Fachliche Voraussetzungen

Was ist die Ekliptik und warum bewegen sich der Mond und die Planeten immer in der Nähe dieser Linie? Was sind rückläufige Bewegungen und Planetenschleifen? Warum haben nur Merkur und Venus Phasen wie der Mond?

Planetenbewegungen am Sternenhimmel

Erdrotation und die Bewegung der Fixsterne

Die Erde rotiert um eine Achse, die durch ihre beiden geographischen Pole führt. Die Erdrotation erfolgt von Westen nach Osten, also - von Norden auf die Erde gesehen - gegen den Uhrzeigersinn. Die Folge davon ist, dass der Sternenhimmel damit alle Himmelsobjekte für einen irdischen Beobachter einmal in etwa 24 Stunden auf einem Kreis von Osten nach Westen rotieren. Die Mittelpunkte aller dieser Kreise liegen auf der ins Weltall verlängerten Erdachse. Die Positionen der Sterne relativ zueinander ändern sich während eines Menschenlebens so gut wie nicht erkennbar. Deshalb heißen Sterne auch "Fixsterne": Sie scheinen an der rotierenden Himmelskugel ihren festen Platz zu haben.

Entstehung des Sonnensystems

Um die Bewegung der Planeten am Himmel verstehen zu können, sind einige grundlegende Kenntnisse über die Struktur des Sonnensystems erforderlich. Unser Sonnensystem entstand vor etwa vier Milliarden Jahren aus einer rotierenden, flachen Gas- und Staubscheibe. Aus der protoplanetaren Scheibe entstanden die Körper unseres Sonnensystems. Abb. 1 zeigt dies in einer künstlerischen Darstellung der NASA (Grafik zur Vergrößerung bitte anklicken).

Planeten übernehmen den Drehimpuls der Staubscheibe

Beinahe die gesamte Masse dieser Staubscheibe konzentrierte sich in der Sonne, in deren Innerem die enormen Gravitationskräfte die Bedingungen für den Ablauf von Kernfusionen herstellen. In den äußeren Bereichen der Staubscheibe "verklumpte" die dort ursprünglich vorhandene Materie zu den als Planeten, Kleinplaneten und Kleinkörpern des Sonnensystems bekannten Objekten. Die Planeten tragen den Großteil des Drehimpulses der ursprünglichen Staubscheibe und bewegen sich deshalb mit gleichem Umlaufsinn mehr oder weniger in derselben Ebene. Ihre Bahnen sind Ellipsen mit der Sonne in einem der Brennpunkte. Die Formen dieser Ellipsenbahnen weichen nur geringfügig von der Kreisform ab.

Sonne, Mond und Planeten bewegen sich auf der Ekliptik

Die Bahn, die die Sonne im Verlauf eines Jahres an der "Himmelskugel" beschreibt, wird Ekliptik genannt. Damit kann man die Ekliptik auch auffassen als Schnittkreis der Himmelskugel mit der Ebene, in der die Erde die Sonne umrundet. Durch die Entstehung der Planeten und der Sonne aus der flachen Staubscheibe unterscheiden sich die Bahnebenen der Planeten nicht allzu sehr von einander. Betrachtet man von der Erde aus andere Planeten (oder unseren Mond), dann müssen sie sich also - mehr oder weniger - auf oder nahe der Ekliptik bewegen. In unseren nördlichen Breiten stellt sich die Ekliptik als Bogen am südlichen Himmel dar, der von Osten kommend nach Süden ansteigt, um dann zum Westhorizont abzufallen. Bewohnerinnen und Bewohner der Südhalbkugel müssen sich nach Norden richten, um einen Blick auf die Ekliptik zu werfen.

Mars, Jupiter, Saturn, Uranus und Neptun

Die Zeit um die "Opposition" ist die günstigste Beobachtungszeit

Wie wir auf der Erde die Bewegung eines Planeten in der Nähe der Ekliptik wahrnehmen, hängt davon ab, welchen Planeten wir betrachten. Am einfachsten sind die Bewegungen der außerhalb der Erdbahn liegenden Planeten Mars, Jupiter, Saturn, Uranus und Neptun zu verstehen. Wir sehen, wie sich diese Planeten vor dem Fixsternhimmel nahe der Ekliptik von West nach Ost beziehungsweise von "rechts nach links" bewegen. Wenn einer dieser Planeten seine Opposition erreicht (Abb. 2), ist er der Erde am nächsten und am hellsten. Er ist dann die ganze Nacht über am Himmel zu beobachten. Im Zeitraum um die Konjunktion herum befinden sich die Planeten am Taghimmel und sind nicht zu sehen.

Rückläufigkeit und Schleifen

Wenn ein äußerer Planet seine Opposition erreicht und auf der "Innenbahn von der Erde überholt" wird, ändert er für einige Zeit die Bewegungsrichtung relativ zum Fixsternhimmel und wird "rückläufig". Bedingt durch die Geometrie der Konstellationen beschreiben die Bahnen von Mars und der äußeren Planeten um die Zeit der Opposition herum "Schleifen" an der Himmelskugel. Dies wird durch einige Animationen im Internet sehr gut veranschaulicht:

Merkur und Venus

Untere und Obere Konjunktion

Die innerhalb der Erdbahn kreisenden Planeten Merkur und Venus "pendeln" von uns aus gesehen zwischen der größten westlichen und der größten östlichen Elongation hin und her (Abb. 3). Im Gegensatz zu Mars und den äußeren Planeten ist bei Venus und Merkur zwischen der unteren und der oberen Konjunktion zu unterscheiden. In den Zeiten um beide Konjunktionen befinden sich die Planeten nahe bei der Sonne am Taghimmel und sind nicht zu beobachten (ähnlich der "Neumondsituation").

Planetentransite

Wenn sich Merkur oder Venus zum Zeitpunkt der unteren Konjunktion genau zwischen Erde und Sonne befinden, ist ein sogenannter Transit zu beobachten: Der Planet wandert als schwarzes Scheibchen über die Sonnenscheibe. Aufgrund der nicht ganz identischen Bahnebenen der Planeten geschieht dies jedoch nur selten (aus demselben Grund haben wir auch nicht bei jedem Neumond eine Sonnenfinsternis). Abb. 4 zeigt den Venustransit von 2004, aufgenommen von einer Schülergruppe am Gymnasium Isernhagen (Niedersachsen). Der nächste Venustransit am 6. Juni 2012 ist, wenn die Sonne in Mitteleuropa aufgeht, schon fast beendet. Der nächste Merkurtransit am 09. Mai 2016 kann dagegen vollständig beobachtet werden.

Phasen der Venus

Im Gegensatz zu den anderen Planeten zeigen Venus und Merkur aufgrund ihrer Bewegung innerhalb der Erdbahn - wie der Mond - Phasen: Während der größten östlichen Elongation (siehe Abb. 3) ist eine "abnehmende Halbvenus" als auffälliger Abendstern zu beobachten. Zum Zeitpunkt der größten westlichen Elongation ist eine "zunehmende Halbvenus" als Morgenstern zu sehen. Vor oder nach der unteren Konjunktion erscheint Venus (kurz nach Sonnenuntergang beziehungsweise kurz vor Sonnenaufgang) als große, aber sehr schmale und wegen der geringen Leuchtkraft am noch hellen Himmel nicht ganz einfach zu findende Sichel (die Sichelform ist dann bereits in einem guten Feldstecher erkennbar). Um die obere Konjunktion herum erscheint das Planetenscheibchen dagegen voll beleuchtet, aber sehr klein (und ist dadurch ebenfalls in der Dämmerung nicht sehr auffällig). Durch das Zusammenspiel der Parameter Entfernung und Beleuchtung (Phase) des Planeten kommen die großen Helligkeitsschwankungen der Venus zustande. An einem bestimmten Punkt zwischen unterer und oberer Konjunktion erstrahlt Venus in ihrem "höchsten Glanz". Abb. 5 zeigt die Entwicklung der abnehmenden Venus bis hin zur scharfen Sichelform. Die Aufnahmen stammen von Jens Hackmann. Weitere Fotos finden Sie auf seiner Homepage:

Schwer zu beobachten: Merkur

Der flinke, uns auf seiner "Innenbahn" schnell überholende Merkur (wegen seiner Schnelligkeit hervorragend als "Götterbote" geeignet) zeigt die gleichen Phasen wie Venus, ist aber seltener und schwieriger zu beobachten: Er "ertrinkt" oft im Dunst der horizontnahen Luftschichten.

Autor

Avatar
Peter Stinner

Zum Profil

Lizenzinformation

Frei nutzbares Material
Die von Lehrer-Online angebotenen Materialien können frei für den Unterricht genutzt und an die eigene Zielgruppe angepasst werden.

In Kooperation mit

Astro-AG Wissen/Betzdorf

Lehrende und Lernende der Astro AG Wissen/Betzdorf veröffentlichen Projekte und Ergebnisse.

Ergänzende Unterrichtseinheiten