• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle3
Sortierung nach Datum / Relevanz
Kacheln     Liste

Chemische Reaktionen erkennen

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz für den Anfangsunterricht in Chemie lernen die Schülerinnen und Schüler die chemische Reaktion und ihre Bedeutung kennen. Anhand kleiner Versuche erkennen sie den Unterschied zwischen der chemischen Reaktion und dem physikalischen Vorgang.Die Schülerinnen und Schüler planen in dieser Unterrichtsstunde für den Chemie-Unterricht der Sekundarstufe I ausgehend von zwei einfachen Aufgaben Experimente, die sie anschließend durchführen. Dabei beschreiben sie die Aggregatzustände von Stoffen und erkennen sie, dass es Vorgänge gibt, die sich leicht rückgängig machen lassen, während das bei anderen nicht so einfach beziehungsweise gar unmöglich erscheint. Im Unterrichtsgespräch und begleitendem Informationstext erarbeiten sie in diesem Zusammenhang die Fachbegriffe "chemische Reaktion" und "physikalischer Vorgang". Im Sinne der individuellen Förderung durch Binnendifferenzierung im Fach Chemie stehen Arbeitsblätter mit unterschiedlichen Schwierigkeitsgraden zur Verfügung. Die Unterrichtssequenz eignet sich für den Anfangsunterricht in Chemie und kann durch die weiteren Einheiten zum Thema Feuer und Verbrennung wie Voraussetzungen für ein Feuer , Feuer löschen , Verbrennungsprodukte nachweisen und Was ist eine Flamme? fortgeführt werden. Das Thema "Chemische Reaktion erkennen" im Unterricht Im Anfangsunterricht Chemie der Sekundarstufe I geht es zunächst gar nicht um "wirkliche" Chemie, sondern eigentlich eher um Physik: Stoffeigenschaften und Trennverfahren. Diese bilden die Grundlage für das Verständnis der chemischen Reaktion als Stoffumwandlung. Im Kontext Feuer und Verbrennung wird das Basiskonzept chemische Reaktion schnell deutlich ausdifferenziert. Es macht daher Sinn, ein Grundverständnis für die chemische Reaktion schon vorher zu schaffen und die Kenntnisse aus den vorhergegangenen Unterrichtseinheiten dafür zu nutzen. Vorkenntnisse Die Lernenden kennen den Begriff "Stoff" und können Eigenschaften von Stoffen wie ihren Aggregatzustand benennen und untersuchen. Sie kennen verschiedene Trennverfahren. Die Kenntnis der Sicherheitsregeln im Chemieraum wird vorausgesetzt. Didaktische Analyse Zwei ganz alltägliche Vorgänge (Eis schmelzen und Streichholz verbrennen) werden zu Beginn genauer unter die Lupe genommen. Dadurch können die Lernenden einen entscheidenden Unterschied zwischen ihnen erkennen, wodurch die Einführung eines neuen Begriffs (chemische Reaktion) sinnvoll wird. Durch andere Beispiele die grundlegende Bedeutung der chemischen Reaktion anschießend gesichert. Methodische Analyse In den Versuchen in Stammgruppen können die Lernenden ihre Ideen und ihr Wissen teilen und (hoffentlich) ein motivierendes Erfolgserlebnis haben. Die Einführung des neuen Fachbegriffs und Basiskonzepts "Chemische Reaktion" erfolgt im Unterrichtsgespräch und durch einen Text. Zur Vertiefung dient ein Arbeitsblatt, das in Einzelarbeit gelöst wird. Während dieser Phase erhalten die Lernenden direkte Unterstützung durch die Lehrkraft, wenn nötig. Umgang mit Fachwissen Die Schülerinnen und Schüler grenzen Stoffumwandlungen als chemische Reaktionen von physikalischen Veränderungen ab. festigen ihr Wissen zum Thema Aggregatzustand. Kommunikation Die Schülerinnen und Schüler übernehmen bei Versuchen in Kleingruppen Initiative und Verantwortung verteilen, Aufgaben fair und erfüllen diese im verabredeten Zeitrahmen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Feuer und Verbrennung: Was ist eine Flamme?

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz zum Themenbereich Feuer und Verbrennung lernen die Schülerinnen und Schüler den Aufbau einer Flamme am Beispiel einer Kerzenflamme kennen. Sie erfahren, welche chemischen Reaktionen während der Verbrennung ablaufen. "Feuer und Verbrennung" ist eines der ersten Themen im Chemie-Unterricht, in dem es tatsächlich um chemische Reaktionen mit ihren Stoff- und Energieumsätzen geht. In diesem Kontext werden Grundlagen für das Verständnis von Oxidation, Reduktion und Atombau geschaffen. Damit die Lernenden die komplexen Abläufe verstehen können, müssen sie Schritt für Schritt erarbeitet werden. In dieser Unterrichtsstunde zur Frage "Was ist eine Flamme?" schauen sich die Schülerinnen und Schüler eine Flamme genau an, erkennen und zeichnen ihren Aufbau. Durch Informationen aus einem Text können sie den Aufbau der Flamme mit Fachwörtern beschriften und die ablaufenden chemischen Reaktionen benennen. Vorkenntnisse Die Lernenden kennen einfache Trennverfahren. Sie wissen, dass bei chemischen Reaktionen neue Stoffe entstehen, die nicht durch einfache Trennverfahren in die Ausgangsstoffe umgewandelt werden können. Die Lernenden kennen die Voraussetzungen für eine Verbrennung. Außerdem werden Kenntnisse der Sicherheitsregeln im Chemieraum vorausgesetzt. Didaktische Analyse Die Kerzenflamme ist allen Lernenden bekannt. In dieser Unterrichtseinheit wird sie genau unter die Lupe genommen und es werden entstehende Fragen geklärt. Dabei wird gleichzeitig das Wissen über chemische Reaktionen aufgefrischt und auf die Nutzung von Wortgleichungen hingearbeitet. Methodische Analyse Die Zeichnung der Flamme geschieht in der Stammgruppe, damit sich die Lernenden gegenseitig unterstützen können. Damit sich alle Lernenden in ihrem Tempo mit dem Inhalt beschäftigen können, wird der Info-Text über die Flamme von allen Schülerinnen und Schülern einzeln bearbeitet. Der Text liegt in differenzierter Form vor um allen Lernenden das notwendige Textverständnis zu ermöglichen. In der Partnerarbeit können die Lernenden ihr Textverständnis abgleichen und anschließend mit mehr Sicherheit bei der Besprechung im Plenum mitarbeiten. Umgang mit Fachwissen Die Schülerinnen und Schüler können Phänomene und Vorgänge mit einfachen chemischen Konzepten beschreiben und erläutern. Erkenntnisgewinnung Die Schülerinnen und Schüler können Glut- oder Flammen-Erscheinungen nach vorgegebenen Kriterien beobachten und beschreiben. Kommunikation Die Schülerinnen und Schüler können altersgemäße Texte mit chemischen Inhalten sinnentnehmend lesen und sinnvoll zusammenfassen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik

Unterrichtseinheit
14,99 €

Dieses Unterrichtsmaterial regt die Lernenden zum Bau einer Rakete aus zwei Plastikflaschen, Natron und Essig an. An diesem Experiment wird neben der Problematik um den Plastikmüll zum Umweltschutz in der Schule der Antrieb einer Rakete durch das Rückstoßprinzip sowie die chemische Reaktion von Säure und Natriumhydrogencarbonat erläutert.Mit diesem Unterrichtsmaterial lernen die Schülerinnen und Schüler am Beispiel einer Rakete das Rückstoßprinzip als praktische Anwendung des 3. Newtonschen Axioms sowie die chemische Reaktion von Backpulver und Essig kennen. Sie bauen angeleitet durch ein Video selbstständig eine Rakete, erkennen ihren Antrieb und vertiefen die Phänomene der Chemie und Physik durch begleitende Arbeitsblätter. Gleichzeitig soll das Experiment auf den seit Jahren steigenden Verbrauch von Plastikflaschen aufmerksam machen, die nur zum Teil recycelt werden, während der Rest in Müllverbrennungsanlagen oder in der Umwelt landet. Das Material eignet sich je nach Lehrplan für den fächerverbindenden Unterricht in Chemie und Physik der Sekundarstufen I und II. Das Thema "Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik" im Unterricht Am Beispiel einer Rakete erarbeiten die Lernenden mit diesem Unterrichtsmaterial weitgehend selbstständig und praxisorientiert den Antrieb in einem Experiment. Diese Form der experimentellen Erarbeitung des Rückstoßprinzips im Unterricht eignet sich in besonderer Weise, um den Schülerinnen und Schülern der Sekundarstufen nachhaltig aufzuzeigen, warum Raketen eigentlich fliegen. Vorkenntnisse Zu den wesentlichen Voraussetzungen zur Durchführung dieser Unterrichtseinheit zählt, dass die Lernenden mit Lehrvideos arbeiten sowie ein chemisches beziehungsweise physikalisches Experiment aufbauen, durchführen und auswerten können. Didaktische Analyse In diesem Unterrichtsmaterial erarbeiten die Lernenden mit dem Rückstoßprinzip und einer chemischen Reaktion Phänomene der Fächer Physik und Chemie: Während das Rückstoßprinzip in Natur und Technik als praktische Anwendung des 3. Newtonschen Axioms ein physikalisches Phänomen ist, das in der Natur und Technik zur Fortbewegung dient, gilt die Verbindung von Backpulver mit Essig (Säure mit Natron) als ein Beispiel für eine Reaktion der Chemie. Darüber hinaus setzen sich die Schülerinnen und Schüler zum Umweltschutz mit ökologischen Problemen, die beim Recycling von Plastikflaschen entstehen, auseinander und lernen ein Experiment selbstständig vorzubereiten, durchzuführen und auszuwerten. Methodische Analyse Die Auswertung der Filme geschieht sowohl im Plenum als auch in Partnerarbeit. Die Vorbereitung, Durchführung und Auswertung des Experiments erfolgt in Partner- oder Gruppenarbeit, sodass die Lernenden möglichst eigenverantwortlich und selbstständig arbeiten können. Die Lehrkraft steht in diesen Phasen beratend zur Verfügung und sollte nur unterstützend eingreifen, wenn Fragen auftauchen. Fachkompetenz Die Schülerinnen und Schüler bereiten ein Experiment im Chemie- oder Physikunterricht selbstständig vor und führen es nach Anleitung durch. lernen das Rückstoßprinzip sowie die chemische Reaktion von Natron und Essig kennen. unterscheiden ökologisch sinnvolles Recycling von Plastikflaschen von unsinniger Müllverwertung. Medienkompetenz Die Schülerinnen und Schüler entnehmen einem Video im Unterricht die wesentlichen Informationen für den Bau einer Rakete. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konzentriert und zielführend kooperativ im Team zusammen.

  • Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Das Orbitalmodell

Unterrichtseinheit
14,99 €

Die Schülerinnen und Schüler erlernen wesentliche Punkte zur Beschreibung von Elektronenkonfigurationen von Atomen mittels des Orbitalmodells. Zusätzlich können sie den Begriff Orbital anhand der Quantenzahlen definieren, Elektronenkonfigurationen von Atomen und Ionen darstellen und den Begriff der Hybridisierung mittels der Orbitaltheorie an Beispielen erklären. Der Fokus der Einheit liegt auf der Orbitaltheorie. Diese soll eingeführt und behandelt werden als eine Erweiterung des Bohrschen Atommodells zur Darstellung von Elektronenkonfigurationen und atomaren Zusammenhängen. Die Lernenden sollen hierbei das bekannte Modell von Bohr transformieren und um die Darstellung von Orbitalen erweitern. Hierbei liegt ein weiterer Schwerpunkt der Einheit darauf, dass die Lernenden ein Verständnis für Orbitale entwickeln und deren Elektronenbesetzung für konkrete Atome/Ionen darstellen können. Das Thema ist hierbei stark theorieorientiert, wobei der Fokus der Einheit darauf liegen soll, dass die Lernenden Orbitale und Elektronenkonfiguration handlungsorientiert erleben sollen, um ein konkreteres Verständnis zu entwickeln. Dementsprechend ist diese Einheit mit keinen Experimenten verbunden. Die Unterrichtseinheit ist so angelegt, dass die Schülerinnen und Schüler oft im sozialen Austausch sind und sich Erkenntnis selbst oder gemeinsam mit anderen Lernenden aneignen. Beispielsweise recherchieren Lernende zu chemischen Sachverhalten analog und digital, strukturieren und interpretieren ausgewählte Informationen, verwenden Fachbegriffe korrekt, erklären chemische Sachverhalte und argumentieren fachlich schlüssig, präsentieren Arbeitsergebnisse und tauschen sich mit den Lernenden aus, beschreiben chemische Zusammenhänge qualitativ und modellhaft und diskutieren Grenzen und Möglichkeiten von Modellen. Die Lehrkraft übernimmt eine kontrollierende und moderierende Rolle. Relevanz des Themas Das Orbitalmodell ist die Grundlage, um verschiedene chemische Zusammenhänge zu beschreiben. Beispielsweise die Hybridisierung, quantenmechanische Grundlagen (Unschärferelation, diskrete Energieniveaus von Schwingungszuständen…). Zusätzlich ist es ein erster Einblick in quantenmechanische Betrachtungen von Elementen und deren Zusammenhänge und zeigt, dass es oftmals in der Chemie der Fall ist, dass Modelle aufgestellt werden, um Zusammenhänge zu erklären. Es zeigt dementsprechend auch, dass Modelle fehlerbehaftet sein können oder obsolet werden, da empirische (oder theoretische) Untersuchungen zu gegenteiligen Erkenntnissen geführt haben. Dadurch lernen die Lernenden einmal die Relevanz von Modellen, aber auch die Kritik und die Notwendigkeit der Wandelbarkeit dieser Modelle. Leider ist die Einheit ansonsten sehr theorielastig und besitzt neben dem Aspekt der Modellkritik keine größere Relevanz für den Alltag. Vorkenntnisse Die Lernenden müssen das Bohrsche Atommodell kennen und auf Beispiele anwenden können. Zusätzlich sollte ein chemisches Verständnis für den Umgang mit dem Periodensystem vorhanden sein. So beispielsweise, welche Informationen das Periodensystem zu den einzelnen Elementen enthält, wie man es liest sowie dessen grundlegenden Aufbau. Des Weiteren soll den Schülerinnen und Schülern bekannt sein, wie chemische Bindungen, hier vor allem die kovalente Bindung, konstituiert sind sowie die Darstellung von Molekülen in der Lewis-Schreibweise. Didaktisch-methodische Analyse Die Schülerinnen und Schüler werden am Anfang der Einheit aktiviert, indem sie das bekannte Atommodell von Bohr wiederholen und ihnen direkt eine Erweiterung offenbart wird. Ziel ist, sich die neuen Zusammenhänge möglichst selbstständig oder im Team zu erarbeiten, unter der Kontrolle der Lehrkraft. Dabei wird Methodenvielfalt dadurch erzielt, dass sich die Schülerinnen und Schüler mittels verschiedener Sozialformen und Herangehensweisen die Informationen erarbeiten und anwenden. Hierbei wird viel Wert darauf gelegt, dass trotz starker Theorieauslastung die Schülerinnen und Schüler sich das Modell der Orbitale bildlich vorstellen können. Im Fokus ist hierbei, dass das Bohrsche Modell nicht komplett abgelegt wird, sondern eher weiterentwickelt und erweitert wird. Der Begriff des Modells wird kritisiert und genügend erklärt, damit die Schülerinnen und Schüler den Sinn der Veränderung des Bohrschen Modells erkennen und diese nicht als rein theoretisch ansehen. Binnendifferenzierung wird bei leistungsstärkeren Schülerinnen und Schüler durch weitere Aufgaben und das optionale AB [5] vorangetrieben. Des Weiteren können stärkere Schülerinnen und Schüler in Gruppenarbeiten Rollen übernehmen, in denen sie den schwächeren Schülerinnen und Schüler Inhalte und Themen erklären und sie unterstützen. Zusätzlich besitzt die Lehrkraft einen moderierenden Teil und kann ggf. die schwächeren Schülerinnen und Schüler unterstützen und ihnen weiteres Material, Erklärungen (siehe Links) zuarbeiten. Vorbereitung Arbeitsblätter ausdrucken, Links für Modelle und Simulationen bereits öffnen (ggf. schon an die Tafel projizieren, damit diese immer sichtbar sind). Zusätzlich sollte die Lehrkraft Bastelmaterialien für die Darstellung von Orbitale (siehe Ablauf) bereit stellen können, sollte dieser Teil durchgeführt werden. Fachkompetenz Die Schülerinnen und Schüler beschreiben den Begriff Orbital mittels der Quantenzahlen und stellen die Elektronenkonfiguration für konkrete Atome/Ionen auf. wenden das Pauli-Prinzip und die Hundsche Regel. können chemische Zusammenhänge von Orbitalen, Elektronenkonfiguration und Hybridisierung qualitativ erklären. diskutieren Möglichkeiten und Grenzen von Modellen. Medienkompetenz Die Schülerinnen und Schüler suchen und verarbeiten Informationen aus chemischen Sachtexten. transferieren Erkenntnisse aus digitalen Simulationen und können die Simulationen zu Darstellung chemischer Sachverhalte adäquat nutzen. recherchieren zu chemischen Sachverhalten und strukturieren diese. (erstellen Zusammenfassungen und Erklärungen von chemischen Themen im Format eines Kurzvideos/TikTok.) Sozialkompetenz Die Schülerinnen und Schüler kommunizieren über chemische Sachverhalten und helfen sich gegenseitig die Aufgaben zu lösen arbeiten gemeinsam an Problemstellungen und kooperieren, um sich die Lösungen zu erarbeiten

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Feuer und Verbrennung: Feuer löschen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit aus der Reihe "Feuer und Verbrennung" erfahren die Schülerinnen und Schüler, wie ein Feuer gelöscht werden kann und was dabei beachtet werden muss. Anschließend bauen sie selbst einen Schaumlöscher. In dieser Doppelstunde zum Thema "Feuer löschen" knüpfen die Lernenden an ihr Wissen über die Voraussetzungen eines Feuers an und leiten verschiedene Löschwege daraus ab. Anschließend "bauen" sie mit vorgegebenem Material einen Schaumlöscher und erfahren mehr über die Funktionsweise von üblichen Schaumlöschern. In der folgenden Stunde wird erarbeitet, was beim Löschen verschiedener brennbarer Stoffe beachtet werden muss und wie sich die Lernenden selber im Falle eines Brandes verhalten sollten. Weitere Stundenplanungen und Arbeitsmaterialien für die Unterrichtsreihe "Feuer und Verbrennung" haben wir im Abschnitt "Ergänzende Materialien" für Sie verlinkt. Das Thema "Feuer löschen" im Unterricht Brände sind eine reale Gefahr für die Lernenden, die nicht unterschätzt werden sollte. Im Chemie-Unterricht ist das Thema durch die Sicherheitsunterweisungen und Versuche mit Gasbrennern und Kerzen von Anfang an gegenwärtig. Feuervermeidung und Feuerlöschen wurden auch schon vor der entsprechenden Unterrichtseinheit thematisiert. Jetzt können die Lernenden ihre Alltagserfahrungen, Warnungen der Lehrkräfte und die neu gewonnenen Kenntnisse über chemische Vorgänge bei der Verbrennung verknüpfen. Vorkenntnisse Die Lernenden kennen die Voraussetzungen für eine Verbrennung . Sie wissen, dass Verbrennungen chemische Reaktionen sind, bei denen Sauerstoff aufgenommen wird. Didaktische Analyse Feuer ist allen Lernenden bekannt und für sie auch interessant. Mit dem Löschen von Feuer haben alle bereits Erfahrungen unterschiedlichster Art gemacht, zum Beispiel beim Schauen von Serien im Fernsehen, bei der Jugendfeuerwehr oder bei eigenen Löschversuchen zuhause. In dieser Unterrichtseinheit werden ihre Kenntnisse und Vorerfahrungen aufgegriffen und genauer erklärt, was beim Löschen eines Feuers passiert. Methodische Analyse Anhand des selbst hergestellten Feuerlöschers verfolgen die Lernenden den Löschvorgang und finden heraus, was das Feuer eigentlich gelöscht hat. Durch die Filmsequenz wird das Interesse für die unterschiedlichen Löscharten bei unterschiedlichen Brennstoffen geweckt. Die Besprechung in Partnerarbeit gibt den Lernenden Sicherheit, damit sie sich bei der Besprechung im Plenum selbstbewusst beteiligen können. Umgang mit Fachwissen Die Schülerinnen und Schüler können die Bedingungen für einen Verbrennungsvorgang beschreiben. können auf dieser Basis Brandschutzmaßnahmen erläutern. Kommunikation Die Schülerinnen und Schüler können Verfahren des Feuerlöschens mit Modellversuchen demonstrieren. können Texte mit chemierelevanten Inhalten sinnentnehmend lesen. Bewertung Die Schülerinnen und Schüler können die Brennbarkeit von Stoffen bewerten. können Sicherheitsregeln im Umgang mit brennbaren Stoffen und offenem Feuer begründen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Feuer und Verbrennung: Voraussetzungen für ein Feuer

Unterrichtseinheit
14,99 €

In dieser Unterrichtssequenz zum Themenbereich "Feuer und Verbrennung" lernen die Schülerinnen und Schüler die Voraussetzungen für eine Verbrennung kennen und trainieren das sichere Experimentieren im Chemie-Unterricht. Der Themenbereich "Feuer und Verbrennung" ist eines der ersten Themen im Chemie-Unterricht der Sekundarstufe I, in dem es tatsächlich um chemische Reaktionen mit ihren Stoff- und Energieumsätzen geht. In diesem Kontext werden Grundlagen für das Verständnis von Oxidation und Reduktion und Atombau geschaffen. Die Versuche, die im Unterricht gemacht werden, werden sowohl in der Durchführung als auch im "Gehalt" anspruchsvoller. Die Lernenden werden durch den vorliegenden Einstieg in das Unterrichtsthema "Feuer und Verbrennung" auf die Unterrichtsreihe eingestimmt. Beobachtungen aus dem Alltag werden in Versuchen im Chemie-Labor wiederholt und erklärt. Dabei kommt es vor allem auf das genaue Beobachten während des Versuchs an. Vorkenntnisse Die Lernenden kennen einfache Trennverfahren. Sie wissen, dass bei chemischen Reaktionen neue Stoffe entstehen, die nicht durch einfache Trennverfahren in die Ausgangsstoffe umgewandelt werden können. Sicherer Umgang mit dem Gasbrenner und Kenntnis der Sicherheitsregeln im Chemieraum werden vorausgesetzt. Didaktische Analyse Feuer ist allen Lernenden bekannt und für sie auch interessant, besonders wenn es um spektakuläre Explosionen oder bunte Flammenfärbung geht. Viele Kinder beziehungsweise Jugendliche haben im privaten Umfeld bereits Feuer gemacht (Grill, Lagerfeuer). In dieser Unterrichtseinheit werden ihre Kenntnisse und Erfahrungen aufgegriffen und alltägliche Beobachtungen erklärt. Methodische Analyse Der Einstieg in die Unterrichtseinheit "Feuer und Verbrennung" erfolgt über die Planung einer Grillparty. Dies motiviert die Lernenden dadurch, dass sie alle etwas dazu beitragen können und selbst schon Erfahrungen zu diesem Thema gemacht haben. Die Lehrperson kann währenddessen einschätzen, welche unterschiedlichen Vorstellungen und Vorkenntnisse zum Thema Verbrennung bei den Schülerinnen und Schülern bestehen. Zu jeder Voraussetzung der Verbrennung leitet ein unkomplizierter Versuch, in dem Beobachten und daraus Schlüsse zu ziehen trainiert werden. Zudem wird ein routinierter, sicherer Versuchsablauf im Hinblick auf spätere Versuche mit dem Gasbrenner unterstützt. Umgang mit Fachwissen Die Schülerinnen und Schüler können die Bedingungen für einen Verbrennungsvorgang beschreiben. Erkenntnisgewinnung Die Schülerinnen und Schüler können Glut- oder Flammenerscheinungen nach vorgegebenen Kriterien beobachten und beschreiben. Bewertung Die Schülerinnen und Schüler bewerten die Brennbarkeit von Stoffen. begründen Sicherheitsregeln im Umgang mit brennbaren Stoffen und offenem Feuer.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Fotosynthese

Unterrichtseinheit

In diesen Unterrichtsstunden zum Thema Fotosynthese erarbeiten die Schülerinnen und Schüler anhand eines Erklär-Videos und Arbeitsblättern die Fotosynthesegleichung und den Ort der Fotosynthese. Außerdem befassen sie sich mit künstlicher Fotosynthese. Weiterführend beschäftigen sie sich mit dem Lichtabsorptionsspektrum von Chlorophyll sowie dem Grobschema der lichtabhängigen Teilreaktion. Die Lernenden erarbeiten anhand des Materials zunächst grundlegendes Wissen über die Fotosynthese und ihre Bedeutung. Dazu stellen sie die Fotosynthesegleichung als Wortgleichung sowie als chemische Gleichung dar. Darüber hinaus beschäftigen sie sich mit dem Ort der Fotosynthese und erkennen, warum Blätter grün sind. Optional kann das Thema der Lichtabsorption von Chlorophyll vertieft werden. Eine weitere Vertiefung findet statt, indem die Lernenden sich den Aufbau von Chloroplasten und das Grobschema der lichtabhängigen Teilreaktion mithilfe weiterführender Erklär-Videos erarbeiten. Sie lernen außerdem die Begriffe "künstliche Fotosynthese" und "Photokatalysatoren" kennen und stellen damit verbundene Zukunftsvisionen, aber auch mögliche Probleme dar. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträ gertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Fotosynthese im Unterricht Ohne die Fotosyntheseleistung wäre ein Leben auf der Erde nicht möglich – daher ist die Behandlung der Fotosynthese im Fach Biologie von besonderer Bedeutung. Aufgrund der biochemischen Vorgänge ist das Thema auch für das Fach Chemie relevant. Das Thema Fotosynthese findet sich in den Lehrplänen der Sekundarstufe I in der Unterrichtsreihe zum Lebenszyklus der Blütenpflanzen (als Wortgleichung) sowie in der Unterrichtsreihe zu Zellen und Gewebe (in ausführlicherer Form) wieder. In der Sekundarstufe II werden die Kenntnisse zur Fotosynthese – besonders auf biochemischer Ebene – vertieft. Vorkenntnisse Es wird kein spezielles Fachwissen zum Thema Fotosynthese vorausgesetzt, allerdings sollten die Schülerinnen und Schüler ab der Mittelstufe mit den chemischen Symbolen sowie dem Aufbau der Zelle vertraut sein. Die Schülerinnen und Schüler können sich mithilfe des Erklär-Videos zur Fotosynthese sowohl die Wort- als auch die chemische Gleichung erarbeiten. Das Unterrichtsmaterial bietet außerdem die Möglichkeit, das Lichtabsorptionsspektrum von Chlorophyll und – für den Einsatz in der Oberstufe – das Grobschema der lichtabhängigen Teilreaktion nachzuvollziehen. Des Weiteren bietet das Erklär-Video Einblicke in die Möglichkeiten und Probleme künstlicher Fotosynthese, sodass auch hier kein Vorwissen notwendig ist. Didaktische Analyse Das Unterrichtsmaterial zur Fotosynthese ist als erste intensivere Auseinandersetzung mit dem Thema (Sekundarstufe I) beziehungsweise als Wiederholung (Sekundarstufe II) konzipiert. Durch die Konfrontation mit einer bedeutsamen Aussage soll zunächst das Interesse am Thema Fotosynthese und der damit verknüpften Bedeutung für das Leben auf der Erde geweckt werden. Die Schülerinnen und Schüler gewinnen einen ersten Eindruck über die Fotosynthesegleichung in Worten und chemischen Symbolen. Anschließend erfahren sie, wo die Fotosynthese abläuft und wie Blätter zu ihrer Grünfärbung kommen, ehe sie sich mit der Relevanz der künstlich hergestellten Fotosynthese für die Zukunft beschäftigen. In der Oberstufe wird den Schülerinnen und Schülern die Möglichkeit gegeben, wesentliche Grundlagen der lichtabhängigen Teilreaktion zu erarbeiten, ohne jedoch ins Detail zu gehen. Eine vertiefte Behandlung der lichtabhängigen Teilreaktion sowie eine weiterführende Behandlung der Dunkelreaktion sollten im Anschluss stattfinden. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz wird eine hohe Schüleraktivität erreicht. Das Video als Medium erhält das durch den Einstieg geweckte Interesse am Thema Fotosynthese aufrecht. Schwierige Arbeitsaufträge werden durch Partnerarbeiten aufgefangen, und Diskussionsrunden zum Wissensaustausch und zur Wissenserweiterung finden im Plenum statt. Durch Vertiefungsaufgaben kann bei Bedarf eine Binnendifferenzierung beziehungsweise eine Weiterarbeit in der Oberstufe erfolgen. Fachkompetenz Die Schülerinnen und Schüler erarbeiten sich aus dem Unterrichtsmaterial die Fotosyntheseleistung und den Ort der Fotosynthese. lernen den Begriff der künstlichen Fotosynthese kennen und erarbeiten sich – anhand des Materials oder unter Einbeziehung von Vorkenntnissen – Zukunftsvisionen und mögliche Probleme der künstlichen Fotosynthese. präsentieren ihre Ergebnisse unter Verwendung der Fach- und Symbolsprache. Medienkompetenz Die Schülerinnen und Schüler können das in den Videos präsentierte Wissen nach Relevanz filtern und strukturiert darstellen. können aus informationsreichen und komplexen Vorträgen wesentliche Sachverhalte notieren und auf Abbildungen übertragen. Sozialkompetenz Die Schülerinnen und Schülerarbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken durch die geschützte Atmosphäre in Partnerarbeitsphasen ihr Selbstkonzept. diskutieren in Partner- oder Gruppenarbeiten und sind dabei in der Lage, ihre Meinung unter Nutzung von Fachwissen und Fachbegriffen begründet zu äußern. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Warum ist "Kerrygold"-Butter so weich?

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zur organischen Chemie nutzen die Lernenden ein Molekül-Zeichenprogramm, recherchieren im Internet und führen selbst entwickelte Experimente durch, um der chemischen Natur der streichweichen Butter auf die Spur zu kommen. Das mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnete Material, das sich für den Präsenz- und Distanzunterricht eignet, gibt es hier mit Musterlösungen und einer Handreichung für Lehrkräfte mit nur einem Klick zum Download.Die Unterrichtseinheit "Warum ist die 'Kerrygold'-Butter so weich?" ermöglicht, ausgehend von einer Alltagsfrage, wissenschaftspropädeutisches Arbeiten im Unterricht. Die Schülerinnen und Schüler lernen den Unterschied zwischen qualitativen und quantitativen Experimenten kennen. Inhaltlich stehen Ester und die elektrophile Addition im Mittelpunkt. Exkurse zu Butter-Farbstoffen und Iodzahl sind möglich. Die Unterrichtseinheit wurde mit dem Schülerpreis der Deutschen Gesellschaft für Fettwissenschaften ausgezeichnet. Didaktische Analyse Diese Unterrichtseinheit ermöglicht im Rahmen des Themas Butter die Behandlung von ganz verschiedenen Inhalten und Methoden der Chemie, die vielleicht auf den ersten Blick keinen fachsystematisch sinnvollen Zusammenhang versprechen. Wählt man den Zeitpunkt der Unterrichtseinheit jedoch geschickt, kann man die kontextgebundene Einführung neuer Inhalte und fachwissenschaftlicher Methoden mit integrierten Wiederholungen, zum Beispiel zur Vorbereitung auf das Abitur oder auch im Rahmen eines Projektunterrichts, sehr schön verknüpfen. Das Material untergliedert sich in acht Teile mit unterschiedlichen Arbeits- und Rechercheaufträgen für Schülerinnen und Schüler. Dabei kommen verschiedenste Sozialformen und Zugänge zum Tragen, die es ermöglichen, gruppenspezifisch zu differenzieren und in Präsenz oder Distanz zu unterrichten. Fachkompetenz Die Schülerinnen und Schüler erleben, wie sich aus einer einfachen Frage eine kleine Forschungsreihe entwickelt. können einen Strukturformel-Editor nutzen, um auf molekularer Ebene Antworten auf eine chemische Fragestellung zu finden. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet und wählen themenbezogene und aussagekräftige Informationen aus. können zwischen qualitativen und quantitativen Versuchen unterscheiden. Sozialkompetenz Die Schülerinnen und Schüler entwickeln gemeinsam ein Experiment.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

MINT-Town – spielbasierte Förderung von kritischem Denken in der Chemie

Unterrichtseinheit

Die Lernenden erlangen – beziehungsweise erweitern – Fähigkeiten im Bereich des kritischen Denkens mithilfe der spielbasierten Lernumgebung MINT-Town. In den drei browserbasierten Szenarien der Lernumgebung werden sie mit einem fachübergreifenden (Eutrophierung eines Teiches) und zwei chemiespezifischen Problemkontexten (Synthese von Apfelester & Hydrolyse von Fetten) konfrontiert, welche sie im Laufe der Szenarien schrittweise lösen.In dieser Unterrichtseinheit spielen die Schülerinnen und Schüler die digitale Lernumgebung MINT-Town. MINT-Town besteht aktuell aus drei inhaltlich aufeinander aufbauenden Teilen, in denen die Lernenden jeweils mit einem Problemkontext konfrontiert werden, welchen sie schrittweise lösen müssen. Dabei durchlaufen die Lernenden Phasen des Problemlösens (Problem verstehen, Problem charakterisieren, Problem lösen) und müssen verschiedene Teilfähigkeiten des kritischen Denkens (zum Beispiel Analyse von Argumenten, Beobachten, logisches Schlussfolgern) einsetzen, um zu einer Problemlösung zu gelangen. Die Lernumgebung kann sowohl lokal als auch mobil in gängigen Windows- und Android-Browsern ausgeführt werden. Zum Spielen wird eine Internetverbindung benötigt. Im ersten Szenario "MINT-Town Tutorial" machen sich die Schülerinnen und Schüler zunächst mit der Steuerung vertraut und werden dann mit dem Problem eines eutrophierten Teiches konfrontiert. Sie sammeln durch Interaktion mit der virtuellen Welt, darin enthaltenen Gegenständen sowie Nicht-Spieler-Charakteren Informationen, welche ihnen bei der Charakterisierung und der anschließenden Lösung des Problems helfen. Das zweite Szenario "Apfelhain" konfrontiert die Spielenden mit einer Situation, in der Wespen mithilfe von Apfelester weggelockt werden müssen. Dieser steht allerdings nicht einfach zur Verfügung, sondern muss zunächst aus einer Carbonsäure und einem Alkohol mithilfe einer Kondensationsreaktion synthetisiert werden. Die Spielenden müssen auch hier schrittweise alle nötigen Informationen sammeln und auf dieser Basis in einer Multiple-Choice Abfrage geeignete Schlussfolgerungen auswählen, um die passende Lösungsstrategie zu finden. Diese wird nach dem Sammeln aller notwendigen Gegenstände in Form einer Ester-Synthese im virtuellen Labor umgesetzt. Die Spielenden müssen ihr Produkt anschließend virtuell herausdestillieren, indem sie die richtige Siedetemperatur herausfinden und angeben. Danach kontrollieren sie das Produkt mit dem Brechungsindex, welchen sie in einem Laborbuch abgleichen können. Die Schülerinnen und Schüler lernen hier neben den fachlichen Inhalten auch wichtige Vorgehensweisen bei einer Laborsynthese (virtuell) kennen. Sie kommen dadurch zudem zu der Erkenntnis, dass nach einer Synthese nicht immer gleich das fertige Produkt vorliegt, sondern weitere Schritte nötig sind, um dieses in reiner Form zu erhalten. In einem abschließenden Dialog mit einem Nicht-Spieler-Charakter reflektieren die Spielenden noch einmal ihre Vorgehensweise bei der Problemlösung. Im dritten Szenario "Bergregion" werden die Spielenden mit einer neuen Problemsituation konfrontiert, in der sie durch den Einsatz von Nitroglycerin einen Tunnel freisprengen sollen. Das Nitroglycerin liegt allerdings nicht von Anfang an vor, sondern muss von einem Nicht-Spieler-Charakter synthetisiert werden. Von diesem werden die Spielenden im Rahmen einer Quest losgeschickt, um Glycerin zu beschaffen, welches mithilfe einer sauren Ester-Hydrolyse aus einem fetten Öl (Raps) gewonnen werden soll. Auch in diesem Szenario gibt es verschiedene Multiple-Choice-Abfragen, in denen beispielsweise das Problem schrittweise charakterisiert oder eine Quelle auf Glaubwürdigkeit untersucht werden muss. Die Spielenden gelangen gegen Ende des Szenarios zu der Erkenntnis, dass die saure Hydrolyse die entgegengesetzte Reaktion der Ester-Synthese ist, und viele chemische Reaktionen nicht nur in eine Richtung ablaufen. Wie man dieses chemische Gleichgewicht beeinflussen kann, wird hier noch nicht thematisiert.Sowohl das "Tutorial" als auch das Szenario "Apfelhain" sind so aufgebaut, dass sie sich vorwissensunabhängig bearbeiten lassen. Das Szenario "Bergregion" knüpft hingegen thematisch an das Szenario "Apfelhain" an, sodass ein separater Einsatz nur zu empfehlen ist, wenn das Thema Ester-Synthese vorher im Unterricht behandelt wurde. Die chemiespezifischen Szenarien "Apfelhain" und "Bergregion" lassen sich beispielsweise im "Rahmenlehrplan Teil C Chemie" für Berlin/Brandenburg im Themenbereich 3.12 "Ester – Vielfalt der Produkte aus Alkoholen und Säuren" der Klassenstufe 10 verorten (Senatsverwaltung für Bildung, Jugend und Familie, 2015). Sie fokussieren das "Basiskonzept der chemischen Reaktion". Nach dem Spielen beider Teilszenarien sollten die Lernenden ein erstes Verständnis dafür entwickelt haben, dass nicht alle chemischen Reaktionen vollständig ablaufen und sich einige Reaktionen umkehren lassen. Die Faktoren zur Beeinflussung des Gleichgewichts zwischen Hin- und Rückreaktion werden in den Lernumgebungen nicht thematisiert. Zudem werden zwar Summenformeln und funktionelle Gruppen der eingesetzten Stoffe benannt, auf konkrete Reaktionsgleichungen wird aber zugunsten allgemeiner Wortgleichungen verzichtet. Es empfiehlt sich, entweder nach dem Spielen beider Teilszenarien oder nach jedem einzelnen Teilszenario eine Sicherungsphase durchzuführen, in der allgemeine Erkenntnisse entsprechend festgehalten werden. Denkbar wäre auch ein Einsatz in der Qualifikationsphase (11) in den Themenbereichen 3.1.4 "Grundlagen der organischen Chemie", 3.1.5 "Organische Stoffe als Energielieferanten" oder in der Sekundarstufe II (12–13) als Einstieg in den Themenbereich "3.2.5 Chemisches Gleichgewicht" (Senatsverwaltung für Bildung, Jugend und Familie Berlin; Ministerium für Bildung, Jugend und Sport des Landes Brandenburg, 2021), um die "Umkehrbarkeit chemischer Reaktionen als Voraussetzung für das chemische Gleichgewicht" aufzugreifen. Erforderliche digitale Kompetenzen der Lehrenden (nach dem DigCompEdu-Modell) Die Lehrenden sollten in der Lage sein, die digitale Lernumgebung so in ihren Unterricht einzubetten und mit entsprechenden Sicherungsphasen thematisch nachzubereiten, dass die Lernenden einen möglichst großen Lerneffekt haben. Es wird empfohlen, die Szenarien wenigstens einmal selbst getestet oder im besten Fall komplett durchlaufen zu haben (3.1 Lehren). Zudem ist ein grundlegendes Verständnis für den Umgang mit dem jeweiligen Endgerät (Computer, Mobiles Device) nötig. Da die Umgebung im Browser ausgeführt wird, sollte das jeweilige Gerät eine Verbindung mit dem Internet aufweisen. Die Lehrenden sollten gewährleisten, dass allen Lernenden unabhängig von ihrer digitalen Affinität zu den eingesetzten Endgeräten oder von anderen besonderen Bedürfnissen ein Zugang zu der digitalen Lernumgebung ermöglicht wird (5.1 Digitale Teilhabe). Sofern mit dem „Tutorial“ begonnen wird, eignet sich die Lernumgebung grundsätzlich für Selbstgesteuertes Lernen (3.4), welches je nach individuellem Bedarf der Lernenden durch die Lehrenden unterstützt werden kann (5.2 Differenzierung und Individualisierung). Fachkompetenz Die Schülerinnen und Schüler beschreiben chemische Reaktionen anhand von Wortgleichungen. beschreiben Vorgänge, bei denen sich Stoffeigenschaften ändern. beschreiben die Umkehrbarkeit chemischer Reaktionen. 21st Century Skills Die Schülerinnen und Schüler erlangen/festigen Teilkompetenzen des kritischen Denkens. lösen schrittweise Probleme in authentischen Kontexten. Medienkompetenz Die Schülerinnen und Schüler analysieren, interpretieren und bewerten Informationen und Daten kritisch. arbeiten selbstständig mit einer digitalen spielbasierten Lernumgebung. verwenden eine strukturierte Sequenz zur Lösung eines Problems.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Biotechnologische Verfahren: PCR und Antigen-Schnelltests

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler das Grundprinzip und die Einsatzmöglichkeiten der Polymerase-Kettenreaktion (PCR) und der Antigen-Schnelltests kennen. Die Schülerinnen und Schüler lernen in dieser Unterrichtseinheit beide Verfahren (PCR und Antigen-Schnelltests) sowie Vor- und Nachteile der Methoden kennen und erfahren, in welchem Zusammenhang diese eingesetzt werden. Außerdem erarbeiten sie sich, wie präzise die Methoden eine Infektionskrankheit (zum Beispiel COVID-19) nachweisen können. Die Unterrichtseinheit ist Teil des Materialpakets " Impfungen: kleiner Piks – große Wirkung ", das in Zusammenarbeit mit dem Fonds der Chemischen Industrie (dem Förderwerk des Verbandes der Chemischen Industrie e. V.) entstanden ist. Das Materialpaket beinhaltet vier weitere Unterrichtseinheiten zu den Themen " Funktionsweise des Immunsystems ", " Schutz- und Heilimpfungen ", " Impfstofftypen " und " Globalisierung als Treiber von Pandemien? " sowie einen einführenden Leitartikel . Relevanz des Themas Die Polymerase-Kettenreaktion (PCR) ist eine Methode/ein Verfahren zur Vervielfältigung von Erbsubstanz. Während diese Methode unter anderem zu den Standardmethoden in der medizinischen Diagnostik zur Vervielfältigung von Virus-Erbgutgehört, war das Verfahren vor dem Beginn der COVID-19-Pandemie nur wenigen Menschen ein Begriff. Da die PCR jedoch zu Beginn der Pandemie die einzige zuverlässige Methode zum Nachweis einer Infektion war, wurde der Begriff schnell auch derbreiten Bevölkerung bekannt. Dabei wird die PCR nicht nur zur Diagnose von Krankheiten verwendet: Sie wird beispielsweise auch zur Analyse von Verwandtschaftsverhältnissen und in der Kriminalistik verwendet, um DNA-Spuren zu analysieren und mögliche Täterinnen und Täter zu finden. Im Verlauf der Pandemie wurden auch sogenannte Schnelltests zum Nachweis einer Infektion mit SARS-CoV-2 entwickelt und zugelassen. Mittlerweile sind sie ein häufig benutztes Verfahren, um Infektionen auszuschließen. Der entscheidende Vorteil gegenüber der PCR-Methode ist, dass ein Testergebnis bereits nach rund 15 Minuten vorliegt. Im Gegenzug sind Schnelltest weniger genau, weshalb nach einem positiven Schnelltest immer auch ein PCR-Test erfolgen muss, um eine Infektion zweifelsfrei belegen zu können. Das Grundprinzip des Schnelltests wird allerdings nicht nur beim Nachweis von Infektionskrankheiten verwendet. Beispielsweise basieren auch Schwangerschaftstests auf demselben Prinzip. Didaktisch-methodische Analyse In der Unterrichtseinheit erarbeiten sich die Lernenden einen Großteil durch eigenständige Recherche selbst. Dabei werden sie durch kurze Informationstexte zu Beginn jeder Aufgabe unterstützt. Dennoch sind sie angehalten, unklare Begrifflichkeiten und essenzielle Informationen zum Bearbeiten der Aufgaben selbstständig zu recherchieren, zu strukturieren und zu bewerten. Im Sinne der Differenzierung können alle möglichen Begriffe der Abbildung auf Arbeitsblatt 2 bereits vor dem Bearbeiten der Aufgabe genannt werden, sodass die Lernenden bei der Begriffswahl eingeschränkter sind. Dies bietet sich vor allem für leistungsschwächere Schülerinnen und Schüler an. Fächerverbindend zum Mathematikunterricht berechnen die Lernenden außerdem Prozentwerte zum Abschluss des Arbeitsblatts. Dabei erkennen sie, dass Schnelltests zwar ein schnelles Ergebnis liefern, es aber durchaus vorkommen kann, dass Personen zu Unrecht positiv oder negativ getestet werden, und dass dies vor allem bei großen Testgruppen ein entscheidender Faktor sein kann. Der Lehrkraft ist es freigestellt, ob sie die Lösungen mit der gesamten Lerngruppe bespricht. Alternativ kann sie auch die richtigen Lösungen zum eigenständigen Kontrollieren auslegen. Vorkenntnisse Die Lernenden sollten Vorkenntnisse im Bereich der Genetik und speziell im Aufbau und in der Vervielfältigung von DNA besitzen. Um zu verstehen, welche "Materialien" für eine PCR verwendet werden und wie diese abläuft, sollten die Lernenden die wesentlichen Bestandteile der DNA sowie notwendige Enzyme und biochemische Abläufe bei der Vervielfältigung der Erbsubstanz kennen. Für die Berechnung der falsch-negativen und falsch-positiven Schnelltest sind die Grundlagen der Prozentrechnung ausreichend und lassen sich auch mittels Dreisatzes einfach darstellen. Das Material eignet sich zum Einsatz im naturwissenschaftlichen Unterricht in den Jahrgangsstufen 11 bis 13. Fachkompetenz Die Schülerinnen und Schüler beschreiben die Grundprinzipien biologischer Arbeitstechniken und biotechnologischer Verfahren (PCR und Antigen-Schnelltests) zum Nachweis von Krankheiten und weiterer Einsatzmöglichkeiten. erläutern den Ablauf der Polymerase-Kettenreaktion und von Antigen-Schnelltests. analysieren mögliche Fehler bei der Durchführung von Schnelltests und bewerten die Zuverlässigkeit. Medienkompetenz Die Schülerinnen und Schüler nutzen das Smartphone oder den PC zur Recherche. Sozialkompetenz Die Schülerinnen und Schüler helfen sich gegenseitig bei Fragen und Problemen. bereiten ihre Ergebnisse adressatengerecht auf.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Bunte Vielfalt – Extraktion und Quantifizierung von Photopigmenten aus Mikro-/Makroalgen

Unterrichtseinheit

Ziel ist es, den Lernenden einen erweiterten Horizont der Struktur-Funktions-Beziehung von photosynthetisch aktiven Strukturen in phototrophen Mikro- und Makroalgen und deren Wechselwirkungen mit dem artspezifischen Lebensraum zu erläutern. Neben den grünen Chlorophyllen und gelb-orangenen Carotinoiden in Pflanzen haben Cyanobakterien und Rotalgen zusätzliche Lichtantennenkomplexe entwickelt, die sogenannten Phycobilisome, die aus verschiedenen Phycobiliproteinen (blau: C-Phycocyanine und Allophycocyanin und rot: Phycoerythrine) bestehen. Zu diesem Zweck wurden einfach durchzuführende Experimente mit einer Unterrichtsreihe entwickelt, die den Lernenden der Sekundarstufe II die bunte Welt der Photopigmente und Phycobiliproteinen näherbringen sollen.Schon bereits etablierte Versuche zur Fest-Flüssig-Extraktion von Photopigmenten aus Zellen höherer Pflanzen öffnen den Schülerinnen und Schülern deren bunte Vielfalt und rücken das Blatt als Organ der Photosynthese in den Fokus. Analog zu diesen Methoden können Photopigmente und Phycobiliproteine aus den phototrophen Mikro- und Makroalgen gewonnen werden und ein neues Feld an Lehr-Lern-Kontexten und Relevanzen öffnen. Die dafür geeigneten und verwendeten Mikro- und Makroalgen Chlorella vulgaris (Mikroalge), Arthrospira platensis (Mikroalge) und Palmaria palmata (Makroalge) sind in schon pulverisierter Form leicht und kostengünstigen käuflich zu erwerben. Die in dem Versuchsprotokoll gewählte Methode folgt den standardisierten Versuchsschritten einer Fest-Flüssig-Extraktion. Das methodische Vorgehen kann für die Schülerinnen und Schülern anhand des Vorgehens bei dem Zubereiten von Kaffee leicht und alltagsnah erklärt werden. Für die Fest-Flüssig-Extraktion werden fünf Versuchsansätze mit den jeweiligen Extraktionsmittel (Wasser oder acetonhaltiger Nagellackentferner) gewählt, wobei alle verwendeten Materialien kostengünstig in Drogerien oder Lebensmittelgeschäften erhältlich sind und die erforderlichen Sicherheitsstandards in Schulen erfüllen. Darüber hinaus besteht die Möglichkeit, die beschriebenen Experimente auf verschiedene Bildungsniveaus zuzuschneiden. Zusammen mit dem dazu entwickelten Unterrichtskontext veranschaulichen die Experimente grundlegende chemische Konzepte in einem biologischen Kontext und führen wissenschaftliche Denk- und Arbeitsweisen ein. Die Experimente liefern weitere Lernkontexte, die neben der Einführung in die Methoden zur Fest-Flüssig-Extraktion auch Bezüge zur Löslichkeit von lipophilen und hydrophilen Pigmenten aus phototrophen Organismen schließen können und Lehr-Lern-Kontexte zu molekularer Polarität, zwischenmolekulare Kräfte und Löslichkeitskonzepte ermöglichen.Photopigmente nehmen eine wesentliche Rolle in der Photosynthese ein und halten demnach eine Funktionsvielfalt inne, die nahezu jeden Aspekt unseres Lebens beeinflusst. Sie können daher für Vorstellungen der Schülerinnen und Schüler von chemischen und biologischen Struktur-Funktions-Zusammenhängen in der realen Welt von entscheidender Bedeutung sein und tragen demnach eine einflussreiche Rolle im Wissensaufbau zu Charakteristika der Naturwissenschaften. Im Zuge des immer weiterwachsenden Trends zur pflanzenbasierten Ernährung erhalten Mikro- und Makroalgen Einzug in die Lebensmittelregale. In der Küche findet man sie nicht nur als Gewürz, sondern spielen auch ihre Pigmente als natürliche Farbstoffe in der Lebensmittel- und Textilindustrie eine wesentliche Bedeutung. Die alltagsnahe Relevanz eröffnet zahlreiche Potentiale diese Zusammenhänge im Chemieunterricht zu verdeutlichen und den Lernhorizont der Schülerinnen und Schüler zu erweitern. Vorkenntnisse von Lehrenden und Lernenden Spezifische Vorkenntnisse sind zur Durchführung der Unterrichtreihe vorteilhaft. Thematisch kann die Reihe in den biologischen Kontext der Photosynthese eingeordnet werden. Dabei sollten Begriffe wie beispielsweise Lichtsammelkomplexe, Photopigmente und deren Funktion im Lichtsammelkomplex höherer Pflanzen vorausgesetzt sein und das Bewusstsein der Vielfalt an phototrophen Organismen bestehen. Darüber hinaus sollten physikalische Zusammenhänge zur Optik und Begriffe wie Absorption, Absorptionsspektren, Wellenlänge verstanden sein. Im chemischen Kontext ist grundlegendes Wissen und Verständnis zu molekularen Polaritäten, zwischenmolekularen Kräften, Löslichkeitskonzepten und Chromatographie vorauszusetzen. Die Experimente zur Extraktion von Photopigmenten und Phycobiliproteinen aus Mikro- und Makroalgen folgen einem forschungsorientierten methodischen Vorgehen und stehen im Zuge der Entwicklung der Experimentierkompetenz der Schülerinnen und Schüler im Kompetenzbereich Erkenntnisgewinnung. Die Möglichkeit besteht die beschriebenen Experimente auf verschiedene Bildungsniveaus zuzuschneiden, vielfältig auszuweiten und detaillierte Fokussierung von mehreren Themenkomplexen fachspezifisch herauszustellen. Aufgebaut ist die Unterrichtsreihe auf der Analyse der Pigmentzusammensetzung der Mikro- und Makroalgen in Abhängigkeit des verfügbarem Lichtspektrums beziehungsweise der verfügbaren Lichtqualität und Temperaturen und zielt auf die besondere Fähigkeit der Cyanobakterien zur chromatischen Adaption, um so die Photosyntheseffizienz zu steigern. Die artspezifische Pigmentzusammensetzungen werden durch die Experimente qualitativ sowie quantitativ für die Schülerinnen und Schüler sichtbar und photometrisch messbar. Voraussetzung ist die Verfügbarkeit von photometrischen Messgeräten in der Schule beziehungsweise auf das portable, modulare und kostengünstige Low-Cost-Photometer von desklab zurückgegriffen werden. Der Austausch mit Peers steht aufgrund der Gruppenarbeit oder Paararbeit, je nach Kursgröße, im Vordergrund. Bei dem Experimentieren unterstützen sich so die Schülerinnen und Schüler gegenseitig und leiten selbstständig den Experimentierprozess. Besonderheit aller Experimente ist, dass alle verwendeten Geräte, Gebrauchs- und Verbrauchsmaterialien kostengünstig in Drogerien oder Lebensmittelgeschäften erhältlich oder sogar schon im Haushalt zu finden sind. (Hinweis: Eine zusätzliche Unterstützungsmöglichkeit bei der Durchführung des Unterrichtskonzepts ist die besondere methodische Herangehensweise in Experimentierkisten, welche nicht nur als Transportmedium für alle Materialien und Geräte dient, sondern auch den Wissenstransfer zwischen Universität und Schule symbolisiert und den Transport von Wissensgut ermöglicht. Für Lehrkräfte aus Rheinland-Pfalz besteht die Möglichkeit diese Experimentierkiste auszuleihen.) Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigCompEdu Modell) Die Lehrenden sollten dazu in der Lage sein, die Unterrichtsreihe gezielt durch digitale Medien zu untermauern. Beispielsweise ist es möglich, ein digitales Laborbuch zu den Versuchsreihen anzulegen und die Datenanalyse mit einer Softwarelösung vorzunehmen. Das digitale Laborbuch kann zur Dokumentation aber auch als Interaktionstool genutzt werden und im Rahmen eines kollaborativen Doc's-Tool umgesetzt werden. Die Lehrkraft soll so in der Lage sein, die Lernende zu befähigen, digitale Medien im Rahmen der Gruppenarbeiten zu nutzen, um die Kommunikation und Kooperation innerhalb der Lerngruppe zu verbessern. Die Lernenden können in der Form des digitalen Laborbuches experimentelle Erkenntnisse und Fortschritte dokumentieren, diese kommunizieren und gemeinsam Auswertungen und Diskussionspunkte erarbeiten. Sicherzustellen sind Internetzugang und die Verfügbarkeit von Endgeräten für die Schülerinnen und Schüler. Fachkompetenz Die Schülerinnen und Schüler führen eigenständig Experimente zur Extraktion von Photopigmenten und Phycobiliproteinen aus Mikro- und Makroalgen durch und verwenden die Photometrie als analytische Methode zur Quantifizierung der Pigmentzusammensetzungen der unterschiedlichen Mikro- und Makroalgen. beschreiben die chemischen Eigenschaften und Funktionen der grünen Chlorophyllen, gelb-orangenen Carotinoiden und die sogenannten Phycobilisome, die aus verschiedenen Phycobiliproteinen (blau: C-Phycocyanine und Allophycocyanin und rot: Phycoerythrine) bestehen, im Lichtantennenkomplex von Mikro- und Makroalgen. erläutern Struktur-Funktions-Beziehung von photosynthetisch aktiven Strukturen in phototrophen Mikro- und Makroalgen und deren Wechselwirkungen mit dem artspezifischen Lebensraum. Methodenkompetenz Die Schülerinnen und Schüler wenden im Experimentierprozess zur Erkenntnisgewinnung den systematischen Umgang mit Variablen an, um den Einfluss der abhängigen Variable zu untersuchen. setzen die angewandten Methoden und experimentellen Vorgehensweisen in den einzelnen Versuchsschritten in Zusammenhang mit der dadurch implizierten Wirkung und definieren beispielsweise das Mörsern als eine Methode zum mechanischem Zellaufschluss. nutzen naturwissenschaftliche Arbeitsweisen (zum Beispiel Experimentieren, Beobachten, Messen, ...). Sozialkompetenz Die Schülerinnen und Schüler stehen in der Gruppenarbeit im Austausch mit der Peer-Gruppe, wodurch ein Peer-Coaching explizit erfordert wird. 21st Century Skills Die Schülerinnen und Schüler analysieren die aus den Experimenten gewonnen Daten, interpretieren und bewerten sie, um Rückschlüsse auf die industrielle Verwendung der Mikro-/Makroalgen zu ziehen. kommunizieren Mikro-/Makroalgen als eine biotechnologische Lösung im Hinblick auf den Klimawandel. Literaturhinweise Zum Nachlesen: Zu der Versuchsreihe erscheint ein Artikel in der Zeitschrift "Journal of Chemical Education": L., Geuer; N., Erdmann; M., Lorenz; H., Albrecht; T., Schanne; M., Cwienczek; D., Geib; D., Strieth; R., Ulber; Colourful diversity - Modified methods for extraction and quantification of photopigments and phycobiliproteins isolated from phototrophic micro- and macroalgae" in der Zeitschrift "Journal of Chemical Education; Journal of Chemical Education; (2022) angenommen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt
  • Sekundarstufe I

Röntgenkristallographie: Aufbau und Funktionsweise komplexer biochemischer Moleküle

Unterrichtseinheit

In dieser Unterrichtssequenz zum Thema Röntgenkristallographie erarbeiten die Schülerinnen und Schüler anhand eines Videos und eigener Internetrecherchen den Nutzen und das Prinzip der Röntgenkristallographie. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden. Dieses Unterrichtsmaterial leitet die Schülerinnen und Schüler zur Erarbeitung wesentlicher Informationen über die Röntgenkristallographie an. Dazu werden zwei zentrale Fragen an die Lernenden gestellt, deren Beantwortung anhand eines Lehrvideos und einer selbstständigen Recherchearbeit erfolgen soll. Für die Recherchearbeit werden hilfreiche Internetadressen angeboten. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Röntgenkristallographie im Unterricht Die "Röntgenkristallographie" oder auch "(Röntgen-)Strukturanalyse" kann im Zusammenhang mit verschiedensten Themen im naturwissenschaftlichen Unterricht angesprochen werden. Durch die Behandlung dieses Themas gewinnen die Schülerinnen und Schüler einen Einblick in naturwissenschaftliche Arbeitsmethoden sowie ein realistisches Verständnis über die mühsame Aufklärung von Molekülstrukturen, die im Unterricht ganz selbstverständlich genutzt werden. Vorkenntnisse Da dieses Thema in mehreren Unterrichtsreihen der naturwissenschaftlichen Fächer eingegliedert werden kann, wird für das Unterrichtsmaterial kein spezielles Vorwissen vorausgesetzt. Die Konzipierung der Unterrichtsstunde ermöglicht den Lernenden eine Recherche entsprechend ihrem individuellen Leistungsstand und Vorwissen. Somit kann diese Unterrichtsstunde – im Biologie-, Chemie- oder Physik-Unterricht der Sekundarstufen – in jeder Klassenstufe und Schulart eingesetzt werden. Es wird allerdings eine hohe Kompetenz im Umgang mit dem Internet vorausgesetzt. Didaktische Analyse Das Interesse der Schülerinnen und Schüler an der Röntgenkristallographie kann anhand einer einführenden Frage über die Aufklärung von Strukturen (bio-)chemischer Moleküle – wie beispielsweise ein Molekül, das in der Vorstunde besprochen wurde – geweckt werden. In der anschließenden Erarbeitungsphase fokussieren sich die Schülerinnen und Schüler auf die Beantwortung zwei wesentlicher Fragen, um das Thema in seiner Komplexität einzugrenzen. Die Sicherungsphase kann entsprechend der Klassenstufe oder dem Leistungsniveau durchgeführt werden, hierzu macht das Material keine Vorgaben. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtsstunde zur Röntgenkristallographie wird eine hohe Schüleraktivität erreicht. Die selbstständige Recherchearbeit und das Medium Video erhöhen die Lernbereitschaft und das Interesse am Thema. Die Erarbeitungsphase soll möglichen heterogenen Vorkenntnissen und Leistungen gerecht werden: Durch selbstständige Recherchearbeiten können die Aufgaben entsprechend der individuellen Leistung bearbeitet werden. Hierfür bietet sich Einzelarbeit an, jedoch kann eine Partnerarbeit aufgrund der Komplexität des Themas durchaus sinnvoller sein. Fachkompetenz Die Schülerinnen und Schüler erarbeiten den Nutzen und das Prinzip der Röntgenkristallographie. stellen ihre Ergebnisse schlüssig und unter Gebrauch der Fachsprache dar. erhalten einen Einblick in naturwissenschaftliche Arbeitsweisen und reflektieren den selbstverständlichen Gebrauch naturwissenschaftlicher Ergebnisse. Medienkompetenz Die Schülerinnen und Schüler können das in einem Video dargestellte Wissen nach Relevanz filtern und strukturiert wiedergeben. üben sich darin, aus komplexen und informationsreichen Internetquellen wesentliche Sachverhalte herauszuschreiben. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paararbeit. stärken ihr Selbstkonzept durch die geschützte Atmosphäre in der Paararbeitsphase. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE