• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Warum brennen Glühlampen durch?

Unterrichtseinheit

Mit einem kurzen Film, einem virtuellen Experimentallabor und Arbeitsblättern wird umfangreiches Wissen rund um die Glühbirne vermittelt.Vor mehr als 100 Jahren hat die Glühbirne ihren Siegeszug begonnen und ermöglicht es seither, die Nacht zum Tag zu machen. Ihre Lebensdauer währt etwa 1.000 Stunden. Warum Glühbirnen schließlich ?durchbrennen?, wird in dieser Unterrichtseinheit untersucht. Dabei wird auf umfangreiches Online-Material aus dem SWR-Angebot "Warum ... ist der Himmel blau?" zurückgegriffen. Das Angebot enthält neben zahlreichen Informationen auch ein virtuelles Experimentallabor und eine interaktive Grafik. Einführender Film Ein einführender Film motiviert, sich weiter mit dem Thema zu beschäftigen. Anhand konkreter Fragen wird der Film analysiert. Wissensvertiefung im interaktiven Glühlampenlabor In einem interaktiven Online-Labor können verschiedene Glühbirnen "getestet" werden. Dabei vertiefen die Schülerinnen und Schüler ihr Wissen. Die Schülerinnen und Schüler sollen den Aufbau und die Funktion einer Glühbirne kennenlernen. anhand eines virtuellen Experiments herausfinden, welches Material am besten für den Glühfaden geeignet ist. Thema Warum brennen Glühlampen durch? Autoren Jürgen Spang, Hanspeter Hauke Fach Physik, Elektrizitätslehre Zielgruppe Klasse 8 bis 9 Zeitraum 2 Stunden Technische Voraussetzungen Ein Präsentations-Rechner mit Beamer und RealPlayer (kostenloser Download) zur Präsentation eines Video-Films, Computer für je zwei Lernende mit Flash Player (kostenloser Download) Jürgen Spang ist als Schulnetzberater im Kreismedienzentrum für den Landkreis Waldshut tätig. Neben seiner Tätigkeit als Webmaster arbeitet er noch an der Realschule Tiengen als Lehrer in dem Unterrichtsfach Physik. Zur Einführung in das Thema wird den Schülerinnen und Schülern ein etwa dreiminütiger Film per Beamer vorgeführt. Szenen aus dem Ablauf der Glühbirnenproduktion werden dabei mit Informationen zur Technik der Glühbirne kommentiert: Wie heiß wird der Wolfram-Glühfaden? Warum wird die Luft in einer Glühlampe gegen ein Füllgas ausgetauscht? Warum brennen die Glühfäden trotz der Abwesenheit von Sauerstoff durch? Was ist das besondere an Halogenlampen? Arbeitsblatt Nach der Vorführung können sich die Schülerinnen und Schüler spontan zum Film äußern. Ziel soll es sein, dabei die Neugier auf weitere Informationen zu wecken. Um die Sammlung der Informationen zu systematisieren, wir ein Arbeitsblatt verwendet: Die Schülerinnen und Schüler sollen zunächst einige Minuten Zeit haben, um sich mit den Fragen vertraut zu machen und Verständnisfragen zu stellen. Danach kann der Film ein zweites Mal vorgeführt werden mit der Maßgabe, besonders darauf zu achten, dass anschließend die Fragen beantwortet werden können. In leistungsschwachen Klassen kann der Film auch nach kurzen Abschnitten, in welchen die zur Beantwortung der Fragen notwendigen