Klickhit des Jahres 2024 im Fach Chemie

Reinstoffe, Stoffgemische und einfache Trennverfahren im Anfangsunterricht

Chemieunterricht Versuche
Klickhit des Jahres 2024 im Fach Chemie

Reinstoffe, Stoffgemische und einfache Trennverfahren im Anfangsunterricht

Entdecken Sie den Klickhit des Jahres 2024 im Fach Chemie! Die Schülerinnen und Schüler lernen verschiedene Trennverfahren anhand von Versuchen kennen und trainieren das sichere Experimentieren.

Tipp der Redaktion

Zusammensetzung der Luft

Luftiger blauer Himmel
Tipp der Redaktion

Zusammensetzung der Luft

Mit lebendigen Übungen und einem interaktiven Kolbenproberversuch entdecken Ihre Schülerinnen und Schüler die Zusammensetzung der Luft und erarbeiten sich Wissen zu einzelnen Bestandteilen.

Tipp der Redaktion

Eine Rakete bauen

Plastikmüll und Plastikflaschen
Tipp der Redaktion

Eine Rakete bauen

An einer Rakete aus Plastikflaschen wird in dieser Einheit das Rückstoßprinzip sowie die chemische Reaktion von Essig und Natron erläutert.

Tipp der Redaktion

Tenside: Haarshampoo selbst herstellen und vermarkten

Frau bekommt beim Frisör die Haare einshampooniert
Tipp der Redaktion

Tenside: Haarshampoo selbst herstellen und vermarkten

Hier erfahren die Schülerinnen und Schüler alles über Tenside und lernen zusätzlich, wie man ein Shampoo selbst herstellen kann.

  • Lehrplanthema
  • Schulstufe 2
    zurücksetzen
  • Klassenstufe
  • Schulform
  • Materialtyp 11
    zurücksetzen
  • Quelle 7
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Nature of Science: Das Wesen der Naturwissenschaften verstehen

