• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 3
Sortierung nach Datum / Relevanz
Kacheln     Liste

Einführung in die Werkstoffkunde

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit zum Thema Werkstoffe bietet ein Beispiel für eine Einführung in die Werkstoffkunde mittels einer Internetrecherche in Gruppenarbeit. Dabei werden möglichst viele Sinneskanäle angesprochen und verschiedene Präsentationsformen geübt.Je nach Werkstück und dessen Verwendungszweck bedarf es passender Werkstoffe und damit auch eines Wissens über Werkstoffe. Nach einem haptisch-visuellen Einstieg recherchieren die Lernenden in Partner- oder Gruppenarbeit im Internet und entdecken dabei interessante Informationen über Stahl, Eisen, Kupfer, Aluminium, Kunststoffe und Schneidstoffe. Mithilfe von QR-Codes auf dem begleitenden Arbeitsblatt gelangen die Schülerinnen und Schüler zu informativen Webseiten, auf denen sie die Antworten zu ihren Arbeitsaufträgen ermitteln können. Zum Abschluss der Unterrichtseinheit präsentieren sie die Ergebnisse ihrer Klasse Die Unterrichtseinheit kann in der Berufsschule im Fach Metalltechnik, an Haupt- oder Realschulen im Fach Technik oder im Technischen Gymnasium eingesetzt werden.Um das Interesse der Lernenden zu wecken, werden den Schülerinnen und Schülern zu Beginn Werkstücke, die die Lehrkraft mitgebracht hat, präsentiert. Diese sollten aus verschiedenen Werkstoffen hergestellt sein, damit bereits hier deutlich wird, dass verschiedene Werkstoffe benötigt werden, je nach Verwendungszweck eines Werkstücks und den Anforderungen daran. Das Bild der Werkstoff-Einteilung aus dem ersten Arbeitsblatt, welches die Lehrkraft zuvor in Teile geschnitten und in Umschlägen verpackt hat, erhalten jeweils vier Lernende zusammen als Schnipselsammlung. Diese sollen sie nun richtig ordnen. Kontrolliert wird ihre Lösung, indem das Arbeitsblatt projiziert und kommentiert wird. Aus diesem ergeben sich dann die thematischen Gruppenzusammensetzungen, die auf dem nächstfolgenden Arbeitsblatt zu finden sind: Stahl, Eisen-Gusswerkstoffe, Schneidstoffe, Aluminium, Kupfer und Kunststoffe. Zum Gruppenthema "Schneidstoffe" ist anzumerken, dass Schneidstoffe auch aus Stählen, Keramik oder künstlichen Werkstoffen (Industrie-Diamant) bestehen können. Aufgrund der Nennung der Hartmetalle in der Gruppe der Verbundwerkstoffe wird die Schneidstoffaufgabe hier zugeordnet. Im Anschluss daran finden sich die Lernenden in Gruppen oder Partnerteams zusammen, wählen ein für sie ansprechendes Thema aus und begeben sich auf eine Internet-Recherche, sobald sie den zugehörigen Aufgabenabschnitt des Arbeitsblattes erhalten haben. Sind alle Informationen zusammengetragen, werden sie für eine Präsentation aufbereitet. Dabei können die Lernenden die Darstellungsform nach eigener Präferenz wählen – ob klassische Plakatkreationen oder moderne Miro-Boards, alles ist erlaubt. Am Ende erfolgt eine Evaluierung der Unterrichtseinheit im Plenum. Die Schülerinnen und Schüler erkennen, dass Anforderungen an das Werkstück und dessen Verwendungszweck für die Auswahl von Werkstoffen eine wichtige Rolle spielen. können eine Werkstoffeinteilung darstellen. sammeln in Gruppen Informationen zu einem Werkstoff bzw. zu einer Werkstoffgruppe im Internet. selektieren in Gruppen wichtige Informationen und bündeln diese anschaulich in einer Präsentationsform. präsentieren ihre Ergebnisse.

  • Metalltechnik / Technik / Sache & Technik
  • Sekundarstufe II, Berufliche Bildung, Sekundarstufe I

Vom Erz zum Stahl

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler alle Grundlagen zum Thema Stahl kennen, wobei der Weg vom Abbau des Metallerzes bis hin zum eigentlichen Werkstoff – zum Beispiel im Gerüst um die Ecke – begleitet wird. Außerdem werden die verschiedenen Prozesse während der Stahlproduktion in Hinblick auf die Umweltverträglichkeit und Nachhaltigkeit untersucht. Diese Unterrichtseinheit kann in den Rahmenlehrplan der Sekundarstufe II eingeordnet werden. Thematisch orientiert sie sich dabei an einem Werkstoff, der nicht nur in der Industrie, sondern auch im Alltag eine ganz entscheidende Rolle spielt: Stahl. Er lässt sich in jeglichen Branchen wiederfinden und ist als Werkstoff nicht wegzudenken. Im Fokus dieser Unterrichtseinheit steht die Gewinnung von Eisen sowie die Weiterverarbeitung zu Stahl. Dabei wird zunächst der Abbau von Metalle rzen im Detail betrachtet. Besonderes Augenmerk wird dann auf den Hochofenprozess und die dabei ablaufenden chemischen Reaktionen gelegt, wodurch die Schülerinnen und Schüler das Thema der Redoxgleichungen wiederholen und lernen es anzuwenden. Neben der Herstellung von Eisen wird auch die Umwandlung von Roheisen zu Stahl näher betrachtet, wobei hier vor allem das Linz-Donawitz-Verfahren eine wichtige Rolle spielt. Außerdem kann in einer fächerübergreifenden Aufgabenstellung die Stahlherstellung in Bezug auf Ressourcenschonung und Umweltfreundlichkeit zunächst in Gruppen und dann innerhalb der Klasse diskutiert werden. Dabei werden das kritische Hinterfragen und das Zusammenarbeiten in einer Gruppe sowie die Verteilung der Aufgaben geübt. In einigen Aufgabenstellungen dieser Unterrichtseinheit wird die eigene Recherchefähigkeit entwickelt und geschult. Abschließend beschäftigen sich die Schülerinnen und Schüler mit dem Thema Stahl als Werkstoff. Hierbei wird vor allem auf die enorme Vielfältigkeit an Anwendungsgebieten sowie verschiedenen Legierungsmöglichkeiten hingewiesen. Die Schülerinnen und Schüler erhalten einen groben Überblick über die Einteilung der Stähle nach ihrer chemischen Zusammensetzung und erkennen Zusammenhänge zwischen den Eigenschaften der Stahllegierungen und den zugesetzten Elementen. Stahl ist einer der am häufigsten verwendeten Werkstoffe der Welt . Er begegnet uns überall im Alltag, ob am Frühstückstisch, auf dem Weg zur Schule oder in der Freizeit am Computer. Doch nicht nur im Alltag besitzt er größte Relevanz, auch als Werkstoff für die Bauindustrie, in Werkzeugen oder Maschinen ist er nicht mehr wegzudenken. Daher ist diese Thematik von höchster Bedeutung für den schulischen Unterricht. Die Unterrichtseinheit ist ideal für den Chemie- und Geografieunterricht der Sekundarstufe II geeignet. Sie kann im Anschluss an das Themengebiet "Energie und chemische Reaktionen" als möglicher Kontext in Bezug auf die "Metallgewinnung" sowie einem "Nachhaltigen Umgang mit Stoffen und Energie" behandelt werden und bezieht sich dabei vor allem auf die Rahmenlehrpläne der Länder Berlin, Brandenburg und Nordrhein-Westfalen. Die Einheit bietet ebenso fächerübergreifende Aspekte und könnte teilweise als vertiefendes Modul im Fach Geografie für das Themengebiet "ökonomisch relevante Bodenschätze" beziehungsweise "Überblick über Arten und Verteilung von Bodenschätzen" eingesetzt werden. Außerdem kann diese Einheit in verringertem Umfang als ergänzendes und weiterführendes Material für die Sekundarstufe I während der Thematik "Metalle – Schätze der Erde" verwendet werden. Grundlegende chemische Kenntnisse werden für die Bearbeitung der Aufgaben vorausgesetzt. Die Aufstellung von Reaktionsgleichungen und insbesondere von Redoxgleichungen sollte zuvor mit den Schülerinnen und Schülern besprochen worden sein. Außerdem sollte die grundlegende Fähigkeit vorliegen, themenbezogen in verschiedenen Quellen zu recherchieren. Weiterhin sind keine Vorkenntnisse notwendig. In der ersten Doppelstunde wird zunächst über das Thema der Metalle rze gesprochen. Als zentraler Punkt bei der Stahlherstellung wird auch hier besonderes Augenmerk auf den Hochofenprozess gelegt. Wahlweise kann hier eine klimafreundlichere Alternative zum Hochofenprozess – die wasserstoffbasierte Stahlerzeugung – thematisiert und so auf die Wichtigkeit einer nachhaltigen Großindustrie eingegangen werden. Im Anschluss werden der Werkstoff Stahl und seine Eigenschaften näher betrachtet. Im Verlauf der Unterrichtseinheit kann zwischen darbietendem Unterricht und der aktiven Mitgestaltung durch Schülerinnen und Schüler immer wieder variiert werden, was eine abwechslungsreiche Unterrichtsgestaltung erlaubt. Die Einheit bietet vertiefendes chemisches Wissen in Anlehnung an den Alltag mit breit gefächerten, binnendifferenzierbaren Aufgabenstellungen in verschiedenen Schwierigkeitsstufen. Diese können je nach Wissensstand, Grund- oder Leistungskurs flexibel ausgetauscht oder ergänzt werden. Fachkompetenz Die Schülerinnen und Schüler erarbeiten sich detailliiertes Wissen über Metallerze und deren Abbau. erläutern die chemischen Vorgänge im Hochofen. kennen das Linz-Donawitz-Verfahren. können verschiedene Stähle grob einteilen und sie an Gerüsten in ihrer Umgebung kennenlernen. Medienkompetenz Die Schülerinnen und Schüler können Informationen aus einem Text entnehmen und wiedergeben. können in verschiedenen Quellen zu einem naturwissenschaftlichen Sachverhalt recherchieren und verbessern dabei auch die Fähigkeit zur reflektierten Recherche im Internet. Sozialkompetenz Die Schülerinnen und Schüler lernen kritisch zu hinterfragen. können ihr Wissen auf fächerübergreifende Fragestellungen anwenden. bewerten und diskutieren in einer Gruppe. Verwendete Literatur H.-D. Dobler, W. Doll, U. Fischer, W. Günter, M. Heinzler, E. Ignatowitz, R. Vetter (2003). Fachkunde Metall Haan-Gruiten: Verlag Europa-Lehrmittel, Nourney, Vollmey GmbH & Co. KG, S. 241 ff. D. Falk, P. Krause, G. Tiedt (2005). Tabellenbuch Metall , Westermann-Verlag.

  • Chemie
  • Sekundarstufe II

Funktion einer galvanischen Zelle

Unterrichtseinheit

Das hier vorgestellte Flash-Programm zeigt den Aufbau einer galvanischen Zelle aus einer Zink- und einer Kupferhalbzelle. Die chemischen Abläufe bei einer Stromentnahme werden dynamisch dargestellt.Die Beamerprojektion der Animation unterstützt das Unterrichtsgespräch und soll genutzt werden, um die im vorhergehenden Experiment demonstrierte Erzeugung elektrischer Energie in einer Teilchenmodellanimation zu veranschaulichen. Dabei wird deutlich, durch welche chemischen Vorgänge der Strom erzeugt wird. Neben den an den Elektroden stattfindenden Reaktionen wird auch die Diffusion der Ionen durch das Diaphragma dargestellt. Dadurch wird der Ladungstransport von Halbzelle zu Halbzelle innerhalb der Lösungen gewährleistet. Mithilfe der projizierten Animation werden die Teilgleichungen sowie die Redoxgleichung für den Gesamtumsatz an der Tafel entwickelt. Die Materialien der Unterrichtseinheit werden durch einen Beitrag aus der GDCh-Wochenschau-Artikel zum Thema (Gesellschaft Deutscher Chemiker e.V.) ergänzt: Unfreiwillig trägt fast jeder Mensch eines oder mehrere galvanische Elemente im Mund. Was können Chemikerinnen und Chemiker für einen korrosionsarmen Zahnersatz tun?Am Präsentationsrechner können Lehrerinnen und Lehrer die Flash-Folie als Unterrichtsmedium im Unterrichtsgespräch einsetzen. Das Experiment verdeutlicht den Lernenden die technische Möglichkeit zur Gewinnung elektrischer Energie aus chemischen Reaktionen. Die Animation lässt sich ebenfalls in einer selbstständigen Computer-Schülerarbeit einsetzen, zum Beispiel als Analyseinstrument beim Schülerpraktikum. Die in den Schülergruppen am Rechner erarbeiteten Ergebnisse zur Funktion des galvanischen Elements lassen sich abschließend im Schülervortrag computergestützt präsentieren und erläutern. Hinweise zum Einsatz der Animation im Unterricht Screenshots veranschaulichen die Funktionen der interaktiven Flash-Animation. Während der Präsentation werden die Reaktionsgleichungen an der Tafel fixiert. GDCh-Wochenschau-Artikel zum Thema Unfreiwillig trägt fast jeder Mensch eines oder mehrere galvanische Elemente im Mund. Wie finden Chemikerinnen und Chemiker einen korrosionsarmen Zahnersatz? Die Schülerinnen und Schüler sollen den Aufbau einer galvanischen Zelle aus zwei Halbzellen mit verschiedenen Metallelektroden, die in entsprechende Metallsalzlösungen eintauchen, beschreiben. anhand der Animation zur galvanischen Zelle erkennen, dass beim Verbinden beider Halbzellen mittels eines elektrischen Leiters zeitgleich und kontinuierlich in der einen Halbzelle ein Oxidations- und in der anderen ein Reduktionsvorgang an den Metallelektroden abläuft. erkennen, dass der Elektronenübergang zwischen beiden Teilvorgängen durch den elektrischen Leiter vermittelt wird. die dynamischen Teilchenmodellszenarien an den Elektroden in Reaktionsgleichungen umsetzen. aus der Animation ableiten, dass die Kombination und räumliche Trennung geeigneter Reduktions- und Oxidationsmittel chemische Energie speichert und diese durch Anschluss eines Verbrauchers in nutzbare elektrische Energie umgewandelt werden kann. Thema Funktion einer galvanischen Zelle Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Klasse 9/10, Jahrgangsstufe 12 (Wiederholung) Zeitraum 1 Stunde Technische Voraussetzungen Präsentationsrechner mit Beamer, Flash-Player (ab Version 8, kostenloser Download) Beschriftung der Zelle Die Animation beginnt die Präsentation mit einem Einblick in den Aufbau und die chemische Zusammensetzung eines galvanischen Elements. Ein Zinkblech taucht in eine Zinksulfatlösung und ein Kupferblech in eine Kupfersulfatlösung ein. Beide Systeme (Halbzellen) sind durch ein poröses Diaphragma voneinander getrennt (kombiniert). Die Beschriftung der Darstellung (Abb. 1, Platzhalter bitte anklicken) lässt sich über das obere Icon in der Buttonleiste (rechts außen) ein- beziehungsweise ausblenden. Stromfluss Durch Anklicken des Schalters (rechts unten in Abb. 2) wird der Stromkreis geschlossen (alternativ über die Space-Taste). Durch ein erneutes Anklicken des Schalters wird der Stromkreis unterbrochen und die Teilchensymbole werden ausgeblendet. Bei geschlossenem Stromkreis stoppt die Space-Taste die Bewegung der Teilchensymbole beziehungsweise startet sie bei erneuter Betätigung. Die Animation zeigt die chemischen Vorgänge an den Metallblechen (Elektroden) und den dadurch entstehenden Stromfluss. Die leuchtende Glühlampe zeigt den Verbrauch elektrischer Energie an. Anhand der projizierten Animation lassen sich die Teilgleichungen sowie die Redoxgleichung für den Gesamtumsatz an der Tafel entwickeln. Um jeder Schülerin und jedem Schüler die Elektrodenvorgänge deutlich vor Augen zu führen, lässt sich die Animation nach dem Stoppen über die Space-Taste mithilfe der Pfeil-Tasten langsam vor- oder zurückspulen. So kann jeder Elektrodenvorgang in angemessenem Tempo visualisiert werden. Die Teilvorgänge werden parallel zu diesem Vorgehen an der Tafel fixiert. Anode: Zinkatome werden oxidiert In der Zinkhalbzelle werden Zinkatome oxidiert und gehen als Zink-Ionen in Lösung. Dabei werden zwei Elektronen über das Zinkblech zum Verbraucher abgeführt: Zn (s) → Zn 2+ (aq) + 2e - Kathode: Kupferionen werden reduziert In der Kupferhalbzelle werden dem Kupferblech zugeführte Elektronen auf die Kupferionen der Lösung übertragen. Durch die Reduktion dieser Kupferionen scheidet sich elementares Kupfer auf der Kathodenoberfläche ab: Cu 2+ (aq) + 2e - → 2 Cu (s) Darstellung des Ladungstransports Die Animation zeigt neben den Reaktionen an den Elektroden auch die Diffusion von Ionen durch das Diaphragma und damit den Ladungstransport in der Lösung, der die Aufrechterhaltung der Elektroneutralität in beiden Halbzellen gewährleistet. Die Erzeugung elektrischer Energie findet nur statt, wenn der Transport elektrischer Landungen im gesamten System (im gesamten Stromkreis) möglich ist: im metallischen Leiter und im Elektrolyten. Da positiv geladene Kupferionen an der Kupferelektrode entladen werden, wandern negativ geladene Sulfationen in die Zinkhalbzelle. Gleichzeitig wandern positiv geladene Zinkionen aus der Zinkhalbzelle in die Kupferhalbzelle. "Alterung" des Galvanischen Elements Durch die Veränderungen an den Elektroden (die allerdings in der Animation nicht gezeigt werden) lässt sich die Alterung des apparativen Systems erläutern und die Stromabnahme prognostizieren. Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Einen für diese Unterrichtseinheit relevanten Artikel stellen wir hier kurz vor. Der vollständige Beitrag steht als PDF-Download zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Potentialdifferenz im Mund Metallische Werkstoffe höchst unterschiedlicher Art sind aus der modernen Zahnheilkunde nicht fortzudenken. Mit zunehmendem Lebensalter und einem immer breiter werdenden Angebot dieser Werkstoffe ist die Wahrscheinlichkeit groß, dass im Mund Legierungen unterschiedlicher Zusammensetzung auftauchen. Sind sie hinsichtlich ihres Korrosionsverhaltens deutlich verschieden (also edler oder unedler), kann es bei direktem metallischen Kontakt zur Ausbildung eines Lokalelementes im Mund kommen - jeder unfreiwillige Biss auf ein Stück Aluminiumfolie mit einem Zahn, der eine metallische Krone oder ein Inlay aufweist, erinnert mit dem kribbelnden Gefühl im Mund an die auftretende Potentialdifferenz (elektrische Spannung). Der dann fließende Strom steht in direktem Zusammenhang mit der Korrosion und schließlich der Auflösung des unedleren Materials. Falls es bei der Einbringung von Zahnersatz zu ähnlichen Phänomenen kommt, ist wegen der lang andauernden Einwirkung und der oftmals biologisch bedenklichen Wirkung der freigesetzten Metalle die potentiell negative Auswirkung bedenklich. Durch sorgfältige Planung und Verarbeitung lassen sich derartige Fehler allerdings weitgehend vermeiden. Korrosion im Mund Galvanische Elemente bilden sich aber auch in anderer und kaum vermeidbarer Weise aus: Jeder metallische Werkstoff im Mund kann Bestandteil eines Belüftungselements werden. In ihm findet die korrosive Metallauflösung vor allem in für die Luft und den darin enthaltenen Sauerstoff schlecht zugänglichen Spalten statt, während die kathodische Sauerstoffreduktion an gut zugänglichen Oberflächen abläuft. Damit verbundene Phänomene wie Lochfraß oder Risskorrosion sind in der Technik wohlbekannt. Offenbar ist also jeder metallische Werkstoff im Mund - sofern er Kontakt mit Speichel hat - der Korrosion ausgesetzt. Dieses elektrochemische Phänomen kann mit elektrochemischen Methoden gut studiert werden. Die Artikel beschreibt (sehr detailliert), wie Chemikerinnen und Chemiker die Anfälligkeit verschiedener Legierungen untersuchen - ein wichtiger Schritt auf dem Weg zum korrosionsarmen Zahnersatz.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Härten von Stahl – Was passiert im Gefüge des Werkstoffes?

Video / Interaktives

Mithilfe eines Erklär-Videos und einer interaktiven Übung lernen Schülerinnen und Schüler die Veränderungen im Gefüge von Stahl beim Härten und Anlassen kennen. Ein Quiz unterstützt die Festigung des Gelernten.Das Härten von Stahl ist eine Wärmebehandlung. Stähle bekommen durch diese Wärmebehandlung eine größere Härte und werden verschleißfester. Unter Härte versteht man den Widerstand, den ein Werkstoff dem Eindringen eines noch härteren Körpers entgegensetzt. Beim Härten und Anlassen von Stahl wird das Gefüge des Werkstoffes geändert. Im Video wird anschaulich gezeigt, wie sich das Kristallgitter des Stahls beim Erwärmen, beim schnellen und beim langsamen Abkühlen verändert. Die Kenntnis dieser grundlegenden Vorgänge der Wärmebehandlung sind eine gute Voraussetzung für das Verstehen der Eigenschaften des gehärteten Stahls.Das Video verdeutlicht mit Animationen die Veränderungen im Gefüge von Stahl beim Erwärmen und Abkühlen. Mithilfe eines interaktiven Quiz festigen die Lernenden im Anschluss die Inhalte des Videos. Beide Arbeitsmaterialien sind auf der Seite für Schülerinnen und Schüler eingebunden, sodass die Lernenden nur einen Link benötigen, um das Video anzusehen und anschließend die interaktive Übung zu bearbeiten Die digitalen Arbeitsmaterialien können sowohl im Distanz-Unterricht eingesetzt, sodass die Lernenden sich mit dem Lehrinhalt über ihr Endgerät selbst auseinandersetzen können, als auch im Präsenz-Unterricht genutzt werden, um den Lehrinhalt aufzugreifen. Fachkompetenz Die Schülerinnen und Schüler lernen den grundsätzlichen Ablauf der Wärmebehandlung von Stahl kennen. entwickeln Verständnis grundlegender Gefügeveränderungen bei der Wärmebehandlung von Stahl. Medienkompetenz Die Schülerinnen und Schüler nutzen den PC/Laptop als Medium (Präsenz- und Distanz-Unterricht). vertiefen den Umgang mit digitalen Formaten. eignen sich selbstständig Wissen mit Lernvideos und interaktiven Übungen an.

  • Metalltechnik
  • Berufliche Bildung, Sekundarstufe II

Ökosystem, Ressource, Baustoff – Der Rohstoff Holz auf dem Weg ins…

Unterrichtseinheit

Diese Unterrichtseinheit für den Biologieunterricht der Klassen 11 und 12 der Sekundarstufe II vermittelt fundiertes Wissen über den Rohstoff Holz – von seiner Herkunft im Ökosystem Wald über die Verarbeitung bis hin zur nachhaltigen Nutzung – zum Beispiel als zertifizierter Baustoff in Dachkonstruktionen. Die Schülerinnen und Schüler lernen, warum Holz mehr ist als nur ein Baustoff – nämlich eine Ressource, deren bewusster Einsatz Klimaschutz, Biodiversität und Zukunftssicherung miteinander verbindet. Holz als Rohstoff zählt zu den ältesten Bau- und Werkstoffen der Menschheitsgeschichte. Er begegnet uns überall in unserem Alltag, sei es in Möbeln, in Form von Papier und Verpackung oder in der Dachkonstruktion des eigenen Hauses. Um Holz als Rohstoff und Ressource langfristig nutzen zu können, ist ein nachhaltiger Umgang wie beispielsweise durch eine nachhaltige Waldwirtschaft essenziell. Insbesondere auch in Hinblick auf den Umweltschutz ist ein Gleichgewicht zwischen der ökonomischen Bedeutung des Waldes und der ökologischen Waldbewirtschaftung wichtig. In der Unterrichtseinheit verfolgen die Schülerinnen und Schüler den Weg des Holzes von der Ressource Wald bis zur Verwendung als Werkstoff und erhalten dabei grundlegendes Wissen über das Ökosystem Wald und die Bedeutung von Holz als nachwachsender Rohstoff. Dabei werden der Aufbau und das Wachstum des Waldes berücksichtigt sowie ein Vergleich zwischen Naturwald und Kulturwald gezogen. Des Weiteren werden die Erschließung und der Abbau von Holz behandelt, wobei Begriffe wie Rohstoff und Ressource definiert werden. Die Schülerinnen und Schüler setzen sich mit den verschiedenen Einflüssen auseinander, die sich auf die Langlebigkeit von Holz auswirken. Außerdem betrachten sie verschiedene Methoden, um Holz langlebiger zu machen. Ergänzend dazu wird die Bedeutung eines nachhaltigen Umgangs mit Holzprodukten angesprochen. Daraufhin erhalten die Schülerinnen und Schüler Kenntnisse über verschiedene Gütesiegel und Normen der Holzproduktion, die zum Klimaschutz beitragen. Das vorliegende Unterrichtsmaterial eignet sich für den Unterricht in der gymnasialen Oberstufe im Fach Biologie sowie Erdkunde und kann als Material für die Themen Ökologie beziehungsweise Nutzung von Rohstoffen herangezogen werden. Es orientiert sich dabei vor allem an dem Kerncurriculum des Hessischen Kultusministeriums, kann aber auch in allen anderen Bundesländern als ergänzendes Material genutzt werden. Die Einheit bietet einen umfassenden Überblick über den Rohstoff Holz und thematisiert die Funktion und Bedeutung des Waldes sowohl aus ökologischer als auch aus gesellschaftlicher Perspektive. Der starke Lebensweltbezug zeigt sich in alltagsnahen Beispielen, praxisorientierten Aufgabenstellungen und aktuellen Problemfragen zur nachhaltigen Ressourcennutzung, insbesondere im Zusammenhang mit dem Dachdeckerhandwerk. Der verantwortungsvolle und umweltschonende Umgang mit Holz wird dabei im Kontext des Klimaschutzes und der globalen Nachhaltigkeitsziele (SDGs) betrachtet. Die Unterrichtseinheit ist binnendifferenziert aufgebaut, sodass sie sowohl in Grund- als auch in Leistungskursen sowie in heterogenen Lerngruppen flexibel eingesetzt werden kann. Sie bietet eine Vielzahl an methodischen Zugängen (z. B. Think–Pair–Share, Exkursion, Quellenarbeit, Gruppenpräsentationen) und setzt auf unterschiedliche Sozialformen, um eigenständiges und kooperatives Lernen zu fördern. Zusatzaufgaben ermöglichen eine inhaltliche Vertiefung je nach Lerngruppe oder Zeitrahmen. Die begleitenden Infotexte sind so konzipiert, dass sie eine selbstständige Erarbeitung der Aufgaben ermöglichen und zugleich die Recherche- und Urteilskompetenz der Lernenden schulen. Die Unterrichtseinheit gliedert sich in drei aufeinander aufbauende Abschnitte, die jeweils durch ein Arbeitsblatt strukturiert sind. Das erste Arbeitsblatt führt in das Ökosystem Wald ein und legt den Fokus auf die Funktionen, Strukturen und die biologische Vielfalt dieses Lebensraums. Die Schülerinnen und Schüler lernen, Natur- und Kulturwälder zu unterscheiden, und setzen sich mit der Rolle des Waldes als Speicher, Lebensraum und Holzlieferant auseinander. Diese Einführung fördert nicht nur das ökologische Verständnis, sondern schärft auch das Bewusstsein für den nachhaltigen Umgang mit natürlichen Ressourcen. Im zweiten Abschnitt wird der Rohstoff Holz selbst in den Mittelpunkt gestellt. Die Lernenden beschäftigen sich mit der Erschließung, Nutzung und Weiterverarbeitung von Holz, mit Einflussfaktoren auf seine Langlebigkeit sowie mit den ökologischen Auswirkungen einer nicht nachhaltigen Holznutzung. Sie lernen zentrale Fachbegriffe wie "Ressource", "Lagerstätte" oder "Reserve" kennen und übertragen diese auf den Kontext der Forstwirtschaft. Die Verbindung zu realen Materialien, wie Holzobjekten im Schulumfeld, sorgt dabei für einen direkten Lebensweltbezug. Zugleich wird der Blick auf globale Herausforderungen gelenkt – etwa durch die kritische Auseinandersetzung mit der Nutzung von Tropenholz – und erste Bezüge zu den Zielen für nachhaltige Entwicklung (SDGs) hergestellt. Das dritte Arbeitsblatt fokussiert auf Qualitätsstandards und Zertifizierungssysteme wie FSC, PEFC und "Zert Green Building". Diese werden im Hinblick auf ihre ökologische, ökonomische und soziale Bedeutung untersucht. Dabei wird auch der Praxisbezug konkret: Am Beispiel des Dachdeckerhandwerks wird deutlich, wie sich nachhaltige Materialwahl auf betriebliche Entscheidungen und Umweltwirkungen auswirkt. Die Schülerinnen und Schüler lernen, solche Standards kritisch zu bewerten und entwickeln auf dieser Basis fundierte Handlungsempfehlungen. Besonders in dieser Phase werden Argumentationsfähigkeit, Urteilskompetenz und Problemlösefähigkeiten gefördert. Grundlegende Kenntnisse aus der Sekundarstufe I – insbesondere zu ökologischen Zusammenhängen und zum Themenfeld Nachhaltigkeit – werden vorausgesetzt. Darüber hinaus ist kein spezifisches Vorwissen erforderlich. Die Einheit eignet sich daher gleichermaßen als Einstieg in die Thematik wie zur Vertiefung und Anwendung bereits erworbener Kompetenzen. Sie schafft eine gelungene Verbindung zwischen fachlichem Lernen, Alltagsorientierung und dem Bewusstsein für globale Verantwortung. Fachkompetenz Die Schülerinnen und Schüler erlangen detailliertes Wissen über das Ökosystem Wald. definieren verschiedene Begriffe wie Rohstoffe, Ressourcen und Reserven. befassen sich mit dem Rohstoff Holz sowie dem nachhaltigen Umgang. erkennen den Zusammenhang zwischen globalen Nachhaltigkeitszielen (SDGs) und regionaler Ressourcennutzung. analysieren Nutzungskonflikte rund um den Rohstoff Holz und reflektieren ökologische Zusammenhänge. Medienkompetenz Die Schülerinnen und Schüler wählen digitale Inhalte und Informationen selbständig aus. nutzen verschiedene Medienangebote für ihre Recherche. unterscheiden verschiedene Medien souverän und hinterfragen diese kritisch-reflektiert. dokumentieren und präsentieren Arbeitsergebnisse mithilfe digitaler Werkzeuge (z.B. Mindmaps, Präsentationen). Sozialkompetenz Die Schülerinnen und Schüler können sachlich kommunizieren und Aufgaben in Kooperation mit anderen Schülerinnen und Schülern bearbeiten und ausführen. übertragen fachliche Inhalte auf gesellschaftliche, wirtschaftliche und ökologische Fragestellungen. können ihr Wissen auf fächerübergreifende Fragestellungen anwenden. beurteilen die Bedeutung einer nachhaltigen Nutzung des Rohstoffs unter ökonomischen und ökologischen Aspekten. bewerten die Folgen des menschlichen Eingreifens in das Ökosystem Wald. entwickeln eigene Standpunkte zum Umgang mit Ressourcen und begründen diese argumentativ.

  • Biologie
  • Sekundarstufe II

plastic360 – digitales Lernen für einen besseren Umgang mit…

Fachartikel

In der App plastic360 wird gezeigt, warum Kunststoff als Werkstoff so erfolgreich ist und wie Kunststoffprodukte hergestellt werden. Spielerisch und dank spannender Videos lernen Jugendliche, wie sie vermeiden können, dass Kunststoffe in der Umwelt landen, wie sich Kunststoff recyclen lässt und welche Auswirkungen Kunststoffmüll auf die Umwelt haben kann. Im Zusammenhang mit Marine Litter , Mikroplastik und der noch ausbaufähigen Kreislaufwirtschaft sind Kunststoffe in den Medien zurzeit allgegenwärtig. Der Druck auf Politik und die Branche Verbesserungen zu erzielen steigt stetig. Doch nicht nur sie sind in der Pflicht. Auch die Verbraucherinnen und Verbraucher müssen ihrer Verantwortung nachkommen und umweltfreundlich mit Kunststoffen umgehen. Genau hier setzt die plastic 360 App an. Das gemeinsam mit der Didaktik der Chemie der Universität Würzburg und dem SKZ – Das Kunststoff-Zentrum durchgeführte Projekt richtet sich an Schülerinnen und Schüler und soll diese Zielgruppe im Umgang mit Kunststoffen sensibilisieren. Gefördert wurde das Vorhaben durch die Deutsche Bundesstiftung Umwelt (DBU).

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung, Erwachsenenbildung, Spezieller Förderbedarf
Titelbild: Unterrichtsreihe: Kunststoffe im Unterricht Sekundarstufe II

Unterrichtsreihe: Kunststoffe im Unterricht Sekundarstufe II

Unterrichtseinheit
19,99 €

Diese Unterrichtsreihe vermittelt umfassendes Wissen zu Kunststoffen – von ihrer molekularen Struktur bis zu ökologischen Herausforderungen. Mit Aufgaben, Experimenten und Bewertungsperspektiven. Die 46-seitige Unterrichtsreihe „Kunststoffe im Unterricht“ bietet einen fundierten Zugang zu einem der wichtigsten Werkstoffe der modernen Gesellschaft. Sie richtet sich an die Sekundarstufe II und vermittelt sowohl chemische Grundlagen (Monomere, Polymerisation, Thermoplaste, Duroplaste, Elastomere) als auch ökologische und gesellschaftliche Implikationen. Die Schülerinnen und Schüler analysieren den Aufbau und die Eigenschaften von Kunststoffen, untersuchen deren Herstellung durch Polymerisation, Polykondensation und Polyaddition und differenzieren nach molekularer Struktur und Verwendungszweck. Durch praktische Versuche – etwa zur Thermoplastizität oder Dichtebestimmung – gewinnen sie experimentelle Erfahrung. Ein weiterer Schwerpunkt liegt auf der Umweltproblematik: Mikroplastik, Recycling, Kunststoffmüll in Ozeanen und biobasierte Alternativen werden behandelt. In Bewertungsaufgaben diskutieren die Lernenden die Verantwortung von Industrie und Konsumenten im Umgang mit Kunststoffen. Die Materialien sind didaktisch vielseitig aufgebaut: Arbeitsblätter, Versuchsprotokolle, Textanalysen, Fallbeispiele und Aufgaben zur Bewertungskompetenz ermöglichen eine differenzierte Unterrichtsgestaltung. Ideal geeignet für Chemieunterricht, BNE-Schwerpunkte und fächerübergreifende Projekte.

  • Chemie / Natur & Umwelt
  • Berufliche Bildung, Sekundarstufe II

Woraus bestehen Autos?

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler am Beispiel Autobau verschiedene chemische und physikalisch-technische Zusammenhänge hinsichtlich der Werkstoffzusammensetzung von Autos und deren Recycling-Möglichkeiten kennen. Darüber hinaus werden Bezüge zu Wirtschaft, Nachhaltigkeit und Ökologie hergestellt. Die Unterrichtseinheit lehnt sich an die Vorgaben des Lehrplans für die Sekundarstufe I für die Fächer Physik und Chemie an. Sie hat (lehrplangemäß) eine naturwissenschaftliche Grundbildung zum Ziel, die darin schult, naturwissenschaftliche Beobachtungen auf verschiedene Fächer und Sachbereiche zu übertragen und Zusammenhänge herzustellen. Zudem trägt sie einen Teil dazu bei, die Schülerinnen und Schüler für Herausforderungen und Chancen einer sich stetig verändernden Welt vorzubereiten. Thematischer Anker der Unterrichtseinheit ist der Autobau als einem der wichtigsten Wirtschaftszweige unseres Landes. Die Unterrichtseinheit verdeutlicht, dass die Branche großen Veränderungen unterliegt. Es gilt, Nachhaltigkeit , Wirtschaftlichkeit, bewussten Umgang mit Ressourcen und technische Anforderungen unter einen Hut zu bringen, bei gleichzeitiger Erhaltung der Wettbewerbsfähigkeit der Branche. Die Unterrichtseinheit greift diese komplexen Zusammenhänge auf, indem einzelne Aufgaben auch die Aspekte Nachhaltigkeit, Wirtschaftlichkeit, Ökologie und Forschung thematisieren. Die Unterrichtseinheit ist konzipiert nach dem Prinzip des handlungsorientierten Lernens. Sie verknüpft Alltagswissen mit Beobachtungen sowie aus Sachtexten gewonnenen Informationen. Auch dem Experimentieren räumt sie Raum ein. Sie entspricht so den im Lehrplan festgeschriebenen prozessbezogenen Kompetenzbereichen der Erkenntnisgewinnung, Bewertung und Kommunikation. Ein Schwerpunkt der Unterrichtseinheit liegt auf dem Erarbeiten der im Auto verbauten Roh- und Werkstoffe. Die neuesten Entwicklungen in der Materialforschung sowie in der Automobiltechnik können die Schülerinnen und Schüler sowohl durch eigene Recherche als auch durch die Auswertung vorgegebener Sachtexte herausarbeiten. Das Thema Autobau und die Bedeutung des Autos in einer sich verändernden Welt liefert eine gute Basis für die Behandlung sowohl in den Naturwissenschaften als auch in den Fächern Sozialkunde, Geografie, Wirtschaft und/oder Ethik. Die Unterrichtseinheit geht damit auch auf die im Lehrplan geforderte naturwissenschaftliche Grundbildung ein, nach der Erkenntnisse im Wechselspiel der Fächer Chemie und Physik/Technik (ferner: Biologie) betrachtet werden sollen. Gleichzeitig regt die Unterrichtseinheit die Schülerinnen und Schüler zur Verknüpfung mit Alltagsbeobachtungen und Phänomenen aus der eigenen Lebenswelt an. In den Fächern Sozialkunde, Wirtschaft und/oder Ethik kann sich die Unterrichtsgestaltung um die Themen Nachhaltigkeit, Recycling, Ressourcenschonung und Ökologie drehen. Durch entsprechende Gewichtung der Aufgaben können hier im Unterrichtsverlauf nochmals eigene Schwerpunkte gesetzt werden. Die Differenzierung der Fragen in den Arbeitsblättern ermöglicht das Arbeiten sowohl mit Schülerinnen und Schülern ohne Vorkenntnisse als auch mit jenen, die schon auf einschlägige Vorkenntnisse zurückgreifen können. Didaktisch-methodisch wird ein Wechsel aus Lehrenden-zentriertem Unterricht und Paar- beziehungsweise Gruppenarbeit angestrebt. Zu betonen sei jedoch, dass auch die Lehrenden-zentrierten Phasen eine Aktivierung der Schülerinnen und Schüler beinhalten, beispielsweise durch die Methoden Brainstorming oder Assoziieren. Ein Fokus liegt überdies bei der Medienrecherche (online) sowie beim Herausfiltern von Informationen aus vorgegebenen Texten und der Wiedergabe herausgefilterter Erkenntnisse mit eigenen Worten. Fachkompetenz Die Schülerinnen und Schüler lernen grundlegende chemische, physikalische Zusammenhänge kennen. verknüpfen Unterrichtsinhalte mit Alltagsbeobachtungen. stellen eine Verbindung zu den Fächern Wirtschaft, Sozialkunde, Ethik her. Medienkompetenz Die Schülerinnen und Schüler erlangen Geläufigkeit beim Ausformulieren und Präsentieren von Informationen. trainieren das Herausfiltern von relevanten Informationen aus Sachtexten. stärken ihre Fähigkeit, den Computer für die Recherche zu nutzen. Sozialkompetenz Die Schülerinnen und Schüler erlangen Routine in Paar- und Gruppenarbeit. entwickeln ihre Fähigkeit, Arbeitsergebnisse zu präsentieren und zu kommunizieren.

  • Chemie
  • Sekundarstufe I

Einen eigenen Handtuchhalter bauen

Unterrichtseinheit

In der Unterrichtseinheit "Einen eigenen Handtuchhalter bauen" möchte die Hauptfigur Ayla aus einer nicht mehr benötigten Duschvorhangstange einen eigenen Handtuchhalter für das heimische Badezimmer bauen. Eine SHK-Anlagenmechanikerin hilft ihr dabei. Für die passende Materialauswahl erkunden die Schülerinnen und Schüler die verschiedenen Eigenschaften von Edelstahl, Aluminium, Kunststoff und verchromtem Normalstahl. Sie berechnen die passende Rohrlänge, lernen die Montage-Schritte mit Fachvokabular kennen, wählen Bauteile mittels technischer Zeichnungen aus und wenden das Gelernte schließlich praktisch an. Die Einheit bietet sich aufgrund ihrer mathematischen, physikalischen und werktechnischen Eigenschaften für den fächerübergreifenden Werk-Unterricht und für Projektwochen an. Die Unterrichtseinheit schlägt den Bogen von der Theorie hin zur praktischen Arbeit im Unterricht. Sie startet mit einer Lebenssituation der Identifikationsfigur Ayla, die mit ihren Eltern und Geschwistern in einer Wohnung lebt. Da das Bad sehr alt ist, wird es von einer SHK-Fachfirma saniert. Eine alte Duschstange soll dabei entsorgt werden, doch Ayla hat eine bessere, kreative Idee: Sie möchte daraus einen Handtuchhalter bauen. Zusammen mit der SHK-Anlagenmechanikerin begibt sie sich an die Arbeit. Die Schülerinnen und Schüler stellen dabei zunächst eigene Überlegungen zu den Materialanforderungen für den Handtuchhalter in einem Feuchtraum an. Es folgt eine Recherche möglicher geeigneter Werkstoffe und deren Eigenschaften. Hierbei geht es unter anderem um Kriterien wie Aufbau der Metalle, Legierungen, Verformbarkeit, Zerspanbarkeit, Festigkeit, Korrosionsbeständigkeit usw. Im zweiten Schritt geht die Unterrichtseinheit auf die für das konkrete Beispiel notwendige Planungs- und Berechnungsarbeit ein. Hierbei werden auch die Montagetechnik sowie das Befestigungsmaterial und die Werkezuge thematisiert und die Arbeitsschritte aufgezeigt. Dazu gehören unter anderem Trennen (Sägen, Bohren) und Fügen (Schrauben). Die Schülerinnen und Schüler haben anschließend die Möglichkeit, die Arbeit praktisch auszuführen und einen eigenen Handtuchhalter zu bauen. Im letzten Schritt setzen sich die Schülerinnen und Schüler mit einer technischen Zeichnung auseinander, die bei der richtigen Bauteilbeschaffung von Flanschen unterstützt. Erarbeitet werden die in technischen Zeichnungen üblicherweise verwendeten Elemente sowie deren Fachbezeichnungen. Zudem vervollständigen die Schülerinnen und Schüler die Zeichnung durch Einsetzen selbst ermittelter Maßangaben. Die Unterrichtseinheit ermöglicht den Schülerinnen und Schülern einen indirekten Einblick in die vielfältigen Aufgaben des SHK-Handwerks, indem sie selbst einen eigenen Handtuchhalter für das heimische Badezimmer bauen. Sie zeigt, dass handwerkliches Können und Fachwissen dazu befähigen, auch aus alten Materialien kreativ etwas Neues zu erschaffen. Ein hohes Maß an Paar- beziehungsweise Kleingruppenarbeit ermöglicht selbstständiges Recherchieren, das immer wieder durch Präsentationen und/oder Hinleitungen eingefasst wird. Bei maximal möglicher Selbstständigkeit der Schülerinnen und Schüler hat die Lehrkraft somit immer die Möglichkeit, nachzusteuern. Darüber hinaus trägt die Unterrichtseinheit auch praktische Fertigkeiten aus dem handwerklichen Alltag in den Unterricht. Eine Zuordnungsaufgabe klärt vorab die Reihenfolge der anstehenden Schritte zur Montage eines Handtuchhalters. Schülerinnen und Schüler dürfen dann selbst praktisch tätig werden. Dies gibt eher praktisch veranlagten Schülerinnen und Schülern die Möglichkeit, ihre Fähigkeiten zu zeigen. Für die praktische Umsetzungsphase benötigen die Schülerinnen und Schüler mehrere Unterrichtsstunden, sodass sich dieses Unterrichtsmaterial hervorragend für eine Projektarbeit oder -woche anbietet. Vorkenntnisse zu technischen Zeichnungen sind dabei vorteilhaft, aber nicht zwingend notwendig. Je nach Vorwissen brauchen die Lerngruppen für diese Unterrichtseinheit mindestens sieben Unterrichtsstunden oder entsprechend mehr. Die Lehrkraft ist dafür verantwortlich, die Herstellung eines eigenen Handtuchhalters für zuhause, die Schule oder einen anderen Ort entsprechend zu organisieren. Fachkompetenz Die Schülerinnen und Schüler lernen unterschiedliche Metalle und ihre Eigenschaften kennen. erfahren Details zur Montage von Metallrohren. üben das Bearbeiten (= Trennen) von Metall sowie die zugehörigen Arbeitsschritte. arbeiten mit technischen Zeichnungen und erlernen deren Grundaufbau und -Systematik. Berechnen die passende Rohrlänge. Medienkompetenz Die Schülerinnen und Schüler recherchieren Sachinformationen im Netz. Sozialkompetenz Die Schülerinnen und Schüler üben das Arbeiten in Zweierteams und Kleingruppen. behalten bei praktischen Arbeiten die eigene Sicherheit und die der Mitschülerinnen und Mitschüler im Auge. wertschätzen die handwerkliche Arbeit.

  • Technik
  • Sekundarstufe I

Korrosionsschutz – Herausforderungen und Lösungsansätze

Unterrichtseinheit

In dieser Unterrichtseinheit für den Chemieunterricht der Sekundarstufe II erarbeiten sich die Schülerinnen und Schüler grundlegende Kenntnisse über die chemischen Vorgänge während der Korrosion. Sie erfahren, welche Faktoren die Korrosion begünstigt, und lernen die Unterschiede gängiger Arten des Korrosionsschutzes kennen. Die chemischen Vorgänge während der Korrosion sind schon lange bekannt, vollständig verhindert werden können sie jedoch nicht. Das Thema Korrosion ist allgegenwärtig und die Wechselwirkungen zwischen Metallen und ihrer Umgebung ziehen jährlich hohe Kosten nach sich. Aber nicht nur hinsichtlich wirtschaftlicher Aspekte, auch angesichts des nachhaltigen Handelns sind Korrosionsschutzmaßnahmen relevant und aktuell. Nachhaltige Lösungen werden immer wichtiger, da sie die Lebensdauer von Werkstoffen und Bauwerken verlängern und durch Ressourcenschonung auch die Umwelt schonen. Diese Unterrichtseinheit kann dem Rahmenlehrplan der Sekundarstufe II zugeordnet werden. Sie orientiert sich an einem Thema, das jedem Menschen in verschiedenen Situationen im Alltag begegnet. In den Rahmenlehrplänen ist die Thematik bundesweit verankert und erfährt insbesondere mit Blick auf Nachhaltigkeit erneute Aufmerksamkeit. Schwerpunkt dieser Unterrichtseinheit ist unter anderem die Vermittlung der chemischen Prozesse, die während der Korrosion ablaufen. Im späteren Verlauf der Einheit wird dann auf verschiedene Faktoren eingegangen, die die Korrosion von Metallen fördern. In diesem Zusammenhang entwickeln die Schülerinnen und Schüler mit dem bisher erlangten Wissen ein Experiment, das die Vorgänge während der Korrosion von Metallen nochmals verdeutlicht. Abschließend wird der Fokus auf die verschiedenen Verfahren des Korrosionsschutzes gelegt. An dieser Stelle kann ergänzend das Thema Korrosionsschutz in Bezug auf Nachhaltigkeit und Wirtschaftlichkeit in einer fächerübergreifenden Aufgabenstellung betrachtet werden. Dabei kann die Diskussionsrunde entweder in Gruppen- oder Klassengröße erfolgen. Das Thema Korrosion eignet sich gut, um das Interesse der Schülerinnen und Schüler an der Chemie zu wecken, da es sichtbare Berührungspunkte mit im Alltag beobachtbaren Phänomenen bietet. Darüber hinaus bietet es eine gute Grundlage, um die Themen Nachhaltigkeit, Wirtschaft und Innovation am Beispiel und Lernfeld des Gerüstbauhandwerks zu behandeln. Die Unterrichtseinheit eignet sich für den Chemieunterricht der Sekundarstufe II und orientiert sich an den Themenfeldern "Redoxgleichgewichte", "Elektrochemie" beziehungsweise "Elektronenübertragungsreaktionen". Grundlegende chemische Kenntnisse in Bezug auf Redoxreaktionen werden für die Bearbeitung der Aufgaben vorausgesetzt und sollten gegebenenfalls vor der Unterrichtseinheit mit den Schülerinnen und Schülern wiederholt werden. Außerdem sollte die Medienkompetenz vorliegen, themenbezogen und kritisch in verschiedenen Quellen zu recherchieren. Darüber hinaus sind keine weiteren Kenntnisse notwendig. Die Einheit eignet sich als Einstieg in das Thema und bietet ein breites Spektrum an Lernmethoden und Sozialformen, sodass der Unterricht interessant und abwechslungsreich gestaltet werden kann. Für die Erarbeitung der verschiedenen Aufgabenstellungen stehen Arbeitsblätter mit Info-Texten zur Verfügung. Zusätzlich wird in einigen Aufgabenstellungen die eigene Recherchefähigkeit geschult und verbessert. Fachkompetenz Die Schülerinnen und Schüler erklären Phänomene der Stoffumwandlung bei chemischen Reaktionen. entwickeln Reaktionsgleichungen anhand ausgewählter Beispiele. erläutern die Bildung eines Lokalelements bei Korrosionsvorgängen. erlangen detailliertes Wissen über verschiedene Korrosionsschutzmaßnahmen. Medienkompetenz Die Schülerinnen und Schüler nutzen verschiedene Medienangebote für ihre Recherche. unterscheiden verschiedene Medien und hinterfragen diese kritisch-reflektiert. wählen digitale Inhalte und Informationen selbstständig aus. Sozialkompetenz Die Schülerinnen und Schüler können sachlich kommunizieren und Aufgaben in Zusammenarbeit mit anderen Schülern bearbeiten und ausführen. können ihr Wissen auf fächerübergreifende Fragestellungen anwenden. beurteilen die Folgen von Korrosion und Korrosionsschutzmaßnahmen unter ökonomischen und ökologischen Aspekten. Verwendete Literatur Kirsch, W., Schlachter, B. & Mangold, M. (2012a). Fit fürs Abi. Chemie Oberstufenwissen . Schroedel. Pistohl, B. (2015). Abitur-Training: Chemie 2 . Stark Verlag. Stranghöner, N., Baddoo, N. & Stehr, S. (2018). Nichtrostender Stahl im Bauwesen – Bemessung von Stahltragwerken aus nichtrostendem Stahl nach DIN EN 1993-1-4. Stahlbau , 87 (3), 279–283. https://doi.org/10.1002/stab.201820584 .

  • Chemie
  • Sekundarstufe II

Härten von Stahl – die praktischen Arbeitsschritte

Video / Interaktives

Mithilfe eines Erklär-Videos und einer interaktiven Übung lernen Schülerinnen und Schüler die Arbeitsschritte beim Härten von Stahl kennen. Ein Quiz unterstützt die Festigung des Gelernten.Dieses Video zeigt den praktischen Arbeitsablauf beim Härten und Anlassen eines Werkstückes aus Stahl. Wo sind in der Werkstückzeichnung die Vorgaben zum Härten zu finden? Welche Härtetemperatur ist erforderlich? In welchem Abkühlmittel wird das Werkstück abgeschreckt und wie hoch ist die Temperatur zum Anlassen? Das Video zeigt das Erhitzen des Werkstückes in einem Härteofen auf Härtetemperatur, das Abschrecken in Öl und das anschließende Anlassen des Werkstückes. Die Vorgänge, die sich beim Härten und Anlassen im Gefüge des Stahls abspielen, werden in dem Video " Härten von Stahl – Was passiert im Gefüge des Werkstoffes? " beschrieben.Das Video verdeutlicht mit Animationen die einzelnen Arbeitsschritte beim Härten von Stahl. Mithilfe eines interaktiven Quiz festigen die Schülerinnen und Schüler im Anschluss die Inhalte des Videos. Beide Arbeitsmaterialien sind auf einer Seite für die Lernenden eingebunden, sodass sie nur einen Link benötigen, um das Video anzusehen und anschließend die interaktive Übung zu bearbeiten Die digitalen Arbeitsmaterialien können sowohl im Distanz-Unterricht eingesetzt, sodass die Lernenden sich mit dem Lehrinhalt über ihr Endgerät selbst auseinandersetzen können, als auch im Präsenz-Unterricht genutzt werden, um den Lehrinhalt aufzugreifen. Fachkompetenz Die Schülerinnen und Schüler lernen die grundsätzlichen Arbeitsschritte bei der Wärmebehandlung von Stahl kennen. lernen, wo Vorgaben zum Härten auf einer Werkstückzeichnung zu finden sind. Medienkompetenz Die Schülerinnen und Schüler nutzen den PC/Laptop als Medium (Präsenz- und Distanz-Unterricht). vertiefen den Umgang mit digitalen Formaten. eignen sich selbstständig Wissen mit Lernvideos und interaktiven Übungen an.

  • Metalltechnik
  • Berufliche Bildung, Sekundarstufe II

Nachhaltigkeit im Kfz-Gewerbe

Fachartikel

Dieser Fachartikel informiert über die Rolle der Nachhaltigkeit im Kraftfahrzeug-Gewerbe. Dabei wird auf den Produktlebenszyklus eines Kraftfahrzeuges geblickt: von der Rohstoffgewinnung und dem Materialeinkauf bis zur Produktion, den Recycling- und Instandhaltungsprozessen. Ein wachsendes Umweltbewusstsein zeigt sich in der Gesellschaft und damit auch im Kfz-Gewerbe, in seinen Autohäusern und Kfz-Werkstätten. Daher kann dieses Berufsfeld auch eine Perspektive für Schülerinnen und Schüler aufzeigen, die sich für Automobile und Umweltschutz interessieren. Rohstoffgewinnung und Materialeinkauf Die Herstellung eines Kraftfahrzeugs erfordert diverse Materialien und Werkstoffe: Neben Glas, Kunststoffen, Lacken und Klebstoffen sind dies vor allem die Metalle Eisen, Aluminium, Stahl und Zink (autoberufe.de: Chemie am Auto) sowie Kupfer und Nickel (umweltbundesamt.de: Umweltrisiken und - auswirkungen). Werden Rohstoffe abgebaut, können sich (negative) Effekte auf die Umwelt ergeben wie Rodungen von Urwäldern und Verunreinigung des Wassers. Damit einher gehen auch der Verlust des Lebensraumes sowie die Beeinträchtigung der Gesundheit von Menschen, Tieren und Pflanzen. Energie- und emissionsintensive Metallerzeugung und -verarbeitung können Luftverschmutzungen, sauren Regen, Wasser- und Vegetationsschädigungen bedingen. Verseuchungen von Böden können eine Konsequenz von Schwermetallemissionen sein (umweltbundesamt.de: Umweltrisiken und - auswirkungen). Bei der Materialbeschaffung für die Produktion von Kraftfahrzeugen verpflichten sich Automobilhersteller aber seit 2021 durch das deutsche Lieferkettengesetz vermehrt dazu, neben den Kosten insbesondere auch die Einhaltung der Menschenrechte sowie soziale Mindeststandards (e-mobil.de: Zukunftsfähige Lieferketten) und ökologische Faktoren wie CO 2 -Neutralität zu berücksichtigen. Fahrzeugproduktion Auch wenn in der Kraftfahrzeugproduktion Emissionsreduktion und der Einsatz erneuerbarer Energien eine deutlich größere Rolle als in der Vergangenheit spielen, so können Umwelt- und Gesundheitsbelastungen dennoch entstehen, wenn Produktionsschritte in Entwicklungs- oder Schwellenländer verlagert werden, in denen andere gesetzliche, technische sowie ökologische Standards herrschen (gruene-bundestag.de: Klimafreundliche Produktion in der Automobilindustrie). Ein weiteres Problem sind die im Zuge der Fahrzeugproduktion und -entsorgung entstehenden Abfälle (gruene-bundestag.de: Klimafreundliche Produktion in der Automobilindustrie). Ferner erzeugen der Transport von Werkstoffen und einzelnen Produktkomponenten sowie der Vertrieb, die Nutzung und Entsorgung der fertigen Kraftfahrzeuge weitere Umweltbelastungen (gruene-bundestag.de: Klimafreundliche Produktion in der Automobilindustrie). Recycling und Wiederverwertung Seit 2002 besteht für Hersteller und Importeure von Fahrzeugen die Verpflichtung, ausgediente Fahrzeuge zurückzunehmen und zu verwerten; noch strengere Richtlinien existieren seit 2015. Werkstoffe können wieder- oder weiterverwendet werden, nachdem sie die Prozesse des stofflichen, rohstofflichen oder thermischen Recyclings durchlaufen haben. Prinzipiell muss ein Anteil von mindestens 95 Prozent des Altfahrzeug-Durchschnittsgewichts wieder zum Einsatz kommen, 85 Prozent mittels einer der beiden erstgenannten Wiederaufbereitungsprozesse oder einer unmittelbaren Wiederverwendung. Selbst PVC-haltige Restbestandteile können heutzutage wieder gebrauchsfertig aufbereitet werden (autoberufe.de: Altfahrzeug-Recycling). Instandhaltung und Reparatur "Das Handwerk ist die erste Adresse, wenn es um Nachhaltigkeit, Klimaschutz und Energiewende geht. [...] Handwerkerinnen und Handwerker arbeiten jeden Tag ganz praktisch daran, dass unser Leben nachhaltiger und klimafreundlicher wird" (handwerk.de: Klimaschutz). Im Kfz-Gewerbe geschieht dies vor allem bei der Instandhaltung und Reparatur von Fahrzeugen: Ein/-e Kfz-Mechatroniker/-in zum Beispiel wartet Fahrzeuge, setzt sie instand, analysiert ihre Fehler, rüstet sie nach und kontrolliert die Abgaswerte. Damit sorgt er oder sie für eine möglichst lange Lebensdauer und einen emissionsarmen Betrieb der Automobile und trägt einen Teil zur Ressourcenschonung sowie zu weniger Luftverunreinigung bei (youtube.com: Nachhaltigkeit im Kfz-Gewerbe). Gleiches gilt für Karosserie- und Fahrzeugbaumechaniker/-innen: Sie sorgen durch Reparatur, Wartung und Überprüfung der Fahrzeuge in technischer Hinsicht für deren Funktionstüchtigkeit (handwerk.de: Karosserie- und Fahrzeugbaumechaniker/-in). Auch im Elektromobilitätsbereich sind Kfz-Mechatroniker/-innen und Karosserie- und Fahrzeugbaumechaniker/-innen tätig (arbeitsagentur.de: Kraftfahrzeugmechatroniker/-in). Kfz-Mechatroniker/-innen prüfen die fahrzeugtechnischen Systeme von Hybrid- und Elektrofahrzeugen und natürlich Fahrzeugen mit Verbrennungsmotor, führen Reparaturen durch und rüsten Fahrzeuge mit Zusatz-, Sonder- und Zubehörausstattungen aus. Der Bereich Elektromobilität ist in den Kernlehrplänen der Kfz-Mechatroniker/-innen integriert. Die Auszubildenden lernen die Grundlagen der Hochvolttechnik und das sichere Arbeiten am Elektroauto. Neben den Grundkenntnissen besteht die Möglichkeit, sich im Laufe der Ausbildung auf den Schwerpunkt System- und Hochvolttechnik zu spezialisieren (wasmitautos.com: Ausbildung zum Kfz-Mechatroniker). Das Berufsbild heißt dann "Kfz-Mechatroniker/-in für System- und Hochvolttechnik". Kfz-Mechatroniker/-innen werden in 5 Schwerpunkten ausgebildet: Pkw-, Nutzfahrzeug-, Motorrad- und Karosserietechnik sowie System- und HV-Technik. Der grüne Kreislauf in den Werkstätten Umweltbewusstsein ist im Kfz-Gewerbe ein wichtiges Thema, denn es betrifft alle Bereiche: Die Devise der Kfz-Betriebe, instandzusetzen anstatt zu erneuern, spiegelt sich im sogenannten "grünen Kreislauf" wider: Verschiedene Restwertbörsen bieten mehr als 4,2 Millionen zertifizierte gebrauchte beziehungsweise Ersatzteile. Zur Effektivitätssteigerung werden hier inzwischen auch Kfz-Versicherungen in den Dialog mit Autoverwertern gebracht, indem Erstere Unfallfahrzeuge liefern, die Letztere sachgerecht zerlegen (autohaus.de: Autoverwertung 2.0). Angestrebt wird, das Zusammenspiel der verschiedenen Partner weiter auszubauen. Ein weiterer großer Bereich ist das Recycling der Batterien von Elektroautos (autohaus.de: Autoverwertung 2.0). Zudem wird für die Instandsetzungsbranche ein Nachhaltigkeitssiegel auf den Weg gebracht (autohaus.de: Kfz-Handwerk startet Initiative). Mittels eines Nachhaltigkeitsberichts ist es Betrieben ferner möglich, Kunden und Auftraggeber sowie öffentliche Einrichtungen oder Finanzdienstleister über ihr Engagement für Nachhaltigkeit zu informieren (kfzgewerbe.de: Nachhaltigkeitsbericht und Selbstcheck). Ressourcenschonung und Energieeffizienz im Autohaus und in der Kfz-Werkstatt Nachhaltigkeit ist auch in Autohäusern und Kfz-Werkstätten sowohl auf betrieblicher als auch auf Kundenseite eines der wichtigsten Themen: nachhaltige Mobilität durch umweltschonende Antriebe, wie zum Beispiel Elektro- und Hybridfahrzeuge oder E-Fuels, Nutzung erneuerbarer Energien bei gleichzeitiger Reduktion des Energieverbrauchs. Außerdem werden der Strom- und Wasserverbrauch minimiert, Raumtemperaturen gesenkt, LED-Leuchtmittel und Bewegungsmeldersysteme für die Belichtung verwendet (autohaus.de: Know-how-Serie). Weiteres Energieeinsparpotenzial zeigt sich in Kfz-Werkstätten auch durch die Reparatur von Druckluftanalagen oder deren Austausch mit Akkuwerkzeugen (kfzgewerbe.de: ZDK-Veranstaltung zur Nachhaltigkeit). Aktuelle Herausforderungen in Kfz- Gewerbe und Automobilindustrie Neuzulassungen sollen ab 2035 deutschland- und europaweit lokal lediglich noch für Fahrzeuge ohne Emissionen erlaubt sein (Clausen, Grimm und Pfaff 2022: 5). "Unser Ziel ist die Sicherstellung eines umweltverträglichen Kraftverkehrs durch Elektromobilität [...]" (kfzgewerbe.de: ZDK-Vorstand zur Nachhaltigkeit). Aber auch das Umweltprofil des Elektroautos gilt es zu optimieren, durch "neue, umweltschonende und sozial verträgliche Batterietechnologien und eine[n] zunehmend höheren Anteil an Erneuerbaren im Ladestrom" (Clausen, Grimm und Pfaff 2022: 12). In der Instandsetzungsbranche werden "[d]er verantwortungsvolle Umgang mit Ressourcen und Kreislaufwirtschaft [...] zu absoluten Schlüsselaufgaben werden" (autohaus.de: Autoverwertung 2.0). Ein weiteres Ziel ist die "Fachkräftesicherung [...] im Kfz-Gewerbe" (kfzgewerbe.de: ZDK-Vorstand zur Nachhaltigkeit), denn Fachkräfte werden vermehrt benötigt, beispielsweise zur Installation der Ladestationen für Elektroautos (handwerk.de: Klimaschutz und Nachhaltigkeit im Handwerk). Neben dem Klimawandel bietet auch die Digitalisierung neue Herausforderungen im Sinne der Produktionsmodernisierung (Clausen, Grimm und Pfaff 2022: 10) und Integration neuer Geschäftsmodelle wie etwa Mobilitätsdienstleistungen (Clausen, Grimm und Pfaff 2022: 15). Fazit Der Produktlebenszyklus eines Automobils erstreckt sich über die Phasen Rohstoffgewinnung, Herstellung, Vertrieb, Nutzung und Instandhaltung sowie Recycling, jeweils mit gewissem Input (Rohstoffe und Energie) und Output (zum Beispiel Abfälle, Abwasser oder Emissionen) (Koplin 2006: 189f.). Produkte, Materialeinkauf und Arbeitsschritte zu optimieren, hilft dabei, die Umwelteffekte zu reduzieren. Vor allem die Einführung des Elektroautos soll Umweltprofil und Zukunftsträchtigkeit der Automobilbranche stärken. Das Kfz-Gewerbe leistet vor allem durch Instandhaltung und Reparatur einen Beitrag zur Ressourcenschonung, gestützt durch den sogenannten "grünen Kreislauf". Da nachhaltige Mobilität auch für viele Schülerinnen und Schüler ein wichtiges Thema ist, kann ein Blick auf das Berufsfeld Kfz-Gewerbe in Berufsorientierungsphasen neue Impulse für den eigenen späteren Werdegang bieten. Verwendete Internetadressen Kfz-Gewerbe autoberufe.de: Altfahrzeug-Recycling. Online: https://www.autoberufe.de/images/chemie_am_auto/Unterrichtsmaterialien/Recycling_Kopiervorlagen.pdf . autoberufe.de: Chemie am Auto . Online: https://www.autoberufe.de/beratende-lehrende/unterrichtsmaterial#pcw . kfzgewerbe.de: Nachhaltigkeitsbericht . Online: https://www.kfzgewerbe.de/dossier/nachhaltigkeit/nachhaltigkeitsberichterstattung-nach-csrd . kfzgewerbe.de: ZDK-Veranstaltung zur Nachhaltigkeit: Umsetzung im Kfz-Gewerbe . Online: https://www.kfzgewerbe.de/zdk-veranstaltung-zur-nachhaltigkeit-umsetzung-im-kfz-gewerbe . kfzgewerbe.de: ZDK-Vorstand definiert strategische Ziele bis 2030 . Online: https://www.kfzgewerbe.de/zdk-vorstand-definiert-strategische-ziele-bis-2030 . wasmitautos.com: Deine Ausbildung zum Kfz-Mechatroniker (m/w/d) . Online: https://www.wasmitautos.com/ausbildung/kfz-mechatroniker-in/ . Weitere verwendete Internetadressen arbeitsagentur.de: Kraftfahrzeugmechatroniker/in . Online: https://web.arbeitsagentur.de/berufenet/beruf/14799 . autohaus.de: Autoverwertung 2.0: "Wir sind mehr als bereit". Online: https://www.autohaus.de/nachrichten/schadenbusiness/autoverwertung-2-0-wir-sind-mehr-als-bereit-3455871?_gl=1*1kvuonn*_up*MQ..&gclid=EAIaIQobChMIsdqAu-DrggMVmkNBAh05dAjSEAAYASAAEgLF6_D_BwE . autohaus.de: Kfz-Handwerk startet Initiative: Nachhaltigkeitssiegel soll kommen . Online: https://www.autohaus.de/nachrichten/werkstatt/kfz-verbaende-starten-initiative-nachhaltigkeitssiegel-soll-kommen-3437260 . e-mobilbw.de: Zukunftsfähige Lieferketten und neue Wertschöpfungsstrukturen in der Automobilindustrie (2022). Online: https://www.e-mobilbw.de/fileadmin/media/e-mobilbw/Publikationen/Studien/Studie_Zukunftsfaehige_Lieferketten_und_neue_Wertschoepfungsstrukturen_in_der_Automobilindustrie.pdf . gruene-bundestag.de: "Klimafreundliche Produktion in der Automobilindustrie. Kurzstudie im Auftrag der Bundestagsfraktion Bündnis 90/Die Grünen" (2021). Online: https://www.gruene-bundestag.de/fileadmin/media/gruenebundestag_de/themen_az/mobilitaet/pdf/Kurzstudie_Klimaschutzstrategien_Automobilindustrie_Endfassung.pdf . handwerk.de: Karosserie- und Fahrzeugbaumechaniker*in . Online: https://www.handwerk.de/infos-zur-ausbildung/ausbildungsberufe/berufsprofile/karosserie-und-fahrzeugbaumechanikerin . handwerk.de: Klimaschutz und Nachhaltigkeit im Handwerk . Online: https://www.handwerk.de/ueber-das-handwerk/klimaschutz_und_nachhaltigkeit_im_handwerk . umweltbundesamt.de: Umweltrisiken und -auswirkungen in globalen Lieferketten deutscher Unternehmen – Branchenstudie Automobilindustrie (2022). Online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2022-05-06_texte_56-2022_innovative_werkzeuge_lieferkette-branchenstudie_automobil.pdf . youtube.com: Nachhaltigkeit im Handwerk | Kraftfahrzeugmechatroniker Aaron - Nachhaltigkeit im KFZ-Gewerbe. Online: https://www.youtube.com/watch?v=5KkL7SJCNHc . Verwendete Literatur Brunner, Marc (2006). Strategisches Nachhaltigkeitsmanagement in der Automobilindustrie. Eine empirische Untersuchung . Wiesbaden: Deutscher Universitätsverlag. Clausen, Jens, Anna Grimm und Matthias Pfaff (2022). "Die erfolgreiche Transformation der Automobilbranche". Working Paper Forschungsförderung 253. Düsseldorf: Hans-Böckler-Stiftung. Koplin, Julia (2006). Nachhaltigkeit im Beschaffungsmanagement. Ein Konzept zur Integration von Umwelt- und Sozialstandards . Wiesbaden: Deutscher Universitätsverlag. Weiterführende Literatur Bozem, Karlheinz, Anna Nagl und Carsten Rennhak (2013). Energie für nachhaltige Mobilität. Trends und Konzepte . Wiesbaden: Springer Gabler. Köllner, Christiane. "Ohne Kupfer keine Mobilität". SpringerProfessional . Online: https://www.springerprofessional.de/werkstoffe/elektromobilitaet/ohne-kupfer-keine-mobilitaet/15433682 . Sackmann, Christoph. "Lithium, Kobalt, Nickel. Drei Wege, wie das E-Auto durch das Rohstoff-Nadelöhr kommt". Focus . Online: https://www.focus.de/auto/elektroauto/knappe-vorkommen-problematische-foerderung-lithium-kobalt-nickel-wo-die-rohstoffe-fuer-die-e-auto-wende-herkommen-sollen_id_184540748.html . Witzke, Sarah (2016). Carsharing und die Gesellschaft von Morgen. Ein umweltbewusster Umgang mit Automobilität? Wiesbaden: Springer Gabler.

  • Chemie / Technik
  • Fort- und Weiterbildung, Sekundarstufe I, Sekundarstufe II
ANZEIGE