Informationen enthalten sind, angehalten werden. Bevor der Film dann weiter vorgeführt wird, sollte Zeit für die schriftliche Beantwortung der Fragen gegeben werden. Bereits während der Vorführung des Films können sich die Schülerinnen und Schüler Notizen auf der Rückseite des Arbeitsblattes machen. Danach können die Fragen im Lehrer-Schüler-Gespräch ausgewertet und die Antworten mithilfe der entsprechenden Filmstellen analysiert werden. Parallel dazu sollen die Schülerinnen und Schüler ihre Notizen ergänzen. Die Schülerinnen und Schüler sollen zunächst Gelegenheit haben, sich frei und ohne Vorgaben auf den SWR-Internetseiten zum Thema "Warum brennen Glühlampen durch?" zu bewegen: Warum brennen Glühlampen durch? Online-Materialien zum Thema aus dem "Warum Physik"-Angebot des Südwestrundfunks (SWR). Glühlampen-Exploratorium Mithilfe des Glühlampen-Exploratoriums lernen die Schülerinnen und Schüler die Bauteile einer Glühbirne kennen. Anschließend wird per Beamer das virtuelle Experimentallabor vorgestellt. Danach können die Schülerinnen und Schüler in Partnerarbeit mit den Glühbirnen zu experimentieren. Sie können dabei die Versuchsreihen des Glühlampen-Erfinders, Thomas Alva Edison, nachvollziehen. Zum Experimentieren stehen sechs Glühfadenmaterialien mit verschiedenen Schmelztemperaturen zur Verfügung. Im ersten Teilexperiment kann man versuchen, die Glühfäden an Luft durch Stromfluss zu erhitzen. Im Versuchsverlauf wird klar, dass ein Erhitzen an Luft schon bei Rotglut zum Verbrennen des Glühdrahts führt. Erst im Vakuum machen sich die unterschiedlichen Schmelzpunkte der Metalle bemerkbar. Dabei können die jeweiligen Schmelztemperaturen ermittelt werden. Bei Glühfadentemperaturen unterhalb des Schmelzpunktes lässt sich zusätzlich im Zeitraffer die durchschnittliche Lebensdauer des Glühfadens ermitteln. Ein Vergleich mit handelsüblichen Glühlampen ließe sich daran anschließen. Die Erkenntnis, dass auch bei Temperaturen unterhalb des Schmelzpunktes Metallatome aus dem Glühfaden verdampfen und diesen somit schwächen, lässt sich bei der Arbeit mit der Lebensdauersimulation gewinnen. Die Schülerinnen und Schüler sollen die Bedingungen für die längste Brenndauer herausfinden und Ihre Einzelergebnisse in eine Tabelle eintragen. Auf Zuruf kann festgestellt werden, wer gewonnen hat. Die Siegerin oder der Sieger darf dann seinen Versuch am Lehrer-Rechner per Beamer der Klasse vorstellen. Als Hausaufgabe kann den Schülerinnen und Schüler der Auftrag erteilt werden, sich über die Geschichte der Glühbirne und deren Erfinder "schlau" zu machen. Auf zwei bis drei DIN A 5-Kärtchen sollen die wichtigsten Fakten notiert werden, um sie dann in der nächsten Stunde nur mithilfe der Aufzeichnungen und Notizen vor der Klasse vortragen zu können. Jürgen Spang ist als Schulnetzberater im Kreismedienzentrum für den Landkreis Waldshut tätig. Neben seiner Tätigkeit als Webmaster arbeitet er noch an der Realschule Tiengen als Lehrer in dem Unterrichtsfach Physik.

