Minkowski-Diagramme mit Derive
Unterrichtseinheit
Dieser Artikel beschreibt, wie der rechnerische und zeichnerische Aufwand für die Erstellung und Interpretation von Minkowski-Diagrammen im Physikunterricht mithilfe des „Rechen- und Zeichenknechtes Computer“ reduziert, somit der inhaltlichen Diskussion mehr Zeit gewidmet und der Umgang mit einem CAS geübt werden kann.Will man Aufgaben zur Relativitätstheorie mithilfe des Minkowski-Diagramms zeichnerisch bearbeiten, so müssen Parallelen gezeichnet und deren Schnittpunkte mit Achsen oder anderen Geraden bestimmt werden. Je nach Sorgfalt sind die damit erzielten Werte brauchbar oder kaum brauchbar. Eine rechnerische Kontrolle ist auf jeden Fall angebracht. Warum überträgt man dann die Arbeit nicht gleich dem Computer?! Die Genauigkeit seiner Zeichnungen ist kalkulierbar, für die rechnerische Kontrolle der Ergebnisse steht er ebenfalls zur Verfügung und gleichzeitig lernen die Schülerinnen und Schüler ihre anderweitig erworbenen mathematischen Kenntnisse oder auch den Umgang mit entsprechender Mathematiksoftware anzuwenden. Ein geeignetes Werkzeug kann zum Beispiel ein Computeralgebrasysteme wie Derive sein.Die hier beschriebene Unterrichtseinheit setzt voraus, dass der Unterricht zur Relativitätstheorie bereits bis hin zu den Minkowski-Diagrammen gediehen ist. Auch eine zeichnerische Umsetzung ist schon durchgeführt worden, so dass die ersten Teile der Unterrichtseinheit aus physikalischer Sicht eine Wiederholung sind. Es wird nicht vorausgesetzt, dass die Schülerinnen und Schüler reichlich Übung im Umgang mit dem Computeralgebrasystem (CAS) Derive haben, obwohl dies nicht schaden könnte. Lehrkräften, die im Umgang mit Derive noch nicht so geübt sind, wird die Erstellung von Minkowski-Diagrammen mithilfe einer Anleitung im PDF-Format Schritt für Schritt erläutert. Die an die Schülerinnen und Schüler gestellten Anforderungen sind auch von einem Grundkurs zu bewältigen. Wenn man den letzten Teil der Unterrichtseinheit mit der Behandlung der Erhaltungssätze sehr ausführlich behandeln möchte, dann benötigt man zu den in der Kurzinformation angegebenen 10-12 Stunden noch etwa vier zusätzliche Unterrichtstunden. Vorgeschlagen wird eine Mischung aus lehrerzentriertem, fragend-entwickelndem und schülerzentriertem Unterricht. Vorschlag für den Unterrichtsverlauf (Teil 1) Typische Probleme der Speziellen Relativitätstheorie (Stunde 1 bis 8) Vorschlag für den Unterrichtsverlauf (Teil 2) Betrachtung der Erhaltungssätze für Impuls und Energie (Stunde 9 und 10 beziehungsweise 9 bis 12) Die Schülerinnen und Schüler sollen das Computeralgebrasystem Derive als universelles mathematisches Werkzeug kennen lernen. mit Derive eine Anleitung für die Erzeugung von Minkowski-Diagrammen entwickeln. Aufgaben aus der Relativitätstheorie sowohl grafisch als auch rechnerisch mit Derive lösen können. die Bedeutung von Minkowski-Diagrammen erkennen. erkennen, dass die Erhaltungssätze der Mechanik in der Relativitätstheorie eine neue Bedeutung bekommen. Thema Minkowski-Diagramme mit Derive Autor Rainer Wonisch Fach Physik Zielgruppe Jahrgangstufe 12 oder 13, Grund- oder Leistungskurs Zeitraum 10-12 Stunden Technische Voraussetzungen Computer mit Beamer (Lehrerdemonstration), Rechner in aus reichender Anzahl für Partner- oder Gruppenarbeit Software Derive Sie erklären am Lehrercomputer (Demonstration per Beamer) die Schritte zur Erzeugung eines Minkowski-Diagramms mit t' - und x' -Achse, aber ohne deren Einteilung. Ich schlage den Wert 0,5 c für die Relativgeschwindigkeit vor, da das Diagramm dabei relativ übersichtlich bleibt. Sie blenden den Beamer aus und fordern die Schülerinnen und Schüler auf, ein solches Diagramm selbst zu erzeugen. Falls es unbedingt nötig ist, geben Sie Hilfestellungen. Ansonsten lassen Sie die Jugendlichen sich selbst helfen. Sie wiederholen zusammen mit den Schülerinnen und Schülern die Erstellung der Achseneinteilung für die t' -Achse. Bei der Umsetzung in die Sprache von Derive geben Sie eine mögliche Lösung an, falls die Schülerinnen und Schüler nicht durch die Erfahrungen aus dem Mathematikunterricht selbst einen brauchbaren Vorschlag machen. Die Jugendlichen erhalten den Auftrag, die Rasterpunkte für die t' -Achse und außerdem für die x' -Achse einzuzeichnen. Wenn alle fertig sind, lassen Sie eine Schülerin oder einen Schüler aus einer Arbeitsgruppe den Lösungsweg seiner Gruppe am Lehrercomputer (Demonstration per Beamer) erklären. Geben Sie den Auftrag, die Gitterlinien für das x-t -System einzuzeichnen. Warten Sie, bis sich der Lösungsweg herumgesprochen hat. Geben Sie den Auftrag, die Gitterlinien für das x'-t' -System einzuzeichnen. Diesmal werden Sie wahrscheinlich nicht warten können, bis sich der Lösungsweg herumgesprochen hat. Helfen Sie bei den Gruppen, deren Ideen am weitesten fortgeschritten sind, und benutzen Sie die Mitglieder dieser Gruppen dann als Multiplikatoren. Sie stellen folgende Aufgabe (siehe auch minkowski_derive_einfuehrung.pdf ): Gegeben seien zwei Inertialsysteme S und S'. S' bewegt sich gegenüber S mit der Geschwindigkeit v = 0,5 c. Aufgabe 1.1 Im System S sind verschiedene Ereignisse gegeben. A (3Ls/1s); B (3Ls/2s); C (3Ls/3s) Bestimme für die Ereignisse A, B, C die Ereigniskoordinaten im System S' zeichnerisch mithilfe eines Minkowski-Diagramms. Beschreibe Deine Vorgehensweise. Während der jetzt folgenden intensiven Diskussionen unter den Schülerinnen und Schülern "verraten" Sie einer Gruppe, dass ein Schieberegler eingesetzt werden kann. Dann warten Sie ab, ob sich diese Möglichkeit herumspricht. Wenn die Jugendlichen diese Möglichkeit schon kennen, wird es etwas weniger spannend sein. Zum Abschluss lassen Sie die verschiedenen Ansätze vortragen. Sie stellen folgende Aufgabe (siehe minkowski_derive_einfuehrung.pdf ): Aufgabe 1.2 Im System S' bewegt sich ein Körper mit der Geschwindigkeit u' = 0,5 c. Wie groß ist seine Geschwindigkeit u im System S? (zeichnerische Lösung) Wenn genügend Lösungen vorhanden sind, lassen Sie eine Gruppe ihre Vorgehensweise erklären. Sie stellen, je nach Situation, entweder für zu Hause oder für den Unterricht die Aufgabe, die wesentlichen Schritte für die Erstellung eines Minkowski-Diagramms mit Derive als Arbeitsanweisung zusammenzustellen. (Ein mögliches Ergebnis finden Sie unter Punkt 10: minkowski_diagramm.dfw beziehungsweise minkowski_derive.pdf ) Sie stellen nun die folgende Aufgabe: Aufgabe 2 Ein Raumschiff mit v = 0,8 c sendet (aus seiner Sicht) jede Sekunde ein Funksignal aus. In welchem zeitlichen Abstand werden diese Signale im System S registriert? Kläre diese Frage zeichnerisch mithilfe eines Minkowski-Diagramms und zusätzlich rechnerisch. Ein allgemeines Aufstöhnen wird die Antwort sein, da Sie in gemeiner Weise eine andere Relativgeschwindigkeit gewählt haben. Sichten Sie gemeinsam mit den Schülerinnen und Schülern die bei Schritt 9 erstellten Arbeitsanweisungen und verallgemeinern Sie die beste Anweisungsfolge so, dass man mit ihrer Hilfe für jeden Wert von v mit einigen Mausklicks das gewünschte Minkowski-Diagramm erzeugen kann. Eine mögliche Lösung für die Anweisungsfolge mit Kommentaren finden Sie in der Derive-Datei minkowski_diagramm.dfw . Für die Bearbeitung von Aufgabe 2 stellen Sie im Derive-Ausdruck #2 die richtige Geschwindigkeit ein und erzeugen dann mithilfe der Derive-Anweisungen das entsprechende Minkowski-Diagramm. Die Datei kann dann, unter neuem Namen gespeichert, für die weitere Bearbeitung fortgesetzt werden. Für die grafische Lösung von Aufgabe 2 müssen wegen der Unabhängigkeit der Lichtgeschwindigkeit vom Bezugssystem Parallelen zu t = -x durch mindestens zwei Rasterpunkte auf der t' - oder der x' -Achse gezeichnet werden. Die Differenz der Schnittwerte mit der t -Achse ist der gesuchte Zeitunterschied. Die Schülerinnen und Schüler werden vermutlich konkrete Zahlenwerte für die Punkte auf der t' -Achse benutzen. Man kann aber auch allgemein mit den Komponenten der Punkte P arbeiten. Wie man auf die Komponenten eines Vektors zugreifen kann, erläutert der folgende Auszug aus der Derive-Hilfe: "Mit dem Infixoperator SUB kann man ein Element aus einem Vektor oder einer Matrix herausgreifen. Wenn v ein Vektor ist, liefert v SUB n das n-te Element von v. Als Alternative zum Schreiben von SUB in der Eingabezeile, kann dieser Operator durch einen Klick auf das Abwärts-Pfeil-Zeichen auf der Mathematik-Symbolleiste eingegeben werden. Im Algebra-Fenster werden tiefer gestellte Indizes in der Standard-Index-Notation angezeigt. Zum Beispiel wird [a, b, c, d] SUB 2 angezeigt als und weiter vereinfacht zu b." Das Aufstellen der Geradengleichung in Punkt-Richtungs-Form ist der eleganteste Weg. Wenn die Jugendlichen diese Form nicht kennen oder verdrängt haben, müssen Sie einen kurzen mathematischen Einschub machen. Daraus ergibt sich ein Signalabstand von 3 Sekunden. Rechnerisch erhält man die Werte für t , in dem man für x den Wert 0 einsetzt. Entweder für ein Beispiel: oder für eine Folge von Werten: Benutzt wurde in beiden Fällen die Substitution für eine Variable. Sie erreichen diese Möglichkeit über Vereinfachen > Variablen-Substitution . Aufgabe 3 Sie stellen nun die folgende Aufgabe: Gegeben seien die beiden Inertialsysteme S und S' mit der Relativgeschwindigkeit v. Im System S' wird das folgende Experiment durchgeführt: Zwei Körper gleicher Masse bewegen sich mit gleichem Betrag der Geschwindigkeiten aufeinander zu. Zum Zeitpunkt t' = 2 s treffen sie sich völlig unelastisch an der Stelle x' = 0, so dass sie vereint liegen bleiben. Es sei Formuliere für diesen Vorgang den Impulserhaltungssatz im System S'. Formuliere für diesen Vorgang den Impulserhaltungssatz im System S. Versuche auch eine zeichnerische Lösung. Die Schülerinnen und Schüler werden sofort fragen, welchen Wert sie für die Relativgeschwindigkeit v benutzen sollen. Stellen Sie es ihnen einfach frei. Für Ihre eigene Bearbeitung schlage ich v = 0,6 c vor. Es ergibt sich also u' sub~1~~ = 0,6 c ; u' sub~2~~ = 0,6 c . Die Weltlinien beider Körper im System t'-x' werden bis zum Zusammentreffen gezeichnet. Mithilfe der Musteranweisungsfolge (siehe Derive-Datei minkowski_diagramm.dfw ) kann man das entsprechende Minkowski-Diagramm zeichnen. Endpunkt für die beiden Weltlinien soll der Punkt (0,2) auf der t' -Achse sein: Zwei Sekunden vorher war der sich in +x' -Richtung bewegende Körper an einer um 2Ls 0.6 in Richtung der -x' -Achse liegendem Ort gewesen. #14 und mit konkreten Werten #15 beschreiben Ausgangspunkt und Endpunkt im Minkowski-Diagramm: Für den sich in -x' -Richtung bewenden Körper gelten analog die beiden folgenden Ausdrücke: Auch wenn die Schülerinnen und Schüler ohne Ihre Hilfe dieses Ergebnis erzielt haben, werden sie misstrauisch sein, ob es überhaupt richtig sein kann. Dazu sieht es zu ungewohnt aus. Falls Sie es nicht von vorn herein schon gemacht haben sollten, dann führen Sie den Versuch auf einer Fahrbahn (am besten einer Luftkissenbahn) vor und bitten die Jugendlichen, für beide Körper das s-t -Diagramm zu zeichnen. Und zwar in der Form, in der sie früher solche Diagramme gezeichnet haben und zusätzlich mit vertauschten Achsen, wie bei den Minkowski-Diagrammen. Danach wird man den Ergebnissen nicht mehr ganz so misstrauisch gegenüber stehen. Die Geschwindigkeit der beiden Körper im System S kann aus den von Derive berechneten Werten der Anfangs- und Endpunkte der beiden Weltlinien bestimmt werden. Die folgenden Derive-Ausdrücke liefern das Ergebnis: Daraus ergeben sich die Geschwindigkeiten: Für die Geschwindigkeiten im System S' gilt laut Voraussetzungen der Aufgabe Formulierung des Impulssatzes für das System S': Daraus ergibt sich da die beiden Massen auf jeden Fall gleich sind. Formulierung des Impulssatzes für das System S: Setzt man die Zahlen des Beispieles ein, so erhält man: Diese Aussage ist offensichtlich falsch. Fragen Sie die Schülerinnen und Schüler nach Erklärungshypothesen. Mögliche Hypothesen sind: Die berechneten Werte für u sub~1~~ und u sub~2~~ sind falsch. Bei hohen Geschwindigkeiten bleibt die Masse nicht konstant. Der Impulssatz gilt nicht bei hohen Geschwindigkeiten. Alle diese Hypothesen führen zu einer intensiven, weiterführenden Betrachtung: Die erste lässt sich durch Anwendung der Additionsformel für relativistische Geschwindigkeiten kontrollieren. Die zweite Hypothese beruht auf Kenntnissen der Schülerinnen und Schüler, die sie populärwissenschaftlichen Zeitschriften oder Fernsehsendungen entnommen haben. Die dritte Hypothese lässt sich mithilfe der Überlegungen zu Hypothese 2 kontrollieren. Untersuchung von Hypothese 1 Für die Untersuchung der ersten Hypothese erscheint folgende mehrgleisige Vorgehensweise sinnvoll: Die Additionsformel für relativistische Geschwindigkeiten wird gemeinsam im Unterricht aus der Verallgemeinerung des Beispieles der Aufgabe 1.2 hergeleitet. Eine alternative Herleitung aus den Lorentztransformationen wird als Kurzreferat vergeben. Zur Herleitung mithilfe von Derive können Sie die für Aufgabe 1 erstellte Derive-Datei weiter benutzen. Öffnen Sie die Datei und gehen dann wie folgt vor. Zuerst heben Sie die Festlegungen für u' und v auf: Wir wählen wieder t' = 2 s. Man erhält die Weltlinie des sich mit u' bewegenden Körpers durch vektorielle Addition der Weltlinie des Systems t'-x' von 0 bis 2 s und einer Parallelen zur x' -Achse, deren Länge durch die Geschwindigkeit u' bestimmt ist. Bestimmung des Rasterpunktes auf der t'-Achse: Der Ortsvektor zum entsprechenden Punkt auf der x' -Achse muss auf die richtige Länge gebracht werden: Die beiden Ortsvektoren werden addiert: Die Geschwindigkeit u erhält man, indem man die erste Komponente des Vektors ( x -Wert) durch die zweite Komponente ( t -Wert) dividiert: Vereinfacht man diesen Ausdruck, so erhält man die Additionsformel für relativistische Geschwindigkeiten: In Nicht-Derive-Schreibweise erhält man die bekannte Formel: Nachdem auch das Kurzreferat gehalten wurde, kann man mit der Formel die Ergebnisse für u sub~1~~ und u sub~2~~ bestätigen. Damit ist Hypothese 1 zu verwerfen. Untersuchung von Hypothese 2 Zur Überprüfung der zweiten Hypothese lassen Sie die Schülerinnen und Schüler die folgende Internetseite studieren. Dort findet sich eine Bestätigung der Hypothese mit: Untersuchung von Hypothese 3 Verbleibt noch die dritte Hypothese. Lassen Sie die Jugendlichen die Impulse vor und nach dem Stoß unter Berücksichtigung der obigen Formel berechnen. Mit Derive könnte das folgendermaßen aussehen: Offensichtlich stimmt hier irgendetwas nicht. Entweder ist die Rechnung falsch oder der Impulssatz gilt nicht oder er kann so nicht angewendet werden. Wenn Sie kein Buch für die Schülerinnen und Schüler haben, das dieses Problem zu lösen hilft, dann lassen Sie die folgende Seite aus dem Internet bearbeiten. Sie ist sehr übersichtlich und verwendet das auch hier eingesetzte Beispiel. Die Darstellung ist zwar etwas allgemeiner aber dennoch gut verständlich. Zur Kontrolle des Verständnisses kann man dann die Rechung auf das hier vorgestellte Zahlenbeispiel anwenden. Relativistische Energie und Ruheenergie Infos auf der Website des Zentralen Informatikdienstes (Außenstelle Physik) der Uni Wien.
-
Astronomie
/
Physik
-
Sekundarstufe II