Sonnenfinsternis oder Sternschnuppenschwärme vorbereiten. Die Arbeitsblätter des Booklets zur Unterrichtseinheit können von der Lehrkraft gezielt in den Unterricht eingebunden oder im offenen Unterricht als Stationenarbeit eingesetzt werden. Eine Checkliste hilft den Lernenden dabei, ihren Aufgabenfortschritt während der gesamten Arbeitsphase selbstständig zu kontrollieren. Des Weiteren können sie Tablets, Smartphones, Computer oder anderweitige mobile Endgeräte nutzen, um mithilfe der QR-Codes oder der angegebenen Links für ihre Booklet-Aufgaben zu recherchieren. Verschiedene Aufgabentypen und Medien machen das Booklet besonders abwechslungsreich. Quizzes regen zur Recherche an, Lückentexte bündeln Informationen, Rundfunkbeiträge zum Anhören und Ansehen informieren über die Arbeit echter Astronautinnen und Astronauten auf der ISS und kreative Schreibaufgaben beflügeln die Fantasie der Schülerinnen und Schüler. Zum Abschluss werden die Arbeitsergebnisse präsentiert und die Arbeit mit dem Booklet reflektiert. Fachkompetenz Die Schülerinnen und Schüler erfahren, wie das Universum entstanden ist. lernen unser Sonnensystem kennen. sammeln Informationen zu Sonne, Erdenmond und Sternen. erfahren, wie eine Sonnenfinsternis entsteht. Lernen die Erde als Teil unseres Sonnensystems kennen. informieren sich über die Arbeit von Astronautinnen und Astronauten sowie deren Leben auf der ISS. Medienkompetenz Die Schülerinnen und Schüler führen gezielte Recherchen im Internet durch und nutzen das Internet als Informationsquelle. sehen verschiedene Videos an. hören ein Radio-Interview an. präsentieren Arbeitsergebnisse. Sozialkompetenzen Die Schülerinnen und Schüler treffen Absprachen zur Benutzung der Computer-Arbeitsplätze oder anderweitiger mobiler Endgeräte. einigen sich über die Auswahl der Planeten. helfen sich gegenseitig.

  • Physik / Astronomie / Chemie / Natur & Umwelt
  • Primarstufe

Animationsfilme "Kometen": die Mission der Raumsonde Rosetta im…

Video

In dieser Animationsreihe für Schülerinnen und Schüler der Primar- und Sekundarstufe I wird die Mission der Raumsonde Rosetta altersgerecht im Märchenstil erzählt. Rosetta hat eine ganz besondere Mission: Sie soll den Kometen 67P/Churyumov-Gerasimenko erforschen und sogar auf ihm landen! Die Animationsreihe ist informativ und liebevoll gestaltet und kann flexibel im Unterricht eingesetzt werden – viel Spaß bei der Kometenerforschung!Es war einmal die Raumsonde Rosetta. Sie war zusammen mit ihrem Lander Philae unterwegs zum Kometen 67P/Churyumov-Gerasimenko. Die beiden hatten eine ganz besondere Mission. Zehn Jahre sind eine sehr lange Zeit und Philae kann es kaum erwarten, endlich anzukommen. Philae und Rosetta erfahren von vergangenen Kometenmissionen und was dabei bereits spannendes entdeckt wurde. Aber viele Fragen sind noch ungeklärt. Außerdem bergen Kometen viele Geheimnnisse über die frühen Tage des Sonnensystems: Wie sind die Planeten entstanden? Woher kommt das Wasser auf der Erde? Jetzt ist es an der Zeit, dass Rosetta und Philae ihren eigenen Beitrag zur Erforschung unseres Weltalls liefern. Nach einer 10-jährigen Reise sind Rosetta und Philae endlich am Ziel angekommen: Sie erreichen den Kometen 67P/Churyumov-Gerasimenko. Rosetta verbringt mehrere Wochen damit, die Oberfläche des Kometen zu studieren und Informationen zurück zur Erde zu schicken. Aber wo würde Philae wohl landen können? Philae und Rosetta sind bereit für die große Herausforderung: Die Landung von Philae auf dem Kometen 67P/Churyumov-Gerasimenko! Rosetta berichtet, was sie während des ersten Jahres mit dem Kometen 67P/Churyumov-Gerasimenko gelernt hat. Außerdem erwacht Philae aus seinem tiefen Schlaf. Rosetta erzählt von ihren spannenden Entdeckungen, die sie während ihres zweiten Jahres am Kometen 67P/Churyumov-Gerasimenko gemacht hat, nachdem dieser den sonnennächsten Punkt auf seiner Umlaufbahn erreicht hat. Außerdem berichtet sie, wie sie versucht hat, mit Philae Kontakt aufzunehmen und wie sie sich auf das Ende ihrer Mission vorbereitet. Rosetta versucht sich noch einmal die verschiedenen wissenschaftlichen Entdeckungen zu vergegenwärtigen, die sie während ihrer Zeit mit dem Kometen 67P/Churyumov-Gerasimenko gemacht hat. Der letzte Tag der unglaublichen Mission: Rosetta sinkt langsam auf die Oberfläche des Kometen 67P/Churyumov-Gerasimenko. Nachdem sie die während ihrer Mission gesammelten Daten an die Erde gesendet hat, hat sie sich die gemeinsame Erholung mit Philae mehr als verdient. Die erstaunlichen Abenteuer von Rosetta und Philae gibt es auch in Spielfilmlänge. Viel Spaß beim Eintauchen in ihre besondere Mission zum Kometen 67P/Churyumov-Gerasimenko! Lernt CHEOPS kennen, das Weltraumteleskop der ESA, das Exoplaneten in unserer Galaxie, der Milchstraße, untersucht und beschreibt. Entdeckt, wie CHEOPS von der Erdumlaufbahn aus andere Planetensysteme erforscht und welche spannenden Erkenntnisse es über unsere fernen Nachbarn gewinnen soll! Trefft die drei neuen Weltraumforscher Bepi, Mio und MTM, die auf ihrer außergewöhnlichen Mission den Merkur erkunden. Begleitet sie auf ihrer Reise zum kleinsten Planeten unseres Sonnensystems und erlebt aufregende Abenteuer!

