• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Schwingungen in Mathematik, Musik und Physik

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Fourier-Analyse (nach J.B.J. Fourier, 1768-1830) auf experimentelle Art und Weise kennen. Mit der Methode können komplexe Schwingungen, wie sie in der Musik und in der Physik vorkommen, in ihre Einzelkomponenten zerlegt werden.Nach der Einführung in das Thema der trigonometrischen Funktionen und insbesondere der Sinusfunktion arbeiten die Schülerinnen und Schüler weitgehend selbstständig am Computer. Mit dynamischen Arbeitsblättern, die mithilfe der kostenlosen Software GeoGebra erstellt wurden, finden sie heraus, wie sich die Parameter Amplitude, Frequenz und Nullphasenwinkel auf eine Sinusschwingung auswirken. Anschließend werden diese Erfahrungen dazu genutzt, Sinusschwingungen gezielt zu beeinflussen, um eine experimentelle Art der Fourier-Analyse durchzuführen. Die dynamischen Arbeitsblätter enthalten auch Erklärungen und Informationen aus der Physik und der Musik, wodurch sie sich für den fächerübergreifenden Unterricht eignen. Da in der Musik Hörerfahrungen nicht fehlen dürfen, stellen neun Hörbeispiele eine direkte Verbindung zur Musik her. Die Hörbeispiele stehen in unmittelbarem Bezug zu den Aufgabenstellungen und vermitteln einen direkten Zusammenhang zwischen den dynamischen Konstruktionen und den musikalischen Entsprechungen. So üben die Schülerinnen und Schüler nicht nur den Umgang mit trigonometrischen Funktionen, sondern lernen auch deren Bedeutung für die Physik und die Musik kennen. Tipps zum Unterrichtsverlauf Anregungen für den fächerübergreifenden Unterricht und zum selbstständigen, erforschenden Lernen sowie Hinweise zur Bedeutung des "klassischen" Heftes Hintergrundinfos für Lehrkräfte und Experimentiervorschläge Allgemeine Informationen zur Herleitung einer Sinusschwingung und zu Schwebungen sowie Vorschläge zu musikalischen Experimenten mit dem Klavier und der Blocklöte Die Schülerinnen und Schüler festigen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern. beeinflussen mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt. erkennen die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik. lernen durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen. kennen die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke". kennen den Aufbau eines Tons durch Überlagerung seiner Partialtöne. lernen das Phänomen der Schwebung kennen. sind mit dem Prinzip der Fourier-Analyse vertraut und kennen Anwendungsgebiete. Mit der Fourier-Analyse können komplexe Schwingungen in ihre Einzelkomponenten zerlegt werden. Jede dieser Teilschwingungen besitzt dabei die Form einer Sinusschwingung und lässt sich als Graph einer Sinusfunktion der Form mit den Parametern Amplitude a , Frequenz f und Nullphasenwinkel phi sub~0~~ darstellen. Um eine komplexe periodische Schwingung in ihre Einzelkomponenten zu zerlegen, wendet man das Verfahren der Harmonischen Analyse an. Nach ihrem Entdecker, dem französische Physiker und Mathematiker Jean Baptiste Joseph Fourier (1768-1830) wird diese Methode auch Fourier-Analyse genannt. Fourier zeigte, dass sich jede beliebige periodische Schwingung eindeutig als Summe von endlich oder unendlich vielen Sinusschwingungen darstellen lässt, deren Frequenzen in einem ganzzahligen Verhältnis zueinander stehen. Die mathematische Durchführung einer Fourier-Analyse ist relativ anspruchsvoll. Man benötigt dafür Kenntnisse über den Umgang mit trigonometrischen Funktionen, Summen und Integralen, sowie mit komplexen Zahlen. Daher eignet sie sich nicht direkt für den Unterricht. Um den Schülerinnen und Schülern aber das Prinzip einer Fourier-Analyse näher zu bringen, genügt es, diese auf experimentelle Weise durchzuführen. Dies wird durch die hier verwendeten dynamischen Arbeitsmaterialien ermöglicht. Musik Anwendungen der Fourier-Analyse findet man sowohl in der Musik, als auch in der Physik und dem alltäglichen Umgang mit Radio, CD-Player und Fernseher. In der Musik nutzt man diese Methode zum Beispiel zur Analyse von Klängen. Dabei nimmt man die Klänge mit einem Mikrophon auf und setzt den Schwingungsverlauf mithilfe eines Analog-Digital-Wandlers in mathematisch erfassbare Zahlenwerte um. Derartige digitalisierte Schwingungsverläufe können dann zum Beispiel auf eine CD gebrannt werden, wobei sie beim Abspielen als Überlagerung von Sinusschwingungen verschiedener Frequenzen reproduziert werden. Physik In der Physik wird die Fourier-Analyse unter anderem eingesetzt, um zeitabhängige Vorgänge in harmonische Schwingungen zu zerlegen. Zum Beispiel nützt man dies um die Eigenfrequenzen eines Messgerätes zu berechnen. Denn um eine Verzerrung des Messvorgangs durch die Resonanzen der Eigenfrequenzen zu umgehen, darf das Messgerät keine Eigenfrequenzen innerhalb des Messbereichs aufweisen. Auch bei Radio und Fernsehen kommt die Fourier-Analyse zum Einsatz. Hier müssen die Signale erst digitalisiert und in ihre Einzelkomponenten zerlegt werden, bevor sie mit einer Trägerwelle gesendet werden können. Treten bei der anschließenden Überlagerung der Einzelfrequenzen Störungen auf, so sind sie zum Beispiel im Fernsehen als Bildstörungen wahrnehmbar. Dies tritt unter anderem auf, wenn Moderatoren Kleidungsstücke mit sehr feinen Streifen tragen und kann als flimmernde Bildstörung wahrgenommen werden. Der Verlaufsplan Schwingungen stellt eine Anregung dar und kann natürlich an die jeweiligen Unterrichtsbedingungen angepasst werden. Im Idealfall stehen Ihnen die für jeden Block vorgeschlagenen Unterrichtsstunden hintereinander zur Verfügung. Dies lässt sich eventuell durch das Tauschen von Unterrichtsstunden mit den Kolleginnen und Kollegen erreichen. Ist dies nicht der Fall, können die Blöcke auch in aufeinander folgenden Mathematikstunden behandelt werden. Die Arbeitsblätter können auch im Rahmen von Hausübungen zu Ende bearbeitet werden, damit alle Schülerinnen und Schüler beim nächsten Unterrichtsblock auf dem gleichen Wissensstand sind. Falls nicht alle über einen heimischen Internetanschluss verfügen, lassen sich die Hausübungen auch in Partner- oder Kleingruppenarbeit erledigen. Beim Abspielen der Hörbeispiele ist die Verwendung von Kopfhörern zu empfehlen, da sich die Lernenden sonst gegenseitig stören würden. Dynamische Arbeitsblätter "Schwingungen in Musik und Mathematik" Um mit den interaktiven Applets arbeiten zu können, benötigen Sie Java (Version 1.4.2 oder höher). Die Unterrichtsmaterialien eignen sich für den fächerübergreifenden Unterricht zwischen den Fächern Mathematik, Musikerziehung und Physik. Sie können in Zusammenarbeit mit den entsprechenden Fachlehrkräften zu einem Projekt ausgebaut oder ergänzt werden. So könnte Ihnen zum Beispiel die Musiklehrerin oder der Musiklehrer bei der Durchführung der beiden angeführten musikalischen Experimente in Block 2 (siehe Verlaufsplan Schwingungen und Hintergrundinfos für Lehrkräfte und Experimentiervorschläge ) behilflich sein, während die Physiklehrkraft Experimente zur Veranschaulichung von mechanischen Schwingungen durchführen könnte (Fadenpendel, Stimmgabeln, gekoppelte Pendel, ... ). Selbstständiges und erforschendes Lernen Durch die Kombination der dynamischen Arbeitsblätter mit den Hörbeispielen erleben die Schülerinnen und Schüler eine direkte Verbindung zwischen den Fächern Mathematik und Musik. So werden Informationen aus ganz verschiedenen Fachbereichen gesammelt und miteinander verknüpft. In dieser Unterrichtseinheit geschieht dies vor allem durch selbstständiges und erforschendes Lernen. Durch das Experimentieren mit den Materialien können im individuellen Lerntempo Erfahrungen gesammelt werden, welche in den Plenumsphasen mit den Mitschülern diskutiert und bestätigt werden können. Ergebnissicherung: Das Heft ist unentbehrlich! Zur Ergebnissicherung dient das Heft. Das schriftliche Festhalten der Beobachtungen und Erkenntnisse ermöglicht eine bessere Strukturierung der Ergebnisse und ein späteres Nachvollziehen des Unterrichtsgeschehens. Außerdem kann man als Lehrkraft so die Arbeitsfortschritte einzelner Schülerinnen und Schüler einsehen und gegebenenfalls unterstützend eingreifen. So wird gewährleistet, dass möglichst alle die Lernziele erreichen und vom Unterricht profitieren. Die grafische Darstellung einer harmonischen Schwingung lässt sich von der gleichförmigen Kreisbewegung ableiten, indem man diese auf eine normal zur Rotationsachse liegende Ebene projiziert, in der ein rechtwinkliges Koordinatensystem liegt. Bewegt sich ein Punkt P auf einer kreisförmigen Bahn mit Radius r , so lässt sich jedem Phasenwinkel phi im Intervall von 0 bis 2 pi der Wert der zugehörigen Auslenkung y zuordnen. Diese Werte werden entlang der Ordinaten-Achse eines Koordinatensystems aufgetragen, wodurch eine Sinuskurve entsteht. Für dieses Experiment benötigen Sie ein Klavier (Flügel oder Pianino). Es soll den Schülerinnen und Schülern verdeutlichen, dass jeder "natürliche" Ton durch die Überlagerung von Teiltönen (Partialtönen) entsteht. Drücken Sie (oder eine Schülerin oder ein Schüler) stumm die Taste des Tones C (in der großen Oktave). Betätigen Sie kurz und kräftig die Taste C 1 (in der Kontra-Oktave) und halten Sie die erste Taste währenddessen gedrückt. Lassen Sie die Klasse aufmerksam zuhören, was nach dem Auslassen der zweiten Taste passiert: Die Saite der Taste C wurde durch die tiefere Saite der Taste C 1 in Schwingung versetzt - der Ton C ist leise wahrnehmbar. Wiederholen Sie diesen Vorgang auch mit dem Stumm-drücken der Tasten c, g (beide in der kleine Oktave), c 1 , e 1 und g 1 (alle in der ersten Oktave). Dabei sind die entsprechenden Töne immer leiser und ihre Wahrnehmung wird somit schwieriger. Möglicherweise sind die letzten beiden Töne auch gar nicht mehr wahrnehmbar. Erklären Sie Ihren Schülerinnen und Schülern, dass jeder Ton des Klaviers durch Überlagerung seiner Partialtöne entsteht. Dies bedeutet für den Ton C 1 , dass er sich aus folgenden Tönen zusammensetzt: C 1 , C, G, c, e, g, b, c 1 , d 1 , e 1 , ... , wobei hier nur die ersten zehn Partialtöne aufgezählt sind. Theoretisch besteht ein natürlicher Ton aus unendlich vielen Partialtönen, wobei nur eine bestimmte Anzahl wahrnehmbar ist. Das Phänomen einer Schwebung tritt bei der Überlagerung zweier Sinusschwingungen gleicher Schwingungsrichtung mit ganzzahligen Frequenzen f sub~1~~ beziehungsweise f sub~2~~ und gleichem Nullphasenwinkel phi sub~0~~ auf. Der Einfachheit halber wählen wir dabei für den Nullphasenwinkel den Wert Null. Die Frequenzen dürfen dabei jedoch keine ganzzahligen Vielfachen voneinander sein. Ändert sich die Amplitude einer Schwingung periodisch, so nennt man dieses Phänomen in der Akustik eine Schwebung und ihre Frequenz Schwebungsfrequenz f sub~S~~. Liegt die Schwebungsfrequenz im Bereich zwischen 1 Hz und 8 Hz, so werden die einzelnen Schwebungen deutlich als Lautstärkeschwankungen wahrgenommen, was Musiker zum exakten Stimmen ihrer Instrumente nutzen. Stimmen die Amplituden A sub~1~~ und A sub~2~~ der beiden Sinusschwingungen überein, so spricht man von einer "vollkommenen Schwebung". Das heißt, die beiden Schwingungen löschen einander immer wieder aus und die Amplitude A sub~r~~ der resultierenden Schwingung schwankt zwischen den Werten 0 und A sub~1~~ + A sub~2~~. Besitzen die Amplituden der beiden Einzelschwingungen verschiedene Werte, so spricht man von einer "unvollkommenen Schwebung". Die Amplitude A sub~r~~ der resultierenden Schwingung schwankt dabei zwischen den Werten / A sub~1~~ - A sub~2~~ / und A sub~1~~ + A sub~2~~. Ein Klavierstimmer nützt die vielen Obertöne eines Klavierklanges um die Intervalle "rein" zu stimmen. Da die erste Oberschwingung eine doppelt so hohe Frequenz wie ihre Grundschwingung hat, klingt der erste Oberton genau eine Oktave höher als der Grundton. Bei einem einzeln erklingenden Ton nimmt das menschliche Ohr die auftretenden Partialtöne nicht getrennt, sondern als Klanggemisch wahr. Spielt der Klavierstimmer diesen Ton jedoch gleichzeitig mit dem etwas verstimmten Ton im Intervallabstand einer Oktave, so bilden sich Schwebungen zwischen der ersten Oberschwingung des tieferen und der Grundschwingung des höheren Tons. Durch die Veränderung der Saitenspannung lässt sich die Frequenz des höheren nun exakt an die des tieferen Tons anpassen, die Schwebung verschwindet und die Oktave klingt "rein". Für dieses Experiment benötigen Sie zwei Sopranblockflöten: Lassen Sie zwei Ihrer Schülerinnen oder Schüler kräftig denselben Ton auf den beiden Blockflöten spielen, zum Beispiel den Ton d 1 , bei dem auf der Vorderseite der Flöten lediglich das zweite Griffloch von oben verschlossen werden muss. Im Normalfall klingen die beiden Töne nun nicht "rein", da sie durch leicht unterschiedliche Frequenzen erzeugt werden. Ihre Schülerinnen und Schüler sollen nun versuchen, durch Veränderung des Anblasedrucks die Töne anzugleichen. Dabei hält ein Lernender den Luftstrom konstant (mittlere Lautstärke) während der andere seinen Anblasedruck variiert. Sobald die beiden Frequenzen übereinstimmen, klingt der Ton "rein", was deutlich hörbar ist. Das Angleichen der beiden Töne erfordert einige Sensibilität von den Schülerinnen und Schülern. Möglicherweise gibt es aber jemanden, der das Instrument gut beherrscht. Dies würde das "Reinstimmen" der beiden Blockflöten erheblich erleichtern.

  • Mathematik / Rechnen & Logik / Physik / Astronomie / Musik
  • Sekundarstufe I, Sekundarstufe II

Die Sinusfunktion: Schwingungen und Schwebungen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema trigonometrische Funktionen wird die Sinusfunktion fächerübergreifend als Schwingungsfunktion eingeführt. Darauf aufbauend kann die Trigonometrie als Anwendungsbereich behandelt werden.Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Das Ziel dieser Einführung ist es, ohne größeren Zeitaufwand die vorgegebenen Lernziele auf einem neuen Weg zu erreichen und dabei ein besseres Verständnis der Sinusfunktion als Schwingungsfunktion zu vermitteln.Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler verstehen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden. erhören über das physikalische Phänomen Schwebung ein Additionstheorem. Untersuchung periodischer Vorgänge Nachdem die Schülerinnen und Schüler mit der Beschreibung der Natur durch Potenzfunktionen bereits mehr oder weniger vertraut sind, sollen als neue Funktionsklasse nicht gleich die Sinusfunktionen, sondern erst einmal beliebige periodische Vorgänge untersucht werden. Direkt am Phänomen können Amplitude und Periodenlänge als wichtigste Begriffe erfahren werden (Experimentvorschläge finden Sie auf den Arbeitsblättern 1 und 2). Dabei erscheint mir das Wort Periodenlänge (und nicht Periodendauer, Periode oder Schwingungsdauer) für die Beschreibung der Periode im Mathematikunterricht als am besten geeignet. Hier legt man sich nicht schon im Voraus auf zeitliche Perioden fest. Der Frequenzbegriff ist vom mathematischen Standpunkt aus erst einmal nicht nötig. Auch auf den Begriff der Winkelgeschwindigkeit verzichte ich, auch wenn seine konsequente Verwendung durchaus denkbar ist. Phasenunterschiede sind für das Phänomen an sich primär nicht von großer Bedeutung und werden deshalb vorerst nicht behandelt. Daher wird auch nur die Sinusfunktion und nicht zusätzlich auch noch die Kosinusfunktion eingeführt. Die Sonnenaufgangskurve als nichtphysikalisches Sicherungselement Die Begriffe Amplitude und Periodenlänge sollen erst hinreichend gesichert werden, bevor sich die harmonische Schwingungsfunktion als wichtigste periodische Funktion herauskristallisiert. Dazu eignen sich insbesondere Experimente aus der Akustik. Hier kann man Amplitude und Periodenlänge direkt hören und mit dem Oszilloskop sogar sichtbar machen. Als nichtphysikalische Sicherungselemente bieten sich insbesondere tages- und jahreszeitliche Perioden an. Ich habe mich für die Änderung der Sonnenaufgangszeit im Laufe des Jahres entschieden, weil dieses Problem zum Beispiel im Herbst höchst aktuell und schülernah ist. Die Sonnenaufgangskurve weicht zwar mit zunehmender geographischer Breite von einer Sinuskurve ab, diese Abweichungen betragen in Deutschland jedoch weniger als fünf Prozent. Definition der Funktion Erst nach der beschriebenen Einführung wird die Kreisbewegung ins Spiel gebracht und es erfolgt eine Beschränkung auf die rein harmonischen Schwingungen. Das klassische Experiment dazu ist die synchrone Projektion von Federpendel und Kreisbewegung eines Stiftes. Vor der Definition von sin(x) sollen die Schülerinnen und Schüler erkennen, dass die harmonische Schwingungsfunktion keine Potenzfunktion sein kann. Das erste Mal in ihrer mathematischen Laufbahn können sie eine funktionale Abhängigkeit nicht aus den bekannten Rechenoperationen zusammenstellen. Eine neue Funktion muss definiert werden. Das hört sich einfacher an, als es ist, denn man bekommt bei einer solchen Definition sehr viele Freiheiten mit auf den Weg. Die Kurvenform ist zwar mehr oder weniger festgelegt, doch stehen die Achsenbeschriftungen noch völlig frei. Um hier zu steuern, werden die Schülerinnen und Schüler vorher in einem Arbeitsblatt die harmonische Schwingungskurve für eine Projektion eines Punktes auf einer Kreisbahn mit festem Radius genau zeichnen (Arbeitsblatt 4). Dadurch liegt es nahe, die neue Funktion im Bogenmaß zu definieren, nur der Radius sollte noch normiert werden. Argumente im Winkelmaß führte ich erst später ein. Um schnell von der Kreisbewegung zum Graphen der Sinusfunktion zu gelangen, bietet sich das Applet von Walter Fendt an (siehe externe Links auf der Startseite dieser Unterrichtseinheit). Wer etwas mehr Zeit hat, kann seine Schülerinnen und Schüler natürlich auch auf die herkömmliche Art und Weise die Projektion des Einheitskreises mithilfe des oben genannten Arbeitsblattes durchführen lassen, diesmal allerdings vor dem Hintergrund einer echten Bewegung. Kartierung der Funktion Nach der Definition wird die Funktion zu Hause punktweise kartiert und erst anschließend mit der Taschenrechnertaste "sin" in Verbindung gebracht und als Ganzes möglichst genau gezeichnet. Damit die Schülerinnen und Schüler wirklich das Gefühl einer eigenen Definition haben, soll die Namensgebung sehr offen gestaltet werden. Ein weiterer Vorteil eines vorerst anderen Namens besteht darin, dass die Lernenden bei der Kartierung der Funktion nicht zum "Mogeln" mit dem Taschenrechner gedrängt werden. Einsatz des Computers Die "nackte" Sinusfunktion reicht zur Beschreibung der harmonischen Schwingungen noch nicht aus, sie muss verschoben, gestreckt und gestaucht werden. Dabei sollen die Schülerinnen und Schüler lernen, zu vorgegebenen Funktionen der Art f(x) = A sin(B x) + C den zugehörigen Funktionsgraphen skizzieren zu können und umgekehrt zu festen Periodenlängen, Amplituden und Verschiebungen die zugehörige Funktion nennen zu können. Phasenverschiebungen werden aus den genannten Gründen nur kurz behandelt. Bei dieser Vorgehensweise bietet es sich außerdem an, auch die Überlagerung von Schwingungen und damit das Additionstheorem am Phänomen der Schwebung zu erfahren. Die Lernenden sollen das Additionstheorem hören (langsame Amplitudenschwankungen bei ähnlicher Frequenz wie die Grundtöne) und dann mithilfe eines CAS, eines Funktionenplotters oder eines geeigneten Java-Applets den Funktionsgraphen ermitteln. Abb. 1 (Platzhalter bitte anklicken) zeigt die Darstellung einer Schwebung mit dem CAS Derive, die durch Addition von sin(12x) und sin(13x) entsteht (verwendbare Online-Materialien wie zum Beispiel Java-Applets finden Sie unter den externen Links auf der Startseite dieser Unterrichtseinheit). Dabei werden die Begriffe Amplitude und Periodenlänge nochmals gesichert und gefestigt. Der Unterricht zur Trigonometrie basiert im Wesentlichen auf Aufgaben, bei dem es um Eigenschaften von Dreiecken geht. Die Einführung der Sinusfunktion bleibt ein Anhängsel. Erst in neuerer Zeit werden in Schulbüchern die periodischen Funktionen in diesem Zusammenhang besprochen. In dieser Unterrichteinheit soll der Spieß umgedreht werden: Die Sinusfunktion wird vor der Trigonometrie als logische Konsequenz aus der Untersuchung von Schwingungen eingeführt, die Trigonometrie folgt als praktische Anwendung. Dabei entstehen völlig neue Aufgabentypen, die die Vielfalt der Aufgabenkultur bereichern. In dieser Einheit sind dies einerseits komplexe Arbeitsblätter mit offenen Fragestellungen unter Einbeziehung des Computers, andererseits kleine Erkennungsaufgaben, wie man sie von den Parabeln kennt. Mathematik und Physik werden meist nur von Physiklehrkräften fächerübergreifend vermittelt. Damit vergeben die Mathematikerinnen und Mathematiker eine große Chance, Anschauliches mit rein Mathematischem zu verknüpfen. Mit dieser Unterrichtseinheit soll auch Nichtphysikern die Möglichkeit gegeben werden, fächerübergreifend zu arbeiten.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe I

