• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Potenzfunktionen durch interaktive Arbeitsblätter erkennen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Potenzfunktionen ordnen die Schülerinnen und Schüler mithilfe interaktiver Arbeitsblätter in eigenständiger Arbeit Funktionsgleichungen und Graphen einander zu. Sie erkennen Potenzfunktionen und tragen diese in ein interaktives Koordinatensystem. Schließlich können sie auch Wurzelfunktionen erkennen.Mit den in dieser Unterrichtseinheit genutzten Materialien (Hot-Potatoes-Übung, Multiple-Choice-Verfahren, interaktives Koordinatensystem) erweitern die Schülerinnen und Schüler den Funktionsbegriff auf die Potenzfunktionen. Fünf Arbeitsblätter bieten Möglichkeiten und Anreize, das im Unterricht vorbesprochene Thema eigenständig einzuüben und Kenntnisse zu vertiefen. Die Interaktivität der Materialien ermutigt die Schülerinnen und Schüler dabei zum selbstständigen Arbeiten und Entdecken. Voraussetzungen Für die Nutzung der interaktiven Arbeitsblätter ist das Plugin Java Runtime Environment erforderlich (kostenloser Download aus dem Internet). Zudem müssen interaktive Webinhalte zugelassen sein (Browser mit aktiviertem Javascript). Die Arbeit mit dem hier verwendeten interaktiven Koordinatensystem muss den Schülerinnen und Schülern bereits bekannt sein (siehe Unterrichtseinheiten Direkte Proportionalität und Indirekte Proportionalität). Ist die Klasse die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt, empfiehlt sich der Einsatz eines Beamers. 1. Zuordnen verschiedener Funktionsformen Das Arbeitsblatt enthält eine Hot-Potatoes-Übung, bei der die Schülerinnen und Schüler die Zuordnung verschiedener Funktionsformen erlernen sollen. Aus einer vorgegebenen Liste können die Lernenden die jeweils passende Antwort auswählen. 2. Erkennen von Potenzfunktionen Die Schülerinnen und Schüler sollen anhand dieses Arbeitsblattes lernen, mehreren vorgegebenen Potenzfunktionsgleichungen den entsprechenden Graphen im Koordinatensystem zuzuordnen. Dies erfolgt in Form einer Multiple-Choice-Übung. 3. Darstellung von Potenzfunktionen (I) Mit diesem Arbeitsblatt sollen die Schülerinnen und Schüler üben, Wertetabellen für Potenzfunktionen zu berechnen und die erhaltenen Werte in ein interaktives Koordinatensystem einzuzeichnen. 4. Darstellung von Potenzfunktionen (II) Dieses Arbeitsblatt ist vom Prinzip her so aufgebaut wie Arbeitsblatt 3. Der Unterschied besteht darin, dass hier die Funktion einer anderen Form behandelt wird. Es kommen nun auch gespiegelte (negative) sowie gestreckte und gestauchte Potenzfunktionen ins Spiel. 5. Funktionsgleichungen mit gebrochenen Exponenten Mithilfe dieses Arbeitsblattes sollen die Schülerinnen und Schüler erlernen, verschiedenen vorgegebenen Potenzfunktionsgleichungen mit gebrochenem Exponenten den entsprechenden Graphen im Koordinatensystem zuzuordnen. Dies geschieht im Multiple-Choice-Verfahren.Die Schülerinnen und Schüler können Potenzfunktionen erkennen und in ein Koordinatensystem einzeichnen. können Potenzfunktionen mithilfe von Funktionsplottern darstellen. beherrschen das Berechnen von Wertetabellen für Potenzfunktionen. erarbeiten den Einfluss des Koeffizienten a auf den Verlauf der Potenzfunktionen y = f(x) = ax. können Wurzelfunktionsgraphen erkennen und beschreiben. Für die Nutzung der interaktiven Arbeitsblätter ist das Plugin Java Runtime Environment erforderlich (kostenloser Download aus dem Internet). Zudem müssen interaktive Webinhalte zugelassen sein (Browser mit aktiviertem Javascript). Die Arbeit mit dem hier verwendeten interaktiven Koordinatensystem muss den Schülerinnen und Schülern bereits bekannt sein (siehe Unterrichtseinheiten Direkte Proportionalität und Indirekte Proportionalität ). Ist die Klasse die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt, empfiehlt sich der Einsatz eines Beamers. Das Arbeitsblatt enthält eine Hot-Potatoes-Übung, bei der die Schülerinnen und Schüler die Zuordnung verschiedener Funktionsformen erlernen sollen. Aus einer vorgegebenen Liste können die Lernenden die jeweils passende Antwort auswählen. Die Schülerinnen und Schüler sollen anhand dieses Arbeitsblattes lernen, mehreren vorgegebenen Potenzfunktionsgleichungen den entsprechenden Graphen im Koordinatensystem zuzuordnen. Dies erfolgt in Form einer Multiple-Choice-Übung. Mit diesem Arbeitsblatt sollen die Schülerinnen und Schüler üben, Wertetabellen für Potenzfunktionen zu berechnen und die erhaltenen Werte in ein interaktives Koordinatensystem einzuzeichnen. Dieses Arbeitsblatt ist vom Prinzip her so aufgebaut wie Arbeitsblatt 3. Der Unterschied besteht darin, dass hier die Funktion einer anderen Form behandelt wird. Es kommen nun auch gespiegelte (negative) sowie gestreckte und gestauchte Potenzfunktionen ins Spiel. Mithilfe dieses Arbeitsblattes sollen die Schülerinnen und Schüler erlernen, verschiedenen vorgegebenen Potenzfunktionsgleichungen mit gebrochenem Exponenten den entsprechenden Graphen im Koordinatensystem zuzuordnen. Dies geschieht im Multiple-Choice-Verfahren.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Direkte Proportionalität

Unterrichtseinheit

Mithilfe der hier vorgestellten Materialien sollen die Schülerinnen und Schüler in Klasse 6 den Schritt von der direkten Proportionalität zur linearen Funktion nahezu selbstständig erarbeiten.Zu Beginn der Unterrichtseinheit erfolgt eine Wiederholung des Dreisatzes für die direkte Proportionalität, zuerst in Text- und dann in Tabellenform (Arbeitsblatt 1). Das Ausfüllen von Wertetabellen bildet die Grundlage für das anschließende Eintragen der Werte in ein Koordinatensystem (Arbeitsblatt 2). Bei der Bearbeitung von Arbeitsblatt 3 erfolgt die Auswertung der Ergebnisse nun auch anschaulich: Die richtig eingetragenen Werte werden als Funktion angezeigt! Einsatzmöglichkeiten Die Unterrichtseinheit zielt in erster Linie auf das Übertragen von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können die interaktiven Übungen der Arbeitsblätter entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten werden (eine Unterrichtsstunde), oder bereits für die Erarbeitung des Themas "Darstellung der direkten Proportionalität im Koordinatensystem" verwendet werden (drei Unterrichtsstunden). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Interaktives Koordinatensystem Die Schülerinnen und Schüler sollen den Dreisatz für die direkte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen. Zuordnungsvorschriften der Form y=mx formulieren. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen direkt proportionaler Zuordnungen ansteigende Geraden ergeben, die durch den Koordinatenursprung verlaufen. Thema Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-3 Unterrichtsstunden Technische Voraussetzungen Computerarbeitsplatz (am Besten ein Computer pro Kind), Browser mit aktiviertem Javascript

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Indirekte Proportionalität

Unterrichtseinheit

Die Schülerinnen und Schüler berechnen Wertetabellen und übertragen die Zahlen in ein interaktives Koordinatensystem. Mit den hier vorgestellten Materialien sollen die Schülerinnen und Schüler nach der direkten Proportionalität die Darstellung umgekehrt proportionaler Zusammenhänge kennen lernen. Am Anfang steht die Wiederholung des Dreisatzes für die indirekte Proportionalität zuerst in Text- und dann in Tabellenform. Das Ausfüllen der Wertetabellen bildet die Grundlage für das anschließende Eintragen der Werte in ein interaktives Koordinatensystem. Hier erfolgt die Auswertung der Ergebnisse nun auch anschaulich: Die richtig eingetragenen Werte werden als Funktion angezeigt! Einsatzmöglichkeiten und Voraussetzungen Die Unterrichtseinheit zielt in erster Linie auf das Üben des Übertragens von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können diese interaktiven Übungen bereits bei der Behandlung dieses Themas im Unterricht als selbstständige Schülertätigkeit angeboten werden. Voraussetzung dafür ist allerdings, dass die direkte Proportionalität bereits auf diese Weise bearbeitet wurde (siehe Unterrichtseinheit Direkte Proportionalität ). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Interaktives Koordinatensystem Die Schülerinnen und Schüler sollen den Dreisatzes für die indirekte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen können. Zuordnungsvorschriften der Form y=m/x formulieren können. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen indirekt proportionaler Zuordnungen keine ansteigende Geraden mehr ergeben, sondern bestimmte Arten von Kurven: Hyperbeläste (ohne den Begriff zu kennen). Thema Indirekte Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Kind), Browser mit aktiviertem Javascript

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Übungen im Koordinatensystem mit Kurvenprofi

Unterrichtseinheit

Die hier vorgestellten Bausteine sind keine starre Unterrichtseinheit, sondern können auch in Wiederholungsphasen oder in besonderen Unterrichtsformen (Wochenplan, Freiarbeit) als abwechslungsreiche Übungen genutzt werden. Der Funktionenplotter Kurvenprofi wird dabei als Punkt- und Streckenplotter verwendet.Lange bevor Funktionen im Unterricht thematisiert werden, finden in den Klassen 5 und 6 Übungen im Koordinatensystem statt. So werden Punkte eingezeichnet und abgelesen, Spiegelungen und Verschiebungen vorgenommen und die Eigenschaften von Vierecken angewendet. Dies geschieht durch eine Beschränkung auf Punkte, Geraden, Strecken und eventuell Kreise. Der Computer bietet dabei die Möglichkeit, Schaubilder schnell anzufertigen, Vermutungen zu entwickeln und diese zu überprüfen. So sehr wir uns saubere Koordinatensysteme wünschen - wie viele davon kann eine Schülerin oder ein Schüler in einer Stunde zeichnen? Wie viel Zeit bleibt dann noch für die eigentliche Mathematik? Von diesem Problem befreit uns der Computer als Rechen- und Zeichenknecht. Er schafft Raum für das Experimentieren und ermöglicht eine schnelle Kontrolle der Ergebnisse (zum Beispiel Verwechselung von x- und y-Koordinate). Zudem müssen Schülerinnen und Schüler bei der Arbeit am Rechner nie fürchten, Falsches in ihren Heften zu ?verewigen?.Computer-Algebra-Systeme (CAS) sind für den Einsatz in Klasse 5 und 6 in ihrer Bedienung zu aufwändig. Ihre Möglichkeiten der graphischen Darstellung fallen gegenüber ihren sonstigen Fähigkeiten oft stark ab. Maßstabsgerechte Zeichnungen und interaktive Elemente (zum Beispiel Punkte, Strecken, Parametervariation, Tangenten, Krümmungskreise) sind - wenn überhaupt - nur mit Programmieraufwand zu erreichen. Funktionenplotter rechnen dagegen nur eingeschränkt oder gar nicht algebraisch. Sie sind auf Funktionsdarstellungen ausgerichtet und in der graphischen Darstellung den CAS oft überlegen, können aber selten für Punkte und Strecken verwendet werden. Dies habe ich zum Anlass genommen, für den von mir entwickelten Funktionenplotter Kurvenprofi Aufgaben zu erarbeiten, die diese Lücke schließen. Mit dem Kurvenprofi steht den Schülerinnen und Schülern nach einer kurzen Einarbeitungsphase ein Werkzeug zur Verfügung, dass in der gesamten Schulzeit bis zum Abitur für fast alle Probleme der zweidimensionalen Graphen eingesetzt werden kann. Einsatz der Arbeitsmaterialien Die Unterrichtsbausteine eignen sich für eine vielfältige Nutzung in Partnerarbeit. Arbeitsblätter und Kurvenprofi-Dateien Materialien und Screenshots zu den Themen "Straßen und Häuser", "Parallel und Senkrecht", "Vierecke" und "Schmetterlinge". Die Schülerinnen und Schüler sollen die Orientierung im Koordinatensystem erlernen. Punkte durch zwei Koordinaten angeben können. ihre Kenntnisse zur Benennung und zu den Eigenschaften verschiedener Vierecke vertiefen. die Eigenschaft "parallel" als Gleichheit der abgezählten Wege erkennen und anwenden. die Eigenschaft "senkrecht" als eine bestimmte Änderung des abgezählten Weges erkennen und anwenden. erkennen, dass Punkte im Koordinatensystem auch durch andere Angaben (Winkel, Länge) festgelegt werden können. Thema Übungen im Koordinatensystem mit Kurvenprofi Autor Ulrich Strautz Fach Mathematik Zielgruppe Klasse 5 und 6 Zeitraum etwa 1 Stunde pro Aufgabenblatt Technische Vorraussetzungen Windows-Rechner Software Kurvenprofi (kostenfrei für private Nutzung, Schullizenz 50 €) oder andere Funktionenplotter Die Beispielaufgaben für den Einsatz von Funktionenplottern stellen keine starre Unterrichtsreihe dar. Es handelt sich um Bausteine, die auch als Wiederholungseinheiten in Vertretungsstunden oder in besonderen Formen des Unterrichts (Wochenplan, Freiarbeit) als abwechslungsreiche Übungsformen genutzt werden und viele Diskussionsanreize bieten können. Die hier vorgestellten Aufgaben sind grundsätzlich für eine Partnerarbeit konzipiert. Diese Arbeitsform ist nicht nur wegen der äußeren Rahmenbedingungen (technische Ausstattung der Schule) oft vorgegeben, sondern auch sehr hilfreich, einen inhaltlichen Austausch der Schülerinnen und Schüler über die Aufgabenstellungen anzuregen. Häufig werden spielerische Elemente verwendet, die erreichen sollen, dass nach der gemeinsamen Problemlösungsphase die Fähigkeiten beider Partner gesichert werden, zum Beispiel durch einen Rollenwechsel. Alle Aufgaben, die in diesem Artikel vorgestellt werden, lassen sich außer mit dem Kurvenprofi mit sämtlichen Funktionenplottern umsetzen, die Punkte und Strecken zeichnen können. Für die Nutzung der entsprechenden KRV-(Kurvenprofi-)Dateien müssen Sie jedoch das Programm Kurvenprofi installieren. Dies steht Lehrkräften, Schülerinnen und Schülern für die private Nutzung kostenfrei zur Verfügung, eine Schullizenz ist für 50 € zu haben. Unter Hilfe/Beispiele/Einführung finden Sie im Programm eine leicht verständliche Einweisung. Die Schülerinnen und Schüler üben in den ersten Aufgaben die Bedienung des Programms, das Ablesen und Zeichnen von Punkten und Strecken sowie die Orientierung im Koordinatensystem. Dabei werden die Kenntnisse über die Koordinaten der Punkte wiederholt. Es zeigt sich hier schnell, dass das Schaubild bei einer Verwechselung der beiden Koordinaten unerwartete Ergebnisse zeigt, die schnell bemerkt, diskutiert und behoben werden können. "Das Haus vom Nikolaus" erfordert planvolles Handeln durch eine kleine Skizze und die Überlegung, in welcher Reihenfolge die Punkte abgelaufen werden. Zur inneren Differenzierung kann gefordert werden, nur eine festgelegte Anzahl der Punkte (einen durchgängigen Streckenzug) zu verwenden. Die Anregung, die Farben und Stricharten zu ändern, puffert unterschiedliche Bearbeitungszeiten ab. Mit dem Abzählen der x- und y-Änderungen erkennen die Schülerinnen und Schüler eine weitere Möglichkeit, die Eigenschaft "parallel" nachzuweisen oder parallele Strecken zu zeichnen. Zunächst werden in verschiedenen Übungen durch die Strecken bestimmte Abschnitte angeboten. Die letzten Aufgaben erfordern das Suchen geeigneter Punkte auf einer Geraden. Möglicherweise kann an dieser Stelle im Rahmen der Binnendifferenzierung schon von einigen Schülerinnen und Schülern die Nichteindeutigkeit der Pfeile durch Verdoppelung, Verdreifachung und weitere Vervielfachungen herausgearbeitet werden. Entsprechend wurde die Untersuchung der Eigenschaft "senkrecht" angelegt, wobei die vorangegangenen Aufgaben unter der geänderten Fragestellung gelöst werden sollen. Die Festigung des über die Eigenschaften "parallel" und "senkrecht" Gelernten geschieht in den Aufgaben zu Vierecken. Nach einer spielerischen Vorübung zu Koordinaten werden die Eigenschaften bestimmter Vierecke benötigt, um Figuren durch Änderung einzelner Punkte in vorgegebene Vierecke zu verwandeln und später Streckenzüge zu Vierecken zu ergänzen. Obwohl der Begriff des Steigungsdreiecks nicht verwendet wurde, haben die Schülerinnen und Schüler eine Idee gewonnen, die in späteren Unterrichtsreihen vielleicht mit Rückgriff auf diese Übungen leicht auf die Gerade und deren Senkrechte übertragen werden kann. Für den Fall, dass in Klasse 6 die Winkel und die negativen Zahlen behandelt wurden, bietet das Blatt "Schmetterlinge" eine spielerische Übung im Raten von Winkelgrößen und Längen. Auf höherem Niveau reift die Erkenntnis, dass ein Punkt im Koordinatensystem auch durch Angabe des Winkels und der Länge eindeutig festgelegt werden kann. Dabei wird der Begriff der Polarkoordinaten nicht genannt. (Welche Schülerinnen und Schüler finden heraus, dass Winkel und Länge eines Punktes nicht eindeutig sind?) Durch viele der hier vorgestellten Aufgaben ziehen sich Anknüpfungspunkte an spätere Themen. Explizit zu nennen sind die Steigung, die Steigung einer Senkrechten, Polarkoordinaten, aber auch die negativen Zahlen, die im Gegensatz zum üblicherweise eingeführten Koordinatensystem schon in Form der vier Quadranten auftreten. Durch leichte Variation der Aufgaben können diese auch in späteren Unterrichtsreihen als Einstiege verwendet werden. Wie schnell ragt ein Viereck in einen anderen Quadranten und bietet damit einen Unterrichtsanlass zur Zahlbereichserweiterung? Die hier vorgestellten Arbeitsblätter sind Bestandteil einer Aufgabensammlung für die Klassen 5-10, die auf der Kurvenprofi -Website in verschiedenen Formaten bereit steht (unter "Downloads").