  • Physik / Astronomie / Technik / Sache & Technik / Geographie / Jahreszeiten
  • Primarstufe, Sekundarstufe I

Grundlagen der Raketenphysik

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zum Thema "Grundlagen der Raketenphysik" wird die Fortbewegung von Raketen im Weltraum thematisiert. Diese Art der Fortbewegung ist deshalb besonders, weil im Gegensatz zu den uns auf der Erde bekannten Fortbewegungsmöglichkeiten wie etwa dem Gehen, Fahren oder auch Fliegen im Weltraum außerhalb der Lufthülle der Erde das Medium zum Abstoßen (Boden oder Luft) fehlt. Dass der Flug von Raketen trotzdem möglich ist, liegt an der Art des Antriebes von Raketen – der von der Rakete ausgestoßene verbrannte Treibstoff sorgt aufgrund des Rückstoßprinzips für die Vorwärtsbewegung der Rakete.Anhand eines einfachen Beispiels in Form eines Raketenwagens wird den Schülerinnen und Schülern das auf der Impulserhaltung basierende Rückstoßprinzip vorgestellt und Schritt für Schritt erläutert. Dabei reicht es zum Verstehen für die Lernenden zunächst völlig aus, den Ausstoß der "Treibstoffmasse" in kleinen Einzelportionen zu simulieren und die Ergebnisse für Berechnungen wie etwa die Geschwindigkeit des Raketenwagens mittels der Gesetze zur Impulserhaltung zu verwenden. Dieses sogenannte "Iterationsverfahren" macht es durch Verkleinerung entsprechender Parameter wie Masse oder Zeit möglich, Näherungslösungen zu finden, die der tatsächlichen Geschwindigkeit immer näherkommt. Für eine exakte Bestimmung der Geschwindigkeit benötigt man im weiteren Verlauf des Unterrichts dann die Gesetzmäßigkeiten der Differential- und Integralrechnung. Grundlagen der Raketenphysik: auf dem Weg in den Weltraum Die seit Jahren verstärkt zunehmenden Aktivitäten – auch von finanzstarken Privatunternehmen – zeigen deutlich, welche Rolle Raketen für den Transport einer Vielzahl von Satelliten in erdnahe Umlaufbahnen oder auch zur Erforschung weit entfernter Himmelsobjekte (Stichwort: Marsmission ) haben. Die dafür notwendige Technik und damit auch die dahinterstehende Physik ist zwar – im Detail betrachtet – äußerst kompliziert und aufwendig, kann aber im Rahmen der speziellen Möglichkeiten der Oberstufenphysik des Gymnasiums gut besprochen werden. Vorkenntnisse Vorkenntnisse von Lernenden können nur in der Weise vorausgesetzt werden, dass unter anderem die von jedem Jugendlichen benutzten Smartphones sehr von stationären Satelliten abhängen und mithilfe von Raketen in ihre Umlaufbahn gebracht werden müssen. Weitere Kenntnisse über Bau und Funktion von Raketen sollten eher die Ausnahme sein. Didaktische Analyse Bei der Behandlung dieses Themas kann man davon ausgehen, dass das Rückstoßprinzip, das bei Raketen, aber auch bei Flugzeugen in ähnlicher Weise den Vortrieb ermöglicht, von den meisten Lernenden, die Physik in der Oberstufe gewählt haben, problemlos verstanden werden kann. Methodische Analyse Die Annäherung an die exakten Vorgänge beim Antrieb von Raketen mithilfe des an Näherungslösungen angelegten Iterationsverfahrens stellt eine gute Möglichkeit dar, auf relativ einfache Art den Lernenden das Rückstoßprinzip nahezubringen. Damit können die Voraussetzungen für die besonders interessierten Schülerinnen und Schüler geschaffen werden, auch die deutlich schwierigeren Gesetzmäßigkeiten bei der mathematisch exakten Beschreibung zu verstehen. Fachkompetenz Die Schülerinnen und Schüler können die Abläufe bei Raketenflügen beschreiben und erläutern. kennen die physikalischen Gesetzmäßigkeiten, mit denen Raketenflüge möglich werden. wissen um die Bedeutung des Iterationsverfahrens für das grundlegende Verständnis für die näherungsweise Berechnung der Raketengeschwindigkeit. verwenden den Impulserhaltungssatz, um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen.

