OLED - Innovative Lichtquelle der Zukunft
Unterrichtseinheit
Organische Leuchtdioden (OLEDs) besitzen enormes Zukunftspotenzial als energieeffiziente Beleuchtungsmittel. Neben einem deutlich geringeren Energieverbrauch als bei LED-Displays weisen OLEDs eine hervorragende Bildqualität und noch viele weitere Vorteile auf.Organische Leuchtdioden (OLEDs) revolutionieren derzeit die Beleuchtungsindustrie. Energiesparlampen und Halogenstrahler - in wenigen Jahren werden diese Lichtquellen vielleicht vergessen sein. Bei OLEDs handelt es sich um dünne Folien, die tagsüber transparent sind und nachts in allen denkbaren Farben leuchten. Organische Leuchtdioden sind hocheffiziente Lichtquellen, die viele positive Eigenschaften haben: sie sind äußerst energiesparend, leuchten großflächig, sind extrem dünn und außerdem voll dimmbar. Außerdem haben OLEDs keine Verzögerungszeit beim Einschalten und sie sind so flexibel und transparent herzustellen, dass man sie sogar in Fensterscheiben integrieren kann. Relevanz des Themas Die Unterrichtseinheit kann beispielsweise zu einer längeren Unterrichtsreihe in Physik zum Thema "Licht" eingegliedert werden. Zunächst müssen im Unterricht wichtige Grundlagen der Strahlen- und Wellenoptik sowie der Quantenphysik erarbeitet werden. Zu den vorab zu behandelnden Themen sollten unter anderem die Reflexion, Brechung, Brechungsgesetz, Beugung und Interferenz von Licht sowie der Welle-Teilchen-Dualismus des Photons gehören. Die Schülerinnen und Schüler sollen sich mit aktuellen Forschungsergebnissen zur Bedeutung von OLEDs für neue optische Licht- und Speichermedien auseinandersetzen und diese auswerten. Hintergrundinformationen zu OLEDs Hier finden Sie nähere Informationen zu OLEDs und Biolumineszenz von Leuchtkäfern sowie zu Perspektiven für die Medizinforschung. Fachkompetenz Die Schülerinnen und Schüler sollen den Aufbau und das Funktionsprinzip einer Organischen Leuchtdiode verstehen und beschreiben können. ein Thema selbstständig recherchieren und beschreiben können. wichtige Anwendungsbereiche für OLEDs kennenlernen. in reduzierter Form wissenschaftliche Neuentwicklungen für OLEDs bewerten. Medienkompetenz Die Schülerinnen und Schüler sollen eine interaktive Lernumgebung bedienen können. Informationen zur Thematik aus einem Text entnehmen, wesentliche Aussagen verstehen und in eigenen Texten wiedergeben können. die Nutzungsmöglichkeiten des Internets kennen- und anwenden lernen. Thema Organische Leuchtdioden aus Kohlenstoff Autorin Jana Haberstroh Fächer Physik, Chemie, Biologie, Technik, Naturwissenschaften Zielgruppe ab Klasse 7 Zeitraum circa 2-3 Unterrichtsstunden Technische Voraussetzungen Internetzugang (am besten für je 2 Personen), Beamer Der deutsche Chemiker Herbert Naarmann hat bereits 1969 Strom leitende Polymere - die Vorstufe der OLED - beobachtet, doch es sind noch ganze 21 Jahre vergangen, bis eine Forschergruppe in Cambridge erstmals eine Leuchtdiode herstellte. Die verwendeten organischen Halbleiterschichten waren nur etwa 100 Nanometer dick, also zehntausend Mal dünner als ein Millimeter. Alleine die Leuchteffizienz und Lebensdauer der OLEDs blieben jahrelang hinter der Konkurrenz zurück. Immer wieder entdeckten Forscher "Nebenwirkungen", wie zum Beispiel die Verkürzung der Lebensdauer durch kleinste Verunreinigungen. Auch der Aufbau wurde immer komplizierter. Um gegen Luftfeuchtigkeit resistent zu werden, müssen die OLEDs hinter Glas geschützt werden. Aufbau einer organischen Leuchtdiode Ein transparentes Substrat (Glas, Quarz oder Polymerfolie) dient als Basis für den Aufbau. Die Anode, eine ITO-(Indium-Zinn-Oxid-) Schicht ist elektrisch leitfähig und für sichtbares Licht durchlässig. Das Licht entsteht in den "aktiven" organischen Schichten, wenn dort Paare von Elektronen und "Löchern" rekombinieren und jeweils ein Photon erzeugen. Das Licht wird durch das optisch transparente Substrat abgestrahlt. Um eine hohe Effizienz zu erreichen, werden für den Transport von Ladungsträgern eine oder mehrere zusätzliche Schichten aufgebracht. Schließlich wird als Kathode ein optisch nicht transparenter Metallkontakt aufgedampft. Beim Anlegen einer äußeren Spannung von weniger als 5 Volt zwischen Kathode und Anode kommt es zur Emission von Licht, dessen Farbe von den eingesetzten aktiven Materialien abhängt. Die Chemie der OLEDs Die OLED basieren auf organischen Kohlenstoffmolekülen, also Verbindungen aus mehreren Kohlenstoffteilchen mit anderen Elementen. Setzen sich mehrere gleiche Molekülketten aneinander, dann entstehen sogenannte Polymere. Diese verhalten sich wie Halbleiter, was zur Folge hat, dass sie elektrischen Strom leiten. Und mit diesem bringt man die Folien zum Leuchten. Die Lichtfarben bestehen aus Kohlenstoff-Ringstrukturen, in die ein metallisches Zentralatom integriert wird - beispielsweise Edelmetalle wie Platin oder Iridium. Der OLED-Regenbogen Die OLEDs leuchten beim Anlegen einer Spannung, ob gelb, grün, rot oder blau - alle Farben sind möglich. Die Farbe der Emission wird anders als bei den anorganischen LEDs durch die Energielücke des Halbleiters bestimmt (durch die Energie, die frei wird, wenn ein Elektron und ein "Loch" zusammentreffen und rekombinieren). Diese Energie und damit die Farbe der Emission kann durch die Wahl des organischen Materials gezielt verändert werden. Innerhalb weniger Jahre hat man bereits sämtliche Farben von Rot über Grün bis Blau realisiert. Die Entwicklung ist bereits so weit fortgeschritten, dass erste vollfarbige Bildschirmprototypen hergestellt werden konnten. LED versus OLEDs Anders als bei den anorganischen LEDs wird weißes Licht durch Mischen der Grundfarben rot, blau und gelb erzeugt. Blau ist die Achillesferse der weißen OLED - dieser Farbstoff ist am kurzlebigsten. Multitalent OLED Der größte Markt für OLEDs ist der Bereich "Display", das heißt, OLEDs werden beispielsweise für Fernseher oder Displays von Mobiltelefonen eingesetzt. Displays aus organischen Leuchtdioden benötigen keine Hintergrundbeleuchtung und ermöglichen einen geringen Stromverbrauch. Sie ermöglichen zudem einen größeren Betrachtungswinkel. Zukunftsvision leuchtende Tapeten Organische Leuchtdioden dienen sogar als Basis für Tapeten, die Licht erzeugen und sogar, je nach Stimmung, die Farbe wechseln können. Diese gedruckte Elektronik wird im Fachjargon Polytronik genannt. Die Leuchtfolie emittiert ein für das Auge angenehmes, monochromatisches Kaltlicht, das auch bei Staub, Rauch oder Nebel besser sichtbar sein soll als jede andere Lichtquelle. Die Glühwürmchen sind die OLEDs des Tierreiches. Sie können ihr gelbliches Licht, welches in der Paarungszeit werbewirksam eingesetzt wird, ein- und ausschalten. Forscherinnen und Forscher haben die dahinter stehenden Grundlagen der Lumineszenz analysiert und festgestellt, dass einige natürliche Polymere Halbleitereigenschaften haben und somit für den Transport elektrischer Ladungen geeignet sind. Solche konjugierten Polymere können mittlerweile künstlich und genau spezifiziert hergestellt werden. Halbleiter und andere elektrische Bauteile sind also bald nicht mehr auf Kristallstrukturen angewiesen, sondern können aus Kunststoffen gefertigt werden. In der medizinischen Forschung benutzt man ebenfalls Zellen oder Bakterien mit integiertem Luciferase-Gen. Injiziert man beispielsweise einer Maus Salmonellen-Erreger, die das Luciferase-Gen tragen, so breiten sich die Erreger in ihrem Körper aus. Infusiert man eine Luciferinlösung, so kann man diese Ausbreitung durch das entstehende Licht von außen verfolgen, ohne die Maus zu töten. Analog verhält es sich mit markierten Karzinomen bei denen man die Metastasenbildung und Verbreitung optisch durch das emittierte Licht verfolgen kann.
-
Physik / Astronomie / Biologie / Ernährung und Gesundheit / Natur und Umwelt
-
Sekundarstufe I