  • Physik / Astronomie
  • Sekundarstufe I

Upcycling mit Plastiktüten und Strohhalmen: Warum fliegt ein Drache?

Unterrichtseinheit
5,99 €

In der Unterrichtseinheit "Upcycling mit Plastiktüten und Strohhalmen: Warum fliegt ein Drache?" erarbeiten die Lernenden das physikalische Prinzip "dynamischer Auftrieb" als eine zentrale Größe in der Strömungslehre und reflektieren die Folgen durch Plastikmüll für die Umwelt. Sie bauen pünktlich zum Herbst selbst einen Drachen aus einer Plastiktüte und Plastik-Strohhalmen und nähern sich damit dem Thema Fortbewegung in der Luft. Ein Verbot von Plastiktüten und Plastik-Strohhalmen in Deutschland bis 2021 rückt näher, doch bis alle Produkte durch eine entsprechende EU-Verordnung aus den Regalen verbannt sind, wird es lange dauern. Viele Plastiktüten und Plastik-Strohhalme sind täglich im Umlauf und landen als Wegwerfprodukt nach einmaliger Anwendung in der Mülltonne oder in der Umwelt. Beide Produkte tragen damit erheblich zur Verschmutzung der Meere und zum Klimawandel bei. Um auch den Lernenden dieses Problem bewusst zu machen, gehören die Themen Umweltschutz und Nachhaltigkeit unbedingt auch in den Unterricht. Daher sollen die Schülerinnen und Schüler in dieser Unterrichtseinheit fächerübergreifend in Physik und Geographie auf die ökologisch negativen Wirkungen dieses Plastikmülls aufmerksam gemacht und für die Umwelterziehung sensibilisiert werden: Die Schülerinnen und Schüler bauen angeleitet durch ein Video einen Drachen aus Plastiktüten und Strohhalmen und hinterfragen seine Funktion. Die Kraft des dynamischen Auftriebs als physikalisches Grundprinzip für das natürliche Fliegen beispielsweise von Vögeln wird damit in besonderer Weise schülerorientiert erarbeitet. Das Thema "Upcycling mit Plastiktüten und Strohhalmen: Warum fliegt ein Drache?" im Unterricht Mit diesem Unterrichtsmaterial wird aufgezeigt, wie durch die physikalische Wirkung des dynamischen Auftriebs als Kraft im Bereich Mechanik die Plastik-Produkte in die Umwelt gelangen können. Nicht zuletzt soll dadurch im Unterricht für Alternativen zur Plastiktüte und zum Plastik-Strohhalm im Sinne von Nachhaltigkeit und verantwortungsbewusstem Handeln geworben werden. Das Thema eignet sich damit auch zum Beispiel für den Einsatz Rahmen eines Projektes zum Umweltschutz sowie zur Fortbewegung in Wasser und Luft. Darüber hinaus kann der selbst gebaute Drache insbesondere im Herbst auch vermeintlich leistungsschwächere Schülerinnen und Schüler zur Mitarbeit motivieren und für Physik oder Geographie begeistern. Je nach Schwerpunktsetzung kann das Material ohne großen Aufwand angepasst und im jeweiligen Fach eingesetzt werden. Didaktisch-methodische Analyse Angeleitet durch ein Video bauen die Lernenden weitgehend selbstständig einen Drachen. Mithilfe von Arbeitsblättern strukturieren sie die wesentlichen Informationen und eignen sich das Wissen über das physikalische Prinzip des dynamischen Auftriebs sowie die Problematik um den Plastikmüll eigenverantwortlich an. Nach dem Prinzip des Kooperativen Lernens Think-Pair-Share sichern sich die Lernenden in der Partnerarbeit zunächst im geschützten Raum ab, bevor sie ihre Ergebnisse im Plenum zur Diskussion stellen und gemeinsam Alternativen zur Verwendung von Einwegprodukten aus Plastik formulieren. Fachkompetenz Die Schülerinnen und Schüler verstehen Plastik-Strohhalme und Plastiktüten als ökologisches Problem. lernen das Prinzip dynamischer Auftrieb als physikalische Erklärung für den Drachenflug kennen. erarbeiten Alternativen zur Verwendung von Einwegprodukten aus Plastik im Sinne der Nachhaltigkeit. Medienkompetenz Die Schülerinnen und Schüler entnehmen einem Video gezielt die wesentlichen Informationen und setzen die Anleitung zum Bau eines Drachen entsprechend um. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konzentriert und zielgerichtet mit einer Partnerin oder einem Partner zusammen, nehmen Vorschläge der anderen auf und formulieren gemeinsam Ideen für den Umweltschutz.

  • Physik / Astronomie / Geographie / Jahreszeiten / Technik / Sache & Technik
  • Sekundarstufe I, Primarstufe