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Lineare Funktionen – die Funktionsmaschine

Unterrichtseinheit

In der Unterrichtseinheit "Lineare Funktionen" machen die Schülerinnen und Schüler mithilfe des mathematischen Modells der Funktionsmaschine ihre erste Bekanntschaft mit dem Funktionsbegriff. Im weiteren Verlauf der Unterrichtseinheit wird die lineare Funktion als solche anschaulich und ausführlich mit vielen interaktiven Übungen untersucht. Da der Funktionsbegriff in der weiteren Schullaufbahn der Lernenden einen hohen Stellenwert einnehmen wird, ist es von herausragender Bedeutung frühzeitig fundierte Grundlagen zu schaffen. Deshalb beginnt die Unterrichtseinheit mit dem Modell der Funktionsmaschine (Schmuckbild links bitte anklicken). Die hier vorgestellten interaktiven Übungen der Arbeitsblätter können entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten (eine Unterrichtsstunde pro Arbeitsblatt mit Vorbesprechung und Auswertung) oder bereits für die Erarbeitung des Themas "Lineare Funktionen" verwendet werden. Dabei empfiehlt sich der Einsatz eines Beamers, wenn die Lernenden die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Unterrichtseinheit dient der Erarbeitung des Funktionsbegriffs. Da sehr viele Schülerinnen und Schüler Schwierigkeiten haben, den Funktionsbegriff zu verinnerlichen, wird gerade auf die anschauliche Darstellung der Funktion als Maschine, die Zahlen verändert, Wert gelegt. Das Modell der Funktionsmaschine hat sich in der Mathematik-Didaktik als sehr anschaulich und einprägsam für die Lernenden erwiesen. Die auf dem ersten Arbeitsblatt verwendete Animation soll einen Beitrag zur weiteren Erhöhung dieser Anschaulichkeit leisten. Damit die Animation richtig angezeigt wird, muss ein Flash-Player für den Browser installiert sein und interaktive Webinhalte müssen zugelassen werden. Einsatz der Materialien Hinweise zum Einsatz der Arbeitsblätter, Links zu den Onlinematerialien und Screenshots. Die Schülerinnen und Schüler verinnerlichen anhand der Funktionsmaschine den Funktionsbegriff. kennen Zuordnungsvorschriften linearer Funktionen und wenden diese an. formulieren Zuordnungsvorschriften der Form y=mx+n. beherrschen das Ablesen von linearen Funktionen aus dem Koordinatensystem. beherrschen das Eintragen von linearen Funktionen in ein Koordinatensystem. erkennen Achsenabschnitte als Hilfsmittel zur Darstellung linearer Funktionen. lernen das grafische Lösen linearer Gleichungssysteme kennen. Das erste Online-Arbeitsblatt (funktionsmaschine.html) demonstriert den Schülerinnen und Schülern anhand einer Funktionsmaschine anschaulich, was hinter dem Begriff "Funktion" steckt und vermittelt erste Grundlagen der Begrifflichkeit (Argument, Funktionswert, … ). Alle Arbeitsblätter dieser Unterrichtseinheit stehen online zur Verfügung, können aber auch im Downloadbereich auf der Startseite des Artikels als ZIP-Ordner heruntergeladen werden. Das zweite Arbeitsblatt (funktionsmaschine_II.html) soll den Lernenden mithilfe des Modells der Funktionsmaschine erste Schritte beim Erkennen und Nachvollziehen von Zuordnungsvorschriften ermöglichen. Nach der Erarbeitung des Begriffs "lineare Funktion" kann anhand von Arbeitsblatt 3 (lineare_funktionen_I.html) mit dem Erkennen vorgegebener linearer Funktionen fortgefahren werden. Dabei erhöht sich der Schwierigkeitsgrad der Aufgaben sowie die Anforderungen bei der Beantwortung der Fragen. Das Einzeichnen von linearen Funktionen anhand der Achsenabschnitte wird bei der Bearbeitung von Arbeitsblatt 4 verlangt (lineare_funktionen_II.html). Dabei begegnen die Schülerinnen und Schüler erneut dem interaktiven Koordinatensystem, das ihnen bereits aus den Unterrichtseinheiten zur direkten und indirekten Proportionalität bekannt sein könnte (Unterrichtseinheiten Direkte Proportionalität und Indirekte Proportionalität des Autors im Fachportal Mathematik). Das fünfte Arbeitsblatt (lineare_funktionen_III.html) dient der abschließenden Untersuchung zusammenhängender linearer Funktionen. Ziel ist es, Schnittpunkte linearer Funktionen zu bestimmen - als Grundlage für das grafische Lösen linearer Gleichungssysteme.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Punkte im Raum