Materialsammlung Trigonometrie

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Trigonometrie. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler erarbeiten den Einstieg in die Sinusfunktion weitgehend eigenständig und kooperativ. Dynamische Arbeitsblätter helfen dabei, die jeweilige Problem- oder Aufgabenstellung zu veranschaulichen. Ein virtuelles Experiment zur Pendelbewegung stellt den Anwendungsbezug her. Wenn die Sinusfunktion im Unterricht eingeführt wird, geschieht dies meist durch Angabe des Funktionsterms, Erstellen einer Wertetabelle und die anschließende Zeichnung des Funktionsgraphen. Demgegenüber ist der Zugang durch dynamische Arbeitsblätter intuitiver und experimenteller. Die Schülerinnen und Schüler sollen die Darstellung von Sinus, Cosinus und Tangens am Einheitskreis wiederholen. die Darstellung des Bogenmaßes am Einheitskreis wiederholen. eine Einführung und Definition der Sinusfunktion erarbeiten. die Bedeutung der Sinusfunktion für die Beschreibung von Schwingungsvorgängen erkennen. eigenständig und kooperativ mathematische Zusammenhänge erarbeiten und dokumentieren. Thema Einführung der Sinusfunktion Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 9 bis 10 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die Schülerinnen und Schüler sollen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen erkennen. besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion benennen. Thema Einführung der Sinus-, Kosinus- und Tangensfunktion Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Klasse 9 und 10 Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, idealerweise Beamer Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Mehrwert des Applets und Unterrichtsverlauf Warum Sie auf das Applet nicht verzichten sollten und wie Sie es im Zusammenhang mit einem Arbeitsblatt einsetzen können. Die Schülerinnen und Schüler sollen die Definition des Sinus, Cosinus und Tangens eines Winkels als Seitenverhältnis in einem rechtwinkligen Dreieck kennen und anwenden. die x- und y-Koordinate eines Punktes P auf dem Einheitskreis bestimmen können. begründen können, warum beim rechtwinkligen Dreieck im Einheitskreis die Katheten als Sinus (alpha) und Cosinus (alpha) bezeichnet werden. für die Winkel 0° < alpha < 90° die entsprechenden Seitenverhältnisse berechnen. besondere Seitenverhältnisse (alpha = 0°, alpha = 90°, ... ) und die Periodizität der Funktionsgrafen angeben können. Thema Vom Dreieck zur Funktion - Einführung der trigonometrischen Funktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 9, zur Wiederholung auch Klasse 10 Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Rechner in ausreichender Zahl für die Partnerarbeit; die Nutzung der dynamischen GeoGebra-Arbeitsblätter erfordert Java (Version 1.4 oder höher, kostenfrei) Die Schülerinnen und Schüler mussten für den Einsatz der dynamischen Arbeitsblätter nicht extra im Umgang mit dem Programm GeoGebra geschult werden. Lehrerinnen und Lehrern, die sich noch nicht mit GeoGebra auskennen, sei jedoch empfohlen, sich mit den Arbeitsblätter vor deren Einsatz im Unterricht gründlich vertraut zu machen, da die Schülerinnen und Schüler doch immer mehr entdecken, als man erwartet und dann entsprechende Fragen stellen. Durch den Einsatz der GeoGebra-Arbeitsblätter konnte dynamisch erklärt und veranschaulicht werden, wie die Funktionen entstehen und welche Eigenschaften sie besitzen. Über die Verwendung in Klasse 9 hinaus lassen sich die Materialien in Klasse 10 zur Wiederholung einsetzen, wenn die Eigenschaften der trigonometrischen Funktionen noch einmal aufgegriffen werden. Unterrichtsverlauf Hinweise zum Einsatz der Arbeitsblätter Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Er hat die dynamischen