Neutrinos – die Geister des Herrn Pauli

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Neutrinos erarbeiten die Schülerinnen und Schüler grundlegende physikalische Eigenschaften des Betazerfalls, erfahren, welche Rolle das Neutrino dabei spielt und welche Eigenschaften dieses Elementarteilchen besitzt. Die Arbeitsblätter nehmen dabei Bezug auf ein Erklärvideo zum Thema Neutrinos. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Schülerinnen und Schüler lernen anhand dieses Materials, dass die experimentell bestimmte Energie der Betateilchen nicht mit der theoretisch zu erwartenden Energie übereinstimmt. Diese sollte nämlich monoenergetischen Charakter haben, während das Experiment eine kontinuierliche Energieverteilung liefert. Sie erfahren, wie der Physiker Wolfgang Pauli das Rätsel durch die Postulierung eines "Geisterteilchens", dem Neutrino, lösen konnte und welche Eigenschaften dieses exotische Teilchen aufweist. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Einordung in den Unterricht und didaktische Analyse Der Betazerfall gehört zu den Standardthemen des Physikunterrichts in der Oberstufe – im Grund- wie auch im Leistungskurs. Die wissenschaftshistorischen Aspekte bei der Postulierung und dem Nachweis der Neutrinos sowie eine Erarbeitung ihrer Eigenschaften werden im Physikunterricht allerdings oft nur am Rande thematisiert. Das Video "Neutrinos (2016)" eignet sich daher besonders, diese Lücke zu schließen, da die wesentlichen Gesichtspunkte des Themas übersichtlich und zusammengefasst dargestellt werden. Die Arbeitsblätter, die sich in Teilen auf das Video beziehen, wurden so konzipiert, dass sie im Grund- wie auch im Leistungskurs eingesetzt werden können. Tipp-Karten sollen vor allem im Grundkursbereich bei der Umsetzung eines differenzierenden Unterrichts helfen. Als konkretes Beispiel für die Berechnung und die experimentelle Bestimmung der Energien beim Betazerfall wurde das Isotop Tritium gewählt, weil die Energien der Elektronen hier noch gerade in einem Bereich liegen, in dem klassisch gerechnet werden darf. Dies ist bei anderen Betazerfällen nicht mehr der Fall. Die Verwendung der relativistischen Formeln würde aber eine nicht unerhebliche Hürde darstellen, die das eigentliche Thema, nämlich die Notwendigkeit der Neutrinos zur Rettung des Energiesatzes, ungünstig überdecken würde. Die Tatsache, dass es sich beim Betaminus-Zerfall um Antineutrinos handelt, wird in den Arbeitsblättern nicht thematisiert, da dies für das Thema zunächst nicht relevant ist und die physikalischen Hintergründe der Elementarteilchenphysik den Lernenden nicht bekannt sind. Methodische Analyse Ein zentrales Ziel der Unterrichtseinheit besteht darin, dass die Lernenden nachvollziehen können, warum die Physiker vor 1930 größte Probleme bei der physikalischen Erklärung des Betazerfalls hatten und warum die Postulierung eines weiteren Teilchens zur Rettung des Energiesatzes führte. Daher sind die Arbeitsblätter so aufgebaut, dass die Diskrepanz zwischen theoretischem Ansatz (Potentialtopfmodell) und den experimentellen Ergebnissen herausgearbeitet wird und die Leistung Wolfgang Paulis mithilfe des Erklärvideos deutlich und nachvollziehbar wird. Die Tatsache, dass es gut 26 Jahre gedauert hat, bis man das geforderte Teilchen tatsächlich nachweisen konnte, zeigt, welch hervorragenden Spürsinn und Mut für unkonventionelle Lösungen Pauli besaß. Auch dies wird im Video deutlich, wie auch die erheblichen Anstrengungen, bestimmte Eigenschaften des Neutrinos experimentell zu ermitteln. Vorkenntnisse Für die Bearbeitung des ersten Arbeitsblattes zu Neutrinos ist es günstig, wenn das Thema "Massendefekt" beziehungsweise "Bindungsenergie" bereits behandelt wurde. Es reicht aber unter Umständen auch der Hinweis auf die entsprechende Tipp-Karte (Arbeitsblatt 4). Die Energie, die der Tritiumkern abgibt, erscheint nämlich als kinetische Energie des ausgesendeten Teilchens, also des Elektrons. Diese Energieabgabe führt aus Gründen der Energieerhaltung (Massenerhaltung) zu einem Masseverlust des Gesamtsystems, wobei Masse und Energie über E = mc² miteinander verknüpft sind. Für das zweite Arbeitsblatt sind Grundkenntnisse der Bewegung von geladenen Teilchen in Magnetfeldern erforderlich. Diese sollte in der Regel in den Halbjahren zuvor behandelt worden sein. Im dritten Arbeitsblatt geht es vor allem um die Eigenschaften, den Nachweis und die wissenschaftliche Bedeutung der Neutrinos. Obwohl im Video wie auch im Text (Brief von Wolfgang Pauli) Begriffe und Inhalte auftauchen, die im Unterricht noch nicht behandelt wurden oder gar nicht zum Schulstoff gehören, sollten sich die Aufgaben problemlos bewältigen lassen. An der einen oder anderen Stelle kann die Lehrkraft erklärend Hilfestellung geben, aber grundsätzlich ist es nicht schlimm, wenn bestimmte Aspekte des Themas nicht erschöpfend behandelt werden können. Sollte das Interesse bei den Lernenden für bestimmte Inhalte besonders groß sein, kann dies aber durchaus in Form von Referaten oder besonderen Lernleistungen in den Unterricht integriert werden. Fachkompetenz Die Schülerinnen und Schüler berechnen an einem konkreten Beispiel die Energie von Betateilchen mithilfe einer Massenbilanz. erklären ein Experiment zur Bestimmung der Elektronengeschwindigkeit. wenden Fachwissen aus der Elektrodynamik an, um eine Formel für die Elektronenenergie herzuleiten. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit. diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Physik / Astronomie
  • Sekundarstufe II