Kopiervorlage

Die Schülerinnen und Schüler erarbeiten sich selbstständig anhand eines YouTube-Videos wie man Punkte in ein dreidimensionales Koordinatensystem einträgt und lösen Vektoraufgaben mithilfe von GeoGebra. Vertieft werden diese Kenntnisse nach dem Konzept "Flip the Classroom" anhand von verschiedenen Anwendungsaufgaben. Die Schülerinnen und Schüler lernen in dem circa sechsminütigen YouTube-Video "Punkte im Raum" , wie man Punkte in ein dreidimensionales Koordinatensystem einträgt. In Aufgabe 1 visualisieren die Schülerinnen und Schüler eine Pyramide und müssen hierzu die fehlenden Koordinaten der Punkte berechnen, um so das räumliche Vorstellungsvermögen zu fördern. In einem zweiten Schritt spiegeln die Lernenden die Pyramidenspitze an den Koordinatenebenen und berechnen hierzu die passenden Koordinaten. In Aufgabe 2 wird diese Pyramide in GeoGebra dargestellt. Dabei lernen die Schülerinnen und Schüler neue Werkzeuge von GeoGebra kennen und üben den Umgang damit ein. Fachkompetenz Die Schülerinnen und Schüler arbeiten mit symbolischen, formalen und technischen Elementen der Mathematik und wenden diese auf Anwendungsaufgaben an. verwenden mathematische Darstellungen und veranschaulichen Situationen im Koordinatensystem. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet eigenständig zur Vorbereitung auf den Unterricht. nutzen GeoGebra zur Visualisierung und Lösung der Aufgaben. Sozialkompetenz Die Schülerinnen und Schüler unterstützen sich gegenseitig beim gemeinsamen Lösen der Aufgaben.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Rationale Zahlen per Wochenplan vermitteln

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Begriffe und die Eigenschaften der Menge der Rationalen Zahlen (Q) kennen. Sie berechnen die rationalen Zahlen nach den Grundrechenarten. Sie lernen diese als eine Menge von Zahlen kennen, die am Zahlenstrahl und am Koordinatensystem abgelesen und abgetragen werden können. Ziel ist die Umsetzung durch eigenverantwortliches Arbeiten oder als Wechselunterricht im Sinne des selbstgesteuerten Lernens. Diese Unterrichtseinheit hat das Ziel, die Lerninhalte zum Thema "Rationale Zahlen" für eine 7. Klasse der Realschule im Wechselunterricht den Schülerinnen und Schülern zu vermitteln und damit eigenverantwortliches Arbeiten zu fördern. Die Unterrichtseinheit basiert auf dem Konzept des selbstgesteuerten Lernens mithilfe eines Wochenplans , Erklärvideos, einem Übungs- und einem Textaufgabenheft sowie einigen Übungstests. Die Einheit ist thematisch in vier Lernmodule eingeteilt: Lernmodul 1: Gegenzahl, Zahl und Betrag; Rationale Zahlen ordnen (Zahlenstrahl) Lernmodul 2: Rationale Zahlen addieren und subtrahieren Lernmodul 3: Rationale Zahlen multiplizieren und dividieren Lernmodul 4: Rationale Zahlen im Koordinatensystem Die Inhalte dieser Lernmodule sind jeweils von der inhaltlichen Beschreibung der Plenumsphase zu entnehmen. Das Basisdokument ist der Wochenplan (WP), der sich jeweils nach den folgenden Gesichtspunkten gliedert: Aneignen (Erklärvideos, Hinweis auf die Infokästen beim Übungsheft), Übungen (Aufgaben aus dem Übungsheft, Mathematikbüchern, Lernapps) und Überprüfung (Übungstests). Die Lernenden arbeiten in den Übungsphasen an den Lernmodulen wöchentlich nach eigenem Zeitplan. Die Lehrkraft klärt in den Plenumsphasen, die sich nach einem festgelegten Zeitraster orientieren, mit den Lerngruppen die Themen- und Aufgabenstellung des jeweiligen Lernmoduls. Es empfiehlt sich, mehrere solcher Phasen in einer Woche anzubieten, so dass die Lernenden weiter an den Aufgaben arbeiten können. Die Rückmeldungsphase gestaltet sich individuell über die Plenumsphasen und den Übungstests (UeT). Die Übungstests sind als bewertete Rückmeldungen konzipiert, damit die Schülerinnen und Schüler jeweils ihren Lernstand erkennen. Das Übungsheft (MkU) konzentriert sich inhaltlich auf das Üben und Vertiefen des aktuellen Themas in Bezug auf neue Aspekte. Verknüpfungen zu vorherigen Themen (unter anderem Bruchrechnung, Berechnung von Termen, Vorrangregeln) müssten auf andere Weise abgedeckt werden. Bewusst wurden die Arbeitsblätter AB3 und AB4 hinsichtlich der Aufgaben ähnlich gehalten, damit die Schülerinnen und Schüler eigenständig in der Lage sind, die Bedeutung von Rechenoperation und Vorzeichen herauszuarbeiten. Aus dem gleichen Grund beginnt jedes Übungsblatt mit einer kurzen Darstellung. Die Lernvideos orientieren sich an dem Übungsheft, so dass sich die Schülerinnen und Schüler daran orientieren können. Als Ergänzung zum Übungsheft (MkU) bietet sich das Textaufgabenheft (MkT) an. Die Texte wiederholen indirekt Themen aus der 5. bis 6. Klasse. Zu den Übungstests (UeT), Übungsheft (MkU) und Textaufgabenheft (MkT) werden Lösungen angeboten, so dass die Schülerinnen und Schüler eigenständig korrigieren können. Für die inhaltliche Umsetzung sind für die jeweiligen Lernmodule folgende Voraussetzungen relevant: Bestimmung der Begriffe Betrag, Zahl, Gegenzahl, Vorzeichen und Rechenoperation. Ebenso das Ordnen der Zahlen nach ihrer Wertigkeit und am Zahlenstrahl (Lernmodul 1). Bei der Addition und Subtraktion gilt es den Unterschied zwischen Rechenoperation und Vorzeichen herauszuarbeiten (Lernmodul 2). Bei der Multiplikation und Division gilt es ebenfalls die Bedeutung des Vorzeichens herauszuarbeiten (Lernmodul 3). Bei der Behandlung des Koordinatensystems baut man auf das Vorwissen über den 1. Quadranten auf, um dies auf die anderen Quadranten zu erweitern (Lernmodul 4). Fachkompetenz Die Schülerinnen und Schüler nutzen sinntragende Vorstellungen von rationalen Zahlen, insbesondere von natürlichen, ganzen und gebrochenen Zahlen entsprechend der Verwendungsnotwendigkeit. erläutern an Beispielen den Zusammenhang zwischen Rechenoperationen und deren Umkehrungen und nutzen diese Zusammenhänge. nutzen Rechengesetze, auch zum vorteilhaften Rechnen. Medienkompetenz Die Schülerinnen und Schüler suchen, verarbeiten und bewahren Inhalte und Materialien auf. kommunizieren und kooperieren auf verschiedenen Ebenen miteinander. setzen digitale Werkzeuge zum Lösen von Problemen ein. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren sachlich. bearbeiten gemeinsam Aufgaben. halten sich an Absprachen und Vereinbarungen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Darstellung einer Geraden