Arbeitsblätter zu dieser Unterrichtseinheit entwickelt. Die Schülerinnen und Schüler sollen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen lernen. erkannte Defizite im Bereich dieser Zusammenhänge selbstständig beheben. die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden können. Thema Trigonometrie mit GeoGebra - ein variables Übungskonzept Autor Andreas Meier Fach Mathematik Zielgruppe 9. und 10. Klasse Zeitraum 2-3 Stunden, je nach Unterrichtsintention Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Personen, Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript Unterrichtsplanung Verlaufsplan: Trigonometrie mit Geogebra Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch das Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich dieses Programm sehr gut für die Erstellung interaktiver dynamischer Lernumgebungen. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Voraussetzungen, Einführung und Nutzung der Arbeitsblätter Auf die Warm-up-Phase mit Übungen zur Selbstkontrolle und Leistungsbestimmung erfolgt das eigenverantwortliche Aufarbeiten von Defiziten und die Festigung des Gelernten. Besonderheiten interaktiver Lernumgebungen Allgemeine Informationen zu den Vorteilen der Nutzung interaktiver Übungsumgebungen und ihrer Rolle als Elemente eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Die Schülerinnen und Schüler sollen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden verstehen. über das physikalische Phänomen Schwebung ein Additionstheorem erhören. Thema Die Sinusfunktion zur Beschreibung von Schwingungen und Schwebungen Autor Stefan Burzin Fächer Mathematik, Physik (fächerübergreifend) Zielgruppe Klasse 10 Zeitraum 8 Stunden (je nach Vertiefung) Technische Voraussetzungen CAS (zum Beispiel Derive oder Maple), Funktionenplotter oder geeignete Java-Applets (für die Applets benötigen Sie einen Browser mit Java-Unterstützung, Java Runtime Environment ); idealerweise Beamer Planung Sinusfunktion - Schwingungen und Schwebungen Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Arbeitsmaterialien Experimente und alle Arbeitsblätter zu den Themen Sonnenaufgangszeiten, Frequenzen, Schwebungen und Sinusfunktionen im Überblick Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler sollen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern festigen. mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt beeinflussen. die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik erkennen. durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen lernen. die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke" kennen. den Aufbau eines Tons durch Überlagerung seiner Partialtöne kennen. das Phänomen der Schwebung kennen lernen. mit dem Prinzip der Fourier-Analyse vertraut sein und Anwendungsgebiete kennen. Thema Schwingungen in Mathematik, Musik und Physik Autorin Judith Preiner Fächer Mathematik, fächerübergreifend auch Musik, Physik Zielgruppe Gymnasium, Klasse 10; als experimentelle Idee zu den Trigonometrischen Funktionen auch Jahrgangsstufe 11 Zeitraum 6 bis 8 Unterrichtsstunden für die Bearbeitung der Unterrichtsmaterialien; bei fächerübergreifendem Unterricht erweiterbar Technische Voraussetzungen Computer in ausreichender Anzahl mit Soundkarte und Software zum Abspielen von MP3-Dateien, Lautsprecher und Kopfhörer (für Einzel- oder Partnerarbeit), ein Computer mit Beamer (für Lehrerpräsentationen) Software Internet-Browser, Java (Version 1.4.2 oder höher) zur Bearbeitung der Applets Planung Verlaufsplan Schwingungen Sie können alle Arbeitsmaterialien (sieben dynamische Arbeitsblätter) und die umfangreiche Lehrerinformation ("Lexikon" zu den Fachbegriffen, Lösungen der Arbeitsaufträge und Unterrichtsanregungen) von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner