Schwingungen in Mathematik, Musik und Physik
Unterrichtseinheit
In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Fourier-Analyse (nach J.B.J. Fourier, 1768-1830) auf experimentelle Art und Weise kennen. Mit der Methode können komplexe Schwingungen, wie sie in der Musik und in der Physik vorkommen, in ihre Einzelkomponenten zerlegt werden.Nach der Einführung in das Thema der trigonometrischen Funktionen und insbesondere der Sinusfunktion arbeiten die Schülerinnen und Schüler weitgehend selbstständig am Computer. Mit dynamischen Arbeitsblättern, die mithilfe der kostenlosen Software GeoGebra erstellt wurden, finden sie heraus, wie sich die Parameter Amplitude, Frequenz und Nullphasenwinkel auf eine Sinusschwingung auswirken. Anschließend werden diese Erfahrungen dazu genutzt, Sinusschwingungen gezielt zu beeinflussen, um eine experimentelle Art der Fourier-Analyse durchzuführen. Die dynamischen Arbeitsblätter enthalten auch Erklärungen und Informationen aus der Physik und der Musik, wodurch sie sich für den fächerübergreifenden Unterricht eignen. Da in der Musik Hörerfahrungen nicht fehlen dürfen, stellen neun Hörbeispiele eine direkte Verbindung zur Musik her. Die Hörbeispiele stehen in unmittelbarem Bezug zu den Aufgabenstellungen und vermitteln einen direkten Zusammenhang zwischen den dynamischen Konstruktionen und den musikalischen Entsprechungen. So üben die Schülerinnen und Schüler nicht nur den Umgang mit trigonometrischen Funktionen, sondern lernen auch deren Bedeutung für die Physik und die Musik kennen. Tipps zum Unterrichtsverlauf Anregungen für den fächerübergreifenden Unterricht und zum selbstständigen, erforschenden Lernen sowie Hinweise zur Bedeutung des "klassischen" Heftes Hintergrundinfos für Lehrkräfte und Experimentiervorschläge Allgemeine Informationen zur Herleitung einer Sinusschwingung und zu Schwebungen sowie Vorschläge zu musikalischen Experimenten mit dem Klavier und der Blocklöte Die Schülerinnen und Schüler festigen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern. beeinflussen mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt. erkennen die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik. lernen durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen. kennen die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke". kennen den Aufbau eines Tons durch Überlagerung seiner Partialtöne. lernen das Phänomen der Schwebung kennen. sind mit dem Prinzip der Fourier-Analyse vertraut und kennen Anwendungsgebiete. Mit der Fourier-Analyse können komplexe Schwingungen in ihre Einzelkomponenten zerlegt werden. Jede dieser Teilschwingungen besitzt dabei die Form einer Sinusschwingung und lässt sich als Graph einer Sinusfunktion der Form mit den Parametern Amplitude a , Frequenz f und Nullphasenwinkel phi sub~0~~ darstellen. Um eine komplexe periodische Schwingung in ihre Einzelkomponenten zu zerlegen, wendet man das Verfahren der Harmonischen Analyse an. Nach ihrem Entdecker, dem französische Physiker und Mathematiker Jean Baptiste Joseph Fourier (1768-1830) wird diese Methode auch Fourier-Analyse genannt. Fourier zeigte, dass sich jede beliebige periodische Schwingung eindeutig als Summe von endlich oder unendlich vielen Sinusschwingungen darstellen lässt, deren Frequenzen in einem ganzzahligen Verhältnis zueinander stehen. Die mathematische Durchführung einer Fourier-Analyse ist relativ anspruchsvoll. Man benötigt dafür Kenntnisse über den Umgang mit trigonometrischen Funktionen, Summen und Integralen, sowie mit komplexen Zahlen. Daher eignet sie sich nicht direkt für den Unterricht. Um den Schülerinnen und Schülern aber das Prinzip einer Fourier-Analyse näher zu bringen, genügt es, diese auf experimentelle Weise durchzuführen. Dies wird durch die hier verwendeten dynamischen Arbeitsmaterialien ermöglicht. Musik Anwendungen der Fourier-Analyse findet man sowohl in der Musik, als auch in der Physik und dem alltäglichen Umgang mit Radio, CD-Player und Fernseher. In der Musik nutzt man diese Methode zum Beispiel zur Analyse von Klängen. Dabei nimmt man die Klänge mit einem Mikrophon auf und setzt den Schwingungsverlauf mithilfe eines Analog-Digital-Wandlers in mathematisch erfassbare Zahlenwerte um. Derartige digitalisierte Schwingungsverläufe können dann zum Beispiel auf eine CD gebrannt werden, wobei sie beim Abspielen als Überlagerung von Sinusschwingungen verschiedener Frequenzen reproduziert werden. Physik In der Physik wird die Fourier-Analyse unter anderem eingesetzt, um zeitabhängige Vorgänge in harmonische Schwingungen zu zerlegen. Zum Beispiel nützt man dies um die Eigenfrequenzen eines Messgerätes zu berechnen. Denn um eine Verzerrung des Messvorgangs durch die Resonanzen der Eigenfrequenzen zu umgehen, darf das Messgerät keine Eigenfrequenzen innerhalb des Messbereichs aufweisen. Auch bei Radio und Fernsehen kommt die Fourier-Analyse zum Einsatz. Hier müssen die Signale erst digitalisiert und in ihre Einzelkomponenten zerlegt werden, bevor sie mit einer Trägerwelle gesendet werden können. Treten bei der anschließenden Überlagerung der Einzelfrequenzen Störungen auf, so sind sie zum Beispiel im Fernsehen als Bildstörungen wahrnehmbar. Dies tritt unter anderem auf, wenn Moderatoren Kleidungsstücke mit sehr feinen Streifen tragen und kann als flimmernde Bildstörung wahrgenommen werden. Der Verlaufsplan Schwingungen stellt eine Anregung dar und kann natürlich an die jeweiligen Unterrichtsbedingungen angepasst werden. Im Idealfall stehen Ihnen die für jeden Block vorgeschlagenen Unterrichtsstunden hintereinander zur Verfügung. Dies lässt sich eventuell durch das Tauschen von Unterrichtsstunden mit den Kolleginnen und Kollegen erreichen. Ist dies nicht der Fall, können die Blöcke auch in aufeinander folgenden Mathematikstunden behandelt werden. Die Arbeitsblätter können auch im Rahmen von Hausübungen zu Ende bearbeitet werden, damit alle Schülerinnen und Schüler beim nächsten Unterrichtsblock auf dem gleichen Wissensstand sind. Falls nicht alle über einen heimischen Internetanschluss verfügen, lassen sich die Hausübungen auch in Partner- oder Kleingruppenarbeit erledigen. Beim Abspielen der Hörbeispiele ist die Verwendung von Kopfhörern zu empfehlen, da sich die Lernenden sonst gegenseitig stören würden. Dynamische Arbeitsblätter "Schwingungen in Musik und Mathematik" Um mit den interaktiven Applets arbeiten zu können, benötigen Sie Java (Version 1.4.2 oder höher). Die Unterrichtsmaterialien eignen sich für den fächerübergreifenden Unterricht zwischen den Fächern Mathematik, Musikerziehung und Physik. Sie können in Zusammenarbeit mit den entsprechenden Fachlehrkräften zu einem Projekt ausgebaut oder ergänzt werden. So könnte Ihnen zum Beispiel die Musiklehrerin oder der Musiklehrer bei der Durchführung der beiden angeführten musikalischen Experimente in Block 2 (siehe Verlaufsplan Schwingungen und Hintergrundinfos für Lehrkräfte und Experimentiervorschläge ) behilflich sein, während die Physiklehrkraft Experimente zur Veranschaulichung von mechanischen Schwingungen durchführen könnte (Fadenpendel, Stimmgabeln, gekoppelte Pendel, ... ). Selbstständiges und erforschendes Lernen Durch die Kombination der dynamischen Arbeitsblätter mit den Hörbeispielen erleben die Schülerinnen und Schüler eine direkte Verbindung zwischen den Fächern Mathematik und Musik. So werden Informationen aus ganz verschiedenen Fachbereichen gesammelt und miteinander verknüpft. In dieser Unterrichtseinheit geschieht dies vor allem durch selbstständiges und erforschendes Lernen. Durch das Experimentieren mit den Materialien können im individuellen Lerntempo Erfahrungen gesammelt werden, welche in den Plenumsphasen mit den Mitschülern diskutiert und bestätigt werden können. Ergebnissicherung: Das Heft ist unentbehrlich! Zur Ergebnissicherung dient das Heft. Das schriftliche Festhalten der Beobachtungen und Erkenntnisse ermöglicht eine bessere Strukturierung der Ergebnisse und ein späteres Nachvollziehen des Unterrichtsgeschehens. Außerdem kann man als Lehrkraft so die Arbeitsfortschritte einzelner Schülerinnen und Schüler einsehen und gegebenenfalls unterstützend eingreifen. So wird gewährleistet, dass möglichst alle die Lernziele erreichen und vom Unterricht profitieren. Die grafische Darstellung einer harmonischen Schwingung lässt sich von der gleichförmigen Kreisbewegung ableiten, indem man diese auf eine normal zur Rotationsachse liegende Ebene projiziert, in der ein rechtwinkliges Koordinatensystem liegt. Bewegt sich ein Punkt P auf einer kreisförmigen Bahn mit Radius r , so lässt sich jedem Phasenwinkel phi im Intervall von 0 bis 2 pi der Wert der zugehörigen Auslenkung y zuordnen. Diese Werte werden entlang der Ordinaten-Achse eines Koordinatensystems aufgetragen, wodurch eine Sinuskurve entsteht. Für dieses Experiment benötigen Sie ein Klavier (Flügel oder Pianino). Es soll den Schülerinnen und Schülern verdeutlichen, dass jeder "natürliche" Ton durch die Überlagerung von Teiltönen (Partialtönen) entsteht. Drücken Sie (oder eine Schülerin oder ein Schüler) stumm die Taste des Tones C (in der großen Oktave). Betätigen Sie kurz und kräftig die Taste C 1 (in der Kontra-Oktave) und halten Sie die erste Taste währenddessen gedrückt. Lassen Sie die Klasse aufmerksam zuhören, was nach dem Auslassen der zweiten Taste passiert: Die Saite der Taste C wurde durch die tiefere Saite der Taste C 1 in Schwingung versetzt - der Ton C ist leise wahrnehmbar. Wiederholen Sie diesen Vorgang auch mit dem Stumm-drücken der Tasten c, g (beide in der kleine Oktave), c 1 , e 1 und g 1 (alle in der ersten Oktave). Dabei sind die entsprechenden Töne immer leiser und ihre Wahrnehmung wird somit schwieriger. Möglicherweise sind die letzten beiden Töne auch gar nicht mehr wahrnehmbar. Erklären Sie Ihren Schülerinnen und Schülern, dass jeder Ton des Klaviers durch Überlagerung seiner Partialtöne entsteht. Dies bedeutet für den Ton C 1 , dass er sich aus folgenden Tönen zusammensetzt: C 1 , C, G, c, e, g, b, c 1 , d 1 , e 1 , ... , wobei hier nur die ersten zehn Partialtöne aufgezählt sind. Theoretisch besteht ein natürlicher Ton aus unendlich vielen Partialtönen, wobei nur eine bestimmte Anzahl wahrnehmbar ist. Das Phänomen einer Schwebung tritt bei der Überlagerung zweier Sinusschwingungen gleicher Schwingungsrichtung mit ganzzahligen Frequenzen f sub~1~~ beziehungsweise f sub~2~~ und gleichem Nullphasenwinkel phi sub~0~~ auf. Der Einfachheit halber wählen wir dabei für den Nullphasenwinkel den Wert Null. Die Frequenzen dürfen dabei jedoch keine ganzzahligen Vielfachen voneinander sein. Ändert sich die Amplitude einer Schwingung periodisch, so nennt man dieses Phänomen in der Akustik eine Schwebung und ihre Frequenz Schwebungsfrequenz f sub~S~~. Liegt die Schwebungsfrequenz im Bereich zwischen 1 Hz und 8 Hz, so werden die einzelnen Schwebungen deutlich als Lautstärkeschwankungen wahrgenommen, was Musiker zum exakten Stimmen ihrer Instrumente nutzen. Stimmen die Amplituden A sub~1~~ und A sub~2~~ der beiden Sinusschwingungen überein, so spricht man von einer "vollkommenen Schwebung". Das heißt, die beiden Schwingungen löschen einander immer wieder aus und die Amplitude A sub~r~~ der resultierenden Schwingung schwankt zwischen den Werten 0 und A sub~1~~ + A sub~2~~. Besitzen die Amplituden der beiden Einzelschwingungen verschiedene Werte, so spricht man von einer "unvollkommenen Schwebung". Die Amplitude A sub~r~~ der resultierenden Schwingung schwankt dabei zwischen den Werten / A sub~1~~ - A sub~2~~ / und A sub~1~~ + A sub~2~~. Ein Klavierstimmer nützt die vielen Obertöne eines Klavierklanges um die Intervalle "rein" zu stimmen. Da die erste Oberschwingung eine doppelt so hohe Frequenz wie ihre Grundschwingung hat, klingt der erste Oberton genau eine Oktave höher als der Grundton. Bei einem einzeln erklingenden Ton nimmt das menschliche Ohr die auftretenden Partialtöne nicht getrennt, sondern als Klanggemisch wahr. Spielt der Klavierstimmer diesen Ton jedoch gleichzeitig mit dem etwas verstimmten Ton im Intervallabstand einer Oktave, so bilden sich Schwebungen zwischen der ersten Oberschwingung des tieferen und der Grundschwingung des höheren Tons. Durch die Veränderung der Saitenspannung lässt sich die Frequenz des höheren nun exakt an die des tieferen Tons anpassen, die Schwebung verschwindet und die Oktave klingt "rein". Für dieses Experiment benötigen Sie zwei Sopranblockflöten: Lassen Sie zwei Ihrer Schülerinnen oder Schüler kräftig denselben Ton auf den beiden Blockflöten spielen, zum Beispiel den Ton d 1 , bei dem auf der Vorderseite der Flöten lediglich das zweite Griffloch von oben verschlossen werden muss. Im Normalfall klingen die beiden Töne nun nicht "rein", da sie durch leicht unterschiedliche Frequenzen erzeugt werden. Ihre Schülerinnen und Schüler sollen nun versuchen, durch Veränderung des Anblasedrucks die Töne anzugleichen. Dabei hält ein Lernender den Luftstrom konstant (mittlere Lautstärke) während der andere seinen Anblasedruck variiert. Sobald die beiden Frequenzen übereinstimmen, klingt der Ton "rein", was deutlich hörbar ist. Das Angleichen der beiden Töne erfordert einige Sensibilität von den Schülerinnen und Schülern. Möglicherweise gibt es aber jemanden, der das Instrument gut beherrscht. Dies würde das "Reinstimmen" der beiden Blockflöten erheblich erleichtern.
-
Mathematik / Rechnen & Logik / Physik / Astronomie / Musik
-
Sekundarstufe I,
Sekundarstufe II