Unterrichtseinheit

Im gesellschaftlichen Diskurs wird häufig von der (Natur-)Wissenschaft gesprochen, die oft als allgemeingültige Argumentationsgrundlage herangezogen wird. In der Unterrichtseinheit sollen Schülerinnen und Schüler dieses Verständnis kritisch hinterfragen. Als Beitrag zu einer umfassenden naturwissenschaftlichen Bildung erarbeiten sie die Rahmenbedingungen von naturwissenschaftlichem Forschen und Handeln, diskutieren bestehende Kontroversen und Grenzen und gelangen so zu einem vertieften Verständnis über das Wesen bzw. die Eigenschaften der naturwissenschaftlichen Erkenntnisgewinnung. In dieser Unterrichtseinheit setzen sich die Lernenden mit den (Natur-)Wissenschaften auseinander und werden befähigt, naturwissenschaftliche Erkenntnisse kritisch zu reflektieren und kompetent einzuordnen. Eine Schülerin stellt ihre Erfahrung mit der Unterrichtseinheit im Community Call des Forums Bildung (2023) vor: https://www.youtube.com/watch?v=DV387Otll_M&t=22s . Die Unterrichtseinheit ist nach den Prinzipien des Unterrichtskonzept des Deeper Learning nach Anne Sliwka und Britta Klopsch konzipiert und folgt dem Drei-Phasen-Modell des Deeper Learning. Vertiefende Informationen dazu bietet das Workbook für Lehrkräfte: "Deeper Learning gestalten" (Beigel, Klopsch & Slwika, 2023) der Deutsche Telekom Stiftung, das am Ende der Einheit verlinkt und kostenfrei verfügbar ist. Ziel der Unterrichtseinheit ist es, dass die Schülerinnen und Schüler Fachwissen im Bereich Naturwissenschaften erwerben und dieses durch die ko-kreative und ko-konstruktive Bearbeitung einer authentischen Lernleistung anwenden. Der Fokus liegt dabei auf dem Erwerb vielfältiger Kompetenzen, die in verschiedenen Konzepten beschrieben sind. Zum einen in den sogenannten 4Ks, die vier zentralen Kompetenzen des Lernens im 21. Jahrhundert: kritisches Denken, Kreativität, Kommunikation und Kollaboration. Zum anderen in den 21st Century Skills, die über das reine Fachwissen hinausgehen und Fähigkeiten wie Problemlösefähigkeit oder Eigenverantwortung umfassen. Weitere Kompetenzen sind die Entwicklung von Mastery – das tiefergehende Verständnis von einem bestimmten Fachgebiet –, von Kreativität sowie der Stärkung der Identität in Co-Agency, das gemeinsame Gestalten von Lernprozessen. Was zeichnet Prozesse der naturwissenschaftlichen Erkenntnisgewinnung aus? Wie arbeiten Wissenschaftlerinnen und Wissenschaftler? Welche naturwissenschaftlichen Forschungsmethoden gibt es? Diese Fragen stehen im Mittelpunk von Phase I, der Instruktions- und Aneignungsphase der Einheit. Schülerinnen und Schüler erhalten verschiedene Lernmaterialien, die in einer vorbereiteten Lernumgebung, teilweise auch digital, zur Verfügung stehen. Ziel ist es, mit Hilfe der Materialien die Eigenschaften von Naturwissenschaften zu verstehen und fachwissenschaftlich korrekt wiederzugeben. Dabei dienen die sieben von Lederman et al. (2002, 2006, 2014) identifizieren Merkmale von Naturwissenschaften als angestrebtes gemeinsames Wissensfundament für die Schülerinnen und Schüler, da sie alltagsrelevante und lebensnahe Eigenschaften darstellen. Die Lernenden wenden diese gelernten Merkmale daraufhin in einem fachlichen Kontext an und zeigen so, dass sie verstanden haben, wodurch wissenschaftliche Ergebnisse geprägt sind. In Phase II, der Phase "Ko-Konstruktion und Ko-Kreation" , wenden die Schülerinnen und Schüler ihr Wissen aus Phase I praktisch an, indem sie die Merkmale naturwissenschaftlicher Erkenntnisgewinnungsprozesse am konkreten Beispiel einer Wissenschaftlerin bzw. eines Wissenschaftlers oder alternativ anhand einer historischen oder aktuellen naturwissenschaftlichen Fragestellung erarbeiten. Die entstehenden Erkenntnisse werden für eine anschließende Präsentation aufbereitet, wobei den Schülerinnen und Schülern die Wahl des zu erstellenden Lernprodukts freisteht. In Phase III, der Phase "Authentische Leistung" , präsentieren die Schülerinnen und Schüler anschließend ihre authentische Lernleistung und teilen ihren Erkenntnisgewinn mit der Lerngruppe und ggf. der Schulöffentlichkeit. Relevanz des Themas In aktuellen gesamtgesellschaftlichen Diskussionen und Entwicklungen wird den Naturwissenschaften eine gemeinhin hohe Bedeutung zugemessen. Unsere heutige Welt basiert in vielen Bereichen auf naturwissenschaftlichen Erkenntnissen – technologische, medizinische und ökologische Fortschritte sind untrennbar mit ihnen verbunden. Gleichzeitig wird bestimmten naturwissenschaftlichen Erkenntnissen, etwa dem menschengemachten Klimawandel, aber auch immer wieder von einzelnen Personengruppen die Legitimität abgesprochen. Ziel einer umfassenden naturwissenschaftlichen Bildung sollte es daher sein, Schülerinnen und Schüler dazu zu befähigen, die Grundlagen und Rahmenbedingungen naturwissenschaftlicher Forschung zu verstehen, bestehende Kontroversen und Grenzen zu kennen und diese differenziert bewerten zu können. So entwickeln sie die Fähigkeit, naturwissenschaftliche Erkenntnisse kritisch einzuordnen, argumentativ zu verteidigen und fundiert in gesellschaftliche Diskurse und Aushandlungsprozesse einzubringen und werden letztlich in die Lage versetzt, ihre Zukunft reflektiert und verantwortungsvoll mitzugestalten. Vorkenntnisse Es ist davon auszugehen, dass Schülerinnen und Schüler zum Ende der Sekundarstufe I bereits grundlegend mit dem Prozess der naturwissenschaftlichen Erkenntnisgewinnung vertraut sind. Je nach Bedarf stellt Material III dahingehend eine Wiederholung oder Einführung dar. Die Unterrichtseinheit ist so konzipiert, dass sich die Lernenden die notwendigen fachlichen Kenntnisse zur "Nature of Science" in der Aneignungs- und Instruktionsphase aneignen. Schülerinnen und Schüler, die in diesem Bereich bereits über Vorwissen verfügen, können die Phase schneller abschließen bzw. sich intensiver mit den weiterführenden Informationen in Material II auseinandersetzen. Didaktisch-methodische Kommentar Die Lerneinheit wurde für den Einsatz in der Grundlagenakademie der Einführungsphase entwickelt. Sie stellt eine Ergänzung zum fachgebundenen (Mathematik-, Deutsch- oder Englisch-) Vertiefungskurs nach der Ausbildungs- und Prüfungsordnung für die gymnasiale Oberstufe NRW dar, fördert gezielt fachliche und überfachliche Kompetenzen und führt die Schülerinnen und Schüler an das Konzept des Deeper Learning heran. Thematisch ist die Einheit in den naturwissenschaftlichen Fächern Biologie, Chemie und Physik verankert, wobei die Wahl der Vertiefungsthemen den Interessen und Neigungen der Schülerinnen und Schülern überlassen bleibt. Ziel ist die explizite Vermittlung von "Nature of Science" bzw. der Eigenschaften von Naturwissenschaften. Gebhard, Höttecke und Rehm (2017) stellen in ihrer "Pädagogik der Naturwissenschaften" heraus, dass die fachdidaktische Forschungslage zur Wirksamkeit der Vermittlung eindeutig ist. Dabei beziehen sie sich auch auf Khisfhe und Abd-El-Khalick (2002), die herausgearbeitet haben, dass Schülerinnen und Schülern von vielfältigen Reflexionsanlässe profitieren. Die naturwissenschaftliche Erkenntnisgewinnung bzw. die Natur der Naturwissenschaften, soll von einer Meta-Ebene aus nachvollzogen werden. Am Beispiel der weiterentwickelten Bildungsstandards in den Naturwissenschaften für das Fach Chemie (MSA) (KMK, 2024) lässt sich exemplarisch die Passung von "Nature of Science" auf die curricularen Vorgaben verdeutlichen: "Bildung in der Chemie ermöglicht Einblicke in die Arbeitsweisen der chemischen Industrie und Forschung, fördert das Wissenschaftsverständnis im Sinne von Nature of Science, trägt zur lebenslangen individuellen Kompetenzentwicklung bei und ist somit ein wichtiger Teil der Allgemeinbildung (KMK, 2024, S.6)." "Die Erkenntnisgewinnungskompetenz der Lernenden zeigt sich in der Kenntnis grundlegender naturwissenschaftlicher Denk- und Arbeitsweisen verbunden mit der Fähigkeit, diese zu beschreiben, zu erklären, für Erkenntnisprozesse systematisch zu nutzen und deren Möglichkeiten und Grenzen zu reflektieren (KMK, 2024, S.7)." Dittmer und Zabel (2019) betonen, dass naturwissenschaftliche Bildung die Rahmenbedingungen, Kontroversen und Grenzen von Wissenschaft in den Blick nehmen sollte. Der Bildungswert der Wissenschaft wird dabei unter dem Begriff "Nature of Science" diskutiert. "Nature of Sciene" steht für den didaktischen Anspruch, wissenschaftstheoretische und -historische Aspekte in den Naturwissenschaftsunterricht zu integrieren und die Vermittlung naturwissenschaftlicher Mythen durch eine rein lehrbuchorientierte geprägte Unterrichtspraxis zu verhindern (Dittmer & Zabel, 2019). Zentrale Fragen dabei lauten: Welche Fragen können Naturwissenschaftlerinnen und Naturwissenschaftler beantworten – und welche prinzipiell nicht? Welches Welt- und Menschenbild transportieren naturwissenschaftliche Theorien und Forschungsvorhaben? Worauf gründet sich naturwissenschaftliches Wissen, und wie haltbar und weitreichend ist es? Wie verhalten sich Naturwissenschaft und Religion zueinander? Worin unterscheidet sich die naturwissenschaftliche Sichtweise auf die Welt beispielsweise von einer künstlerischen Perspektive? (ebd.). In Phase I der Unterrichtseinheit steht das Sammeln bedeutungsvoller Lernerfahrungen im Mittelpunkt. Die Schülerinnen und Schüler erwerben ein solides Wissensfundament, das sie in Phase II gezielt vertiefen und weiterentwickeln. Die Vermittlung erfolgt über Impulse durch die Lehrkraft (z. B. Kurzvorträge) sowie durch die gemeinsame Diskussion im Plenum. Ergänzend arbeiten die Lernenden in Einzel- und Gruppenarbeitssettings an der Erschließung der "Lederman seven", wobei der Fokus auf eigenständiger Recherche liegt. Zur Unterstützung dient Material II, das als vorstrukturierte Lernhilfe konzipiert ist und Binnendifferenzierung ermöglicht. Es bündelt Informationen zum Thema "Nature of Science" für unterschiedlichen Niveaustufen - von populärwissenschaftlichen Texten über fachdidaktische Beiträge bis hin zu englischsprachigen Quellen. Darüber hinaus stehen audio-visuelle Angebote zur Verfügung, um unterschiedliche Lernzugänge zu ermöglichen und eine adressatengerechte Differenzierung zu fördern. Die zur Sicherung der Lerninhalte eingesetzte Mystery-Methode basiert auf einem problemorientierten Ansatz, bei dem die Schülerinnen und Schüler ein zunächst rätselhaftes Phänomen oder eine spannende Leitfrage bearbeiten. Im Sinne eines problemorientierten Unterrichtsansatzes gilt es, Informationen zu sammeln, zu analysieren und auf der Grundlage des in Phase I erworbenen Wissen miteinander zu verknüpfen, um das eingangs gestellte Problem bzw. die Frage zu beantworten. Das Ergebnis der Auseinandersetzung ist eine Concept-Map, die die individuellen Denkwege, Hypothesen, Ideen und Vorstellungen der Schülerinnen und Schülern sichtbar macht. Durch die kooperative Erstellung der Concept-Map werden, neben fachlichen Kompetenzen, insbesondere auch Kommunikationsfähigkeiten, Argumentationsfähigkeit und soziale Kompetenzen gezielt gefördert. In Phase II erfolgt die Erstellung der Lernprodukte. Die Schülerinnen und Schüler arbeiten kollaborativ, kreativ und während der Recherchephase auch digital. Dabei wählen sie eigenverantwortlich ihre Lerngruppe, ihren Lernweg sowie die Form des Lernprodukts nach dem Prinzip "voice & choice" und gestalten ihren Lernweg aktiv mit. Durch den selbstgesteuerten Lernweg stärken sie sowohl ihre Recherchekompetenz als auch ihr methodisches Know-how. Ein zentrales Element dieser Phase ist die kritische Auseinandersetzung mit den gesammelten Informationen, die von den Lernenden analysiert und reflektiert werden. Die Lehrkraft begleitet diesen Prozess durch formatives Feedback zu dem Arbeitsprozess sowie zu den entstehenden Lernprodukten. Zur Strukturierung der Teamarbeit stellt Material IV eine koordinierende Aufgabenübersicht in Tabellenform zur Verfügung, die als niedrigschwellige Planungs- und Organisationshilfe in Phase II dient. Ergänzend wird die Kanban-Methode (Material V) eingeführt, die die Schülerinnen und Schüler in das agile Arbeiten einführt, agile Arbeitsprozesse und die Aufgabenverteilung im Team visualisiert und als Feedbackgrundlage dient. Für Lernende, die Unterstützung bei der Themenwahl benötigen, ist eine Liste mit Themenvorschlägen beigefügt, die passende Vorschläge zur Vermittlung der "Nature of Science" enthält und fachdidaktisch erprobt ist. Die Präsentation der authentischen Lernprodukte vor der Schulgemeinschaft und ggf. einer schulexternen Öffentlichkeit in Phase III fördert sowohl die Kommunikationskompetenz als auch das Selbstwirksamkeitserleben der Schülerinnen und Schüler. Sie erleben, dass sie komplexe naturwissenschaftliche Inhalte adressatengerecht vermitteln können und sie aktiv zu gesellschaftlich relevanten Diskussionen über die Eigenschaften von Naturwissenschaften beitragen können. In die Bewertung der Lernleistung durch die Lehrkraft werden dabei mehrere Komponenten einbezogen: Berücksichtigt werden vor allem die individuellen Lernprozesse, die Qualität der Lernprodukte, die Teamarbeit sowie die Präsentationsleistung vor der Schulgemeinschaft. Den Abschluss der Einheit bildet die Retrospektive im jeweiligen Team, in deren Rahmen die Schülerinnen und Schüler reflektieren, welche neuen fachlichen, methodischen und sozialen Kompetenzen sie in der Deeper Learning-Einheit entwickelt haben. Diese Reflexionsphase dient nicht nur der individuellen Auseinandersetzung der Lernenden mit dem eigenen Lernprozess, sondern liefert auch der Lehrkraft wertvolle Impulse zur Weiterentwicklung der Unterrichtseinheit. Fachbezogene Kompetenzen Die Schülerinnen und Schüler erläutern das Konzept der „Nature of Science“, kennen die Möglichkeiten und Grenzen naturwissenschaftlicher Erkenntnisgewinnung und können die zentralen Kriterien, Bedingungen und Eigenschaften wissenschaftlicher Wissensproduktion beschreiben. stellen die wissenschaftlichen Grundlagen fachwissenschaftlicher Probleme dar und ordnen diese in fachliche, historische und gesellschaftspolitische Kontexte ein. beurteilen Quellen in Bezug auf spezifische Interessenlagen. begründen die eigene Meinung kriteriengeleitet anhand von Sachinformationen, bewerten die persönliche und gesellschaftliche Tragweite und Bedeutsamkeit einzelner Forschungsprojekte im Kontext von „Nature of Science“. Medienkompetenz Die Schülerinnen und Schüler führen zielgerichtete Informationsrecherchen durch und wenden dabei Suchstrategien an (Medienkompetenzrahmen NRW 2.1.). filtern und strukturieren themenrelevante Informationen und Daten aus Medienangeboten, wandeln diese um und arbeiten sie auf (Medienkompetenzrahmen NRW 2.2). präsentieren Lern- und Arbeitsergebnisse sach-, adressaten- und situationsgerecht unter Einsatz geeigneter analoger und digitaler Medien, belegen verwendete Quellen, kennzeichnen Zitate und tauschen sich mit anderen konstruktiv über naturwissenschaftliche Sachverhalte auch in digitalen kollaborativen Arbeitssituationen aus. 21st Century Skills Die Schülerinnen und Schüler arbeiten ko-konstruktiv und ko-kreativ bei der Erstellung ihrer Lernprodukte. hinterfragen die von ihnen bearbeiteten Materialien kritisch und bewerten die Qualität von Informationen. kommunizieren ihre Arbeitsergebnisse sach- und adressatengerecht in ihren Gruppen und vor der Schulgemeinschaft. Beigel, J., Klopsch, B. & Sliwka, A. (2023). Deeper Learning gestalten. Ein Workbook für Lehrkräfte. Weinheim: Beltz. Open access: https://www.telekom-stiftung.de/sites/default/files/files/media/publications/deeper-learning-gestalten-workbook.pdf Deeper Learning Initiative: https://hse-heidelberg.de/hsedigital/hse-digital-teaching-and-learning-lab/deeper-learning-initiative/deeper-learning Dittmer, A. & Zabel, J. (2019) . Das Wesen der Biologie verstehen; Impulse für den wissenschaftspropädeutischen Biologieunterricht. In Groß, J. et al. (Hrsg.), Biologiedidaktische Forschung: Erträge für die Praxis. Berlin: SpringerSpektrum. Heering, P. & Kremer, K. (2018). Nature of Science. In: Krüger, D. et al. (Hrsg.), Theorien in der naturwissenschaftlichen Forschung. Berlin: SpringerSpektrum. Gebhard, U., Höttecke, D. & Rehm, M. (2017). Pädagogik der Naturwissenschaften. Ein Studienbuch. Berlin: SpringerSpektrum. Forum Bildung Digitalisierung: Community Call: Digitaltag 2023 mit Deeper Learning: Entdecken. Verstehen. Gestalten.: https://www.youtube.com/watch?v=DV387Otll_M&t=22s Kultusministerkonferenz. (o. D.). Medienbildungskompetenz - Rahmenlehrplan für die Sekundarstufe I .: https://www.schulministerium.nrw/sites/default/files/documents/Medienkompetenzrahmen_NRW.pdf

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
Titelbild: Unterrichtsreihe: Kunststoffe im Unterricht Sekundarstufe II

Unterrichtsreihe: Kunststoffe im Unterricht Sekundarstufe II

Unterrichtseinheit
19,98 €

Diese Unterrichtsreihe vermittelt umfassendes Wissen zu Kunststoffen – von ihrer molekularen Struktur bis zu ökologischen Herausforderungen. Mit Aufgaben, Experimenten und Bewertungsperspektiven. Die 46-seitige Unterrichtsreihe „Kunststoffe im Unterricht“ bietet einen fundierten Zugang zu einem der wichtigsten Werkstoffe der modernen Gesellschaft. Sie richtet sich an die Sekundarstufe II und vermittelt sowohl chemische Grundlagen (Monomere, Polymerisation, Thermoplaste, Duroplaste, Elastomere) als auch ökologische und gesellschaftliche Implikationen. Die Schülerinnen und Schüler analysieren den Aufbau und die Eigenschaften von Kunststoffen, untersuchen deren Herstellung durch Polymerisation, Polykondensation und Polyaddition und differenzieren nach molekularer Struktur und Verwendungszweck. Durch praktische Versuche – etwa zur Thermoplastizität oder Dichtebestimmung – gewinnen sie experimentelle Erfahrung. Ein weiterer Schwerpunkt liegt auf der Umweltproblematik: Mikroplastik, Recycling, Kunststoffmüll in Ozeanen und biobasierte Alternativen werden behandelt. In Bewertungsaufgaben diskutieren die Lernenden die Verantwortung von Industrie und Konsumenten im Umgang mit Kunststoffen. Die Materialien sind didaktisch vielseitig aufgebaut: Arbeitsblätter, Versuchsprotokolle, Textanalysen, Fallbeispiele und Aufgaben zur Bewertungskompetenz ermöglichen eine differenzierte Unterrichtsgestaltung. Ideal geeignet für Chemieunterricht, BNE-Schwerpunkte und fächerübergreifende Projekte.

  • Chemie / Natur & Umwelt
  • Berufliche Bildung, Sekundarstufe II

Selbstbau einer Farbstoffsolarzelle

Unterrichtseinheit
14,99 €

Die Unterrichtseinheit liefert einen Einblick in den Aufbau und die Funktion einer Farbstoffsolarzelle und ermöglicht es Schülerinnen und Schülern, mittels experimenteller Versuche die chemischen Abläufe innerhalb der Grätzelzelle zu verstehen. Optional kann ein Vergleich zur Photosynthese gezogen werden oder abschließend mittels einer methodischen Diskussion die Bedeutung der Farbstoffzelle als Alternative zu herkömmlichen Solarzellen diskutiert werden. Die Unterrichtseinheit kann für den Chemieunterricht in der in Sekundarstufe II eingesetzt werden und lässt sich in alle Rahmenlehrpläne der Bundesländer einbetten. Thematisch orientiert sie sich an einem Thema, das insbesondere in den letzten Jahren viel Aufmerksamkeit erregt hat und aus unserem Alltag nicht mehr wegzudenken ist – der nachhaltigen Erzeugung von Strom . Zu Beginn können sich die Schülerinnen und Schüler mithilfe des Arbeitsblattes 1 den Bau sowie die Funktion einer Farbstoffsolarzelle erarbeiten. Dabei werden auch die chemischen Vorgänge in der Zelle thematisiert. In einer anschließenden praktischen Phase können sie eine Grätzelzelle selbstständig zusammenbauen und im weiteren Verlauf den Effekt der Variation der Farbstoffe auf die Leistung der Zelle untersuchen. Die verschiedenen Experimente können dabei entweder eigenständig geplant oder nach einer von der Lehrkraft vorgegebenen Vorgehensweise durchgeführt werden. Darüber hinaus liegt ein besonderer Fokus auf der Einschätzung möglicher Gefahrenquellen und der gezielten Übung des Verfassens eines Versuchsprotokolls. Abschließend werden die Ergebnisse gemeinsam besprochen und diskutiert. Zum Abschluss der Einheit kann in einer Vertiefungsstunde ein Vergleich der Farbstoffsolarzelle mit der Photosynthese erfolgen. Optional bietet sich die Möglichkeit, die Bedeutung organischer Farbstoffzellen als Alternative zu herkömmlichen Solarzellen zu behandeln. Dies im Rahmen einer methodischen Diskussion erfolgen, in die auch aktuelle Forschungsergebnisse und potenzielle zukünftige Einsatzmöglichkeiten einbezogen werden können. Dabei werden die Recherchefähigkeit sowie das selbständige Forschen und Experimentieren der Schülerinnen und Schüler gezielt gefördert. Zudem lernen sie, innerhalb einer Gruppe eigenverantwortlich zu arbeiten und Arbeitsprozesse zu organisieren. Das Forschungsgebiet der Solartechnik hat in den letzten Jahren im Zuge der intensiv geführten umweltpolitischen Debatten über Nachhaltigkeit und erneuerbare Energien enorm an Bedeutung gewonnen. Das vorliegende Material ist realitätsnah gestaltet und bietet an verschiedenen Stellen einen Lebensweltbezug, durch den die Lernenden zum kritischen Denken angeregt werden. Die Unterrichtseinheit eignet sich ideal für den Chemieunterricht der Sekundarstufe II. Thematisch stellt sie eine vertiefende Ergänzung zum Themenblock "Elektrochemie und Redoxgleichgewichte" dar, der in allen Lehrplänen enthalten ist. Da die Einheit biologische mit chemisch-physikalischen Themen verbindet, kann sie aber auch fächerübergreifend als Exkurs in den Fächern Biologie oder Physik genutzt werden. Das Themengebiet der Redoxchemie sollte bereits bekannt sein. Außerdem sollten die Schülerinnen und Schüler in der Lage sein, themenbezogen selbstständig in verschiedenen Quellen zu recherchieren und Informationen kritisch zu bewerten. Für die Versuchsdurchführung ist es erforderlich, vorab den sicheren Umgang mit Chemikalien sowie die Handhabung eines Multimeters zu besprechen. Die Versuchsvorschrift enthält alle wichtigen Informationen zur Durchführung. Mithilfe von Arbeitsblatt 1 können sich die Schülerinnen und Schüler die chemischen Grundlagen sowie den Aufbau und die Funktion einer Grätzelzelle selbst erarbeiten und damit optimal auf den Versuch vorbereiten. Das Experiment kann jedoch auch ohne die vorherige Bearbeitung des Arbeitsblattes durchgeführt werden. Das Thema lässt sich im Anschluss optional vertiefen, indem die Schülerinnen und Schüler den Elektrolyten oder den Farbstoff variieren und die verschiedenen Zellen miteinander vergleichen. Hierbei kann die Vorgehensweise je nach Zielsetzung variabel angepasst werden. Um die Titandioxidschicht optimal zu benetzen, sollten die Beeren zuvor mit einem Mörser zerkleinert werden. Durch die Zugabe kleiner Wassermengen lässt sich eine gleichmäßige Flüssigkeit erzeugen, durch die der Farbstoff gut verteilt werden kann. Je nach Gruppenstärke und Vorwissen kann dies durch selbstständiges Experimentieren oder durch Hilfestellung erarbeitet werden. Auch die Wahl der Herangehensweise kann im Anschluss gemeinsam reflektiert und diskutiert werden. Die Lehrkraft sollte vor der Durchführung der Versuchsreihe sicherstellen, dass alle benötigten Materialien und Chemikalien vorhanden sind. Fachkompetenz Die Schülerinnen und Schüler lernen den Aufbau und die Funktionen einer Grätzelzelle kennen. beschreiben Reaktionen in der Grätzelzelle und vergleichen diese mit Reaktionen während der Photosynthese. bauen eine eigene Zelle und ermitteln experimentell den Einfluss verschiedener Materialien und Bedingungen auf die Leistung der Zelle. Medienkompetenz Die Schülerinnen und Schüler erfassen Inhalte aus verschiedenen Informationsquellen. können Medieninhalte analysieren und kritisch bewerten. Sozialkompetenz Die Schülerinnen und Schüler stärken während der Gruppenarbeit ihre Kommunikations- und Teamfähigkeit. können ihr Wissen auf fächerübergreifende Fragestellungen anwenden. Ehrmann, A. and Błachowicz, T. (2020), Solarstrom aus Früchtetee . Phys. Unserer Zeit, 51: 196-200. https://doi.org/10.1002/piuz.202001578 Ungiftige, wiederverwendbare Farbstoffsolarzelle : https://www.hsbi.de/presse/pressemitteilungen/ungiftige-wiederverwendbare-farbstoffsolarzelle Strom aus Licht : https://daten.didaktikchemie.uni-bayreuth.de/cnat/kunststoffe/solarzelle_l.htm Strom aus Licht: Wir stellen eine organische Solarzelle her : https://daten.didaktikchemie.uni-bayreuth.de/cnat/kunststoffe/solarzelle_s1.htm Erweiterung für die Leistungsbestimmung : https://daten.didaktikchemie.uni-bayreuth.de/cnat/kunststoffe/solarzelle_s2.htm Letzter Abruf der Internetadressen: 14.02.2025

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Korrosionsschutz – Herausforderungen und Lösungsansätze

Unterrichtseinheit

In dieser Unterrichtseinheit für den Chemieunterricht der Sekundarstufe II erarbeiten sich die Schülerinnen und Schüler grundlegende Kenntnisse über die chemischen Vorgänge während der Korrosion. Sie erfahren, welche Faktoren die Korrosion begünstigt, und lernen die Unterschiede gängiger Arten des Korrosionsschutzes kennen. Die chemischen Vorgänge während der Korrosion sind schon lange bekannt, vollständig verhindert werden können sie jedoch nicht. Das Thema Korrosion ist allgegenwärtig und die Wechselwirkungen zwischen Metallen und ihrer Umgebung ziehen jährlich hohe Kosten nach sich. Aber nicht nur hinsichtlich wirtschaftlicher Aspekte, auch angesichts des nachhaltigen Handelns sind Korrosionsschutzmaßnahmen relevant und aktuell. Nachhaltige Lösungen werden immer wichtiger, da sie die Lebensdauer von Werkstoffen und Bauwerken verlängern und durch Ressourcenschonung auch die Umwelt schonen. Diese Unterrichtseinheit kann dem Rahmenlehrplan der Sekundarstufe II zugeordnet werden. Sie orientiert sich an einem Thema, das jedem Menschen in verschiedenen Situationen im Alltag begegnet. In den Rahmenlehrplänen ist die Thematik bundesweit verankert und erfährt insbesondere mit Blick auf Nachhaltigkeit erneute Aufmerksamkeit. Schwerpunkt dieser Unterrichtseinheit ist unter anderem die Vermittlung der chemischen Prozesse, die während der Korrosion ablaufen. Im späteren Verlauf der Einheit wird dann auf verschiedene Faktoren eingegangen, die die Korrosion von Metallen fördern. In diesem Zusammenhang entwickeln die Schülerinnen und Schüler mit dem bisher erlangten Wissen ein Experiment, das die Vorgänge während der Korrosion von Metallen nochmals verdeutlicht. Abschließend wird der Fokus auf die verschiedenen Verfahren des Korrosionsschutzes gelegt. An dieser Stelle kann ergänzend das Thema Korrosionsschutz in Bezug auf Nachhaltigkeit und Wirtschaftlichkeit in einer fächerübergreifenden Aufgabenstellung betrachtet werden. Dabei kann die Diskussionsrunde entweder in Gruppen- oder Klassengröße erfolgen. Das Thema Korrosion eignet sich gut, um das Interesse der Schülerinnen und Schüler an der Chemie zu wecken, da es sichtbare Berührungspunkte mit im Alltag beobachtbaren Phänomenen bietet. Darüber hinaus bietet es eine gute Grundlage, um die Themen Nachhaltigkeit, Wirtschaft und Innovation am Beispiel und Lernfeld des Gerüstbauhandwerks zu behandeln. Die Unterrichtseinheit eignet sich für den Chemieunterricht der Sekundarstufe II und orientiert sich an den Themenfeldern "Redoxgleichgewichte", "Elektrochemie" beziehungsweise "Elektronenübertragungsreaktionen". Grundlegende chemische Kenntnisse in Bezug auf Redoxreaktionen werden für die Bearbeitung der Aufgaben vorausgesetzt und sollten gegebenenfalls vor der Unterrichtseinheit mit den Schülerinnen und Schülern wiederholt werden. Außerdem sollte die Medienkompetenz vorliegen, themenbezogen und kritisch in verschiedenen Quellen zu recherchieren. Darüber hinaus sind keine weiteren Kenntnisse notwendig. Die Einheit eignet sich als Einstieg in das Thema und bietet ein breites Spektrum an Lernmethoden und Sozialformen, sodass der Unterricht interessant und abwechslungsreich gestaltet werden kann. Für die Erarbeitung der verschiedenen Aufgabenstellungen stehen Arbeitsblätter mit Info-Texten zur Verfügung. Zusätzlich wird in einigen Aufgabenstellungen die eigene Recherchefähigkeit geschult und verbessert. Fachkompetenz Die Schülerinnen und Schüler erklären Phänomene der Stoffumwandlung bei chemischen Reaktionen. entwickeln Reaktionsgleichungen anhand ausgewählter Beispiele. erläutern die Bildung eines Lokalelements bei Korrosionsvorgängen. erlangen detailliertes Wissen über verschiedene Korrosionsschutzmaßnahmen. Medienkompetenz Die Schülerinnen und Schüler nutzen verschiedene Medienangebote für ihre Recherche. unterscheiden verschiedene Medien und hinterfragen diese kritisch-reflektiert. wählen digitale Inhalte und Informationen selbstständig aus. Sozialkompetenz Die Schülerinnen und Schüler können sachlich kommunizieren und Aufgaben in Zusammenarbeit mit anderen Schülern bearbeiten und ausführen. können ihr Wissen auf fächerübergreifende Fragestellungen anwenden. beurteilen die Folgen von Korrosion und Korrosionsschutzmaßnahmen unter ökonomischen und ökologischen Aspekten. Verwendete Literatur Kirsch, W., Schlachter, B. & Mangold, M. (2012a). Fit fürs Abi. Chemie Oberstufenwissen . Schroedel. Pistohl, B. (2015). Abitur-Training: Chemie 2 . Stark Verlag. Stranghöner, N., Baddoo, N. & Stehr, S. (2018). Nichtrostender Stahl im Bauwesen – Bemessung von Stahltragwerken aus nichtrostendem Stahl nach DIN EN 1993-1-4. Stahlbau , 87 (3), 279–283. https://doi.org/10.1002/stab.201820584 .

  • Chemie
  • Sekundarstufe II

Bau deinen eigenen Elektrolyseur

Kopiervorlage

Ein selbst gebauter Elektrolyseur macht Chemie greifbar: Begeistern Sie Ihre Schülerinnen und Schüler mit praktischem Experimentieren und fördern Sie ihr Verständnis für nachhaltige Energien! In diesem praxisorientierten Projekt bauen die Teilnehmerinnen und Teilnehmer ihren eigenen Elektrolyseur und führen spannende Experimente durch, um die Wasserelektrolyse hautnah zu erleben. Der Fokus liegt dabei auf der praktischen Wissensvermittlung zur Elektrolyse als nachhaltiger Energietechnologie und dem sicheren Umgang mit dem Energieträger Wasserstoff . Das Projekt beginnt mit einer übersichtlichen Materialliste und hilfreichen Hinweisen zur einfachen Beschaffung der erforderlichen Komponenten. Eine ausführlich bebilderte Schritt-für-Schritt-Anleitung ermöglicht es den Teilnehmerinnen und Teilnehmern, den Bauprozess eigenständig und in ihrem eigenen Tempo erfolgreich zu durchlaufen. Ergänzend dazu gibt es einen umfassenden Sicherheitshinweis, der potenzielle Risiken beim Umgang mit Wasserstoff aufzeigt und konkrete Maßnahmen beschreibt, um Gefahren zu vermeiden. Für Teilnehmerinnen und Teilnehmer, die ihr Wissen vertiefen möchten, steht ein kompakter Theorieteil zur Verfügung. Dieser bietet eine verständliche Einführung in die grundlegenden Prinzipien der Wasserelektrolyse und vermittelt einen Überblick über das Element Wasserstoff mit seiner spannenden Geschichte und seinen einzigartigen Eigenschaften. Insgesamt kombiniert das Projekt praktisches Lernen mit Sicherheitsbewusstsein und schafft ein fundiertes Verständnis für diese zukunftsweisende Technologie. Es ist für den Einsatz in den Fächern Technik, Chemie, Physik und Elektrochemie rund ums Thema Umwelt- und Klimaschutz geeignet. Fachkompetenz Die Schülerinnen und Schüler kennen den chemischen Prozess der Elektrolyse. erlernen den Umgang mit Netzgeräten (Spannung, Stromstärke). kennen Risiken von Wasserstoff. Sozialkompetenz Die Schülerinnen und Schüler beweisen Teamfähigkeit. arbeiten sorgfältig und genau. zeigen Verantwortungsbewusstsein.

  • Chemie / Natur & Umwelt / Technik / Sache & Technik / Physik / Astronomie
  • Sekundarstufe II, Berufliche Bildung, Hochschule

Interaktives Begleitmaterial: 3D-Moleküle verstehen und ihre räumliche Struktur entschlüsseln

Interaktives

Entdecken Sie interaktive Übungen für Ihren Unterricht! Dieses Arbeitsmaterial gehört zu der Unterrichtseinheit "3D-Moleküle verstehen und ihre räumliche Struktur entschlüsseln". Die interaktiven Übungen konzentrieren sich auf den Aufbau von 3D-Molekülen und deren räumliche Anordnung. Abgerundet wird die Unterrichtseinheit mit einem abwechslungsreichen Quiz. In interaktiven Quiz-Formaten wiederholen die Schülerinnen und Schüler die Arten von chemischen Bindungen, damit sie die räumliche Anordnung von Molekülen später vorhersagen und begründen können. Mit einer Infografik vertiefen sie ihr Wissen zur Elektronenpaarbindung und Oktettregel. Sie erkennen den Einfluss der freien Elektronen auf die Struktur des Moleküls. Über die eigene Erstellung von 3D-Molekülen über die Website molview.org erkennen die Schülerinnen und Schüler, dass Moleküle dreidimensionale Gebilde sind, deren Atome sich nach bestimmten Regeln anordnen. Durch einen kurzen Trailer erkennen die Lernenden die Bedeutung der freien Elektronenpaare auf die Anordnung der Atome im Molekül. Auf der Suche nach einer Möglichkeit, die dreidimensionale Anordnung zweidimensional darzustellen, erarbeiten die Schülerinnen und Schüler die Keilstrichprojektion. Im weiteren Verlauf recherchieren sie Teile des VSEPR-Modells, mit dessen Hilfe man die 3D-Struktur von Molekülen vorhersagen kann. Durch weitere Aktivitäten auf molview.org steigern sie das Verständnis der dreidimensionalen Struktur. Als Gesamtzusammenfassung lösen die Lernenden ein H5P-Quiz . Fachkompetenz Die Schülerinnen und Schüler zählen chemische Bindungen auf. können die Entstehung von Molekülen begründen. können die Oktettregel erklären. stellen ausgewählte Moleküle in Keilstrichprojektion dar. beschreiben das VSEPR-Modell. Medienkompetenz Die Schülerinnen und Schüler recherchieren Informationen und verarbeiten sie. bearbeiten ein Online-Quiz. geben Moleküle auf einer Website ein. Sozialkompetenz Die Schülerinnen und Schüler vergleichen eigene Informationen mit Informationen von Mitlernenden. stellen Informationen anderen Schülerinnen und Schülern vor.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

3D-Moleküle verstehen und ihre räumliche Struktur entschlüsseln

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die räumliche Anordnung von Molekülen kennen, erstellen selbst dreidimensionale, digitale Moleküle und können deren Struktur begründen. Der Einstieg in die Einheit erfolgt über den Contergan-Skandal der Firma Grünenthal. Der Wirkstoff von Contergan – Thalidomid – hat zu schweren Missbildungen vor allem bei ungeborenen Kindern geführt, deren Mütter das Medikament während der Schwangerschaft einnahmen. Die Ursache lag darin, dass Thalidomid in zwei unterschiedlichen räumlichen Anordnungen existiert, eine davon ruft Missbildungen hervor. In interaktiven Quiz-Formaten wiederholen die Schülerinnen und Schüler die Arten von chemischen Bindungen, damit sie die räumliche Anordnung von Molekülen später vorhersagen und begründen können. Mit einer Infografik vertiefen sie ihr Wissen zur Elektronenpaarbindung und Oktettregel. Sie erkennen den Einfluss der freien Elektronen auf die Struktur des Moleküls. Über die eigene Erstellung von 3D-Molekülen über die Website molview.org erkennen die Schülerinnen und Schüler, dass Moleküle dreidimensionale Gebilde sind, deren Atome sich nach bestimmten Regeln anordnen. Durch einen kurzen Trailer erkennen die Lernenden die Bedeutung der freien Elektronenpaare auf die Anordnung der Atome im Molekül. Auf der Suche nach einer Möglichkeit, die dreidimensionale Anordnung zweidimensional darzustellen, erarbeiten die Schülerinnen und Schüler die Keilstrichprojektion. Im weiteren Verlauf recherchieren sie Teile des VSEPR-Modells, mit dessen Hilfe man die 3D-Struktur von Molekülen vorhersagen kann. Durch weitere Aktivitäten auf molview.org steigern sie das Verständnis der dreidimensionalen Struktur. Als Gesamtzusammenfassung lösen die Lernenden ein H5P-Quiz . Beim Einstieg muss die Lehrkraft entscheiden, welche Inhalte der Website zum Contergan-Skandal relevant sind. Interessant sind die Daten und Fakten. Mit einem kurzen Vortrag kann die Lehrkraft unterstützen, den Skandal grob zu verstehen. Mithilfe der Präsentation erklärt die Lehrkraft den Spezialfall von Thalidomid, das aus zwei Enantiomeren besteht, die sich nur geringfügig in der Anordnung der Atome im Molekül unterscheiden. Sie verhalten sich zueinander wie Bild und Spiegelbild. Die Schülerinnen und Schüler erkennen, dass die räumliche Anordnung von Atomen im Molekül mitentscheidend für die Eigenschaften ist. Als Vorwissen sollten die Schülerinnen und Schüler wissen, was Atombindungen sind und wie diese entstehen. Ebenfalls sollten sie mit der Valenzstrichschreibweise vertraut sein. Zur Wiederholung und Auffrischung dienen der Lückentext zu chemischen Bindungen sowie die Infografik zu Molekülen beziehungsweise der Oktettregel. Beim Erstumgang mit der Website molview.org sollte die Lehrkraft mithilfe der Präsentation kurz erklären, welche Eingaben auf der Internetseite vorgenommen werden müssen, damit man die 3D-Struktur betrachten kann. Die Schülerinnen und Schüler sollen direkt über die Suche arbeiten, Moleküle also nicht aus Atomen erstellen. Wichtig ist hierbei, dass auf molview.org keine freien Elektronenpaare dargestellt werden. Beim Skizzieren der Molekülstrukturen durch die Schülerinnen und Schüler, zum Beispiel bei der Keilstrichprojektion, sollten die freien Elektronenpaare dargestellt werden. Bei der Überleitung zum VSEPR durch den Vergleich von Ammoniak und Methan kann bei geübten Schülerinnen und Schülern auf das Zeigen des kurzen Filmes verzichtet werden. Wenn die Schülerinnen und Schüler die Strukturen der beiden Moleküle vergleichen, könnten sie selbst darauf kommen, dass Ammoniak nach ihrem jetzigen Wissensstand anders aussehen müsste (H-Atome gleichmäßig um das N-Atom angeordnet). Die Inhalte des VSEPRs sollten grob besprochen werden. Hierbei ist es wichtig, den Molekültyp, zum Beispiel AB 3 E zu besprechen. Beim Punkt "VSEPR in der Praxis" können gerne zusätzliche Moleküle vorgegeben und durch die Schülerinnen und Schüler selbst bestimmt werden. Je nach Leistungsbereitschaft der Schülerinnen und Schüler kann hier differenziert werden. Das selbstgesteuerte Bestimmen von Strukturen ist für mathematisch-naturwissenschaftliche Klassen geeignet. Als Pufferlernziel kann kurz auf die Modellkritik eingegangen werden. Den Schülerinnen und Schülern sollte klar sein, dass Modelle lediglich ein Abbild der Realität sind, aber eben nicht der Realität entsprechen. Beim Rückbezug auf den Einstieg sollte nochmal betont werden, welchen Einfluss die räumliche Anordnung von Atomen im Molekül haben kann und wie die Eigenschaften dadurch verändert werden können. Die Gesamtzusammenfassung durch das Quiz sichert die wichtigsten Informationen und stellt eine weitere Einübung des VSEPRs dar. Fachkompetenz Die Schülerinnen und Schüler zählen chemische Bindungen auf. können die Entstehung von Molekülen begründen. können die Oktettregel erklären. stellen ausgewählte Moleküle in Keilstrichprojektion dar. beschreiben das VSEPR-Modell. Medienkompetenz Die Schülerinnen und Schüler recherchieren Informationen und verarbeiten sie. bearbeiten ein Online-Quiz. geben Moleküle auf einer Website ein. Sozialkompetenz Die Schülerinnen und Schüler vergleichen eigene Informationen mit Informationen von Mitlernenden. stellen Informationen anderen Schülerinnen und Schülern vor.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Unterrichtsmaterial und News für das Fach Chemie

Hier finden Lehrkräfte der Sekundarstufen I und II kostenlose und kostenpflichtige Arbeitsblätter, Kopiervorlagen, Unterrichtsmaterialien und interaktive Übungen mit Lösungsvorschlägen zum Download und für den direkten Einsatz im Chemie-Unterricht oder in Vertretungsstunden. Ob Materialien zu Periodensystem, Säuren, Basen, Thermodynamik, Redoxreaktionen oder Umweltchemie und Nachhaltigkeit: Dieses Fachportal bietet Lehrerinnen und Lehrern jede Menge lehrplanorientierte Unterrichtsideen, Bildungsnachrichten sowie Tipps zu Apps und Tools für ihren Chemieunterricht an Gymnasien, Gesamt-, Real-, Haupt- und Mittelschulen.  

Nutzen Sie unsere Suche mit ihren zahlreichen Filterfunktionen, um einfach und schnell lehrplanrelevante Arbeitsmaterialien für Ihren Unterricht zu finden.

ANZEIGE

Aktuelle News für das Fach Chemie