Kopiervorlage / Video / Interaktives

Mit diesem Arbeitsblatt lernen die Schülerinnen und Schüler die Darstellung von Geraden mit der Geradengleichung. Sie erarbeiten sich selbstständig mithilfe von einem YouTube-Video, wie man Vektoraufgaben mit der Geometriesoftware GeoGebra lösen kann. Vertieft werden diese Kenntnisse nach dem Konzept "Flip the Classroom" anhand von verschiedenen Anwendungsaufgaben. Die Schülerinnen und Schüler lernen in dem ca. 12-minütigen YouTube-Video "10 Parametergleichung einer Geraden" wie man Geraden aufstellt, die Punktprobe durchführt und wiederholen, wie man Entfernungen von Punkten berechnet. Außerdem lernen sie, wie man Punkte in ein dreidimensionales Koordinatensystem einträgt. In Aufgabe 1 wird dies anwendungsorientiert anhand von Schiffskursen vertieft. In Aufgabe 2 wird mithilfe von GeoGebra die Bedeutung des Skalars r in der Gleichung visualisiert. Fachkompetenz Die Schülerinnen und Schüler arbeiten mit symbolischen, formalen und technischen Elementen der Mathematik und wenden diese auf Anwendungsaufgaben an. verwenden mathematische Darstellungen und veranschaulichen Situationen im Koordinatensystem. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet eigenständig zur Vorbereitung auf den Unterricht. nutzen GeoGebra zum Visualisieren und Lösen der Aufgaben. analysieren und interpretieren mathematische Modelle. Sozialkompetenz Die Schülerinnen und Schüler unterstützen sich gegenseitig beim gemeinsamen Lösen der Aufgaben.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Anwendung von Vektoren

Kopiervorlage

Mit diesem Arbeitsmaterial lernen die Schülerinnen und Schüler die Anwendung von Vektoren auf reale Probleme. Sie erarbeiten sich selbstständig mithilfe von einem YouTube-Video, wie man Vektoraufgaben mit GeoGebra lösen kann. Vertieft werden diese Kenntnisse nach dem Konzept "Flip the Classroom" anhand von verschiedenen Anwendungsaufgaben. Die Schülerinnen und Schüler lernen in dem YouTube-Video "Anwendung von Vektoren" eigenständig die Anwendung von Vektoren auf reale Probleme, wie das Schwimmen in einem Fluss mit Strömung und die Bestimmung von Siegerinnen und Siegern in einem Wettbewerb, bei dem Kräftevektoren visualisiert und analysiert werden. In Aufgabe 1 setzen sich die Schülerinnen und Schüler mit einer realistischen Situation auseinander, in der ein Schwimmer den Rhein überquert. Dabei lernen sie, wie man Strömung und Schwimmgeschwindigkeit als Vektoren darstellt und wie sich deren Auswirkungen auf den Endpunkt des Schwimmers berechnet. Dies verdeutlicht, wie physikalische Gegebenheiten mathematisch modelliert und analysiert werden können. In Aufgabe 2 analysieren die Schülerinnen und Schüler eine Wettkampfsituation zwischen zwei Schulklassen, bei der Kräftevektoren, die von verschiedenen Teilnehmenden auf einen Ring ausgeübt werden, in einem Koordinatensystem dargestellt werden. Die Schülerinnen und Schüler bestimmen mithilfe von Geogebra die resultierenden Kräfte und bestimmen so die voraussichtlichen Siegenden des Wettkampfs. Diese Aufgabe fördert das Verständnis für Vektoren im zweidimensionalen Raum und deren praktische Anwendung. Fachkompetenz Die Schülerinnen und Schüler arbeiten mit symbolischen, formalen und technischen Elementen der Mathematik und wenden diese auf Anwendungsaufgaben an. verwenden mathematische Darstellungen und veranschaulichen Situationen im Koordinatensystem. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet eigenständig zur Vorbereitung auf den Unterricht. nutzen GeoGebra zur Visualisierung und Lösung der Aufgaben. Sozialkompetenz Die Schülerinnen und Schüler unterstützen sich gegenseitig beim gemeinsamen Lösen der Aufgaben.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Geraden im Raum

Video / Kopiervorlage

Mit diesem Arbeitsblatt lernen die Schülerinnen und Schüler die Darstellung von Geraden mit der Geradengleichung in IR³. Sie erarbeiten sich selbstständig mithilfe eines YouTube-Videos, wie man Geraden im dreidimensionalen Koordinatensystem darstellt und diese bei GeoGebra eingibt. Vertieft werden diese Kenntnisse nach dem Konzept "Flip the Classroom" anhand von verschiedenen Anwendungsaufgaben. Das Arbeitsmaterial ermöglicht den Schülerinnen und Schülern eine anschauliche Einführung in die Darstellung und Analyse von Geraden im dreidimensionalen Raum. Die Aufgabenstellungen kombinieren geometrische Modellierung mit praktischer Anwendung und regen zur eigenständigen Erarbeitung von Lösungsstrategien an. Die Schülerinnen und Schüler schauen sich vor der Bearbeitung des Arbeitsblattes zunächst das Video "12 Geraden im Raum" an, welches als QR-Code auf dem Arbeitsblatt hinterlegt ist. In diesem Video lernen die Schülerinnen und Schüler, wie man Flugbahnen von Drohnen als Geraden modelliert und mit GeoGebra überprüft, ob sich zwei Geraden schneiden. In der darauffolgenden Aufgabe 1 müssen zwei Geraden, die unterschiedlich angegeben sind, in ein Koordinatensystem eingetragen werden. Da man hier nicht erkennen kann, ob die Geraden sich schneiden, werden in Aufgabe 2 die Geraden in GeoGebra veranschaulicht. Durch die Nutzung von GeoGebra wird das räumliche Vorstellungsvermögen gefördert und mathematische Zusammenhänge werden interaktiv erfahrbar gemacht. Abschließend wenden die Lernenden ihr Wissen an, indem sie eine Gerade entwickeln, die mit einer gegebenen Geraden einen Schnittpunkt haben soll. Fachkompetenz Die Schülerinnen und Schüler wenden mathematische Methoden zur Beschreibung und Analyse von Geraden an. interpretieren die geometrische Bedeutung von Schnittpunkten. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet eigenständig zur Vorbereitung auf den Unterricht. nutzen GeoGebra zum Visualisieren und Lösen der Aufgaben. analysieren und interpretieren mathematische Modelle. Sozialkompetenz Die Schülerinnen und Schüler unterstützen sich gegenseitig beim gemeinsamen Lösen der Aufgaben.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Das Baumhaus-Projekt – tragfähiger Einstieg in funktionale…

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Funktionen entdecken die Schülerinnen und Schüler in kleinen hands-on-Experimenten mit Alltagsmaterial lineare, quadratische und variierende funktionale Zusammenhänge. Mit dazu passenden GeoGebra-Aktivitäten erarbeiten sie sich dynamisch das Änderungsverhalten der beteiligten Größen und deren Zusammenhang. Die Unterrichtseinheit dient als Einstieg in das Thema Funktionen (Leitidee funktionaler Zusammenhang) und entwickelt für das Funktionen-Konzept notwendige Grundvorstellungen. Dabei wird von Beginn an insbesondere das Änderungsverhalten ins Zentrum gestellt. Die Schülerinnen und Schüler helfen als Architektinnen und Architekten oder Ingenieurinnen und Ingenieure in dieser Unterrichtseinheit Sarah und Max bei deren Projekt, ein Baumhaus zu bauen. Sie erkunden in Partnerarbeit in drei Kontexten Zusammenhänge zwischen zwei Größen mithilfe von Alltagsmaterialien und GeoGebra-Aktivitäten. Dabei erarbeiten die Schülerinnen und Schüler zunächst eine verbale Beschreibung des Zusammenhangs und des Änderungsverhaltens. Die GeoGebra-Aktivitäten ermöglichen die visuelle Verknüpfung der Situation zum Graph und schließlich zur Tabelle. Der Arbeitsablauf ist in allen drei Kontext identisch (siehe Unterrichtsablauf unten) und füllt jeweils etwa zwei Unterrichtsstunden. Die Tipps im Hilfeheft ermöglichen eine eigenständige Bearbeitung der Lerneinheit. Ergänzt werden die Erarbeitungsphasen durch Glühbirnen-Aufgaben zum Austausch und zur Verallgemeinerung, die von zwei unterschiedlichen Zweierteams (Baumhaus-Ingenieurinnen und -Ingenieure plus Baumhaus-Architektinnen und -Architekten) als Vierergruppe zu bewältigen sind. Die Baumhaus-Architektinnen und Architekten sowie Baumhaus-Ingenieurinnen und -Ingenieure arbeiten an unterschiedlichen, aber verwandten Kontexten (erst linear, dann quadratisch, schließlich variierend). In den Austauschphasen werden so durch Vergleich und Abgleich der Entdeckungen Gemeinsamkeiten identifiziert und verallgemeinerte Vorstellungen des Änderungsverhalten entwickelt. Das Thema "Funktionale Zusammenhänge" im Mathematik-Unterricht Funktionale Zusammenhänge bereiten Schülerinnen und Schülern viele Schwierigkeiten. Vor allem das Konzept des Änderungsverhaltens, also die simultane Änderung der beiden in Zusammenhang stehenden Größen ist schwer zugänglich. Hier helfen kleine Experimente, den funktionalen Zusammenhang zu begreifen, jedoch ist auch beim Experimentieren einiges zu beachten. Der Fokus sollte nicht zu numerisch sein, was durch Messen und Protokollieren beim Experimentieren schnell geschehen kann. Vorkenntnisse der Schülerinnen und Schüler Voraussetzung für die Unterrichtseinheit sind ein erlernter Umgang mit einem Koordinatensystem, das Anlegen von Tabellen mit Wertepaaren, das Ablesen von Punkten im Koordinatensystem, sowie das Messen von Längen. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen Die Lehrkräfte müssen lediglich die Lernenden dabei unterstützen, die auf GeoGebra basierenden Simulationen im Webbrowser aufzurufen und deren vorkonfigurierte Bedienelemente zu nutzen. Bei der Nutzung der Lernumgebung als GeoGebra Classroom sollte die Lehrkraft im Umgang mit solchen vertraut sein. Ein Online-Tutorial dazu finden sie hier . Didaktische Analyse Die Schwierigkeiten mit dem Änderungsverhalten liegen einerseits am ohnehin schwierigen Variablenkonzept, das dieser sogenannten Kovariation zugrunde liegt. Darüber hinaus erschwert jedoch der Einstieg in das Thema über Wertepaare und Tabellen einen angemessenen Konzepterwerb. Dies hat mehrere Gründe: Die Idee einer Funktion als Zuordnung von einem Wert der Eingangsgröße zu einem Wert der Ausgangsgröße erzeugt eine statische Sicht auf den Zusammenhang, also eine Auflistung von Zuständen. Für Schülerinnen und Schüler ist es auch nicht nachvollziehbar beziehungsweise notwendig, für diese Wertepaare einen neuen mathematischen Begriff einzuführen. Die Zuordnung von einzelnen Werten zueinander wirkt für Lernende künstlich. Demgegenüber stellen (mehr oder weniger) gezielte Veränderungen einer Größe und die Beobachtung der Auswirkungen ein vertrautes Vorgehen dar. Der Messprozess und aufwendiges Protokollieren können diese Variation und Beobachtung überlagern und unproduktiv für das Funktionenkonzept machen. Simulationen, die Kontexte modellieren, schaffen in dieser Unterrichtseinheit Abhilfe und machen die simultane Änderung der beiden Größen erkennbar. Sie eröffnen eine dynamische Sicht auf den Zusammenhang. Durch die Bearbeitung eines linearen, eines quadratischen, sowie eines variierenden Zusammenhangs entsteht ein breites Konzept von funktionalen Zusammenhängen, das typischen Fehlvorstellungen der Lernenden (zum Beispiel Illusion der Linearität) entgegenwirkt. Die Austauschphasen zu verwandten Kontexten (lineare, quadratische beziehungsweise variierende Zusammenhänge) ermöglichen eine Verallgemeinerung der Vorstellung vom Zusammenhang über den erfahrenen Kontext hinaus. Methodische Hinweise Die inhaltliche Erarbeitung findet in allen drei Kontexten (linearer, quadratischer sowie variierender Zusammenhang) analog statt. Pro Kontext wird in etwa eine Doppelstunde benötigt, die wie im Unterrichtsverlauf beschrieben durchgeführt wird. Aufgaben zum Weiterdenken puffern unterschiedliches Arbeitstempo vor den Glühbirnen-Aufgaben. Da es sich um eine Selbstlernumgebung handelt, können die Schülerinnen und Schüler in ihren Teams die Kontexte eigenständig nacheinander bearbeiten. Die Glühbirnen-Aufgaben eignen sich auch als Plenumsphasen: Dazu empfiehlt sich dann für die Tabellen ein Think-Pair-Share Setting. Sie können diese Lerneinheit auch im Distanz-Unterricht durchführen. Wenn Sie die bereitgestellten GeoGebra-Bücher (siehe Internetlinks unten) nutzen, können Sie jeweils einen GeoGebra-Classroom erzeugen, in dem sich die individuellen Bearbeitungsstände Ihrer Schülerinnen und Schüler nachvollziehen lassen. Die Gruppenarbeit kann parallel in einer Videokonferenz mit Breakout-Räumen initiiert werden. Die Glühbirnen-Aufgaben eignen sich auch hier als Sammlungsphasen im Plenum. Fachkompetenz Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge. erkennen und beschreiben funktionale Zusammenhänge und stellen diese in sprachlicher, tabellarischer oder graphischer Form dar. analysieren, interpretieren und vergleichen unterschiedliche Darstellungen funktionaler Zusammenhänge. Medienkompetenz Die Schülerinnen und Schüler verarbeiten Informationen, Inhalte und vorhandene digitale Produkte weiter und integrieren diese in bestehendes Wissen. kennen GeoGebra als digitales Mathematikwerkzeug und wenden es (in vorgegebenen Aktivitäten) an. kommunizieren mithilfe verschiedener digitaler Kommunikationsmöglichkeiten, insofern die Unterrichteinheit im Distanz-Unterricht durchgeführt wird. Sozialkompetenz Die Schülerinnen und Schüler dokumentieren Überlegungen, Lösungswege beziehungsweise Ergebnisse gemeinsam, stellen sie verständlich dar und präsentieren sie, auch unter Nutzung geeigneter Medien. erfahren, dass alle Lernenden ihre individuellen Stärken einbringen können. reflektieren, dass gelungene Kooperation und Kommunikation auch inhaltlich weiterhilft (vor allem in den Glühbirnen-Aufgaben). 21th-Century-Skills Die Schülerinnen und Schüler können mit verschiedenen Repräsentationen von Daten umgehen. können verschiedene Zusammenhänge untersuchen, verbal und grafisch beschreiben und systematisieren. können Hypothesen zu Zusammenhängen bilden, diese miteinander kommunizieren und überprüfen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I
ANZEIGE