Schon gehört? Schallwandler im Alltag

Unterrichtseinheit

Wie funktionieren Schallwandler und welche Rolle spielen sie in unserem Alltag? In dieser Unterrichtseinheit für den Physikunterricht der Sekundarstufe I und II lernen Schülerinnen und Schüler, wie elektrodynamische, elektromagnetische und piezoelektrische Schallwandler funktionieren und warum sie in Geräten wie Mikrofonen, Kopfhörern, Hörgeräten und Mobiltelefonen eine zentrale Rolle spielen. Mithilfe des Arbeitsblatts 1 lernen die Schülerinnen und Schüler, die Funktionsweise eines Schallwandlers in eigenen Worten zu beschreiben und dessen Bedeutung für den Alltag zu erkennen. Um einen fächerübergreifenden Ansatz zu ermöglichen, setzen sie sich damit auseinander, in welchen Geräten Schallwandler verbaut sind und welchen Nutzen diese haben. Sie sehen, dass Schallwandler in vielen Geräten des täglichen Lebens eingebaut sind und in verschiedenen Bereichen eingesetzt werden, z. B. in der Unterhaltungselektronik oder im Gesundheitswesen. Ein fächerübergreifender Ansatz ergibt sich daraus, dass sie die Funktionsweise von Schallwandlern kennenlernen und ihre Bedeutung für den Alltag reflektieren. So kann die Einheit sowohl im Physik- als auch im Sozialkundeunterricht eingesetzt werden. Besonders der Sachbezug zum Hörakustik-Handwerk verdeutlicht die Relevanz von Schallwandlern für den Gesundheitsbereich. Neben der theoretischen Auseinandersetzung bietet eine optionale Zusatzaufgabe die Möglichkeit, Kopfhörer oder Lautsprecher auseinanderzubauen. Diese praktische Erfahrung kann im Rahmen einer Projektwoche oder, sofern es der Unterrichtsverlauf erlaubt, im regulären Unterricht umgesetzt werden. Dadurch erhalten die Lernenden einen direkten Zugang zu den verschiedenen Komponenten eines Schallwandlers und können deren Funktionen besser nachvollziehen. Arbeitsblatt 2 vertieft das Wissen über verschiedene Typen von Schallwandlern. Durch Informationstexte erfassen die Lernenden deren Aufbau und formulieren die Funktionsweise in eigenen Worten. Der thematische Bezug zum Hörakustik-Handwerk verdeutlicht, warum Schallwandler nicht nur im technischen, sondern auch im gesundheitlichen Bereich eine wichtige Rolle spielen. Auf Arbeitsblatt 3 setzen sich die Schülerinnen und Schüler speziell mit dem Hörgerät als Schallwandler auseinander. Sie beschriften die einzelnen Bestandteile eines Hörgeräts und erklären, wie der Schall darin verarbeitet wird. Darüber hinaus lernen sie verschiedene Arten von Hörgeräten kennen, vergleichen deren Vorteile und mögliche Nachteile und setzen sich mit der technologischen Entwicklung dieser Geräte auseinander. Die Materialien sind für den Einsatz im Physikunterricht der Klassenstufen 9 bis 12 konzipiert und ermöglichen eine fächerübergreifende Betrachtung von Schallwandlern. Die Unterrichtseinheit knüpft an die Lebenswelt der Schülerinnen und Schüler an und arbeitet mit praxisnahen Beispielen. Lernende sollen durch eigene Erfahrungen und die aktive Auseinandersetzung mit der Thematik dazu ermutigt werden, sich Wissen eigenständig anzueignen. Die Erarbeitung erfolgt in Einzel- oder Paararbeit, wodurch die Selbstständigkeit gefördert wird. Ergänzend dazu ist ausreichend Zeit für gemeinsame Diskussionen im Plenum vorgesehen, insbesondere zur Relevanz von Schallwandlern im Alltag. Hierbei stehen verschiedene Anwendungsbereiche wie Unterhaltung, Gesundheit und Lebensqualität im Fokus. Der Bezug zum Thema wird über bekannte Geräte geschaffen, wie Kopfhörer oder Smartphones. Ein Schwerpunkt der Unterrichtseinheit liegt auf der gesellschaftlichen Bedeutung von Schallwandlern, insbesondere im Bereich der Hörgeräte. Die Lernenden setzen sich mit der sozialen und gesundheitlichen Relevanz dieser Technologie auseinander und reflektieren deren Einfluss auf den Alltag. Dabei erhalten sie die Möglichkeit, ihre Erkenntnisse auszutauschen und optional (durch Zusatzaufgaben) zu vertiefen. Die physikalischen Inhalte eignen sich besonders zur Erweiterung des Lehrplanthemas "Akustik" und können durch die Unterrichtseinheiten " Schall und Akustik " und " Hörst du mich? " ergänzt werden. Auch im Ethikunterricht sowie ergänzend im Physikunterricht kann das Thema im Hinblick auf seine gesellschaftliche Bedeutung betrachtet werden, was eine ganzheitliche Sichtweise ermöglicht. Das Hörakustiker-Handwerk eignet sich dabei als Anschauungsbeispiel, um den Aufbau von Schallwandlern in der Schule zu erklären, da es die Bereiche Physik, Technik, Biologie und Ethik verbindet. Durch die Möglichkeit zur Differenzierung lassen sich die Aufgaben an das jeweilige Leistungsniveau der Lerngruppe anpassen. Die Materialien eignen sich für leistungsstarke Lerngruppen der Sekundarstufe I und für Lernende der Sekundarstufe II. Fachkompetenz Die Schülerinnen und Schüler erwerben tiefgreifende fachliche Kenntnisse über Schallwandler und deren Anwendungsgebiete. wissen, wie elektrische Signale durch Schallwandler in Schall umgewandelt werden und können den Aufbau eines Lautsprechers und eines Mikrofons erklären. können Beispiele für den Einsatz von Schallwandlern im Alltag nennen und deren Bedeutung für die Bereiche Kommunikation und Technik erläutern. lernen verschiedene Schallwandler und deren Funktionsweise zu unterscheiden. lernen physikalische Effekte wie beispielsweise den piezoelektrischen Effekt kennen. verstehen die Bedeutung von Schallwandlern für alltägliche Prozesse. Medienkompetenz Die Schülerinnen und Schüler üben und festigen den Umgang mit digitalen Endgeräten durch die Einbindung von Erklärvideos und Rechercheaufträgen. gewinnen Informationen aus verschiedenen Medien wie Text, Videos und Webseiten. lernen, recherchierte Informationen zu präsentieren. Sozialkompetenz Die Schülerinnen und Schüler können sachlich miteinander in der Gruppe kommunizieren. können gemeinsam Aufgaben bearbeiten und präsentieren. arbeiten kooperativ in Zweiergruppen und in Kleingruppen. Verwendete Literatur Michael Dickreiter , Volker Dittel , Wolfgang Hoeg und Martin Wöhr (2008): Handbuch der Tontechnik K.G. Saur. Zollner, Manfred und Zwicker, Eberhard (1993): Elektroakustik; Springer-Verlag, 3. Aufl., Berlin.

  • Physik
  • Sekundarstufe I, