• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

MINT-Town – spielbasierte Förderung von kritischem Denken in der Chemie

Unterrichtseinheit

Die Lernenden erlangen – beziehungsweise erweitern – Fähigkeiten im Bereich des kritischen Denkens mithilfe der spielbasierten Lernumgebung MINT-Town. In den drei browserbasierten Szenarien der Lernumgebung werden sie mit einem fachübergreifenden (Eutrophierung eines Teiches) und zwei chemiespezifischen Problemkontexten (Synthese von Apfelester & Hydrolyse von Fetten) konfrontiert, welche sie im Laufe der Szenarien schrittweise lösen.In dieser Unterrichtseinheit spielen die Schülerinnen und Schüler die digitale Lernumgebung MINT-Town. MINT-Town besteht aktuell aus drei inhaltlich aufeinander aufbauenden Teilen, in denen die Lernenden jeweils mit einem Problemkontext konfrontiert werden, welchen sie schrittweise lösen müssen. Dabei durchlaufen die Lernenden Phasen des Problemlösens (Problem verstehen, Problem charakterisieren, Problem lösen) und müssen verschiedene Teilfähigkeiten des kritischen Denkens (zum Beispiel Analyse von Argumenten, Beobachten, logisches Schlussfolgern) einsetzen, um zu einer Problemlösung zu gelangen. Die Lernumgebung kann sowohl lokal als auch mobil in gängigen Windows- und Android-Browsern ausgeführt werden. Zum Spielen wird eine Internetverbindung benötigt. Im ersten Szenario "MINT-Town Tutorial" machen sich die Schülerinnen und Schüler zunächst mit der Steuerung vertraut und werden dann mit dem Problem eines eutrophierten Teiches konfrontiert. Sie sammeln durch Interaktion mit der virtuellen Welt, darin enthaltenen Gegenständen sowie Nicht-Spieler-Charakteren Informationen, welche ihnen bei der Charakterisierung und der anschließenden Lösung des Problems helfen. Das zweite Szenario "Apfelhain" konfrontiert die Spielenden mit einer Situation, in der Wespen mithilfe von Apfelester weggelockt werden müssen. Dieser steht allerdings nicht einfach zur Verfügung, sondern muss zunächst aus einer Carbonsäure und einem Alkohol mithilfe einer Kondensationsreaktion synthetisiert werden. Die Spielenden müssen auch hier schrittweise alle nötigen Informationen sammeln und auf dieser Basis in einer Multiple-Choice Abfrage geeignete Schlussfolgerungen auswählen, um die passende Lösungsstrategie zu finden. Diese wird nach dem Sammeln aller notwendigen Gegenstände in Form einer Ester-Synthese im virtuellen Labor umgesetzt. Die Spielenden müssen ihr Produkt anschließend virtuell herausdestillieren, indem sie die richtige Siedetemperatur herausfinden und angeben. Danach kontrollieren sie das Produkt mit dem Brechungsindex, welchen sie in einem Laborbuch abgleichen können. Die Schülerinnen und Schüler lernen hier neben den fachlichen Inhalten auch wichtige Vorgehensweisen bei einer Laborsynthese (virtuell) kennen. Sie kommen dadurch zudem zu der Erkenntnis, dass nach einer Synthese nicht immer gleich das fertige Produkt vorliegt, sondern weitere Schritte nötig sind, um dieses in reiner Form zu erhalten. In einem abschließenden Dialog mit einem Nicht-Spieler-Charakter reflektieren die Spielenden noch einmal ihre Vorgehensweise bei der Problemlösung. Im dritten Szenario "Bergregion" werden die Spielenden mit einer neuen Problemsituation konfrontiert, in der sie durch den Einsatz von Nitroglycerin einen Tunnel freisprengen sollen. Das Nitroglycerin liegt allerdings nicht von Anfang an vor, sondern muss von einem Nicht-Spieler-Charakter synthetisiert werden. Von diesem werden die Spielenden im Rahmen einer Quest losgeschickt, um Glycerin zu beschaffen, welches mithilfe einer sauren Ester-Hydrolyse aus einem fetten Öl (Raps) gewonnen werden soll. Auch in diesem Szenario gibt es verschiedene Multiple-Choice-Abfragen, in denen beispielsweise das Problem schrittweise charakterisiert oder eine Quelle auf Glaubwürdigkeit untersucht werden muss. Die Spielenden gelangen gegen Ende des Szenarios zu der Erkenntnis, dass die saure Hydrolyse die entgegengesetzte Reaktion der Ester-Synthese ist, und viele chemische Reaktionen nicht nur in eine Richtung ablaufen. Wie man dieses chemische Gleichgewicht beeinflussen kann, wird hier noch nicht thematisiert.Sowohl das "Tutorial" als auch das Szenario "Apfelhain" sind so aufgebaut, dass sie sich vorwissensunabhängig bearbeiten lassen. Das Szenario "Bergregion" knüpft hingegen thematisch an das Szenario "Apfelhain" an, sodass ein separater Einsatz nur zu empfehlen ist, wenn das Thema Ester-Synthese vorher im Unterricht behandelt wurde. Die chemiespezifischen Szenarien "Apfelhain" und "Bergregion" lassen sich beispielsweise im "Rahmenlehrplan Teil C Chemie" für Berlin/Brandenburg im Themenbereich 3.12 "Ester – Vielfalt der Produkte aus Alkoholen und Säuren" der Klassenstufe 10 verorten (Senatsverwaltung für Bildung, Jugend und Familie, 2015). Sie fokussieren das "Basiskonzept der chemischen Reaktion". Nach dem Spielen beider Teilszenarien sollten die Lernenden ein erstes Verständnis dafür entwickelt haben, dass nicht alle chemischen Reaktionen vollständig ablaufen und sich einige Reaktionen umkehren lassen. Die Faktoren zur Beeinflussung des Gleichgewichts zwischen Hin- und Rückreaktion werden in den Lernumgebungen nicht thematisiert. Zudem werden zwar Summenformeln und funktionelle Gruppen der eingesetzten Stoffe benannt, auf konkrete Reaktionsgleichungen wird aber zugunsten allgemeiner Wortgleichungen verzichtet. Es empfiehlt sich, entweder nach dem Spielen beider Teilszenarien oder nach jedem einzelnen Teilszenario eine Sicherungsphase durchzuführen, in der allgemeine Erkenntnisse entsprechend festgehalten werden. Denkbar wäre auch ein Einsatz in der Qualifikationsphase (11) in den Themenbereichen 3.1.4 "Grundlagen der organischen Chemie", 3.1.5 "Organische Stoffe als Energielieferanten" oder in der Sekundarstufe II (12–13) als Einstieg in den Themenbereich "3.2.5 Chemisches Gleichgewicht" (Senatsverwaltung für Bildung, Jugend und Familie Berlin; Ministerium für Bildung, Jugend und Sport des Landes Brandenburg, 2021), um die "Umkehrbarkeit chemischer Reaktionen als Voraussetzung für das chemische Gleichgewicht" aufzugreifen. Erforderliche digitale Kompetenzen der Lehrenden (nach dem DigCompEdu-Modell) Die Lehrenden sollten in der Lage sein, die digitale Lernumgebung so in ihren Unterricht einzubetten und mit entsprechenden Sicherungsphasen thematisch nachzubereiten, dass die Lernenden einen möglichst großen Lerneffekt haben. Es wird empfohlen, die Szenarien wenigstens einmal selbst getestet oder im besten Fall komplett durchlaufen zu haben (3.1 Lehren). Zudem ist ein grundlegendes Verständnis für den Umgang mit dem jeweiligen Endgerät (Computer, Mobiles Device) nötig. Da die Umgebung im Browser ausgeführt wird, sollte das jeweilige Gerät eine Verbindung mit dem Internet aufweisen. Die Lehrenden sollten gewährleisten, dass allen Lernenden unabhängig von ihrer digitalen Affinität zu den eingesetzten Endgeräten oder von anderen besonderen Bedürfnissen ein Zugang zu der digitalen Lernumgebung ermöglicht wird (5.1 Digitale Teilhabe). Sofern mit dem „Tutorial“ begonnen wird, eignet sich die Lernumgebung grundsätzlich für Selbstgesteuertes Lernen (3.4), welches je nach individuellem Bedarf der Lernenden durch die Lehrenden unterstützt werden kann (5.2 Differenzierung und Individualisierung). Fachkompetenz Die Schülerinnen und Schüler beschreiben chemische Reaktionen anhand von Wortgleichungen. beschreiben Vorgänge, bei denen sich Stoffeigenschaften ändern. beschreiben die Umkehrbarkeit chemischer Reaktionen. 21st Century Skills Die Schülerinnen und Schüler erlangen/festigen Teilkompetenzen des kritischen Denkens. lösen schrittweise Probleme in authentischen Kontexten. Medienkompetenz Die Schülerinnen und Schüler analysieren, interpretieren und bewerten Informationen und Daten kritisch. arbeiten selbstständig mit einer digitalen spielbasierten Lernumgebung. verwenden eine strukturierte Sequenz zur Lösung eines Problems.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

ATP-Synthase – Synthese von Energieäquivalenten

Unterrichtseinheit

In dieser Unterrichtseinheit für den Biologie- und Chemie-Unterricht beschäftigen sich die Schülerinnen und Schüler mit der ATP-Synthase. Die Regeneration des zentralen zellulären Energieträgers wird zum überwiegenden Teil von der ATP-Synthase gewährleistet. Die hier vorgestellte Lernumgebung ermöglicht Schülerinnen und Schülern eine aktiv-forschende Auseinandersetzung mit der Funktionsweise dieses komplexen Enzyms. In der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" kommen dynamische Arbeitsblätter zum Einsatz. Dies sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen auch dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flashbasierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Struktur-Funktions-Beziehungen werden in der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als "Leitplanken" bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. "Informations-Popups" und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Die Schülerinnen und Schüler lernen die ATP-Synthase als Beispiel eines Enzyms kennen. lernen den Aufbau der ATP-Synthase kennen. erschließen ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend. lernen die Möglichkeiten des Molekülbetrachters Jmol kennen und lernen den Umgang mit dem Werkzeug. beschreiben am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms. Räumliche Vorstellung als Verständnisvoraussetzung Das Vorstellungsvermögen von Schülerinnen und Schülern in Bezug auf die dreidimensionale Struktur von Enzymen ist meist schwach ausgeprägt. In Schulbüchern werden die Lernenden häufig mit "flachen" und schematischen Darstellungen konfrontiert. Moderne Lehrwerke enthalten zwar schon dreidimensional wirkende Grafiken, die mit einer Molekülbetrachter-Software erzeugt wurden. Dennoch haben die Jugendlichen oft große Schwierigkeiten, sich den Aufbau von Enzymen vorzustellen. Das führt häufig zu Verständnisproblemen oder auch falschen Vorstellungen über den Aufbau und die Funktionsweise der Biokatalysatoren. Die Kenntnis der dreidimensionalen Strukturen ist jedoch die Voraussetzung für ein tieferes Verständnis der Natur der Enzyme, ihrer Funktionen, der Interaktion zwischen Enzym und Substrat und vor allem der engen Beziehung zwischen Struktur und Funktion. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Werden die interaktiven Applets zusammen mit Texten, Grafiken und Animationen in HTML-Seiten eingebettet, entsteht eine neue Form von Arbeitsmaterial - das dynamische Arbeitsblatt. Der Vorteil: Interaktive Materialien, Aufgaben und Hilfen stehen in einem Medium auf einen Blick zur Verfügung! Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot von einem der Arbeitsblätter zur ATP-Synthase. Hinweise zu dynamischen Arbeitsblättern mit interaktiven 3D-Molekülen und deren Einsatz im Biologie- oder Chemieunterricht finden Sie in dem Übersichtsartikel "Dynamische Arbeitsblätter mit 3D-Molekülen" . Struktur von Enzymen - ein schwer zu vermittelndes Thema Im Anschluss an die Behandlung von Glykolyse, Citratzyklus und Atmungskette integriert die hier vorgestellte Lernumgebung das zu Beginn des Themenbereichs "Stoffwechsel" erarbeitete Wissen über den Aufbau und die Funktion von Enzymen. Im Sinne eines Spiralcurriculums werden früher gelernte Grundlagen auf aktuelle Lerninhalte angewandt, wiederholt und eingeübt. Im Rahmen der funktionellen Vielfalt der Proteine lernen Schülerinnen und Schüler Enzyme als Biokatalysatoren kennen. Dabei bleibt deren Funktionsweise jedoch häufig unklar. Die Bildung eines Enzymsubstratkomplexes wird mit einer Schlüssel-Schloss-Analogie vermittelt. Diese vereinfachende Darstellung ist zwar einleuchtend, führt jedoch auch dazu, dass den Lernenden die Komplexität der Enzyme nicht bewusst wird. Sie haben daher Schwierigkeiten sich anschaulich vorzustellen, dass für jede biochemische Reaktion in der Zelle ein spezialisiertes Enzym zur Verfügung steht. Es fällt ihnen schwer, Strukturen von Enzymen mit deren Funktionen im Stoffwechsel in Zusammenhang zu bringen. Die ATP-Synthase - meist nur eine "Black Box" Im Themenbereich "Stoffwechsel" wird auch die Gewinnung von Energieäquivalenten in Form von ATP durch das Enzym ATP-Synthase angesprochen. Dies wird zumeist als Faktum präsentiert. Die Lernenden erfahren, dass das Enzym den Transport von Protonen (entlang ihres Konzentrationsgefälles) mit der Bildung von ATP aus ADP und anorganischem Phosphat koppelt. Dies wird in der Regel mithilfe "flacher" und statischer Darstellungen vereinfacht visualisiert. Ziel der 3D-Materialien: Zusammenspiel von Struktur und Funktion Für die in den Bildungsstandards geforderte Auseinandersetzung mit Struktur-Eigenschaftsbeziehungen in der Biologie bietet sich die Untersuchung von Proteinstrukturen eigentlich geradezu an. Das Problem: Mit "klassischen" Materialien verläuft das Unterfangen meist unbefriedigend. Häufig werden die molekularen Strukturen und deren Funktion im Unterricht auch unabhängig voneinander betrachtet, ohne den engen Zusammenhang zu thematisieren. Die hier vorgestellte Lernumgebung soll Abhilfe schaffen und die Lernenden am Beispiel der ATP-Synthase exemplarisch und anschaulich an die Untersuchung von Struktur-Funktions-Beziehungen heranführen. Die Lernumgebung der Unterrichtseinheit besteht aus HTML-Seiten, die mit gängigen Browsern betrachtet werden können. Die darin eingebetteten Darstellungen der Moleküle sind als Java-Applikationen plattformunabhängig. Die einzige Bedingung für ihre Nutzung ist, dass auf Ihrem Computer das kostenfreie Plugin Java Runtime Environment installiert ist. Für die verschiedenen Animationen benötigen Sie den ebenfalls kostenfreien Flash- oder Quicktime-Player. Eine Lenkung der Aufmerksamkeit der Schülerinnen und Schüler erfolgt bereits durch den formalen Aufbau der Arbeitsblätter. Jede Seite richtet den Blick auf einen anderen Aspekt der ATP-Synthase (Lokalisierung, F0- beziehungsweise F1-Struktur und -Funktion, Stator). Die vorgegebenen Beobachtungsaufträge sorgen dafür, dass den Lernenden die wesentlichen Informationen nicht entgehen. Die Arbeitsaufträge im unteren Feld sind durch Piktogramme als Beobachtungsaufgaben (Auge) und Schreibaufgaben (Stift) gekennzeichnet. Die eigenständige Entdeckungsreise der Schülerinnen und Schüler in den Struktur-Funktionszusammenhang der ATP-Synthase wird durch Zusatzinformationen (Popups) unterstützt. Sie beinhalten weitere nützliche Informationen, wie zum Beispiel zum Aufbau von ATP (Abb. 2, Platzhalter bitte anklicken) oder zum Modell des Protonentransports durch die Membran. Diese Informationsboxen können durch einen Klick auf die "i"-Piktogramme aufgerufen werden. Auf den dynamischen Arbeitsblättern zum molekularen Aufbau der F0- und F1-Struktur finden sich Buttons und Arbeitsaufträge "für Experten". Diese ermöglichen eine Binnendifferenzierung. Betrachtet wird hier die Verteilung hydrophiler und hydrophober Aminosäurereste im F1- und F0-Komlex. Dabei lässt sich sehr schön der Unterschied zwischen den transmembranen und den außerhalb der Membran liegenden Bereichen erkennen und thematisieren. Abb. 3 zeigt zwei Ansichten des F0-Komplexes. Hydrophile Aminosäuren sind rot, hydrophobe grün dargestellt. Die linke Teilabbildung zeigt den dem Intermembranraum zugewandten Teil des F0-Komplexes, während die rechte Teilabbildung einen Blick auf die der Lipidphase der Membran zugewendeten Proteinoberflächen zeigt. Abb. 4 zeigt den "Grundzustand" des F1-Komplexes in der Lernumgebung (linke Teilabbildung) sowie den F1-Komplex nach Aktivierung der Funktion "Hydrophobe und hydrophile Bereiche" (rechte Teilabbildung). Diese allgemeine Thematik wurde bereits bei der Besprechung des Membranaufbaus und des Membrantransports erwähnt. An dieser Stelle kann sie eindrucksvoll wiederholt beziehungsweise angewendet werden. Nach der Bearbeitung von Glykolyse, Citratzyklus und Atmungskette wird die ATP-Synthase als die "Maschine" vorgestellt, die den Protonengradienten über der inneren Mitochondrienmembran für die Synthese von ATP nutzt. Dabei werden pro gebildetem ATP drei Protonen durch die Membran befördert, um ein ATP-Molekül zu generieren (dies gilt für Bakterien, siehe Tabelle unten). Zum Einstieg wird per Beamer eine Animation präsentiert, die eine rotierende ATP-Synthase "in Aktion" zeigt (Abb. 5, Platzhalter bitte anklicken). Die Animation wurde von der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge) entwickelt. Eine kleine Version des Films befindet sich auch in der Lernumgebung. Für den Impuls per Beamerpräsentation sollte aber das größere Format verwendet werden, das im Internet zur Verfügung steht (siehe unten). Die Dynamik der Darstellung weckt das Interesse der Lernenden, eine Analyse der Abläufe ist jedoch (noch) nicht möglich. Das Interesse der Schülerinnen und Schüler kann durch folgende Daten weiter angefacht werden: Die ATP-Umsatzrate liegt in Bakterienzellen bei bis zu 2.500.000 Molekülen pro Sekunde! Ein Mensch setzt pro Tag (in Ruhe) etwa 70 Kilogramm ATP um. Der menschliche Körper enthält (bei einem Gewicht von etwa 70 Kilogramm) nur 50 bis 200 Gramm ATP, das nach dem Verbrauch überwiegend durch die ATP-Synthase regeneriert wird. Nach diesen Impulsen fordert die Lehrperson die Schülerinnen und Schüler auf, sich einzeln oder in Partnerarbeit mithilfe der dynamischen Arbeitsblätter den Aufbau und die Funktion der ATP-Synthase soweit zu erschließen, dass sie im Anschluss daran erklären können, was in der gezeigten Animation dargestellt ist: The rotary mechanism of mitochondrial ATP synthase Animation aus der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge). Infos und weitere Animationen finden Sie hier . Kapitel Die dynamischen Arbeitsblätter sollen das Augenmerk der Lernenden auf den Zusammenhang zwischen Struktur und Funktion der ATP-Synthase richten. Das komplexe Molekül wird dabei in seine Bauteile (F0, F1, Stator) "zerlegt". Die Lernumgebung gliedert sich in folgende Kapitel: Lokalisierung Hier wird die Lokalisierung der ATP-Synthase als integrales Membranprotein der inneren Mitochondrienmembran dargestellt. Die Lage des Enzyms in Bezug auf den durch die Atmungskette aufgebauten Protonengradienten wird thematisiert. (Die Lernumgebung beschränkt sich exemplarisch auf die ATP-Synthase und deren Orientierung in der Mitochondrienmembran. Die Lokalisierung des Enzyms in Bakterien und Chloroplasten kann bei Bedarf im Anschluss an die Bearbeitung der Lernumgebung erfolgen.) F0-Struktur Die Schülerinnen und Schüler machen sich hier mit dem Aufbau der Transmembraneinheit der ATP-Synthase vertraut. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet und interpretiert werden. F0-Funktion Die Lernenden erkunden das auf der Hypothese des deutschen Biophysikers Wolfgang Junge basierende Modell des Protonentransports durch die Membran. Die Vorgänge werden durch eine Flash-Animation dynamisch dargestellt. F1-Struktur Die Schülerinnen und Schüler untersuchen den Aufbau der "Kopf"-Struktur der ATP-Synthase. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet, interpretiert und mit der Verteilung im F0-Komplex verglichen werden. F1-Funktion Hier werden die Vorgänge bei der Synthese von ATP aus ADP und Phosphat in der Kopf-Struktur der ATP-Synthase untersucht und durch Videosequenzen dynamisch dargestellt (Quelle der Filme: ATP Synthase Group, MRC Dunn Human Nutrition Unit, Cambridge). Stator - Struktur und Funktion Die Lernenden setzen sich mit der Funktion der Verbindung zwischen Membran- und Kopfteil auseinander und setzen ihre bisherigen Erkenntnisse zu einem Gesamtbild der ATP-Synthase-Funktion zusammen. Der größte Teil des ATP wird bei Tieren, Pflanzen und den meisten Bakterien durch ATP-Synthasen gebildet. Ihr Aufbau unterscheidet sich in den verschiedenen Organismen in Details. Wie in der folgenden Tabelle zu erkennen, variiert zum Beispiel die Zahl der F0c-Untereinheiten und die Zahl der pro gebildetem ATP transportierten Protonen. ATP-Synthasen Anzahl der F0c-Peptide Protonen pro ATP Bakterien (Escherichia coli) 12 4 Mitochondrien (Hefe) 10 3,3 Chloroplasten (Spinat) 14 4,7 Das Grundprinzip der Struktur und der Funktion der ATP-Synthasen ist jedoch bei allen Organismen dasselbe. Alle in den dynamischen Arbeitsblättern dargestellten Moleküle zeigen den Aufbau der ATP-Synthase des Darmbakteriums Escherichia coli. Der Modellorganismus wurde und wird von den ATP-Synthase-Forschern intensiv untersucht. Das animierte Funktionsmodell in dem Kapitel "F0-Funktion", das die Be- und Entladung von F0c-Untereinheiten mit Protonen zeigt (Abb. 6), gibt ebenfalls die Verhältnisse bei Escherichia coli wider. Die Aminosäuren ASP 61 und ARG 210 sind die funktionellen Aminosäuren der ATP-Synthase des Bakteriums. In der ATP-Synthase von Mitochondrien und Chloroplasten übernimmt die ebenfalls saure Aminosäure Glutaminsäure (GLU) die Funktion der Asparaginsäure (ASP). In einem letzten Informations-Popup der Lernumgebung wird unter der Überschrift "Nur ein Modell" darauf hingewiesen, dass die dargestellte Funktionsweise der ATP-Synthase ein Modell ist, das den derzeitigen Stand der Forschung widerspiegelt. Es ist wichtig, die Schülerinnen und Schüler darauf hinzuweisen, dass der Mechanismus der ATP-Synthese noch nicht vollständig geklärt ist und dass sie sich hier in "Grenzgebieten" der aktuellen Forschung bewegen. Je nach Zeitreserve und Interesse der Lerngruppe können die noch offenen Fragen angesprochen werden. Zudem bietet sich hier eine allgemeine Diskussion über die Bedeutung und die Aussagekraft von Modellen in den Naturwissenschaften an. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Was ist Glück?

Unterrichtseinheit

In dieser Unterrichtseinheit erarbeiten die Schülerinnen und Schüler, was "Glück" für sie persönlich bedeutet. Sie prüfen ihre Ergebnisse auf der Grundlage moderner psychologischer Erkenntnisse und antiker Tugend-Ethik.Ausgehend von der individuellen Erfahrung der Schülerinnen und Schüler werden "Glücksfaktoren" empirisch ermittelt und kategorisiert. Die antike Glücksethik der Stoa wird dem Verständnis erschlossen und in Kompetenzen überführt. Eine Synthese psychologischer Methoden und philosophischer Reflexion im Sinn der "Oikoiesis" schließt die Einheit ab. Ziel ist es dabei, die Schülerinnen und Schüler einzuladen, die Vernunft als Teil der menschlichen Natur zur Charakterbildung und damit zum "Glück" zu nutzen. Didaktische Analyse Um persönliches Glücksempfinden kritisch reflektieren zu können, hilft ein Bezug zur Antike. Die Glücksethiken, Stoa und Kant, beschäftigen sich mit der Regulation von Affekten und deren Auswirkung für die Ethik. Die Individualethik ist eine Grundlage des Ethikunterrichts, von der aus sich die moralphilosophischen Entwürfe ableiten lassen. Die antiken Entwürfe haben den Vorzug, die Natur, auch die des Menschen, durchaus positiv zu sehen. Sie sind deshalb auch heute wieder hochaktuell. Die Schülerinnen und Schüler können in dieser Unterrichtseinheit erkennen, dass Affektregulation Freiheit und Zufriedenheit bringen kann. Sie können kritisch mit "Illusionen" umgehen, insbesondere mit denen der Konsumgesellschaft. Die Schwierigkeit besteht im Erkennen der Grenzen, die mit den Grenzen der Vernunft zusammen fallen. Dadurch, dass die Schülerinnen und Schüler in dieser Einheit Antworten und Regeln selbst erfahrungsorientiert formulieren müssen, bleiben sie innerhalb eines ihrem Alter entsprechenden Horizontes. Vorab sollte der Begriff der "Tugend" eingeführt werden oder bereits bekannt sein. Fachkompetenz Die Schülerinnen und Schüler erläutern die Grundzüge der stoischen Ethik und vergleichen diese mit einem Ansatz aus den Humanwissenschaften. erkennen den Zusammenhang von Prämissen und deren Konsequenzen. beurteilen gesellschaftlich und persönlich die Aktualität des Themas. Medienkompetenz Die Schülerinnen und Schüler geben die Kerngedanken eines anspruchsvollen Textes wieder. bearbeiten komplexe Fragestellungen mit anschaulichen Mitteln. Sozialkompetenz Die Schülerinnen und Schüler folgen einem Lehrervortrag. arbeiten in Gruppen zusammen. tauschen sich mithilfe der Think-Pare-Share-Methode über persönliche Empfindungen aus. Bees, Robert (2004). Die Oikoiesislehre der Stoa. Würzburg: Verlag Königshausen & Neumann. Haidt, Jonathan (2007). Die Glückshypothese. Kirchzarten: VAK VerlagsGmbH. Hansch, Dietmer (2016). Depression und Burnout überwinden. Kirchzarten: VAK-Verlag. Hossenfelder, Malte (1996). Antike Glückslehren. Stuttgart: Alfred Kröner Verlag. Seneca (1988). De vita beata. Kommentar. Münster: Aschendorffsche Verlagsbuchhandlung.

  • Religion / Ethik
  • Sekundarstufe II, Berufliche Bildung, Erwachsenenbildung

Reaktionsmechanismen der Organischen Chemie in 3D

Fachartikel

Animationen zeigen den Ablauf der wichtigsten Reaktionsmechanismen der Organischen Chemie. Die Moleküle - Edukte, Übergangszustände, Produkte - können dabei aus allen Perspektiven betrachtet und sterische Fragestellungen untersucht werden. Eine Visualisierung der Ladungsverteilung auf den Moleküloberflächen verdeutlicht den Zusammenhang zwischen Struktur und Reaktivität.Im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts "Naturwissenschaften entdecken!" wurden von der Fachgruppe 3D-Moleküle Unterrichtsmaterialien entwickelt, die neue Wege des Lehrens und Lernens mit virtuellen Molekülmodellen aufzeigen sollen. Neben dynamischen Arbeitsblättern zur Die Struktur der DNA - virtuelle Moleküle in 3D und zur Funktion der ATP-Synthase - Synthese von Energieäquivalenten , die die Lernenden einzeln oder zu zweit am Rechner bearbeiten sollen, entstanden die hier vorgestellten "dynamischen Folien" zu den Reaktionsmechanismen. Diese können im Fachraum zur Unterstützung des Unterrichtsgesprächs per Beamer projiziert werden. Am heimischen Rechner können Schülerinnen und Schüler den Unterrichtsstoff wiederholen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II, Sekundarstufe I, Berufliche Bildung

Proteine

Unterrichtseinheit

In dieser Unterrichtsstunde zum Thema Proteine erarbeiten die Schülerinnen und Schüler anhand eines Erklär-Videos und daran angelehnten Arbeitsmaterialien mögliche Funktionen und den strukturellen Aufbau von Proteinen. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Schülerinnen und Schüler erarbeiten anhand dieses Materials grundlegendes Wissen über Proteine. Dazu stellen sie zunächst mögliche Funktionen von Proteinen übersichtlich zusammen. Anschließend beschäftigen sie sich mit dem Aufbau einzelner Aminosäuren, ihrer Peptidbindung und der räumlichen Anordnung der Aminosäuresequenzen. Optional kann das Thema in Richtung Proteinbiosynthese oder Proteinmodifikationen vertieft oder ein Kennenlernen der Proteindatenbank ermöglicht werden. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Proteine im Unterricht Proteine übernehmen eine Vielzahl an täglichen Aufgaben und Funktionen im Organismus. Sie sind daher für das Fach Biologie von besonderer Bedeutung und finden auch im Fach Chemie ihre Relevanz als biochemische Makromoleküle. Im Rahmen der Unterrichtseinheit Zellbiologie oder Genetik werden Proteine in ihrer Synthese und Funktion genauer behandelt. Vorkenntnisse Es wird kein spezielles Fachwissen vorausgesetzt. Die Schülerinnen und Schüler werden aufgefordert, Strukturformeln von zwei Aminosäuren zu zeichnen. Hierbei können sie sich am Material orientieren. In einer Vertiefungsaufgabe kann die Proteinbiosynthese behandelt werden. Hierfür ist eine individuelle Recherche angedacht, sodass ein gemeinsames Grundwissen nicht notwendig ist. Didaktische Analyse Das Arbeitsmaterial ist als erste intensivere Auseinandersetzung mit dem Thema Proteine konzipiert. Die Schülerinnen und Schüler gewinnen zunächst einen Eindruck über die Bedeutung von Proteinen, wodurch ihr Interesse geweckt werden soll. Anschließend werden Funktionen und Aufbau von Proteinen so erarbeitet, dass die Lernenden wesentliche Grundlagen erhalten, ohne dabei zu sehr ins Detail zu gehen. Somit kann ein Überblick errungen werden, der nach Bedarf in den Folgestunden als gemeinsame Grundlage dienen kann. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz wird eine hohe Schüleraktivität erreicht. Das Video als Medium erhält das durch den Einstieg geweckte Interesse am Thema Proteine aufrecht. Schwierige Arbeitsaufträge werden durch Partnerarbeiten aufgefangen. Durch Vertiefungsaufgaben kann bei Bedarf eine Binnendifferenzierung erfolgen. Fachkompetenz Die Schülerinnen und Schüler erarbeiten Funktionen und Aufbau von Proteinen anhand verschiedener Aufgabenstellungen. nutzen die Informationen aus einer schematischen Darstellung, um eine Peptidbindung an einem konkreten Beispiel formulieren zu können. präsentieren ihre Ergebnisse unter Verwendung der Fach- und Symbolsprache (Strukturformeln). Medienkompetenz Die Schülerinnen und Schüler können das in einem Video dargestellte Wissen nach Relevanz filtern und strukturiert wiedergeben. üben sich darin, aus komplexen und informationsreichen Internetquellen wesentliche Sachverhalte herauszuschreiben. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken ihr Selbstkonzept durch die geschützte Atmosphäre in den Partnerarbeitsphasen. diskutieren in Partner- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Reaktionsgleichung für die NaCl-Synthese

Unterrichtseinheit

Mithilfe einer interaktiven Anwendung werden Modelldarstellungen zur Reaktion von Natrium mit Chlor dynamisch entwickelt.Das hier vorgestellte und methodisch vielseitig einsetzbare Programm dient als "Zeichenbrett", auf dem Reaktionsgleichungen mit Atom-, Ionen- und Molekülmodellen dargestellt werden können. Am Präsentationsrechner des Fachraums können einzelne Schülerinnen und Schüler (oder die Lehrkraft) damit Modelldarstellungen zur Reaktion von Natrium mit Chlor per Beamer vorstellen beziehungsweise im Rahmen des Unterrichtsgesprächs entwickeln. Alternativ dazu können die Lernenden im Computerraum in Partner- oder Kleingruppenarbeit eine Präsentation zur Aufstellung der Reaktionsgleichung erarbeiten und anschließend ihren Mitschülerinnen und Mitschülern vorstellen. Technische Möglichkeiten und Einsatz im Unterricht Die Funktionen der interaktiven Folien werden per Screenshot vorgestellt und ihre verschiedenen Einsatzmöglichkeiten im Unterricht skizziert. Die Schülerinnen und Schüler sollen das Aufstellen einer Reaktionsgleichung mit verschiedenen Modellen entwickeln (Kugelmodell, Schalenmodell). durch die Modellvielseitigkeit die Vorgänge bei der Reaktion von Natrium mit Chlor verstehen und gegebenenfalls ihren Mitschülern im Rahmen einer computergestützten Präsentation erläutern. Thema Reaktionsgleichung für die NaCl-Synthese Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Klasse 9 (2. Jahr Chemieunterricht) Zeitraum 1 Stunde Technische Voraussetzungen Minimum: Präsentationsrechner mit Beamer Arbeitsfläche und Werkzeuge Die interaktive Folie startet mit einer leeren Arbeitsfläche und der Symbolpalette (Abb. 1, Platzhalter bitte anklicken). Diese enthält unter anderem chemische Buchstabensymbole ohne und mit Valenzelektronen (Lewis-Schreibweise), Kugelsymbole und Schalenmodelle für Atome und Ionen sowie ein Texteingabefeld. Darstellung im Kugelmodell Per Klick auf ein gewünschtes Symbol erscheint dieses am unteren Rand der Arbeitsfläche. Durch Mouse-over-Effekte erscheinen die Option "Bewegen" oder die Icons für die Vergrößerung und Verkleinerung der gewählten Bausteine. Abb. 2 zeigt die Arbeitsfläche mit Kugelmodell-Symbolen und einem Textfeld; über dem großen Chlorid-Ion werden das Icon für die Verkleinerung des Ions und seine aktuelle Größe in Prozent angezeigt. Ausführliche Hinweise zur Bedienung aller Programmfunktionen finden Sie in dem Info-PDF zu der Animation auf der Website "Chemie interaktiv" (siehe Internetadresse). Darstellung im Schalenmodell Alle Bausteine und Symbole können durch Ziehen in den Papierkorb (rechts unten) von der Zeichenfläche wieder entfernt werden. Neben der Verwendung der Zeichen und Symbole kann zur Veranschaulichung der Vorgänge im Schalenmodell auch eine kleine Animation auf die Arbeitsfläche geholt und abgespielt werden, die den Elektronenübergang und die Bildung der Ionen visualisiert (Abb. 3, Platzhalter bitte anklicken). Computergestützter Unterricht - ohne Computerraum Die Flash-Folie zur Aufstellung einer Reaktionsgleichung wurde für die Unterstützung des Unterrichtsgesprächs konzipiert. Ihr Einsatz zeigt einen Weg des computerunterstützten Unterrichts auf, der auch ohne den Gang in den Computerraum möglich ist. Erforderlich ist lediglich ein Präsentationsrechner mit Beamer, der in vielen Fachräumen zur Verfügung steht. Da die Animation auf der Website "Chemie interaktiv" auch zum Download bereit liegt, ist ein Internetanschluss nicht erforderlich. Partnerarbeit im Computerraum Alternativ zur Verwendung der interaktiven Folie als "digitale Tafel" können mit dem Computereinsatz vertraute Klassen die Aufgabe zur Erstellung der Reaktionsgleichung im Rechnerraum selbstständig und kooperativ in Partner- oder Kleingruppenarbeit bewältigen. Die Lehrerin oder der Lehrer tritt dabei in den Hintergrund und greift nur unterstützend beziehungsweise Impuls gebend ein. Die Ergebnisse werden dann per Ausdruck gesichert und von einzelnen Gruppen der Klasse per Beamer vorgestellt. Die Konzipierung und die Präsentation der Darstellungen beleben den Unterricht und fördern die Kreativität und das Verständnis der Schülerinnen und Schüler für chemische Abläufe. Hausarbeit Da die interaktive Folie online frei zugänglich ist, können die Lernenden auch am heimischen Rechner damit arbeiten und so zum Beispiel im Rahmen einer Hausarbeit eine Beamer-Präsentation für ihre Mitschülerinnen und Mitschüler vorbereiten, die der Wiederholung der Ergebnisse der letzten Stunde dient. Die Phasen der Präsentation können in Ausdrucken dokumentiert und im Arbeitsheft oder Lerntagebuch eingeklebt werden.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Wie entstehen thermische Jahreszeiten?

Unterrichtseinheit

Die Entstehung von Jahreszeiten verbinden viele Schülerinnen und Schüler aufgrund der elliptischen Umlaufbahn der Erde um die Sonne mit unterschiedlichen Sonnenentfernungen. Webbasierte Animationen und einfache Experimente mit einer Taschenlampe sollen diesen Vorstellungen entgegentreten und für Klarheit sorgen. Die komplexen Zusammenhänge zwischen der Drehung der Erde um die Sonne in Verbindung mit der Neigung der Erdachse und den daraus hervorgehenden unterschiedlichen Beleuchtungszonen stellen immer wieder eine Herausforderung für den Geographieunterricht dar. In den allermeisten Fällen werden die Schülerinnen und Schüler diese Zusammenhänge anhand von Texten und Grafiken lernen. Nicht repräsentative Schülerumfragen des Autors in der Sekundarstufe II zeigten jedoch, dass diese Methodik in vielen Fällen zu keinen nachhaltigen Kenntnissen führt. Mit der hier vorgestellten WEBGEO-Animation kann die Anschaulichkeit erhöht werden. Zudem bewirkt ein Taschenlampenversuch eine aktive Auseinandersetzung der Lernenden mit der Thematik. Der Lernerfolg der kann mit einem Multiple Choice Tests überprüft werden. Für eine Vertiefung des Themas sind die Visualisierungen der Software "Home Planet" hervorragend geeignet. Die in dieser Unterrichtseinheit eingesetzten Animationen stammen aus dem Projekt WEBGEO, das durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Zukunftsinvestitionsprogramms "Neue Medien in der Bildung" gefördert wurde. Die Funktionalität der Animationen sollte den Lernenden auf jeden Fall per Beamer demonstriert werden, bevor sie mithilfe der Animationen die Aufgaben bearbeiten. Unterrichtsverlauf und Materialien Mithilfe von Animationen und einem Taschenlampenexperiment werden die Ursachen für die Entstehung der Jahreszeiten anschaulich vermittelt. Fachkompetenz Die Schülerinnen und Schüler sollen Zusammenhänge zwischen der Neigung der Erdachse und Einstrahlungsverhältnissen kennen lernen und daraus Beleuchtungszonen ableiten. im Taschenlampenversuch Zusammenhänge zwischen Einstrahlungswinkel und Intensität der Beleuchtung erkennen und auf das System Sonne-Erde übertragen. aus den vorangegangenen Erkenntnissen auf die Entstehung von thermischen Jahreszeiten schließen. Medienkompetenz Die Schülerinnen und Schüler sollen erkennen, dass Animationen modellhaft Prozesse der Realität abbilden können. mit Animationen umgehen können. Thema Entstehung von Jahreszeiten Autor Jens Joachim Fach Geographie Zielgruppe Klasse 7-8 Zeitraum 1-2 Stunden Technische Voraussetzungen Computer mit Internetanschluss, Beamer, DSL-Anschluss; für das Abspielen der Animationen ist der Adobe-Flash-Player oder PowerPoint erforderlich; je eine Taschenlampe und ein dunkles A4-Blatt pro Schülergruppe Vorwissen der Schülerinnen und Schüler Im der ersten Aufgabe des Arbeitsblatts (jahreszeiten_arbeitsblatt.pdf) sollen die Schülerinnen und Schüler den Wahrheitsgehalt vorgegebener Aussagen zur Entstehung der Jahreszeiten bewerten und eigene Kommentare ergänzen. Es kann davon ausgegangen werden, dass sie über astronomische Vorkenntnisse verfügen (Neigung der Erdachse um 23,5 Grad, Drehung der Erde um die Sonne innerhalb eines Jahres). Ihr Vorwissens wird abgerufen und fixiert. Am Ende der Unterrichtseinheit wird wieder Bezug auf die Ergebnisse zur ersten Aufgabe genommen und dabei für die Lernenden ein Wissenszuwachs erlebbar. Auch wenn die Lernenden zu Beginn der Unterrichtsstunde(n) den Wahrheitsgehalt der Aussagen richtig bewerten, ist ein genaueres Wissen meist nicht vorhanden. Beleuchtungszonen und besondere Breitenkreise Die zweite Aufgabe, die wie die folgenden in Partnerarbeit bearbeitet werden soll, dient der Erarbeitung der Beleuchtungszonen der Erde. Hierzu wird eine interaktive WEBGEO-Animation eingesetzt (Abb. 1, Platzhalter bitte anklicken). Das Wissen um die Beleuchtungszonen stellt eine wesentliche Grundlage der physischen Geographie da. Auf ihnen beruhen die überwiegend breitenkreisparallelen Klima- und Vegetationszonen der Erde und damit wesentliche Voraussetzungen für agrarische Nutzungssysteme. Taschenlampenversuch Im dritten Teil der Unterrichtseinheit werden die zuvor entdeckten unterschiedlichen Einstrahlungswinkel per Taschenlampenversuch in Zusammenhang mit der Strahlungsintensität gesetzt (Abb. 2). Je nach Qualität der Taschenlampen ist eine Verdunklung des Raumes notwendig. Aufgabe 3 ist die Schlüsselaufgabe für das Ziel der Unterrichtseinheit. Insofern sollte die richtige Lösung der Aufgabe im Lernprozess kontrolliert werden. Animation zu den astronomischen Jahreszeiten In der vierten Aufgabe erfolgt die Synthese der bisher gefundenen Zusammenhänge in einer Tabelle. Dabei kommt eine zweite WEBGEO-Animation zum Einsatz (Abb. 3, Platzhalter bitte anklicken). Das Gelernte wird auf die nördlich gemäßigten Zonen angewendet. Durch die Angabe des Zenitstandes und der Jahreszeiten wird der Zusammenhang zwischen (scheinbarer) Wanderung des Zenits und der Entstehung von Jahreszeiten gefestigt. Die abschließende Aufgabe 5 dient ebenfalls der Festigung und zwingt die Schülerinnen und Schüler zu einer zusammenhängenden Verbalisierung der Ursachen für die Entstehung der Jahreszeiten. Der Vergleich mit den Aufzeichnungen zu Aufgabe 1 (Wahrheitsgehalt vorgegebener Aussagen zur Entstehung der Jahreszeiten) macht den Wissenszuwachs erlebbar. Die Aufgabe zum Weiterdenken (Arbeitsblatt) kann mündlich nach der Fertigstellung des Arbeitsblattes diskutiert werden. Hierzu könnten auch Bilder von Weihnachtssituationen auf der Südhalbkugel zur Illustration genutzt werden. Manche Schulnetzwerke oder -rechner können auf den für das Abspielen der WEBGEO-Simulationen notwendigen Flash-Player nicht zugreifen. Die hier angebotene PowerPoint-Präsentation des Autors stellt für diesen Fall eine Alternative dar: Visualisierungen mit der Software "Home Planet" Die Software "Home Planet" von John Walker (kostenfreier Download aus dem Internet) kann zur Intensivierung der Beschäftigung mit der Entstehung der Jahreszeiten genutzt werden. Anhand einer Weltkarte wird mit der Darstellung der Tagesbeleuchtung der Zusammenhang zwischen Rotation und Revolution der Erde sichtbar. Die Eingabe von Zeitintervallen ermöglicht Simulationen in die Vergangenheit, aber auch in die Zukunft. Extreme Jahreszeiten auf Uranus Im Gegensatz zur Erde weist die Rotationsachse des Planeten Uranus mit einem Winkel von 98 Grad eine extrem starke Neigung auf. Infolge der großen Äquatorneigung gegen die Bahnebene dauern Tag und Nacht an den Polen etwa 42 Jahre. Was wäre, wenn auf der Ede vergleichbare Bedingungen herrschen würden? Astronomen untersuchen mithilfe des Hubble Weltraumteleskops den Einfluss der Sonneneinstrahlung auf die Vorgänge in der Uranus-Atmosphäre: Hubble Discovers Dark Cloud in the Atmosphere of Uranus Informationen und Bilder auf Hubblesite.org: Das Weltraumteleskop entdeckte einen Wirbelsturm mir einer Ausdehnung von etwa der zwei Dritteln der Fläche der USA. Das Phänomen der Jahreszeiten Auf der Homepage der Görlitzer Sternfreunde finden Sie Informationen zu den Jahreszeiten auf anderen Planeten. Inklination der Planeten Auf der Website der Zentrale für Unterrichtsmedien im Internet sind die Bahndaten (Entfernung, Rotation in Inklination) der Planeten zusammengestellt.

  • Astronomie / Geographie
  • Sekundarstufe I

WebQuest im Chemie-Unterricht: Im Zweifelsfall für den Zimtstern?

Unterrichtseinheit

In diesem WebQuest setzen sich die Schülerinnen und Schüler mit Zimt und dessen Inhaltsstoff Cumarin auseinander. In der Unterrichtseinheit ist auch ein Versuch zum Nachweis von Cumarin in Zimt mittels Dünnschichtchromatografie vorgesehen.Im Dezember 2006 wurde vor dem Verzehr zu vieler Zimtsterne gewarnt, da dies eventuell zu gesundheitlichen Schädigungen führen könnte. Dies bildet den Aufhänger für die Rahmenhandlung des Zimtsterne-WebQuests. Die Firma "Schmecktgut & Co.", die Zimststerne produziert, beruft in der Vorweihnachtszeit ein Meeting ein, bei dem vier Expertengruppen (Aroma-Expertinnen und -Experten, Medizinerinnen und Mediziner, Chemikerinnen und Chemiker sowie Verbraucherschützerinnen und -schützer) ein umfassendes Bild der Situation erstellen sollen. Das WebQuest ist als Teil einer Semesterarbeit Lehramtstudierender im Rahmen eines "Neue Medien"-Seminars an der Universität Frankfurt entstanden. Die Autorinnen sind für Rückmeldungen aus der Unterrichtspraxis dankbar. Zusatzmaterialien und -informationen zu diesem und weiteren WebQuests sendet Ihnen auf Anfrage gerne Frau Silke Weiß per E-Mail zu.Das WebQuest kann von Schülerinnen und Schülern der Oberstufe (bevorzugt Leistungskurs) bearbeitet werden. Inhaltlich knüpft es an das Thema "Aldehyde" an. Die Lernenden arbeiten zunächst in Expertengruppen und informieren sich gemäß der von ihnen übernommenen Rolle (Aroma-Expertinnen und -Experten, Medizinerinnen und Mediziner, Chemikerinnen und Chemiker sowie Verbraucherschützerinnen und -schützer). Die Ergebnisse ihrer Recherchen tragen sie den Mitschülerinnen und Mitschülern vor. Daraus ergibt sich eine anschließende Diskussion, deren Ergebnis in neuer Gruppenzusammensetzung (Gruppenpuzzle) als "Verbraucherinfo" in einem Dokument zusammengefasst wird. Das Heft "Unterricht Chemie" Nr. 108 des Friedrich Verlages (November 2008) enthält einen Artikel der Autorin, in dem die fachlichen und historischen Hintergründe zu dem Zimtsterne-WebQuest ausführlich dargestellt werden. Hinweise zum Unterrichtsverlauf Technische Voraussetzungen und Hinweise zum Einsatz des WebQuests sowie zur Präsentation der Ergebnisse Fachkompetenz Die Schülerinnen und Schüler zeichnen und erläutern die Struktur des Zimtinhaltsstoffs Cumarin. legen dar, wie Cumarin auf den menschlichen Organismus wirkt. zeichnen und erläutern die Struktur des Zimtaldehyds. nennen und erklären eine Synthese-Möglichkeit von Cumarin. benennen Verwendungsmöglichkeiten für Cumarin-Derivate. Medienkompetenz Die Schülerinnen und Schüler exzerpieren und ordnen Inhalte aus Online-Dokumenten. verwenden den Computer zur Informationssuche. konzipieren ein Thesenpapier. stellen einen Vortrag, gestützt auf ein geeignetes Medium, zusammen und präsentieren ihre Ergebnisse. Sozialkompetenz Die Schülerinnen und Schüler diskutieren auf der Basis des angeeigneten Wissens einen Sachverhalt gemeinsam. bringen Argumente vor, begründen und überprüfen diese. erarbeiten in Gruppenarbeit eigenverantwortlich Inhalte, wählen diese aus und präsentieren sie gemeinsam. Technische Voraussetzungen Die WebQuest-Materialien dieser Unterrichtseinheit sind HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Für die Darstellung einer im Rahmen des WebQuests besuchten Webseite mit einer Videosequenz wird der Windows Media Player benötigt. Fachliche Voraussetzungen Der Themenbereich Aldehyde ist obligatorischer Bestandteil der Oberstufenchemie. Die Schülerinnen und Schüler sollten diese Substanzklasse schon kennen gelernt haben, bevor sie das WebQuest durchführen. Allgemeine Hinweise zur WebQuest-Methode Ausgehend von einem zentralen WebQuest-Dokument erarbeiten Schülerinnen und Schüler im Rahmen eines WebQuests mithilfe des Internets ein Wissensgebiet und präsentieren anschließend ihre Ergebnisse. Allgemeine Informationen zu dieser Methode und ihrem Einsatz im naturwissenschaftlichen Unterricht finden Sie bei Lehrer-Online. Jede Expertengruppe soll auch eine Dünnschichtchromatographie verschiedener Zimtsorten durchführen. Die detaillierte Versuchsvorschrift (siehe Download auf der Startseite der Unterrichtseinheit) können die Lernenden auch im WebQuest-Dokument abrufen. Abb. 1 zeigt ein Ergebnis. Als Proben wurden Ceylonzimt (1), Cassiazimt (2) und Cumarin (3) aufgetragen. Die linke Teilabbildung zeigt das Chromatogramm im UV-Licht (256 nm). Die rechte Teilabbildung zeigt das Ergebnis nach vorheriger Behandlung des Chromatogramms mit ethanolischer Kaliumhydroxid-Lösung im UV-Licht (366 nm). Informationen und Materialien zum Thema Dünnschichtchromatographie finden Sie auch in dem folgenden Beitrag: Vortrag und Handout Mithilfe der Quellen soll ein Vortrag erarbeitet werden, der die wichtigsten Informationen zu den jeweiligen Schwerpunktthemen der Expertengruppen enthält. Welche Medien zur Unterstützung des Vortrags verwendet werden, soll gruppenintern abgesprochen werden. Der Vortrag soll die Dauer von zehn Minuten nicht überschreiten! Vortragsbegleitend soll von jeder Gruppe ein Handout vorbereitet und verteilt werden, das die wichtigsten Informationen zusammenfasst. Diskussion Nachdem alle Vorträge gehalten wurden, soll in einer Diskussionsrunde unter Berücksichtigung der Ergebnisse der Gruppenarbeit eine Entscheidung für oder gegen die Produktion von Zimtgebäck in der Firma "SchmecktGut & Co." getroffen werden. Verbraucherinformation Abschließend soll das Ergebnis der Diskussion in einer Verbraucherinformation zusammengefasst werden. Der ein bis zwei Seiten lange Text wird in fünf Gruppen verfasst (etwa vier Personen je Gruppe). Die Gruppen werden so zusammengesetzt, dass in jeder Gruppe eine Vertreterin oder ein Vertreter aus jeder der vier Expertengruppen arbeitet. Arbeitsteilige Gruppenarbeit In der ersten Unterrichtsphase werden die vier Expertengruppen gebildet, die sich mit den jeweiligen Schwerpunkten beschäftigen. Die Zuordnung der Schülerinnen und Schüler zu den Gruppen erfolgt per Los. Aroma-Expertinnen und Experten Die Lernenden dieser Gruppe sollen ihre Mitschülerinnen und Mitschüler über Definition und Eigenschaften von Aromastoffen und Gewürzen informieren. Was verleiht Aromastoffen ihren Duft und Gewürzen ihren Geschmack? Aus welchen Verbindungsklassen kommen diese Stoffe hauptsächlich? Chemikerinnen und Chemiker Diese Gruppe soll die Struktur und die chemischen Eigenschaften des Cumarins erläutern. Wie wird natürliches Cumarin in Pflanzen gebildet? Von welcher Verbindungsklasse leiten sich die Cumarine ab? Viele weitere Fragen sind in diesem Kontext möglich. Medizinerinnen und Mediziner Die Medizinergruppe soll darüber informieren, wie und wo Cumarin im menschlichen Körper wirkt. Welche potentiellen Gefahren bestehen für den Organismus? Mit welchen Stoffen steht Cumarin im Körper in Wechselwirkung? Wozu werden Cumarin-Derivate in der Medizin verwendet? Verbraucherschützerinnen und -schützer Die Verbraucherschützenden interessiert vor allem die Frage, wie Politik und Wirtschaft mit dem Problem "Cumarin in Zimt" zum Schutz der Konsumentinnen und Konsumenten umgehen sollten. Selbstgesteuertes Arbeiten Die Arbeit mit dem WebQuest erfolgt in den Schülergruppen eigenständig und selbstgesteuert. Der Lehrkraft kommt die Rolle eines Lernbeobachters zu. Ergänzende Materialien Für ihre jeweiligen Forschungsgebiete stehen den Schülerinnen und Schülern im Quellenbereich des WebQuests ausgewählte Links zur Verfügung. Darüber hinaus ist es wünschenswert, wenn die Lernenden selbstständig in der Schul- oder Stadtbibliothek weitere Materialien beschaffen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Hybridmotoren – das Beste aus beiden Welten

Unterrichtseinheit

In dieser Unterrichtseinheit für die Sekundarstufe I für den Physikunterricht setzen sich Lernende mit den Besonderheiten des Hybridantriebs auseinander. Von unterschiedlichen Antriebsarten und deren Funktionsweise über verschiedene Arten der Energieumwandlung und Energieerhaltung lernen die Schülerinnen und Schüler physikalische Konzepte mit Sachbezug zum Kfz-Gewerbe kennen. Was bedeutet es, Vorteile aus zwei Motorenarten zu kombinieren, um Vorteile für technische Entwicklungen zu erzielen? Wie kann man verschiedene physikalische Prozesse gleichzeitig nutzen, um die Effizienz zu steigern? Mit diesen und verwandten Fragen beschäftigen sich die Schülerinnen und Schüler anhand von drei Arbeitsblättern in dieser Unterrichtseinheit. Es geht darum, sich mit dem Hybridantrieb auseinanderzusetzen und herauszufinden, warum er das Beste aus zwei Welten vereint. Ziel der Unterrichtseinheit ist es, diese Antriebsart kennenzulernen und mit anderen Antriebsarten zu vergleichen. Es ist sinnvoll, die Unterrichtseinheiten zum Verbrennungsmotor und zum Elektromotor vorzuschalten. In der ersten Stunde nähern sich die Schülerinnen und Schüler der Frage, welche beiden Antriebsarten im Hybridauto vereint sind. Sie erarbeiten, welche Technik welche Funktion erfüllt und lernen dabei, zwischen Energiespeicher und Energiewandler zu unterscheiden. Anschließend bestimmen sie anhand vorgegebener Kriterien Merkmale von Verbrenner-, Elektro-, und Hybridautos. Die Lernenden recherchieren selbstständig ein Hybridmodell, überprüfen die erarbeiteten Merkmale des Hybridfahrzeugs und nehmen eine Einordnung und Unterteilung vor. Darauf aufbauend lernen sie den Aufbau und die Funktionsweise eines Hybridantriebs kennen. Die Lernenden setzen sich mit den Antriebskomponenten auseinander, indem sie einen Lückentext ausfüllen. Anhand von zwei Abbildungen erarbeiten sie die Unterschiede zwischen Elektro- und Hybridantrieb. Mit diesem Wissen erarbeiten die Lernenden anhand einer Animation zum Energiefluss eines Hybridautos die Vorgänge in den verschiedenen Betriebsphasen. Sie erarbeiten, welcher Motor in welcher Betriebsphase zum Einsatz kommt und warum und wie die Energieumwandlung funktioniert. Optional wird eine Zusatzaufgabe angeboten. Die Lernenden werden aufgefordert, die Infrastruktur für Elektro- und Hybridfahrzeuge aktiv wahrzunehmen. Dazu recherchieren sie in ihrem schulischen Umfeld Tankstellen, Ladesäulen und Werkstätten, die auf Elektro- und Hybridfahrzeuge spezialisiert sind und lernen verschiedene Recherchemöglichkeiten kennen. Die Lernenden vertiefen zudem ihr erworbenes Wissen über Energieumwandlung und Energieerhaltung. Dazu lesen sie einen kurzen Informationstext über die physikalischen Grundlagen, die verschiedenen Energieformen und die Energieumwandlung in einem Hybridauto. Das erworbene Wissen fassen sie zusammen, indem sie Beispiele zur Energieumwandlung sammeln. Die Schülerinnen und Schüler lernen die Energierückgewinnung durch Rekuperation kennen und erarbeiten die Funktionsweise anhand eines Videos, das den Vorgang zielgruppengerecht veranschaulicht. Es folgt ein Quiz zum Hybridantrieb, das die wichtigsten Inhalte spielerisch abfragt. Das Quiz kann in Kahoot erstellt werden, um den Spaßfaktor, die Motivation und die Interaktivität zu erhöhen. Die Einheit endet mit einem Rollenspiel, in dem die Lernenden ein Beratungsgespräch simulieren. Indem die Lernenden einem fiktiven Kunden/einer fiktiven Kundin die Funktionsweise des Hybridfahrzeugs, den Unterschied zwischen den Antriebsarten und den Vergleich zum Elektroauto erklären und die Vor- und Nachteile des Hybrids erläutern, übertragen sie das erworbene Wissen auf eine konkrete Situation. Die Aufgabe verdeutlicht das vielfältige Wissen, das für ein solches Beratungsgespräch im Kfz-Gewerbe erforderlich ist. Die Reflexion des Gelernten, der Unsicherheiten und Herausforderungen während des Rollenspiels kann als Ausgangspunkt für die Wiederholung und Vertiefung der Inhalte mit der Lerngruppe dienen. Verschiedene Autos mit unterschiedlichen Antriebsarten sehen die Schülerinnen und Schüler jeden Tag, beispielsweise auf dem Weg zur Schule. Dabei nehmen sie von außen oft keine offensichtlichen Unterschiede wahr. Die Unterrichtseinheit zum Hybridantrieb ist darauf ausgelegt, dieses alltägliche Phänomen zu durchleuchten und den Lernenden ein tiefergehendes Verständnis für die Antriebsart (Hybrid) zu vermitteln. Vor dieser Unterrichtseinheit sollten die Grundlagen des Verbrennungsmotors und des Elektromotors sowie deren Funktionsweise und Aufbau behandelt worden sein. Sie richtet sich an Lernende, die ein grundlegendes Verständnis dieser Antriebsarten mitbringen. Von Vorteil ist ebenfalls Grundlagenwissen über Energiearten, Energieumwandlung und Energiespeicherung. Diese Vorkenntnisse bilden die Basis für das Verständnis der Vorteile eines Hybridantriebs, der als Synthese der besten Eigenschaften beider Welten gilt. Um die komplexen Vorgänge des Hybridantriebs verständlich zu machen, wurden die Inhalte didaktisch reduziert aufbereitet. Beispielsweise wurden lediglich die wesentlichen Energiewandlungsprozesse eingeführt. Hierbei spielen vor allem die Begriffe "mechanische", "elektrische" und "chemische" Energie eine zentrale Rolle. Unterkategorien wie "kinetische Energie" und "potenzielle Energie" werden zwar erwähnt, aber nur oberflächlich behandelt, insbesondere die Lageenergie (potenzielle Energie) wird nicht detailliert vertieft. Komplexe Vorgänge werden stets durch eine Abbildung, eine Animation oder ein Video veranschaulicht, um das Thema auf verschiedenen Wahrnehmungsebenen zugänglich zu machen und das Verständnis zu unterstützen. Differenzierte Aufgabenstellungen mit variierenden Schwierigkeitsgraden ermöglichen es allen Schülerinnen und Schülern, die Inhalte auf ihrem individuellen Niveau zu erschließen. Hilfestellungen wie Tipp-Boxen und veranschaulichende Grafiken unterstützen dabei das Lernen und Verstehen, während Wort-Kästen das Leseverständnis fördern und bei der Erschließung unbekannter Begriffe helfen. Die Unterrichtseinheit bedient sich einer Vielfalt an Medienformaten wie Videos, interaktiven Karten und Texten mit Vorlesefunktion, um unterschiedliche Lerntypen anzusprechen. Diese multimediale Herangehensweise ermöglicht es den Lernenden, die Informationen auf vielfältige Weise aufzunehmen und zu verarbeiten. Sie fördert individuelles Lernen und eine vertiefte Auseinandersetzung mit den Lehrinhalten. Ein Schwerpunkt der Unterrichtseinheit ist das forschend-entdeckende Lernen. Neben der Vermittlung theoretischer Grundlagen bieten Erkundungsaufgaben direkte Anknüpfungspunkte an die Lebenswelt der Schülerinnen und Schüler. Die Erforschung der Infrastruktur für Hybridfahrzeuge in ihrer eigenen Region schafft einen konkreten Realitätsbezug. Durch den konkreten Bezug zum Kfz-Gewerbe wird ein Bewusstsein für die eigene Umwelt geschaffen. Die praxisnahen Aufgaben stärken die Selbstständigkeit und das kritische Denken der Lernenden. Die Unterrichtseinheit bietet zahlreiche gesellschaftswissenschaftliche Bezüge. Die Analyse des Schadstoffausstoßes verschiedener Fahrzeugtypen ermöglicht Diskussionen über aktuelle Gesetzgebungen, den Ausbau der Infrastruktur und Bemühungen zur Schadstoffreduktion im Kfz-Gewerbe. Eine vertiefende Einheit zur Nachhaltigkeit im Verkehrssektor kann fachübergreifende Zusammenhänge verdeutlichen. Durch Gruppen- und Paararbeit wird die Zusammenarbeit unter den Schülerinnen und Schülern gefördert. Sie können ihr Wissen austauschen, sich gegenseitig unterstützen und gemeinsam Aufgaben erarbeiten. Diese kooperativen Lernformen stärken soziale Kompetenzen und fördern die Teamarbeit der Lerngruppe. Ein abschließendes Rollenspiel stellt einen praktischen Anwendungsbezug her, indem die Lernenden als Beraterinnen und Berater in einem fiktiven Beratungsgespräch die Funktionsweise und Vorteile eines Hybridfahrzeugs erläutern. Die Reflexion über ihre Erfahrungen während des Rollenspiels dient als Ausgangspunkt für eine vertiefte Wiederholung und Festigung der erlernten Inhalte. Fachkompetenz Die Schülerinnen und Schüler lernen Aufbau und Funktionsweise eines Hybridantriebs kennen. unterscheiden zwischen Energiespeichern und Energiewandlern. verstehen, warum Hybridmotoren effizient sind. lernen die verschiedenen Arten der Energieumwandlung mit Sachbezug zum Hybridauto kennen. beziehen die verschiedenen Energiearten (elektrische, chemische und thermische Energie) auf den Energiefluss und die Energieumwandlung im Hybridfahrzeug. lernen die Rekuperation im Zusammenhang mit dem Elektroantrieb kennen. vergleichen die verschiedenen Antriebsarten (Verbrennungsmotor, Elektroantrieb, Hybridantrieb) hinsichtlich der physikalischen Vorgänge. Medienkompetenz Die Schülerinnen und Schüler gewinnen Informationen aus verschiedenen Medien wie Text, Video, Webseiten und interaktiven Grafiken. recherchieren selbstständig im Internet nach genannten Kriterien und Informationen und lernen, die recherchierten Informationen zu selektieren. lernen, recherchierte Informationen zu präsentieren. Sozialkompetenz Die Schülerinnen und Schüler hören zu und erkennen relevante Informationen zu einer bestimmten Fragestellung. arbeiten kooperativ in Zweiergruppen und in Kleingruppen. führen eine Pro-und-Contra-Diskussion und lernen, eigene Standpunkte zu vertreten sowie fremde Standpunkte zu akzeptieren. übertragen die gesammelten Informationen in ein Rollenspiel und lernen, Informationen zielgruppengerecht zu vermitteln. setzen sich im Zusammenhang mit dem Thema aktiv mit ihrer Umgebung auseinander.

  • Physik
  • Sekundarstufe I

Herstellung und Untersuchung von Nano-Goldpartikeln

Unterrichtseinheit

Lernende stellen im Schülerexperiment Nano-Goldpartikel her und erkennen die Farbe der Goldsole als größenabhängige Eigenschaft der Nanopartikel. Interaktive Lernumgebungen visualisieren die Reaktionen auf der Teilchenebene und ermöglichen die Untersuchung der Nanopartikel im virtuellen Elektronenmikroskop.Der erste Teil der fächerübergreifenden Unterrichtseinheit (Chemie und Physik) findet im Schul- oder Schülerlabor statt. Die Lernenden präparieren mithilfe einer Versuchsvorschrift unterschiedlich große Gold-Nanopartikel in Dispersion (Kolloidchemie). Die verschiedenen Größen der Goldpartikel werden schon bei der Präparation an der unterschiedlichen Farbe erkennbar. Der zweite Teil der Unterrichtseinheit findet im Rechnerraum statt. Die Schülerinnen und Schüler wiederholen die Präparation der Gold-Nanopartikel noch einmal im Rahmen eines virtuellen Experiments und können dabei beobachten, was auf der Teilchenebene passiert. Mithilfe eines interaktiven Lernmoduls lernen sie zudem Schritt-für-Schritt die Funktion und Betriebsweise eines Elektronenmikroskops kennen: Sie können ein virtuelles Transmissionselektronenmikroskop bedienen, die (virtuell und/oder real) hergestellten Partikel anschauen und sich davon überzeugen, dass den verschiedenfarbigen Goldsolen unterschiedlich große Nanopartikel zugrunde liegen. Kombination von Realexperiment und Computereinsatz Die Nanotechnologie und speziell die chemische Nanotechnologie bieten Schülerinnen und Schülern keinen unmittelbaren Zugang. Nanoplättchen, Nanostäbchen oder Nanopartikel lassen sich im Schülerexperiment zwar leicht herstellen, zum Beispiel durch Fällungen, jedoch lichtmikroskopisch nicht sichtbar machen. Ein Elektronenmikroskop wäre dafür erforderlich, aber eine solche Hochtechnologie-Apparatur ist für Schule und Schülerlabor viel zu teuer und zu empfindlich. Aus diesem Dilemma heraus entstand die vorliegende Unterrichtseinheit: Für die Präparation von Nanopartikeln sollen die Schülerinnen und Schüler vorzugsweise selbstständig experimentieren und damit die Faszination des Experiments erleben. Die Untersuchung der Produkte im virtuellen Elektronenmikroskop einer interaktiven Lernumgebung erfolgt nach dem Realexperiment im Rechnerraum der Schule. Eine Alternative: Außerschulische Lernorte Falls die räumlichen Möglichkeiten für das Schülerexperiment in der Schule nicht gegeben sind, kann dieser Teil der Unterrichtseinheit in einem außerschulischen Schülerlabor, zum Beispiel an einer Universität, stattfinden. Alternativ kann die Lehrperson den Versuch als Demonstrationsexperiment vorführen. In jedem Fall können die Schülerinnen und Schüler den Versuch am Rechner multimedial durchführen beziehungsweise wiederholen. Teil 1: Kolloidale Systeme Nach der (optionalen) Herstellung von Nano-Goldpartikeln werden die Vorgänge auf der Teilchenebene mithilfe einer Lernumgebung visualisiert. Teil 2: Das Transmissionselektronenmikroskop (TEM) Schülerinnen und Schüler lernen die Funktionsweise eines Elektronenmikroskops kennen und untersuchen virtuell die Größe von Nano-Goldpartikeln. Materialien Hier finden Sie Hinweise zum Einsatz der klassischen Arbeitsblätter und der Lernumgebungen sowie detaillierte Handreichungen zu den virtuellen Experimenten. Fachkompetenz - kolloidale Systeme Die Schülerinnen und Schüler sollen die Begriffe Kolloid und Nanopartikel und ihren Zusammenhang kennen. die Dimension nanoskaliger Materialien kennen und zu bekannten Materialien anderer Dimensionen in Beziehung setzen können. den Begriff kolloidale Dispersion kennen und kolloidale Dispersionen in Zweistoffsystemen je nach Aggregatzustand der dispersen Phase und des Dispersionsmittels klassifizieren können. Methoden zur Unterscheidung zwischen "echten" Lösungen, kolloidalen Dispersionen und grobdispersen Systemen kennen. die Synthese von Goldkolloiden durchführen. wissen, dass die optischen Eigenschaften der hergestellten Goldkolloide im Zusammenhang mit der Größe der Kolloide stehen. den Begriff Koagulation/Aggregation kennen. Fachkompetenz - Transmissionselektronenmikroskop Die Schülerinnen und Schüler sollen das TEM als Werkzeug zur Visualisierung von Nanopartikeln kennen. begründen, warum Nanopartikel nicht mithilfe eines Lichtmikroskops beobachtet werden können. den Aufbau und den Strahlengang des Elektronenstrahls im TEM kennen. wissen, warum im Vakuum gearbeitet werden muss. die Bilderzeugung im TEM als Wechselwirkung zwischen Elektronenstrahl und Probe kennen. elastisch und unelastisch gestreute Elektronen als Ursache für die verschiedenen Kontraste im elektronenmikroskopischen Bild kennen. Thema Herstellung und Untersuchung von Nano-Goldpartikeln Autoren Katrin Prete, Dr. Walter Zehren, Prof. Dr. Rolf Hempelmann Fächer Chemie, Physik Zielgruppe ab Klasse 9 Technische Voraussetzungen Möglichkeit für chemisches Experimentieren (optional); Rechner in ausreichender Anzahl (Partnerarbeit), mindestens ein Präsentationsrechner mit Beamer, Flash-Player 9 Dr. Walter Zehren ist Studienrat an der Saarbrücker Marienschule und teilabgeordnet an die Universität des Saarlandes. Dort leitet er das Schülerlabor NanoBioLab und hat zum Thema Forschendes Experimentieren im Schülerlabor promoviert. Rolf Hempelmann ist Professor für Physikalische Chemie und Geschäftsführender Leiter des Transferzentrums Nano-Elektrochemie an der Universität des Saarlandes. Er ist Betreiber des Schülerlabors NanoBioLab und Sprecher des Saarländischen Schülerlaborverbunds SaarLab. Umrechnung von Maßeinheiten Die Schülerinnen und Schüler müssen in der Lage sein, verschiedene Maßeinheiten (Meter, Millimeter, Nanometer) ineinander umzurechnen. Diese Kompetenzen werden im Fach Mathematik in Klasse 5 erworben. Aggregatzustände Die Lernenden benötigen Kenntnisse über Aggregatzustände und über die verschiedenen Typen chemischer Stoffgemische. Diese Kompetenzen werden im Fach Chemie in Klasse 8 erworben. Redox-Reaktionen Zum Verständnis der Synthese der Gold-Nanopartikel müssen die Schülerinnen und Schüler den erweiterten Redox-Begriff kennen: Redox-Reaktionen müssen als Elektronenübertragungsreaktionen bekannt sein. Dies wird im Fach Chemie in Klasse 9 thematisiert. Der erste Teil der Unterrichtseinheit behandelt einige Aspekte der Kolloid- und Nanochemie und besteht aus einem Experimentalteil und einer interaktiven Lernumgebung zur Herstellung von Goldsol, also einer Suspension von Gold-Nanopartikeln. Gold- und auch Silber-Nanopartikel zeigen einen interessanten Farbeffekt im sichtbaren Spektralbereich: Die resonante Anregung von Oberflächenplasmonen führt dazu, dass sich die Farbe des Metalls in Abhängigkeit von der Größe und Form der Nanoteilchen stark verändert (Abb. 1). Zum Beispiel sehen Suspensionen von kleinen Gold-Nanopartikeln in Wasser rot aus (im Gegensatz zu dem gelblichen Schimmer, den Gold normalerweise zeigt). Aggregiert man diese Partikel teilweise, so ändert sich die Farbe zu dunkelblau bis violett. Einstieg und Schülerexperiment Der erste Teil der Unterrichtseinheit gliedert sich in zwei Abschnitte. Zunächst erfolgt eine Einführung in das Thema kolloidale Systeme. Durch geeignete Aufgabenstellungen wird den Schülerinnen und Schülern zunächst die Dimension, also der Größenbereich, der Nanochemie nahe gebracht, und es werden die Begriffe Nanopartikel beziehungsweise Kolloid geklärt. Danach folgt eine Reihe von Experimenten, welche die Schülerinnen und Schüler mit den bis zur Klasse 9 erworbenen Vorkenntnissen in Eigenarbeit durchführen können. Der Einfluss des Zerteilungsgrades (des Dispersionsgrades) auf die Eigenschaften von Stoffen und die Unterscheidung zwischen echten Lösungen und kolloidalen Dispersionen können im Experiment selber entdeckt werden. Zum Abschluss werden Goldkolloide verschiedener Größen hergestellt. Die Herstellung von Goldkolloiden ist gleichzeitig die Überleitung zum zweiten Abschnitt des ersten Teils der Unterrichtseinheit, der Multimedia-Anwendung. Virtuelles Experiment, Visualisierung der Teilchenebene Die interaktive Lernumgebung zeigt zunächst noch einmal den zuvor durchgeführten Versuch zur Herstellung von Goldkolloiden. Dabei werden die Schritte der Reaktion auf der Teilchenebene visualisiert (Abb. 2, Platzhalter bitte anklicken), und den Schülerinnen und Schülern wird schließlich die unterschiedliche Farbe der Goldsole erklärt (Abb. 3). An die Animation zum Versuch schließt sich eine Wiederholungsphase an, in der die Lernenden interaktiv den Zusammenhang zwischen Partikelgröße und Farbe der Goldsole bearbeiten können (Abb. 4). Weiter geht es mit einer Übungsphase, in der Schülerinnen und Schüler das Gelernte anwenden. Methodenvielfalt Im ersten Teil der Unterrichtseinheit wird also mit verschiedenen Medien gearbeitet: Arbeitsblätter, Schülerexperimente und Multimedia-Anwendungen. Durch diese Methodenvielfalt wird auf die Heterogenität der Lernvoraussetzungen und der Interessen der Schülerinnen und Schüler eingegangen, wodurch möglichst viele Lernende erreicht und für die Beschäftigung mit dem Nanobereich motiviert werden sollen. Die einzelnen Schritte und Inhalte des gesamten virtuellen Experiments werden in einer Handreichung (tutorial_goldsole_virtuelles_experiment.pdf) ausführlich beschrieben und mit zahlreichen Screenshots dargestellt. Glühelektrischen Effekt, Kondensator Die Schülerinnen und Schüler müssen Kenntnisse über den Glühelektrischen Effekt und das Prinzip eines Kondensators besitzen (Physik, Oberstufen-Grundkurs). Linke-Hand-Regel Die Lernenden müssen in der Lage sein, mithilfe der Linke-Hand-Regel die magnetischen Feldrichtungen einer Spule zu bestimmen (Physik, Klasse 9). Lorentzkraft Die Schülerinnen und Schüler müssen Kenntnisse über die Bewegung von elektrischen Ladungsträgern im magnetischen Feld besitzen. Sie müssen die Richtung der Kraftwirkung der Lorentzkraft mit der Drei-Finger-Regel bestimmen können (Physik, Klasse 9). In einem interaktiven Lernmodul werden der Aufbau und die Funktionsweise des TEM Schritt-für-Schritt erläutert. Damit wird eine wichtige Methode der Nanotechnologie eingeführt. Sie erlaubt es, die zuvor im (realen und/oder) virtuellen Experiment hergestellten Nanopartikel zu visualisieren. Ein Elektronenmikroskop ist ein Mikroskop, welches das Innere oder die Oberfläche einer Probe mithilfe von Elektronen abbilden kann. Da schnelle Elektronen eine sehr viel kleinere Wellenlänge als sichtbares Licht haben und die Auflösung eines Mikroskops durch die Wellenlänge begrenzt ist, kann mit einem Elektronenmikroskop eine deutlich höhere Auflösung (etwa 1 Nanometer; mit einem einem Höchstleistungs-TEM bis zu 0,1 Nanometer) erreicht werden als mit einem Lichtmikroskop (typischerweise etwa 1 Mikrometer, im Extremfall bis zu 200 Nanometer). Die einzelnen Seiten, Inhalte und Funktionen der Lernumgebung zum Transmissionselektronenmikroskop (TEM) werden in einer Handreichung (tutorial_goldsole_TEM.pdf) ausführlich beschrieben und mit Screenshots dargestellt. Tutorielles System zur Funktion des TEM Die Lernumgebung erlaubt es, die hergestellten Gold-Nanopartikel "virtuell" zu untersuchen. Die Schülerinnen und Schüler erfahren, wie die zuvor bereits verwendeten TEM Aufnahmen (vergleiche Abb. 4 ) entstehen. Dabei kommt eine Multimedia-Anwendung im Stil eines tutoriellen Systems zum Einsatz. Auf der Startseite wird das Thema dargestellt, und den Lernenden wird ein motivierender Einstieg in das Thema geboten. Außerdem wird auf dieser Seite ein Einblick gegeben, welche Lerninhalte nachfolgend bearbeitet werden. Informationsseiten An die Startseite knüpfen dann Informationsseiten an, auf denen den Schülerinnen und Schülern Lerninhalte durch Texte, Animationen oder Bilder präsentiert werden, die in individueller Geschwindigkeit bearbeitet werden können (Abb. 5, Platzhalter bitte anklicken). Sie können dabei auch zu vorangegangenen Lerninhalten zurückzuspringen, um nicht Verstandenes zu wiederholen. Übungen und Ergebnissicherung Die Informationsseiten bilden Themenblöcke oder "Bausteine". Nach jeweils einem Baustein schließen sich Übungsseiten an, mit deren Hilfe das Gelernte überprüft und die Lernergebnisse gefestigt werden (Abb. 6). Dabei kommen in der Regel recht kurz gehaltene Multiple-Choice-Aufgaben, Lückentexte oder Wortpuzzles zum Einsatz, an einigen Stellen allerdings auch komplexere Aufgabenstellungen. Die Übungen bieten auch die Möglichkeit zur Differenzierung - leistungsstärkere Schülerinnen und Schüler, die schneller mit dem Programm fertig werden, können zusätzliche Aufgaben lösen. Den Abschluss des Programms bildet eine Lückentextübung zum TEM. Anwendungssimulation Im Anschluss an das tutorielle System folgt eine kleine Simulation. Hier haben die Schülerinnen und Schüler ein virtuelles TEM vor sich, in dem sie die Goldsole virtuell untersuchen können. Hierbei handelt es sich um eine Anwendungssimulation. Die Lernenden sollen die Handhabung des TEM prinzipiell verstehen. Dabei führen sie dieselben "Handgriffe" aus, die sie auch im Umgang mit einem realen TEM ausführen müssten (Abb. 7). Bei Fehlern - wenn zum Beispiel vergessen wird, in der Probenkammer ein Vakuum anzulegen - gibt das Programm eine entsprechende Rückmeldung ("Vorsicht, überprüfe dein Vorgehen"). 1. Partikel mit Potenzial: Nanoteilchen und Kolloide Das erste Arbeitsblatt (1_nanoteilchen_groessenvergleiche.pdf) führt die Begriffe Nanoteilchen und Kolloide ein. Der Text beginnt mit den Begriffsbestimmungen. Daran knüpfen sich fünf Aufgaben an, die den Schülerinnen und Schülern helfen sollen, sich die Dimensionen der Nanowelt in Relation zur Lebenswelt zu veranschaulichen: Die Lernenden sollen die Dimension des Nanometers durch Vergleiche mit Gegenständen aus ihrem alltäglichen Erfahrungsbereich erfassen. Nur durch diese Vergleiche ist es möglich, die winzigen Dimensionen zu verdeutlichen. Unbekanntes wird auf Bekanntes zurückgeführt und kann besser gelernt und verstanden werden. Aufgabe 3 ermöglicht es den Lernenden mit einem kleinen Experiment, sich selbst die Größe zu veranschaulichen und die Ergebnisse direkt zu sehen. Die Dimension des Nanometers wird im Experiment natürlich nicht erreicht, dennoch wird sie erlebbar und besser vorstellbar. 2. Eigenschaften von Nanopartikeln und Kolloiden Das zweite Arbeitsblatt (2_eigenschaften_nanoteilchen_kolloide.pdf) soll die Veränderung der physikalischen, chemischen und biologischen Eigenschaften eines Stoffs in Abhängigkeit von seinem Zerteilungsgrad veranschaulichen. Die Verkleinerung eines Stoffes in nanoskalige Dimensionen führt zu völlig neuen Werkstoffeigenschaften. In der ersten Aufgabe wird zunächst veranschaulicht, dass mit zunehmendem Zerteilungsgrad die Oberfläche eines Stoffes wächst und somit eine viel größere Oberfläche reagieren kann. Die Auswirkung einer größeren Oberfläche auf die Reaktionsgeschwindigkeit kennen die Schülerinnen und Schüler aus Standard-Experimenten des Chemieunterrichts, wie zum Beispiel der Verbrennung eines Eisennagels gegenüber der Verbrennung von Stahlwolle. In einem Versuch sollen die Lernenden nun entdecken, dass sich mit zunehmendem Zerteilungsgrad auch physikalische Eigenschaften verändern, wie zum Beispiel das magnetische Verhalten eines Stoffs. Die Reaktionsgleichung wird auf den Arbeitsblättern angegeben, da sie mit dem den Schülerinnen und Schülern zu Verfügung stehenden Vorwissen nicht aufgestellt werden kann, von diesen aber zum Verständnis der Reaktion benötigt wird. Zusätzlich wird der Begriff des Hydrats kurz vorgestellt, da als Ausgangsstoffe Eisen(III)-chlorid-Hexahydrat und Eisen(II)-Chlorid-Tetrahydrat eingesetzt werden und der Hydrat-Begriff aus dem Unterricht in dieser Form nicht geläufig ist. 3. Unterscheidung zwischen echten und kolloidalen Dispersionen Mit dem dritten Arbeitsblatt (3_dispersionen.pdf) lernen die Schülerinnen und Schüler den Tyndall-Effekt als eine Möglichkeit kennen, zwischen echten Lösungen und kolloidalen Systemen zu unterscheiden. In einem Versuch werden verschiedene Lösungen beziehungsweise Dispersionen mithilfe des Tyndall-Effektes identifiziert. Mit der Aufgabe, für die Dispersionen das Dispersionsmittel und die disperse Phase anzugeben, wird an das Vorwissen der Lernenden angeknüpft, da die Einteilung von Stoffgemischen bereits in Klasse 8 erlernt wird. 4. Herstellung von Goldkolloiden Das vierte Arbeitsblatt (4_goldkolloide.pdf) beschreibt einen Versuch zur Herstellung von Gold-Nanopartikeln unterschiedlicher Größe. Zum Einstieg werden Verwendungsmöglichkeiten von Gold-Nanopartikeln aufgezeigt und hervorgehoben. Durch die Herstellung von Gold-Nanopartikeln wird mit der Farbe eine weitere spezifische Stoffeigenschaft angesprochen. Sie ändert sich mit zunehmendem Zerteilungsgrad von dem charakteristischen Goldgelb bis hin zu Rot. Hierbei handelt es sich um einen Größenquantisierungseffekt (englisch "quantum size effect"): sehr kleine Teilchen unterliegen mit abnehmender Teilchengröße zunehmend den Gesetzen der Quantenmechanik, woraus sich die Änderung der Eigenschaften von Nanopartikeln im Vergleich zu grobkristallinen Stoffen der gleichen chemischen Zusammensetzung erklärt. Die einführenden Texte dienen zur Motivation der Schülerinnen und Schüler, in einem Experiment selbst Gold-Nanopartikel herzustellen. 5. Arbeitsblatt und interaktive Lernumgebung Für die Bearbeitung der Aufgabenstellungen des fünften Arbeitsblatts (4_2_goldkolloide.pdf) kann die Flash-Lernumgebung zur Herstellung von Goldkolloiden herangezogen werden. Die Aufgabe greift auf bereits vorhandenes Wissen zurück, wie zum Beispiel den erweiterten Redox-Begriff, und fungiert auch als Ergebnissicherung für neu erlernte Inhalte. Die Fragen können nach der Arbeit mit der Lernumgebung beantwortet werden. Teilweise müssen Lerninhalte aus den vorangegangenen Arbeitsblättern angewendet werden, sodass durch zusätzliche Wiederholung eine Festigung des Gelernten gewährleistet werden kann. Einsatzmöglichkeiten Das virtuelle Experiment zur Herstellung verschiedenfarbiger Goldsole veranschaulicht die Vorgänge auf der Teilchenebene. Mit ihm wird auch erarbeitet, dass die Farbe der Goldsole von der Größe der Nano-Goldpartikel abhängig ist. Die Lernumgebung kann flexibel eingesetzt werden: Schülerexperiment und virtuelles Experiment Nach der experimentellen Herstellung von Goldsolen im Schülerversuch (im Chemielabor der Schule oder in außerschulischen Schülerlaboren) kann die Lernumgebung zur Herstellung von Goldsolen zur "virtuellen Wiederholung" und insbesondere zur Darstellung der Vorgänge auf der Teilchenebene genutzt werden. Lernende experimentieren nur "virtuell" Besteht keine Möglichkeit, den Versuch als Schülerexperiment durchzuführen, können die Lernenden die Herstellung von Goldsolen auch ausschließlich am Rechner durchführen - im Idealfall in Partnerarbeit im Computerraum der Schule. Präsentation per Beamer Alternativ oder zusätzlich zur Bearbeitung im Computerraum kann die Lehrperson die Flash-Animationen zur Unterstützung des Unterrichtsgesprächs im Fachraum per Beamer einsetzen. Die Lehrperson oder einzelne Schülerinnen und Schüler können den Prozess dann noch einmal für alle beschreiben. Einsatzmöglichkeiten Dieses Lernmodul ist für die Einzel- oder Partnerarbeit am Rechner konzipiert. Alternativ können die Animationen und interaktiven Übungen aber auch zur Unterstützung des Unterrichtsgesprächs (Beamerpräsentation) genutzt werden. Die Lernumgebung zum TEM kann natürlich auch in anderen unterrichtlichen Zusammenhängen - unabhängig von der Herstellung von Goldsolen - zum Einsatz kommen. Prete, Katrin Visualisierung von Nanopartikeln mittels TEM und STM, aufgearbeitet als eine mediengestützte Unterrichtseinheit, Wissenschaftliche Staatsexamensarbeit, Saarbrücken 2009 Zehren, Walter Forschendes Experimentieren im Schülerlabor , Dissertation, Saarbrücken 2009 Sepeur, Stefan Nanotechnologie - Grundlagen und Anwendungen, Vincentz Network, Hannover 2008 Dörfler, Hans-Dieter Grenzflächen und kolloid-disperse Systeme, Springer-Verlag, Berlin und Heidelberg 2002 Hempelmann, Rolf; Zehren, Walter; Mallmann, Matthias Nanotechnologie im Schulunterricht, NanoBioNet Newsletter II/2008, nanotechnologie aktuell 2, 88-91 (2009) Walter Zehren ist Studienrat an der Saarbrücker Marienschule und teilabgeordnet an die Universität des Saarlandes. Dort leitet er das Schülerlabor NanoBioLab und hat zum Thema Forschendes Experimentieren im Schülerlabor promoviert. Rolf Hempelmann ist Professor für Physikalische Chemie und Geschäftsführender Leiter des Transferzentrums Nano-Elektrochemie an der Universität des Saarlandes. Er ist Betreiber des Schülerlabors NanoBioLab und Sprecher des Saarländischen Schülerlaborverbunds SaarLab.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Biochemie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen, Anregungen und Arbeitsmaterial für den Unterricht zum Themenbereich Biochemie im Fach Biologie an weiterführenden Schulen. Das Angebot deckt die folgenden Themen ab: Proteine, Nukleinsäure, Fotosynthese und Nanotechnologie. Klicken Sie sich einfach mal durch! Das schöne in der Biologie ist der strenge Zusammenhang zwischen Struktur und Funktion von der Nano- bis zur Makroebene: Die Analyse dreidimensionaler Strukturen erweist sich stets als aufschlussreich und ist weit mehr als eine bloße "Bildbeschau". Franz Josef Scharfenberg vom Richard-Wagner-Gymnasium in Bayreuth hat die dreidimensionalen Ausarbeitungen von Eric Martz (University of Massachusetts, USA) zu unserem Blutfarbstoff für den Einsatz im deutschsprachigen Unterricht aufbereitet. Die dreidimensionale Darstellung der Proteinstrukturen, die mithilfe des kostenlosen Plugins Chime mit der Maus nach Belieben angefasst, gedreht und herangezoomt werden können, zeigen, was schon Thomas Mann wusste (woher eigentlich? - schließlich gelang das erste Beugungsbild eines Proteins Dorothy Hodgkin erst 1932): Proteine sind "unhaltbar verwickelt und unhaltbar kunstreich aufgebaute Eiweißmolekel" (aus "Der Zauberberg"). Es lohnt sich, einen genaueren Blick auf das Hämoglobin zu werfen. An diesem Beispiel lassen sich zahlreiche allgemeine Aspekte der Proteine und Enzyme herausarbeiten: Als oligomeres Protein bietet der Blutfarbstoff die Möglichkeit, alle Strukturhierarchien - von der Primär- bis zur Quartärstruktur - durchzuspielen. Von der Anordnung der Aminosäuren innerhalb der Untereinheiten - hydrophobe Aminosäureseitenketten an der Oberfläche, hydrophile im Inneren des Proteins - lässt sich leicht der Bogen zur thermodynamischen "driving force" des in der Primärstruktur kodierten Selbstfaltungsprozesses der Biopolymere schlagen. Hämoglobin ist zwar "nur" ein Transportprotein, seine in die Polypeptidketten eingebetteten Häm-Gruppen können jedoch - was die Architektur aktiver Zentren und die Modellierung ihrer katalytischen Aktivität betrifft - exemplarisch als prosthetische Gruppen der Enzyme betrachtet werden (schließlich wird Hämoglobin von Molekularbiologen gerne auch als "Enzym honoris causa" bezeichnet). Die auf dem Austausch einer einzigen Aminosäure basierende Sichelzellenanämie verdeutlicht stellvertretend für Erkrankungen wie Alzheimer oder BSE das Prinzip der auf Protein-Polymerisationen basierenden Erkrankungen. Das Startkapitel zeigt vier (zunehmend "abstrahierte") Darstellungsformen der Aminosäure Glycin. Diese "Struktursprachen" werden in den nachfolgenden Kapiteln wiederholt auf weitaus komplexere Strukturen angewendet. Das Glycin-Beispiel ist daher eine wichtige Einführung in die verschiedenen Darstellungsformen des gesamten Hämoglobin-Materials. Gezeigt werden die "ball and stick"-Projektion des Zwitterions (Vorsicht: Doppelbindungen werden nicht als solche dargestellt), eine raumfüllende Darstellung (Kalottenmodell; Abb. 1, Platzhalter bitte anklicken), die "stick"-Struktur sowie die "Aminosäure-Rückgrat"-Struktur (Hydroxylgruppe und Wasserstoffatome sind noch als "rudimentäre Stacheln" dargestellt). Wurden in dem vorausgegangenen Abschnitt die Darstellungsmöglichkeiten einer Aminosäure vorgestellt, werden diese hier auf ein Oligopeptid angewendet. Damit betritt man hier die Primärstruktur-Ebene. Als neue Darstellungsform wird schließlich das Polypeptidketten-Rückgrat vorgestellt (nicht zu verwechseln mit dem Aminosäure-Rückgrat). Zunächst wird die allgemeine Rückgrat-Struktur einer Aminosäure (ohne Seitenkette) dargestellt. Aus dieser Struktur wird das "allgemeingültige" Rückgrat eines Tripeptids aufgebaut. Die "anonymen" Einheiten werden durch Hinzufügen von Methylgruppen in ein Alanyl-alanin-alanin (Ala-Ala-Ala) umgewandelt. Um das ganze zunehmend komplexer zu machen, wird das Tripeptid in ein Lysyl-alanyl-alanin (Lys-Ala-Ala) und schließlich in ein Lysyl-alanyl-isoleucin (Lys-Ala-Ile) umgewandelt, bevor es zum Tetrapeptid ergänzt wird. Bis hierher folgen alle Darstellungen der "stick"-Struktur. Im Folgemodul haben die SchülerInnen die raumfüllende Darstellung des Tetrapeptids vor Augen (Abb. 2). Am Beispiel des Tetrapeptids wird nun verdeutlicht, wie die Biochemiker die Darstellung von Peptidketten abstrahieren, um bei der Strukturanalyse von Polypeptidketten aus mehreren Hundert Aminosäuren nicht "den Wald vor lauter Bäumen nicht mehr sehen zu können": In den beiden letzten Modulen wird daher die "Rückgrat"-Darstellung von Peptidketten eingeführt. Die erste Darstellung zeigt die Quartärstruktur des nativen Proteins mit farblich differenzierten Untereinheiten und den Häm-Komplexen (raumfüllende Darstellung, siehe Abb. 3). Das folgende Modul reduziert die Polypeptidketten auf ihr Rückgrat. Erst jetzt wird die Lage der Häm-Gruppen (raumfüllende Darstellung) klar erkennbar (und der Vorteil der diversen "Struktursprachen" deutlich). Lassen Sie Ihre SchülerInnen durch die Drehung des Moleküls den zentralen Hohlraum entdecken, in dem der Hämoglobin-Ligand 2,3-Diphosphoglycerat (DPG) bindet und dabei über eine Änderung der Quartärstruktur die Sauerstoff-Affinität des Hämoglobins senkt (DPG stabilisiert die Konformation der Desoxy-Form, indem es die beiden beta-Ketten über ionische Wechselwirkungen miteinander vernetzt). DPG wird vom Körper in Höhenlagen gebildet, wo ein niedriger Sauerstoff-Partialdruck herrscht, und erleichtert dort die Abgabe von Sauerstoff an das atmende Gewebe. Im den beiden Folgemodulen sind die Polypeptidketten komplett ausgeblendet. Das zweite der beiden Module stellt die Atomsorten der Hämgruppe farbkodiert dar. Die Lagebeziehungen der vier "freischwebenden" Häm-Gruppen verdeutlicht die tetraedrische Symmetrie (dreiseitige Pyramide) des Moleküls. Bei der Analyse der Symmetrie erweist sich wiederum das Anfassen und Drehen der Strukturen als hilfreich. Es folgt die vergrößerte Darstellung einer einzelnen Hämgruppe in raumfüllender Ansicht sowie eine Darstellung in der "stick"-Struktur, in der die Komplexbindung des zentralen Eisenatoms über die Stickstoffatome der Porphyrin-Struktur erkennbar wird. Die Besetzung der fünften Koordinationsstelle durch ein Histidin-Stickstoff der Polypeptidkette ist noch nicht berücksichtigt. An die sechste Koordinationsstelle wird nun molekularer Sauerstoff gebunden. Dabei ist deutlich erkennbar, dass die Achse des Sauerstoffmoleküls nicht senkrecht auf die Ebene des Porphyrin-Ringes ausgerichtet ist (Abb. 4; siehe auch Abb. 5 der Hintergrundinformation zu den Eigenschaften der prosthetischen Gruppe). Nun geht es wieder vom Kleinen zum Großen: Das oxygenierte Häm wird wieder in die Globin-Kette eingefügt, zunächst in eine Rückgrat-, dann in eine raumfüllende Darstellung. Die beiden letzten Darstellung zum Thema "Sauerstoffbindung" zeigen ein weiteres Details der Häm-Einbettung in das Globin und der Sauerstoffbindung: Die Positionierung hydrophiler Teile des Häms an der Oberfläche und die Ausrichtung hydrophober Bereiche zum Proteininneren. Weiterhin kommt die Besetzung der fünften Koordinationsstelle durch das sogenannte "proximale Histidin" sowie die Lage des "distalen Histidins" über dem gebundenen Sauerstoff zur Darstellung. Mehr zur Bedeutung des distalen Histidins liefert der folgende Fachliche Kommentar. Die Chime-Darstellungen heben einige Strukturmerkmale des Hämoglobins hervor, die sich zu den biochemischen Funktionen der Proteins sehr schön in Beziehung setzen lassen, auf die die vorgestellte Applikation jedoch nicht explizit hinweist. Auf der folgenden Seite finden Sie die wichtigsten Infos zu den Hämoglobin-Eigenschaften, die sich in diesen Strukturdetails abbilden: Die Proteinumgebung definiert die katalytischen Eigenschaften Warum benutzt die Natur nicht die "nackten" Hämgruppen für die Sauerstofflogistik, sondern wickelt sie in komplexe Poypeptidketten ein? Zum einen sind es die vielfältigen allosterischen Wechselwirkungen der Globine mit diversen Liganden, über die die Eigenschaften der Sauerstoffbindung durch das Häm sinnreich modelliert und den jeweiligen biologischen Erfordernissen perfekt angepasst werden - von der DPG-Bindung (siehe oben) bis hin zur Kooperativität der Sauerstoffbindung an die vier Untereinheiten des Hämoglobins. Die wichtigsten dieser "Stellschrauben" werden in Schulbüchern ausreichend thematisiert. Unberücksichtigt bleibt jedoch meist ein viel allgemeineres und enorm wichtiges Grundprinzip der Molekularbiologie und Biochemie: Die katalytischen Eigenschaften jeder prosthetischen Gruppe und jeden aktiven Zentrums werden maßgeblich von der Proteinumgebung geprägt, in die sie eingebettet sind. Man vergegenwärtige sich, dass das Häm, das im Hämoglobin zur reversiblen Sauerstoffbindung eingesetzt wird, im Atmungskettenenzym Cytochrom c als Elektronenüberträger verwendet wird! Wie die Globinkette die speziellen Bindungseigenschaften des Häms beeinflusst, wird nachfolgend an zwei Struktureigenschaften hervorgehoben, die in den Chime-Darstellungen sehr gut deutlich werden. Erst das Globin gewährleistet eine reversible Häm-Oxygenierung Frei lösliche Hämgruppen mit einem komplexierten zweiwertigem Eisen-Ion könnten Sauerstoff nur für einen sehr kurzen Moment binden. Der Sauerstoff würde das zweiwertige Eisen schnell zu dreiwertigem Eisen oxidieren, das keinen Sauerstoff mehr binden kann. Ein Zwischenprodukt dieser Oxidation ist ein "Häm-Sauerstoff-Häm-Sandwich". Die Polypeptid-"Verpackung" der Hämgruppen verhindert dies und gewährleistet damit die Verwendbarkeit der Hämgruppen als Sauerstofftransporteure im Blut. Das letzte Modul zum Thema "Hämoglobin & Häm" verdeutlicht die Lage des Häms in seiner Bindungstasche, die die Bildung von Häm-Dimeren ausschließt. Kohlenmonoxid hat eine hohe Häm-Affinität Kohlenmonoxid ist für uns ein toxisches Gas, weil es die Sauerstoffbindungsstellen des Hämoglobins vergiftet: Seine Affinität zum Hämoglobin-Eisen übertrifft die des Sauerstoffs um das 200-fache. Aus diesem Grund kann schon ein niedriger Kohlenmonoxid-Partialdruck tödliche Folgen haben. Am "nackten" Häm sähe der Vergleich noch ungünstiger aus: Zu diesem hat Kohlenmonoxid eine 25.000 mal höhere Affinität als Sauerstoff. Eine Eigenschaft, die das Pigment als Sauerstoffträger völlig unbrauchbar machen würde, denn Kohlenmonoxid ist nicht nur ein Industriebgas, sondern wird auch vom Organismus selbst erzeugt (es entsteht bei diversen katabolen Stoffwechselreakrtionen und dient auch als Botenstoff, zum Beispiel als bei der Regulation der glatten Gefäßmuskulatur). Unter normalen Umständen ist etwa ein Prozent unseres Hämoglobins mit endogen produziertem Kohlenmonoxid blockiert. Sterische Hinderung der Kohlenmonoxid-Bindung Ohne die Reduktion der Kohlenmonoxid-Affinität um das 125-fache könnte wir mit unserem Blutfarbstoff kaum leben. Aber wie schafft die Polpeptidkette dieses Kunststück? Die Natur greift an der Geometrie der Komplexierung von Sauerstoff und Kohlenmonoxid an. Während die Achse des Sauerstoffmoleküls bei der Bindung an das Eisenatom einen 120 Grad-Winkel zur Häm-Ebene bildet, steht die Achse des Kohlenmonoxid-Moleküls - bei freiem Zugang zum Häm - exakt senkrecht auf dessen Ebene. Diesen optimalen Bindungswinkel verbaut die Polypeptidkette dem Kohlenmonoxid, indem es ihm in der Häm-Bindungstasche des Globins einen sperrigen Histidin-Rest in den Weg stellt (sterische Hinderung), der den Sauerstoff nicht weiter stört. Die Position des distalen Histidins wird in dem vorletzten Modul zum Thema "Hämoglobin & Häm" sehr schön deutlich (Abb. 5). Im unteren Bereich des Bildausschnitts ist das proximale Histidin zu erkennen. Das freie Elektronenpaar des Stickstoffatoms im Histidinring besetzt eine der Koordinationsstellen des Eisenions. Die Darstellungen zum Thema "Sekundärstrukturen" stellen die Architektur der alpha-Helix in den Mittelpunkt. Die Darstellung ihrer Wechselwirkungen beschränkt sich auf die intrahelikalen Wasserstoffbrücken, die der Helix ihre Stabilität verleihen. Einzelne Darstellungen bereiten bereits das nächste Thema "Wechselwirkungen der alpha-Helix" vor, das die Interaktionen der Seitengruppen mit der wässerigen Umgebung und dem hydrophoben Proteinkern aufbereitet. Das erste Modul zeigt die Rückgrat-Struktur einer Globinkette (Tertiärstruktur) mit oxygeniertem Häm. Die alpha-helikalen Strukturabschnitte, die den Großteil des Moleküls bilden, sind farblich hervor gehoben (Abb. 6). Es folgt eine Farbvariante der ersten Darstellung ("Regenbogen-Färbung"). Die nächste Abbildung stellt eine neue "Struktursprache" der Biochemiker vor: alpha-helikale Bereiche werden von der Rückgrat-Struktur "luftschlangenartig" hervorgehoben. Diese Darstellungsform ist bei Molekularbiologen sehr beliebt, da sie bei der Analyse von Proteinstrukturen - unter anderem bei der Identifizierung von Domänen - sehr hilfreich ist. Zudem lassen sich anhand wiederholt auftretender "Sekundärstrukturmotive" Homologien und Analogien der Proteinevolution analysieren. Eine der alpha-Helices wird in ihrem Tertiärstrukturkontext (komplette räumliche Struktur einer Polypeptidkette) hervorgehoben. Dieser Kontext ist für die weitere Betrachtung wichtig (siehe "Wechselwirkungen der alpha-Helix"), da man an ihm erkennt, dass sich diese Helix an der Oberfläche des Globins befindet und sowohl mit dem wässerigen Milieu als auch mit dem Proteininneren Kontakt hat. Die Tertiärstrukturebene wird nun verlassen und auf die individuelle alpha-Helix (Sekundärstruktur) heruntergezoomt. Diese Helix wird nun in zwei andere Struktursprachen übersetzt. Zunächst in die Rückgrat-Darstellung der Polypeptidkette und schließlich in die "stick"-Darstellung ihrer Aminosäurebausteine. Das Folgemodul lässt die "driving force" der alpha-Helix-Struktur erkennen: Alle hydrophilen Teile des Polypeptid-Rückgrats (die Carbonyl-Sauerstoffatome und die Wasserstoffatome des Peptidbindungs-Stickstoff) bilden Wasserstoffbrücken miteinander. Diese vielen schwachen Wechselwirkungen verleihen der Helix ihre Stabilität. Die "Sättigung" der hydrophilen Rückgratbereiche mit hydrophilen Wechselwirkungen prädestiniert die Helix zu einem in hydrophoben Umgebungen oft verwendeten Strukturmotiv, sei es im hydrophoben Kern von Proteinen (siehe Hydrophobizität, Polarität & Ladungen") oder in Membranprotein-Abschnitten, die der Lipidphase ausgesetzt sind. Die nächste Darstellung macht deutlich, dass die Seitenketten der Aminosäuren einer Helix wie die Stufen einer Wendeltreppe immer nach außen zeigen. Besonders deutlich wird dieses wichtige Strukturprinzip, wenn man die Helix in eine Position bringt, in der man in Richtung ihrer Längsachse blickt. Während sich die Darstellungen zum Thema "Sekundärstrukturen" vor allem mit dem allgemeinen Architekturprinzip der alpha-Helix und den intrahelikalen Wasserstoffbrücken beschäftigten, veranschaulichen die Module dieses Abschnitts die Wechselwirkungen der helikalen Aminosäurereste mit dem hydrophilen Medium und dem hydrophoben Proteinkern. Die erste Darstellung zeigt das raumfüllende Kalottenmodell eines "Grenzflächenhelix"-Abschnitts. Farblich hervorgehoben sind die Stickstoff- und Sauerstoffatome der Seitengruppen und des Rückgrats. Beim Drehen und Wenden der Helix ist zu erkennen, dass es sich um eine "amphiphile Helix" handelt, d.h., dass auf einer Seite hydrophobe Reste, auf der anderen dagegen hydrophile Reste (erkennbar an den Heteroatomen) aus der Achse hervorragen. Diese Eigenschaft spiegelt die Anpassung der Aminosäuresequenz (Primärstruktur) an ihre räumliche Position im Tertiärstrukturkontext wider: Die hydrophobe Seite der Helix geht mit dem hydrophoben Proteinkern hydrophobe (van-der-Waals-)Wechselwirkungen ein und stabilisiert so die Tertiärstruktur des Proteins. Die hydrophile Seite bildet dagegen Wasserstoffbrücken mit den Wassermolekülen der Umgebung. Dieses Hydratwasser trägt dazu bei, das Protein in Lösung zu halten. Deutlicher wird dieses Prinzip in der zweiten Darstellung, die die Heteroatome des Rückgrats ausblendet. Die beiden folgenden Module zeigen dieselbe Darstellung, nur bereits entsprechend den jeweiligen Textinformationen räumlich ausgerichtet. So zeigt zum Beispiel der Blick entlang der Helixachse noch einmal deutlich deren amphipatischen Charakter (Abb. 7): Sämtliche Heteroatome der Seitenketten befinden sich in dieser Ansicht auf der rechten Seite. Die Chime-Darstellungen analysieren die Wechselwirkungen eines Globin-Molekül mit der Umgebung. Die "take home message" diese Abschnittes bildet das allgemeine Strukturprinzip löslicher Proteine: Innen hydrophob (Stabilisierung der Tertiärstruktur über van-der-Waals-Wechselwirkungen), außen hydrophil (Bindung von Hydratwasser über Wasserstoffbrücken). Die erste Darstellung zeigt die farbkodierte Verteilung hydrophober, polarer und geladener Aminosäuren auf der Globin-Oberfläche sowie die Sauerstoffatome von einem Teil des Hydratwassers. Beim Drehen des Proteins treten hydrophile und hydrophobe Oberflächenabschnitte deutlich hervor. Während die hydrophilen Bereiche mit dem Lösungsmittel Wasserstoffbrücken bilden und das Protein in Lösung halten, stabilisieren die hydrophoben Bereiche über hydrophobe Protein-Protein-Wechselwirkungen zwischen den vier Globinen eines Hämoglobin-Moleküls dessen Quartärstruktur (native Struktur eines aus mehreren Proteinuntereinheiten aufgebauten Proteinkomplexes). Der folgende Schnitt macht die Anatomie des Globins - stellvertretend für alle löslichen Proteine - deutlich. Während der Kern durch die Wechselwirkungen hydrophober Seitengruppen stabilisiert wird, ist die dem Medium ausgesetzte Oberfläche mit hydrophilen Resten gespickt. Dieses Strukturprinzip wir mithilfe von weiteren Schnittebenen verdeutlicht, die zunächst immer tiefer in das (hydrophobe) Proteininnere vordringen, um sich danach wieder seiner (hydrophilen) Oberfläche nähern (Abb. 8). Wie falten sich Proteine? Die Analyse der Strukturdarstellungen des Globins bietet sich als Ansatzpunkt für weiterführende Fragen zur Proteinstruktur an: Wie finden die linearen Aminosäureketten im lebenden Plasma ihre komplexe dreidimensionale Struktur? Und warum findet dieser Prozess in Zellen mit so hoher Effizienz, im Reagenzglas aber nur mit sehr niedrigen Ausbeuten statt? Vorhersage von Proteinstrukturen Vom Architekturprinzip der "Packung" einer Polypeptidkette lässt sich leicht der Bogen zur "driving force" ihrer Selbstfaltung schlagen. Der Selbsfaltungsprozess einer Polypeptidkette in ihre native dreidimensionale Struktur wird von ihrer Primärstruktur - also der linearen Abfolge ihrer Aminosäuresequenz - definiert. Dieser Strukturcode ist von Molekularbiologen bis heute noch nicht soweit entschlüsselt worden, dass anhand jeder Sequenz exakte Strukturvorhersagen getroffen werden können (falls das überhaupt möglich ist). In einigen Fällen lassen sich jedoch schon ganz passable Wahrscheinlichkeiten berechnen. All diese Vorhersagen basieren auf einer Bestimmung der thermodynamisch günstigsten Faltung. Das ist zum Beispiel bei einem löslichen Protein (wie vom Globin-Typ) diejenige, die über eine große Anzahl hydrophober Wechselwirkungen im Inneren und hydrophiler Wechselwirkungsmöglichkeiten an der Oberfläche verfügt. Eine gigantische Rechenaufgabe, da im Prinzip die Interaktion eines jeden Aminosäurerestes mit jedem anderen Rest analysiert werden müsste. Die Forscher schränken den Rechenaufwand jedoch erheblich ein, indem zunächst Sekundärstruktur-Wahrscheinlichkeiten analysiert werden. Auch Sequenz-Vergleiche mit Proteinen, deren Struktur bereits durch Röntgenstrukturanalysen eindeutig geklärt ist, erweisen sich als hilfreich: Die Natur verwendet nämlich beim Proteindesign sehr gerne bewährte Proteindomänen (das heißt durch Sekundärstrukturen stabilisierte globuläre Proteinabschnitte, die meist von einem Exon kodiert werden) immer wieder. Aus einem begrenzten Domänen-Repertoire hat die Natur so im Laufe der Evolution eine Vielzahl verschiedener Proteine mit vielfältigen Funktionen "zusammengepuzzelt". "Assisted Self Assembly" Das auf den bekannten Renaturierungsversuchen von Anfinsen basierende Dogma von der "Selbstfaltung" der Proteine ist seit der Entdeckung der Rolle der "Chaperone" nicht gerade ins Wanken geraten, musste jedoch vom "Self Assembly" zum "Assisted Self Assembly" modifiziert werden. Schnell hatte man erkannt, dass die in vitro beobachteten Selbsfaltungsraten viel zu niedrig sind, um eine Zelle funktionstüchtig zu halten. Zahlreiche Proteine zeigen im Reagenzglas sogar überhaupt keine Neigung, nach einer sanften Denaturierung in ihre native Struktur zurück zu finden. Der Grund dafür ist, dass jede Zelle über ein ganzes Arsenal von Chaperonen verfügt - "molekularen Anstandsdamen" - die mittlerweile auch Einzug in die Schulbuchliteratur gehalten haben. Diese Anstandsdamen (die selbst Proteine sind) erkennen "unordentlich" gefaltete Polypeptidketten, die noch keine stabilen Sekundärstrukturen oder noch keine stabile Tertiärstruktur gefunden haben. Als Symptome solcher unvollständigen oder Fehlfaltungen "fahnden" die Chaperone nach hydrophoben Resten, die an der Oberfläche falsch gefalteter Polypeptidketten exponiert werden. Chaperone entfalten diese unbrauchbaren Gebilde unter Energieverbrauch und verhelfen Ihnen somit zu einer neuen Chance, sich richtig zu falten. Sie "bugsieren" damit den Faltungsweg der Polypeptidketten sicher in die Richtung der thermodynamisch günstigsten Konformation, die in der Regel der nativen Proteinstruktur entspricht. Ursache der Sichelzellenanämie ist der Austausch eines einzigen Nukleotids im beta-Hämoglobinketten-Gen, wodurch die hydrophile Aminosäure Glutamat gegen die hydropobe Aminosäure Valin ersetzt wird. Mit fatalen Folgen: Der ausgetauschte Glutamatrest befindet sich nämlich an der Oberfläche des Proteins. Die Exposition des hydrophoben Restes setzt die Löslichkeit de Proteins vor allem im desoxygenierten Zustand stark herab und kann so die Polymerisation des Hämoglobins zu langen und unlöslichen Filamenten auslösen. Die erste Darstellung zeigt die Position des Valins auf der Oberfläche des oxygenierten Sichelzellen-Hämoglobins. Der so erzeugte "hydrophobe Fleck" ist weiß hervorgehoben. Die Desoxygenierung des Moleküls ist mit einer Konformationsänderung der Quartärstruktur verbunden, die einen zusätzlichen hydrophoben Bereich an die Oberfläche befördert (Abb. 9). Dieser ist auch beim "normalen" Hämoglobin vorhanden, wo er keinen negativen Effekt zeigt. Im Verbund mit dem neu hinzu gekommenen Valin-Rest verleiht er dem Molekül jedoch das Potenzial zur Polymerisation, sobald die Desoxy-Form eine kritische Konzentration überschreitet. Das nächste Modul zeigt den ersten Schritt der Polymerisation, die Dimerisierung zweier Moleküle über hydrophobe Wechselwirkungen (Abb. 10). Die an der Polymerisation beteiligten hydrophoben Reste und ihre Wechselwirkung wird erst dann deutlich, wenn die raumfüllende Darstellung durch die Rückgrate der Polypetidketten ersetzt wird. Die letzte Chime-Projektion zeigt eine Vergrößerung der Kontaktstellen. Die für die Sichelzellenanämie charakteristischen sichelförmigen Erythrozyten sind fragiler als ihre "Wildtyp"-Pendants, was die anämische Symptomatik verursacht. Die exponierten hydrophoben Reste wirken wie "hydrophile Lego-Noppen" oder "sticky patches", über die die Proteine zu langen Filamenten polymerisieren und so den Erythrocyten eine sichelförmige Gestalt aufzwingen. Die Sichelzellen sind im Gegensatz zu den geschmeidig-biegsamen normalen Erythrozyten nicht mehr deformierbar und verstopfen unter Sauerstoffmangelbedingungen (Höhenaufhalte, Flugreisen, Narkosen) zunächst kleine und schließlich größere Gefäße, was dann lebensbedrohliche Komplikationen verursacht. Im homozygoten Zustand führte die Krankheit noch vor kurzem im frühen Kindesalter zum Tode. Heterozygote zeigen eine deutlich abgeschwächte Symptomatik. Die Krankheit kommt fast nur bei Afrikanern vor, die aus zentralafrikanischen Regionen mit hohen Malariavorkommen stammen. In einigen Regionen tragen fast 40 Prozent der dortigen Bevölkerung das "defekte" Gen. Die Ursache dafür liegt darin, dass das Sichelzellen-Hämoglobin den Malaria-Erregern Schwierigkeiten bereitet: Heterozygote sind gegen den Malaria-Erreger besser geschützt und haben daher gegenüber den homozygot "Gesunden" einen Selektionsvorteil. Dies zeigt deutlich, wie schmal der Grat zwischen "gesund" und "krank", "nützlich" und "schädlich", sein kann und wie wichtig die genetische Vielfalt des Genpools einer Spezies für dessen Überleben ist: Genetische "Randgruppen" können an bestimmten Orten - oder zu bestimmten Zeiten! - für das Überleben der Art eine unvorhersehbare Bedeutung erlangen. Um die Moleküle der Applikation im Browser interaktiv betrachten zu können, muss der kostenlose Molekülbetrachter Chime der Firma Symyx installiert werden. Wenn dies erfolgt ist, "berühren" sie die Moleküle mit dem Mauszeiger. Wenn Sie die Maus dann bei gedrückter linker Taste bewegen, können Sie die Moleküle beliebig drehen und wenden und so von allen Blickwinkeln aus untersuchen. Um die Entfernung zum Objekt zu ändern, müssen Sie die Shift-Taste (Hochstell-Taste) gleichzeitig mit der linken Maustaste drücken. Dann kann mittels "Vor- und Zurückbewegungen" der Maus der Abstand zum Objekt variiert werden. Wenn Sie den Mauszeiger in einem Molekülfenster platzieren und mit der rechten Taste klicken, erscheint das Chime-Menü mit weiteren Funktionen. Hier können Sie zum Beispiel die Rotation der Moleküle ausschalten. Durch das Anklicken von Buttons der Hämoglobin-Lernumgebung werden die verschiedenen 3D-Darstellungen aufgerufen. Wenn Sie ein Bild bereits geladen haben und dann einen anderen Button anklicken, kann es zu Fehlern kommen. Zwar wird dann das gewünschte Molekül gezeigt, seine Darstellung entspricht dann jedoch nicht der eigentlich vorgesehen "Struktursprache". So kann zum Beispiel eine Polypeptidkette als "stick"-Struktur visualisiert werden, während die Programmierung an dieser Stelle eigentlich die Darstellung eines farbkodierten Kalottenmodells vorgesehen hat. Wenn dies passiert (oder Sie den Verdacht haben, dass dem so ist), können Sie die Seite in einem neuen Browserfenster öffnen und die gewünschte Abbildung neu laden. Alternativ kann es auch helfen, zunächst über den "Zurück-Button" des Browsers zur Übersichtseite der Hämoglobinseite zu gehen und die gewünschte Applikation erneut anzusteuern. Dynamische Arbeitsblätter sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flash-basierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Schülerinnen und Schüler sollen die ATP-Synthase als Beispiel eines Enzyms kennen lernen. den Aufbau der ATP-Synthase kennen lernen. ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend erschließen. die Möglichkeiten des Molekülbetrachters Jmol kennen und den Umgang mit dem Werkzeug lernen. am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms beschreiben. Thema ATP-Synthase - Synthese von Energieäquivalenten Autor Dr. Matthias Nolte, Dr. Thomas Engel, Dr. André Diesel, Florian Thierfeldt Fach Biologie, Chemie Zielgruppe Jahrgangsstufe 11 Zeitraum 2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit) oder Präsentationsrechner mit Beamer; Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download), Flash-Player , Quicktime-Player Struktur-Funktions-Beziehungen werden durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als ?Leitplanken? bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. ?Informations-Popups? und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:457078) Hier können Sie Kontakt mit Herrn Dr. Engel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:700245) Hier können Sie Kontakt mit Herrn Dr. Diesel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes. Weitere Materialien und Anregungen zum Unterricht finden Sie auch auf seiner Homepage www.scientific-beginner.de . (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:450955) Hier können Sie Kontakt mit Herrn Thierfeldt aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Die Schülerinnen und Schüler sollen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer verstehen. eine Sequenz aus einer Datenbank abrufen können. mit einem einfachen Visualisierungsprogramm wie RasMol umgehen können. die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen können. grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen erarbeiten. Struktur-Funktionsbeziehungen begreifen und erklären können. Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben können. Thema Proteinmodelle aus dem Internet - Beispiel Insulin Autorin Prof. Dr. Susanne Bickel Fächer Biologie, Chemie Zielgruppe Jahrgangsstufe 12/13 Zeitraum etwa 6 Stunden mit abschließender Präsentation Technische Voraussetzungen Rechner mit Internetzugang in ausreichender Zahl (Partner- oder Kleingruppenarbeit), (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:458232) (kostenloser Download aus dem Internet) Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:463298) Die Fotosynthese ist einer der bedeutungsvollsten biologischen Prozesse auf der Erde. Grüne Pflanzen wandeln Lichtenergie in chemische Energie um und speichern sie in Form energiereicher Moleküle. Diese werden dann in weiteren Stoffwechselprozessen als Energielieferanten für die Synthese von Kohlenhydraten aus den energiearmen Stoffen Kohlenstoffdioxid und Wasser verwendet. In diesem Prozess wird der für viele Lebewesen notwendige molekulare Sauerstoff gebildet. Die Fotosynthese gliedert sich somit in eine Lichtreaktion (Absorption von Lichtenergie, deren chemische Fixierung und Sauerstoffbildung) und in die lichtunabhängige Dunkelreaktion (Synthese von Glukose aus Kohlenstoffdioxid und Wasser). Die Schülerinnen und Schüler sollen die Teilreaktionen der Lichtreaktion mithilfe der Animation kennenlernen und protokollieren. die an der Reaktion beteiligten Biomoleküle und ihre Lokalisierung - innerhalb oder außerhalb der Thylakoidmembran - kennenlernen. Zusammenhänge formulieren (Kopplung der Fotosysteme) und eine Gesamtbilanz der Reaktion aufstellen. Thema Die Lichtreaktion der Fotosynthese Autor Dr. Ralf-Peter Schmitz Fach Biologie Zielgruppe Sekundarstufe II Zeitraum 1-2 Stunden für die selbstständige Erarbeitung (Einzel- oder Partnerarbeit); flexibel beim Einsatz zur Unterstützung des Unterrichtsgesprächs Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Die Lernenden nutzen die Flash-Animation im Computerraum der Schule in Einzel- oder Partnerarbeit oder auch am heimischen Rechner (Hausaufgabe, Wiederholung). Ihre Ergebnisse können sie den Mitschülerinnen und Mitschülern im Rahmen eines kleinen Vortrags vorstellen. Den Ablauf der Lichtreaktion beschreiben sie dabei mithilfe der per Beamer projizierten Animation. Alternativ zur Nutzung der Animation im Computerraum kann sie nach einem zunächst "computerfreien" Unterricht der Lehrkraft auch dazu dienen, die Lichtreaktion zusammenzufassen und das Unterrichtsgespräch im Fachraum zu unterstützen. Inhalte und Funktionen der Animation Die Teilschritte der Lichtreaktion werden visualisiert. Arbeitsaufträge und Hintergrundinformationen ermöglichen eine selbstständige Erarbeitung des Themas. Die Schülerinnen und Schüler sollen grundlegendes Wissen über den 3D-Aufbau der Rotationsmaschine ATP-Synthase erwerben (Tertiär und Quartärstruktur). prinzipielle Struktur-Funktionsbeziehungen begreifen und erklären können. die wichtigsten Mechanismen der Zelle, chemische Energie in Bewegung umzuwandeln, kennen lernen. Proteinkomplexe in ihrer Eigenschaft als Motoren begreifen. Anwendungsmöglichkeiten für Nanomotoren kennen lernen und selber Ideen entwickeln. die Natur als Vorbild für technische Umsetzungen begreifen und dadurch ein Grundverständnis für die Bionik entwickeln. Utopien und unwissenschaftliche Presseberichte analysieren und auf ihren sachlichen Gehalt reduzieren lernen. Thema Nanomotoren in Natur und Technik Autorin Prof. Dr. Susanne Bickel Fach Biologie Zielgruppe Sek II, Leistungskurs, Projektunterricht zur Biotechnologie Zeitraum 4-5 Stunden Technische Voraussetzungen Rechner mit der Möglichkeit, Filme abzuspielen (zum Beispiel RealPlayer oder Quicktime Player , kostenlose Downloads), in ausreichender Anzahl (Partnerarbeit, Kleingruppen) Planung Nanomotoren in Natur und Technik

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Der AcI: Nebensätze im Latein-Unterricht

Kopiervorlage / Interaktives

In diesen Materialien befassen sich die Schülerinnen und Schülern mit dem AcI, einem wichtigen und dem wohl am häufigsten auftretenden grammatischen Phänomen des Latein-Unterrichts. Interaktive Übungen unterstützen den Lernprozess beziehungsweise festigen das Gelernte. Dieses Arbeitsmaterial ermöglicht es Lehrkräften, den Accusativus cum Infinitivo im Latein-Unterricht spielerisch einzuführen. Ein Erklär-Video fasst die wichtigsten Fakten zu der lateinischen Satzkonstruktion zusammen, sodass die Lernenden die interaktiven Übungen zum AcI eigenständig bearbeiten können. Der AcI ist eine Nebensatzkonstruktion, die typisch für das Lateinische ist und häufig vorkommt. Wie der Name bereits zeigt, drückt er sich durch einen Akkusativ, der in Verbindung zu einem Infinitiv steht, aus. Ins Deutsche lässt sich der AcI am besten mit einem "dass"-Satz übersetzen. Da Nebensätze im Deutschen grundsätzlich anders konstruiert sind, ist es wichtig, die Übersetzung des AcI intensiv einzuüben. Mit den interaktiven Arbeitsmaterialien kann die lateinische Nebensatz-Konstruktion kennengelernt und ihre Bildung trainiert werden. Ein Arbeitsblatt fasst das Gelernte zusammen, sodass es optimal als Merkblatt genutzt werden kann. Der AcI im Latein-Unterricht Der AcI ist eine Satzkonstruktion, die in der lateinischen Sprache häufig vorkommt. Deshalb ist es wichtig, ihn im Latein-Unterricht ausführlich zu thematisieren und einzuüben beziehungsweise zu wiederholen. Um diese Materialien bearbeiten zu könnten, sollten die Lernenden bereits über grammatikalische Grundkenntnisse und Basiswortschatz an lateinischem Vokabular verfügen. Gegebenenfalls müssen wichtige Fachbegriffe, Strukturen und Wörter, die beim Erlernen des AcI eine Rolle spielen, wiederholt werden. Dieses Arbeitsmaterial zum Grammatikphänomen "AcI" kann folgendermaßen aufgebaut sein: Die Schülerinnen und Schüler schauen sich das Erklärvideo über den Accusativus cum Infinitvo an, um die Nebensatz-Konstruktion kennenzulernen. Dabei werden erste Informationen aufgenommen, die sich die Lernenden bereits einprägen können. Sinnvollerweise bietet sich dann die Übung an, die verschiedenen Sätze durch einen AcI zu verbinden, damit bereits hier eine kleine Transferleistung erbracht werden muss, jedoch noch keine eigenständige Übersetzung anzufertigen ist. Diese Übung eignet sich also insbesondere zum Einstieg in die Thematik. Mithilfe dieser Übung erhalten die Schülerinnen und Schüler einen guten Einblick in das "System" des AcI. Zur kleinen Auflockerung dient eine Übung, in der die Verbformen richtig zu übersetzen sind. Die interaktive Übung kann auch gut am Ende einer Unterrichtsstunde eingesetzt werden. Durch den Fokus auf ein anderes Grammatik-Thema erhalten die Schülerinnen und Schülern zwar eine kurze "Pause" vom neuen Grammatikstoff, dennoch werden Kompetenzen gefordert und gefördert, die zentral für das Übersetzen von AcI-Konstruktionen sind. Diese sind in der dritten interaktiven Übung essenziell, die die komplexeste des Arbeitsmaterials ist. Die Schülerinnen und Schüler sollen hier entscheiden, welche Infinitiv-Form bei vorgegebenen Zeitverhältnissen in Sätzen mit AcI eingesetzt werden muss. Dieser Schritt bereitet die Lernenden optimal auf die Lektürephase vor, die im späteren Verlauf der Schullaufbahn folgt. Da in der dritten interaktiven Übung die Kompetenzen, die in den vorangehenden Übungen gestärkt wurden, kombiniert abgefragt werden, sollte sie am Ende der Erarbeitungsphase eingesetzt werden. Im Anschluss an die interaktiven Übungen bietet es sich an, das Arbeitsblatt auszufüllen, in dem alle neuen Kenntnisse über Aufbau, Funktion, Verwendung und Schwierigkeiten von AcI-Konstruktionen festgehalten werden. Auch Regeln zu Zeitverhältnissen und Signalwörter werden auf dem Arbeitsblatt notiert. So sind alle wichtigen Informationen zum AcI in einem Dokument vereint, das zum Lernen und Wiederholen herangezogen werden kann. Ebenfalls möglich wäre es, das Arbeitsblatt als Hausaufgabe bearbeiten zu lassen, sodass in einer folgenden Unterrichtsstunde Probleme und Unklarheiten geklärt werden können. Das Arbeitsblatt kann auch im Rahmen der Differenzierung eingesetzt werden. Methodisch-didaktische Analyse Die interaktiven Arbeitsmaterialien sind so angeordnet, dass sie graduell an Schwierigkeit zunehmen. Schwerpunkt liegt hierbei eindeutig auf dem eigenverantwortlichen Lernen. In jeder Übung erwerben die Lernenden Fähigkeiten, die in den folgenden Übungen auf einer komplexeren Ebene gefordert werden. Mithilfe des Erklär-Videos, das den Übungen vorausgeht, ist es jedoch auch Anfängerinnen und Anfängern möglich, die Übungen selbstständig zu bearbeiten. Mithilfe des Arbeitsblattes können die Lernenden überprüfen, ob sie den Accusativus cum Infinitivo verstanden haben. Sie fassen hier das Gelernte noch einmal schriftlich zusammen, sodass es als Merkblatt für den Latein-Unterricht genutzt werden kann. Fachkompetenz Die Schülerinnen und Schüler üben die Strukturen der Grammatik des AcI. verbessern ihre sprachliche Genauigkeit auch im Deutschen und erweitern somit ihren aktiven Wortschatz und ihre Ausdrucksfähigkeit auch interdisziplinär. Medienkompetenz Die Schülerinnen und Schüler erlernen einen sichereren Umgang mit interaktiven und digitalen Arbeitsmaterialien auf einer schülergerechten Plattform. erlernen hier die Krasis aus dem analogen Medium Buch und der digitalen Welt, durch die eine optimale Synthese des Lernens geschaffen wird. Sozialkompetenz Die Schülerinnen und Schüler lernen, ihre Selbsteinschätzung zu verbessern. üben bei gemeinschaftlicher Bearbeitung der Aufgaben auf ihre Mitschülerinnen und Mitschüler einzugehen und sie zu unterstützen.

  • Latein
  • Sekundarstufe I
ANZEIGE