  • Physik / Astronomie
  • Sekundarstufe II

Aralkum - vom See zur Wüste

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema Desertifizierung fokussiert die Wüste Aralkum in Zentralasien: Der Rückgang des Aralsees und die Entstehung der Wüste Aralkum ist eines der eindrücklichsten Beispiele für Desertifizierungsprozesse unserer Zeit. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden. Das Unterrichtsmaterial "Aralkum - vom See zur Wüste" ermöglicht es, die Entwicklung der Region in den letzten zehn Jahren anschaulich anhand von ISS-Videos, Satellitendaten sowie Hintergrundinformationen zu den gesellschaftlichen und ökonomischen Prozessen nachzuvollziehen. Mithilfe der App "Aralkum" können Schülerinnen und Schüler selbstständig Prognosen erstellen. Das Unterrichtsmaterial ist im Rahmen des Projektes " Columbus Eye – Live-Bilder von der ISS im Schulunterricht " entstanden. Das Projekt Columbus Eye wird von der Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt e.V. mit Mitteln des Bundesministeriums für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages unter dem Förderkennzeichen 50JR1307 gefördert. Das übergeordnete Projektziel besteht in der Erarbeitung eines umfassenden Angebots an digitalen Lernmaterialien für den Einsatz im Schulunterricht. Das Angebot umfasst interaktive Lerntools und Arbeitsblätter. In vielen Atlanten sind noch die Umrisse des Aralsees von 1960 zu sehen. Doch in den letzten 60 Jahren hat sich einiges geändert: Teile des ehemaligen Aralsee-Gebietes gehören jetzt zur Aralkum (das Suffix -kum steht für "Wüste"). Mithilfe von ISS-Videos und Satellitenbildern können Wissenschaftlerinnen und Wissenschaftler nicht nur den Zustand des ehemaligen Aralsee-Gebiets erforschen, sondern auch saisonale von globalen Trends unterscheiden. Die Schülerinnen und Schüler schlüpfen in die Rolle dieser Wissenschaftlerinnen und Wissenschaftler und nutzen die App "Columbus Eye - Aralkum" als Werkzeug, um die Forschungsfragen in den Aufgaben zu beantworten und Prognosen über die Zukunft des Aralsees zu formulieren. Die Schüler und Schülerinnen interpretieren Satellitenbilder (ISS) und ordnen diese räumlich zu. verorten die Aralsee-Region und die in ihr stattfindenden Prozesse. erkennen und analysieren das Konfliktpotential zwischen Mensch und Natur. verstehen die Erde als System mehrerer Teilsysteme. erstellen Prognosen der Wasserflächen-Entwicklung und bewerten diese kritisch.

  • Geographie / Jahreszeiten
  • Sekundarstufe I

Geschichte des Universums: Erstellen von Zeitachsen

Kopiervorlage

In diesem Arbeitsmaterial von ESERO Germany setzen sich die Lernenden mit der Geschichte des Universums auseinander. Dies geschieht mittels der Erstellung von Zeitstrahlen. Die Weiten des Universums sind unendlich und teils unergründlich. Die Zahlen, mit denen bei der Erforschung des Universums gerechnet wird, sind oftmals so groß, dass sie unser Vorstellungsvermögen sprengen. Gerade für junge Lernende ist das hohe Alter des Universums möglicherweise nur schwer zu verstehen und in die richtige Perspektive zu rücken. Mit dieser kreativen und mathematischen Forschungsaufgabe können Schülerinnen und Schüler einen Einblick in die Hauptereignisse der Geschichte des Universums gewinnen und sie auf den leicht verständlichen Zeitmaßstab eines Jahres übertragen. Das Arbeitsmaterial umfasst Hintergrundinformationen zu folgenden Thematiken: Eine kurze Geschichte des Universums Asteroiden Kometen Millionen, Milliarden und Zehnerpotenzen Darüber hinaus gibt es für die Lernenden einen Aufgabenblock mit Arbeitsblättern, welcher sich der Erstellung einer persönlichen Zeitachse sowie einer Zeitachse für das Universum widmet. Dazu gibt es Informationen zur Berechnung von Zeitmaßstäben sowie zu Schlüsselereignissen in der Geschichte des Universums. Eine Lehranleitung sowie Lösungen der Arbeitsblätter für die Lehrkraft sind ebenfalls im Material enthalten. Bei den Aufgaben in diesem Arbeitsmaterial arbeiten die Schülerinnen und Schüler gruppenweise, um Zeitachsen zu erstellen: zunächst eine für ihr eigenes Leben und dann eine für die Hauptereignisse in der Geschichte des Universums. Anschließend rechnen sie die Ereignisse in der Geschichte des Universums auf den Maßstab eines Jahres um, um ein besseres Gefühl für die Verhältnisse der zeitlichen Abläufe zu gewinnen. Ferner untersuchen die Lernenden die Ereignisse und erstellen Werkstücke als Begleitinformation, um sie schließlich vor der Klasse zu präsentieren. Fachkompetenz Die Schülerinnen und Schüler lernen, dass das Universum sehr alt ist. lernen, dass die Erde erst vor relativ kurzer Zeit entstand. lernen, dass die Menschen erst seit relativ kurzer Zeit auf der Erde leben. lernen die Erstellung einer Zeitachse von Ereignissen ab dem Beginn des Universums bis heute. lernen den Einfluss von Einschlägen auf die Entwicklung der Erde. Sozialkompetenz Die Schülerinnen und Schüler arbeiten in Gruppen an ihren Zeitachsen. präsentieren ihre Forschungsergebnisse im Plenum.

  • Physik / Astronomie / Mathematik / Rechnen & Logik
  • Sekundarstufe I

Weltraum und Sonnensystem: Paxis Abenteuer im All

Video

Paxi ist das Maskottchen der Europäischen Weltraumorganisation (ESA) und fleißig im Weltall unterwegs: Er besucht verschiedene Planeten und untersucht unsere Erde. Paxi nimmt Kinder mit bei seinen Abenteuern und man lernt dabei Spannendes über den Weltraum und unser Sonnensystem. Die ESA hat eine Reihe von Videos erstellt, in denen Paxi unterschiedliche Themen in verständlicher Weise und anschaulich erklärt. Diese Videos sind für Schülerinnen und Schüler im Alter zwischen 6 und 12 Jahren konzipiert und können auf unterschiedliche Weise im Unterricht ergänzend eingesetzt werden. In diesem ersten Video stellt sich Paxi, das ESA-Maskottchen, vor und erzählt von seinem Heimatplaneten. Mit seinem Raumschiff reist er durch unsere Galaxie, die Milchstraße, und erläutert Gemeinsamkeiten und Unterschiede zwischen seinem Heimatplaneten und der Erde. In dieser Episode erzählt Paxi von der Entstehung des Mondes, von erfolgreichen bemannten und unbemannten Mondmissionen und macht sich dann auf den Weg um den Mond selbst zu erkunden! Er überlegt, was er bräuchte, um für längere Zeit auf dem Mond leben zu können und berichtet von den Plänen bald noch einmal Astronauten auf den Mond zu schicken. In dieser Folge erklärt Paxi uns, dass der Mond ein natürlicher Satellit der Erde ist, welche verschiedenen Mondphasen es gibt, wie sich der Mond um die Erde dreht und wie Erde und Mond gemeinsam um die Sonne kreisen. Außerdem erklärt er uns, was bei einer Sonnenfinsternis und bei einer Mondfinsternis passiert. In dieser Episode erforscht Paxi den Treibhauseffekt auf der Erde. Dazu untersucht er die Atmosphäre der Erde und den Einfluss der Sonne auf unseren Planeten. Außerdem geht er der Frage nach, warum Wissenschaftlerinnen und Wissenschaftler glauben, dass wir Menschen den Treibhauseffekt verstärken. In dieser Folge bereisen wir mit Paxi den Planeten Erde und lernen den Wasserkreislauf kennen. Paxi erklärt die wichtigsten Stationen des Wassers: die Verdunstung, die Kondensation, den Niederschlag und die Wassersammlung auf der Erde und wie dieser Kreislauf des Wassers funktioniert. In dieser Folge erkundet Paxi den Tag, die Nacht und die Jahreszeiten. Er erklärt uns während seines Urlaubs, dass die Sonne ein Stern ist und uns Licht und Wärme spendet. Er untersucht die Neigung der Erdachse und die Umlaufbahn der Erde um die Sonne. Außerdem erklärt Paxi wie diese beiden Dinge Tag, Nacht, Jahre und Jahreszeiten schaffen. In diesem Video überlegt Paxi, ob es Leben auf dem Mars geben kann. Deshalb betrachtet er zuerst Eigenschaften von lebenden Organismen und vergleicht diese dann mit nicht lebenden Gegenständen. Außerdem erforscht er verschiedene Organismen und denkt darüber nach, ob diese auf dem Mars leben könnten. Paxi erklärt auch, wie Wissenschaftlerinnen und Wissenschaftler und die ExoMars-Mission der ESA Belege für Leben auf dem Roten Planeten finden und untersuchen können. In dieser Episode erkundet Paxi den Planeten Mars, deckt einige seiner Geheimnisse auf und erläutert Forschungsergebnisse vorheriger Missionen. Zudem benennt er Merkmale des Planeten und erzählt, dass zukünftige Reisen zum Mars nach Anzeichen von Leben suchen werden. Durch Informationen über Kometen ist es Wissenschaftlerinnen und Wissenschaftlern möglich, mehr über die Anfänge des Lebens und unseres Sonnensystems zu erfahren. Deshalb fliegt Paxi in dieser Folge zu dem Kometen 67P Churyumov-Gerasimenko, der 2014 und 2015 mit der Raumsonde Rosetta erforscht wurde. Dabei erklärt er, wie Kometen um die Sonne kreisen und was passiert, sobald sie sich der Sonne nähern, wie Rosetta Daten über den Kometen sammeln konnte und wie ein Landemodul wie Philae auf einem Kometen landen kann. In diesem Animationsfilm fliegt Paxi durch unser Sonnensystem und betrachtet Tag und Nacht, die Umlaufbahn des Mondes um die Erde und die der Erde um die Sonne. Auf seinem Weg sieht er die acht Planeten unseres Sonnensystems und trifft an dessen Rand sogar auf Kometen. In diesem Animationsfilm nimmt uns Paxi, Bewohner eines Exoplaneten, mit auf eine spannende Reise durchs Universum. Er erklärt, was Exoplaneten sind, wie Wissenschaftlerinnen und Wissenschaftler sie entdecken und erforschen und welche vielfältigen Arten von Exoplaneten es gibt. Die Erdumlaufbahn ist voller alter Satelliten und Trümmerteile, die als Weltraumschrott bezeichnet werden. Da der Weltraumschrott aktive Raumfahrzeuge gefährden kann, klärt Paxi in seinem neuesten Abenteuer auf, wie der Weltraum sauberer gehalten werden kann.

  • Geographie / Jahreszeiten / Physik / Astronomie / Technik / Sache & Technik
  • Primarstufe, Sekundarstufe I

Mars - Beobachtung einer Planetenschleife

Unterrichtseinheit

Beobachtungen unseres äußeren Nachbarplaneten lohnen sich nur während der Monate um die Oppositionen, die etwa alle zwei Jahre und zwei Monate eintreten. Die Dokumentation einer Marsschleife ist eine reizvolle Aufgabe für ein kleines Beobachtungsprojekt.Die rötliche Färbung des Planeten fällt auch ungeübten Beobachterinnen und Beobachtern sofort auf. Sie ist besonders beeindruckend, wenn Mars noch nicht allzu hoch über dem Horizont steht. Der Grund dafür ist derselbe, der auch die Sonne oder den Mond beim Auf- und Untergang rötlich erscheinen lässt - kurzwellige Lichtanteile werden durch die Atmosphäre stärker gestreut als die langwelligen. Die Marsfarbe wird durch diesen Effekt aber nur verstärkt. Der allgegenwärtige eisenoxidhaltige Staub hat dem Planeten zu Recht den Beinamen des "Roten" eingebracht - "rostiger" Planet wäre ebenso zutreffend. Die linke Abbildung zeigt eine Aufnahme des Hubble-Weltraumteleskops und ein Marsfoto, das mit einem kleinen Amateurteleskop aufgenommen wurde. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur zum Thema Mars . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden.Kaum ein Planet hat die Fantasie der Menschen so sehr in Gang gesetzt wie Mars: Die "Entdeckung" der Marskanäle ist ein schönes Beispiel aus der Wissenschaftsgeschichte dafür, dass auch die Objektivität von Naturwissenschaftlern optischen Täuschungen und einer guten Portion Autosuggestion unterliegen kann. Aber auch für eine Massenhysterie ist Mars gut: Die 1938 am Holloween-Abend über das Radio ausgestrahlte fiktive Schilderung eines Marsmenschen-Überfalls soll in den USA eine Panik ausgelöst haben. UFO-Fans und Esoteriker sahen in einer von der Raumsonde Viking I im Jahr 1976 aufgenommen Gebirgsformation, die als "Marsgesicht" Berühmtheit erlangte, einen extraterrestrischen Monumentalbau, der es bis in die Kultserien "Akte X" und "Futurama" schaffte. Mars bietet also reichlich Stoff, um das Interesse der Schülerinnen und Schüler für Astronomie und Naturwissenschaften zu wecken. Obwohl den meisten von ihnen der eine oder andere Science-Fiction-Film zum Thema Mars bekannt sein dürfte, haben nur die wenigsten den Planeten bewusst mit eigenen Augen gesehen. Nutzen Sie also die nächste Marsopposition, um zusammen mit Ihren Schülerinnen und Schülern den faszinierenden Planeten näher kennen zu lernen und zu beobachten. Historisches und Histörchen Ob Götter, Marsmenschen, Kanäle oder andere Monumentalbauten - die Raumfahrt hat Jahrtausende alte Vorstellungen sowie Fiktionen aus dem 19. und 20. Jahrhundert beendet. Erforschung des "Rostigen Planeten" Mars-Orbiter, Landegeräte und mobile Rover übermittelten nicht nur wissenschaftliche Daten, sondern auch Bilder mit faszinierenden Mars-Impressionen und Landschaften. Der Mars - Oppositionen des Exzentrikers Die Entstehung von rückläufiger Bewegungen und Schleifen der äußeren Planeten und die Besonderheiten der Marsoppositionen werden erläutert. Beobachtung des Planeten Lernende können mit einfachen Hilfsmitteln eine Marsschleife dokumentieren und versuchen, mit einem Teleskop Oberflächenstrukturen zu erkennen. Dokumentation einer Marsschleife Vorschläge für Arbeitsmaterialien und Hinweise zur Verfolgung der Bewegung des Planeten Mars in dem Zeitraum um seine Opposition Die Schülerinnen und Schüler sollen Mythologie und Science Fiction zum Thema Mars kennen lernen. die Geschichte der Erforschung des Planeten überblicken - von der "Entdeckung" der Marskanäle bis hin zur Erforschung der Oberfläche durch NASA-Rover. Mars mit eigenen Augen sehen und in dem Lichtpunkt mithilfe der NASA- und ESA-Fotos eine fremde Welt erkennen. den Planeten durch ein Teleskop beobachten (Schul- oder Volkssternwarte) und versuchen, Oberflächendetails mithilfe eines "Onlinerechners" der Webseite CalSky zu benennen. verstehen, wie eine Marsschleife entsteht. die Bahn des Planeten über einige Monate verfolgen und mit einfachen Mitteln eine "Marsschleife" aufzeichnen. Thema Marsbeobachtung Autoren Dr. André Diesel, Peter Stinner Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Klasse 5 bis Jahrgangsstufe 13 (je nach Thema und Vertiefung) Zeitraum variabel, vom einmaligen Beobachtungsabend bis hin zur Dokumentation einer Marsschleife über mehrere Monate Technische Voraussetzungen Beobachtung mit bloßem Auge oder dem Amateurteleskop; für die fotografische Dokumentation der Planetenbewegung Bildbearbeitungssoftware, zum Beispiel Fitswork (kostenloser Download); Planetarium-Software zur Vorbereitung der Beobachtung, zum Beispiel Stellarium (kostenfrei) Traditionelle Rolle als Kriegsgott Mars fasziniert die Menschen schon seit Jahrtausenden. Im Altertum war der Planet bei vielen Völkern mit dem jeweiligen Kriegsgott verknüpft - Nergal im Zweistromland, Ares bei den Griechen und eben Mars bei den Römern. Ursache dafür dürfte seine auffällig orange-rote Färbung sein - verursacht durch den auf der Marsoberfläche allgegenwärtigen Eisenoxidstaub -, die schon dem bloßen Auge nicht entgeht. Die rote Farbe ist übrigens umso kräftiger, je tiefer der Planet am Himmel steht. Hoch über dem Horizont erscheint Mars eher orange bis gelblich. Ein weiteres Charakteristikum des Planeten sind die großen Helligkeitsunterschiede während seiner Oppositionen. In einigen Jahren kann er über mehrere Wochen sehr hell werden und sogar mit der Leuchtkraft von Jupiter konkurrieren, in anderen Jahren bleibt er relativ unscheinbar und in seiner Helligkeit etwa dem Polarstern vergleichbar. Sein Aufleuchten haben unsere Vorfahren möglicherweise als Symbol für entfesselte Feuersbrünste oder das Vergießen von Blut gedeutet. Wikipedia: Nergal Gottheit der sumerisch-akkadischen und der babylonischen und assyrischen Religion Wikipedia: Ares Griechischer Gott des Krieges, des Blutbades und Massakers Wikipedia: Mars Der Kriegsgott war neben Jupiter der wichtigste Gott der Römer. Schiaparellis "Canali" Aber auch in modernen Zeiten fasziniert Mars und entfesselte Fantasien. 1877 glaubte der Leiter der Mailänder Sternwarte, Giovanni Schiaparelli (1835-1910), mit dem Teleskop Marskanäle entdeckt zu haben - ein Effekt, der einer optischen Täuschung zuzuschreiben ist. Schiaparelli hielt die "Canali" für natürliche geradlinige Senken, durch die Wasser auf der Marsoberfläche fließen könnte. Eine ungenaue Übersetzung ins Englische ("canals" statt "channels") suggerierte jedoch die Entdeckung von Artefakten auf dem Mars. Schnell verbreitete sich so der Glaube an eine hochtechnisierte Marszivilisation, die in den hundert Kilometer breiten Kanälen das Schmelzwasser der Marspole in die gemäßigten Breiten leiten sollte, um die Anbaugebiete der Marsianer im Vegetationsgürtel des Planeten zu bewässern. Wikipedia: Marskanäle Die Kanäle wurden erstmals im Jahr 1877 beschrieben. Science Fiction Der Glaube an eine Marszivilisation war auch die Grundlage zahlreicher Werke des Science-Fiction-Genres. Spektakulär soll der Effekt eines Hörspiels von Orson Wells (1915-1985) gewesen sein, das auf dem Roman "War of the Worlds" von Herbert George Wells (1866-1946) basiert. Orson Wells' fiktive Radio-Reportage über eine Invasion bösartiger Marsianer wurde im Jahr 1938 am Halloween-Abend ausgestrahlt und soll an der Ostküste der USA eine Massenpanik ausgelöst haben (ob dies tatsächlich so war, ist heute allerdings umstritten). Vielen älteren Schülerinnen und Schülern dürfte die beklemmende Verfilmung des Stoffs von Steven Spielberg aus dem Jahr 2005 bekannt sein, ebenso die skurrile filmische Aufarbeitung von Tim Burton aus dem Jahr 1996, "Mars Attacks". Keine Kanäle, weder Zivilisation noch Vegetation Auch wenn man bereits in den dreißiger Jahren begann, die "Marskanäle" für das Ergebnis optischer Täuschungen zu halten - Gewissheit bekam man erst durch die Bilder der Raumsonde Mariner 4, die im Jahr 1965 an dem Planeten vorbei flog und deren Kameras den Mars erstmals aus der Nähe betrachteten. Zwar könnte die Wahrnehmung einiger "Canali" durch geomorphologische Großstrukturen erklärt werden, von dem ausgeklügelten Bewässerungssystem der Marsmenschen fand man jedoch keine Spur. Für die bis dahin mit Besuchern vom Mars in Verbindung gebrachten "Fliegenden Untertassen" mussten UFOlogen fortan andere Erklärungen finden. Aber auch von der bis dahin teilweise noch gehegten Vorstellung, der Planet könne von Moosen und Flechten bewachsen sein (dessen Vegetationsperioden die beobachteten Veränderungen auf der Oberfläche hätten erklären können), musste man sich endgültig verabschieden - Mars scheint ein toter Planet zu sein. Das Marsgesicht Auch wenn die Raumfahrt die menschliche Fantasie weitgehend auf den Boden der Tatsachen zurückholte, bot ein Foto der Raumsonde Viking I aus dem Jahr 1976 Anlass für ganz neue Spekulationen. Aus knapp 2.000 Kilometern Höhe nahm die Sonde beim Landeanflug eine Gebirgsformation auf, die als "Marsgesicht" berühmt wurde (Abb. 1). UFO-Fans erkannten darin das monumentale Artefakt einer außerirdischen Spezies. Das Marsgesicht wurde von diversen TV- und Kinoproduktionen aufgegriffen. In der Trickfilmserie "Futurama" bildet es zum Beispiel den Eingang zur marsianischen Unterwelt, in der Aliens hausen. Aufnahmen des NASA-Orbiters Mars Global Surveyor aus dem Jahre 2001 zeigen jedoch nichts anderes als eine verwitterte Felsformation und beendeten so auch diese Illusion. Durchmesser, Tageslänge, Neigung der Rotationsachse Der Durchmesser des Planeten ist mit etwa 6.800 Kilometern doppelt so groß wie der des Mondes, aber nur halb so groß wie der unserer Erde. Ein Marstag dauert nur 40 Minuten länger als ein irdischer Tag. Dies fanden schon Christian Huygens (1629-1695) und Giovanni Domenico Cassini (1625-1712) heraus, die die Rotationsdauer durch die Beobachtung von Oberflächendetails bestimmen konnten. Die Neigung der Rotationsachse (etwa 25 Grad) entspricht ungefähr derjenigen der Erdachse (23 Grad) und beschert dem Mars Sommer und Winter. Die marsianischen Jahreszeiten dauern allerdings doppelt so lange wie die unsrigen, da Mars für eine Runde um die Sonne etwa zwei Erdenjahre benötigt. Entfernung und Jahreslänge Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Ein Marsjahr dauert etwa 687 Tage (siderische Umlaufzeit). Alle 780 Tage wird er von der Erde überrundet (synodische Umlaufzeit). Zwischen den Marsoppositionen liegen also zwei Jahre, ein Monat und drei Wochen. "Furcht" und "Schrecken" begleiten den Kriegsgott Bei den beiden kleinen, etwas kartoffelförmigen Marsmonden handelt es sich möglicherweise um eingefangene Asteroiden. Standesgemäß wurden die Trabanten des Kriegsgotts auf die Namen Phobos und Deimos, Furcht und Schrecken, getauft. Während unser Mond groß genug ist, um die Rotationsachse der Erde zu stabilisieren (was ihrer Bewohnbarkeit sehr entgegen kommt), sind Phobos und Deimos dafür viel zu klein. Deshalb vollführt die Mars-Rotationsachse eine viel deutlichere Taumelbewegung als die der Erde. Die Marsatmosphäre besteht zu 95 Prozent aus Kohlenstoffdioxid. Der Atmosphärendruck beträgt am Boden weniger als ein Prozent des Luftdrucks der Erde. Flüssiges Wasser kann an der Oberfläche unter diesen Bedingungen - selbst oberhalb des Gefrierpunkts - nicht existieren. Die dünne Atmosphäre speichert kaum Wärme, sodass die Temperaturunterschiede zwischen Tag (bis zu 20 Grad Celsius in Äquatornähe) und Nacht (bis zu -85 Grad Celsius) beträchtlich sind. Die mittlere Temperatur liegt bei -55 Grad Celsius. Neben der gemäßigten Neigung der Rotationsachse trägt die Exzentrizität der Umlaufbahn zu einer deutlichen Ausprägung der Jahreszeiten mit dynamischen Vorgängen in der dünnen Atmosphäre bei. Im Marsfrühjahr können heftige Staubstürme große Teile des Planeten verhüllen. Durch die Verwehungen hellen Staubs in dunklere Gebiete kommt es zu jahreszeitlichen Veränderungen der Marsoberfläche, die im Teleskop beobachtet werden können. Die Veränderung der dunklen Schattierungen hielt man früher für eine mögliche Folge marsianischer Vegetationszyklen. Die Polkappen bestehen zum größten Teil aus gefrorenem Kohlenstoffdioxid, enthalten aber auch Wassereis. Sie "pulsieren" mit dem Wechsel der Jahreszeiten. Die Dicke der nördlichen Polkappe (1.000 Kilometer im Durchmesser) wird auf immerhin fünf Kilometer geschätzt. Abb. 2 zeigt eine Aufnahme des NASA-Orbiters Mars Global Surveyor. Die Suche nach Wasser Eine Hauptaufgabe der im Jahr 2008 etwas nördlich des Polarkreises gelandeten NASA-Sonde Phoenix war die Suche nach Spuren von Wasser. Fließspuren an der Oberfläche (trockene Flusstäler und Überschwemmungsgebiete) waren bereits vorher bekannt. Durch Gesteinsanalysen konnte bestätigt werden, dass der Mars einst wärmer und feuchter und somit seine Atmosphäre dichter gewesen sein muss. Abseits der Polkappen versteckt sich das Wassereis heute im Permafrostboden einige Meter unter der Marsoberfläche. In seiner nördlichen Position konnte Phoenix Wassereis jedoch schon wenige Zentimeter unter der Oberfläche nachweisen. Spuren von Leben hat man bisher nicht gefunden. Konjunktion und Opposition Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Dies ist auch die Ursache für die unterschiedliche Leuchtkraft des Planeten am Himmel während seiner Oppositionsstellung (Abb. 6). Etwa alle 15 Jahre kommt uns der Rote Planet besonders nah. Zuletzt war dies im Jahr 2003 der Fall - auf die nächste spektakuläre Marsopposition müssen wir also bis zum Jahr 2018 warten. Überholen wir Mars auf unserer Innenbahn, während er sich in seiner sonnenfernsten Position befindet (Aphel), dann bleibt er an unserem Himmel relativ unauffällig. Die maximale Oppositionsentfernung zur Erde liegt bei mehr als 100 Millionen Kilometern. Überholen wir Mars dagegen, wenn er sich in seiner sonnennächsten Position befindet (Perihel), kann sich ihm die Erde bis auf 56 Millionen Kilometer nähern. Abb. 7 (zur Vergrößerung bitte anklicken) gibt einen Überblick über die geometrischen Situationen der Marsoppositionen in den Jahren von 1999 bis 2022 sowie die jeweiligen scheinbaren Durchmesser des Marsscheibchens. Die Entfernungen Erde - Mars sind in Millionen Kilometern angegeben. Rückläufigkeit und Schleifen Um die Zeit der Opposition überholt die Erde einen äußeren Planeten "auf der Innenbahn". Beobachterinnen und Beobachter auf der Erde sehen den gleichen Effekt wie ein Läufer, der in der Stadionkurve auf der Innenbahn an einem Läufer auf der Außenbahn vorbeizieht. Während dieses Überholvorgangs bewegt sich der überholte Läufer auf der Außenbahn vom Läufer auf der Innenbahn aus gesehen vor dem Publikum auf der Kurventribüne kurzzeitig rückwärts. Übertragen auf die Bewegungen im Sonnensystem heißt dies, dass der äußere Planet sich während der Opposition von der Erde aus gesehen vor dem Fixsternhimmel rückwärts, das heißt von Ost nach West bewegt. Der Fixsternhimmel hat jetzt die Rolle des Publikums auf der Kurventribüne übernommen. Weil die Bahnebenen der Planeten geringfügig gegen die Erdbahn geneigt sind, erscheinen die Bahnen von Mars und den übrigen äußeren Planeten um die Zeit der Opposition herum als "Schleifen" an der Himmelskugel. Dies wird durch Abb. 8 und die folgenden Java-Applets veranschaulicht: Auffällige Oppositionsschleifen Weil Mars von allen äußeren Planeten der Erde am nächsten ist, fällt seine Oppositionsschleife am Sternhimmel deutlich größer aus als die von Jupiter und Saturn. Die Ausdehnung der Oppositionsschleife von Saturn erreichte zum Beispiel im Jahr 2010 nur etwa 30 Prozent derjenigen von Mars. Somit gilt als Fazit: Mars ist das ideale Objekt für die Beobachtung der Oppositionsschleife eines Planeten im Rahmen eines schulischen Projekts! Im Bereich Fachmedien finden Sie eine kurze Einführung in das einfach zu bedienende virtuelle Planetarium Stellarium . (Als ebenso hilfreich, aber etwas komplexer, erweist sich das Programm Cartes du Ciel ) Führen Sie nach dem Start von Stellarium den Mauszeiger in die linke untere Bildschirmecke. Danach öffnen sich die beiden Menüleisten links und unten (Abb. 9, zur Vergrößerung des Ausschnitts bitte anklicken). Per Mausklick auf das Uhrensymbol in der linken Leiste öffnet sich ein Dialogfenster, in das man Datum und Uhrzeit eingibt. Nach Klick auf das Lupensymbol in der linken Menüleiste gibt man den Namen "Mars" ein. Stellarium wählt jetzt den Himmelsausschnitt so, dass sich Mars genau im Zentrum befindet. Drehen am Scrollrad der Maus vergrößert oder verkleinert den dargestellten Himmelsauschnitt. So kann man leicht die Lage vom Mars relativ zum Horizont oder relativ zu markanten Sternbildern einschätzen. Was ist zu sehen? In einem 60 Millimeter Teleskop erscheint Mars lediglich als kleines, oranges Scheibchen. Ab etwa zehn Zentimetern Öffnung können unter günstigen Umständen helle und dunkle Bereiche der Oberfläche schemenhaft wahrgenommen werden. Auch Polkappen sind - je nach marsianischer Jahreszeit - zu sehen. Teleskope mit 15 bis 20 Zentimetern Öffnung lassen weitere Details erkennen. Christian Huygens beschrieb bereits im Jahr 1659 die "Große Syrte", ein dunkles, auffällig dreieckiges Wüstengebiet. Die Suche nach Oberflächendetails lohnt sich jedoch nur während weniger Monate um den Oppositionstermin herum. Abb. 10 zeigt eine Aufnahme des Planeten von Heinrich Kuypers, die im Rahmen einer Astronomie-AG mithilfe eines kleinen Amateurteleskops entstand. Dabei wurden viele Einzelbilder mit der kostenfreien Software RegiStax addiert. Das Foto zeigt Oberflächendetails somit deutlicher als der Blick durch das Okular des Teleskops. Übersichtskarte Die im Folgenden vorgestellten Arbeitsmaterialien wurden für die Dokumentation der Marsschleife im Jahr 2010 erstellt. Sie können bei künftigen Oppositionen als Anregung für die Zusammenstellung entsprechender Schülermaterialien dienen. Passende Sternkarten müssen dann für den jeweiligen Beobachtungszeitraum mit geeigneter Astronomie-Software, etwa GUIDE oder den kostenfreien Progeammen Cartes du Ciel und Stellarium , erstellt werden. Die mit der Software GUIDE 8.0 erzeugte Übersichtskarte (uebersichtskarte.jpg) zeigt den Ost- und Südhimmel mitsamt Horizont, wie er sich Beobachterinnen und Beobachtern in Deutschland am 15. Februar 2010 um 21:00 Uhr darstellte. Der aufgehellte Bereich in der rechten Bildhälfte entspricht der Milchstraße. Den Himmelsanblick einer solchen Karte findet man - bei gleicher Horizontlage - 15 Tage später schon eine Stunde früher oder 15 Tage früher erst eine Stunde später vor. Anhand des Ausdrucks einer solchen Karte können sich die Schülerinnen und Schüler grob am Sternhimmel orientieren. Wichtig ist, dass sie die Sternbilder, durch die sich Mars während des gewählten Beobachtungszeitraums bewegen wird, eindeutig identifizieren können. Negativ-Übersichtskarte Die Grafik der Datei "uebersichtskarte_negativ.jpg" ist die Negativ-Darstellung der Karte "uebersichtskarte.jpg". Der Himmelshintergrund ist weiß gehalten, die Sterne sind als schwarze Kreise dargestellt. Ihre Helligkeit wird durch die verschieden großen Kreisdurchmesser veranschaulicht. Solche Negativ-Sternkarten eignen sich gut für handschriftliche Einträge und Ergänzungen. Detailkarten Nach etwas Übung in der Orientierung am Himmel genügen den Schülerinnen und Schülern für weitere Beobachtungen dann die vergrößerten Ausschnittkarten, zum Beispiel "detailkarte.jpg" oder "detailkarte_negativ.jpg" (Abb. 12; zur Vergrößerung des Ausschnitts bitte anklicken). Letztere Karte liegt auch mit dem Gradnetz des äquatorialen Himmelskoordinatensystems vor ("detailkarte_negativ_gradnetz.jpg"). Händische Einträge in die Himmelskarten In allen Karten fehlt der am Sternhimmel nicht ortsfeste Mars. Er ist jedoch in der betrachteten Himmelsgegend bei einer "durchschnittlichen" Opposition ein auffälliges Objekt und deshalb leicht aufzufinden. Aufgabe der Schülerinnen und Schüler ist es nun, an möglichst vielen klaren Abenden während der Beobachtungsmonate (in dem hier vorgestellten Beispiel Januar bis April 2010) nach dem Planeten Mars Ausschau zu halten, ihn am Himmel aufzufinden, seine Position relativ zu den umgebenden Sternen nach Augenmaß zu ermitteln, um diese Marspositionen dann nebst Datum in der Detailkarte (Negativdarstellung) festzuhalten. Durch Einbeziehen des Koordinatenrasters in der Detailkarte kann eine ordentliche Genauigkeit bei der Bestimmung der Positionen erzielt werden. Brauchbares Wetter vorausgesetzt, sollte man im Laufe einiger Wochen viele unterschiedliche Marspositionen beobachten und dokumentieren können. Man wird zuerst die retrograde (rückläufige) Bewegung erkennen, dann den scheinbaren Stillstand, dem danach die normale prograde Bewegung von Westen nach Osten folgt. Abb. 13 (Grafik zur Vergrößerung des Ausschnitts bitte anklicken) zeigt den mit der Software GUIDE 8.0 erzeugten Verlauf der Marsbewegung um dessen Opposition (Beobachtungsbeispiel Oktober 2009 bis Mai 2010). Technikbegeisterte Schülerinnen und Schüler werden eher an der fotografischen Dokumentation der Marsbewegung interessiert sein. Unter Verwendung der kostenlosen Software Fitswork kann man aus Fotografien einfacher Digitalkameras Planetenbahnen am Sternhimmel rekonstruieren und nebenbei Grundlagen der digitalen Bildbearbeitung erlernen. Das dieser Technik zugrunde liegende Vorgehen wird ausführlich beschrieben in dem Beitrag zur Allgemeine Hinweise zur Planetenbeobachtung . Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse, deren Begleitumstände sowie über die Sichtbarkeiten der Planeten: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE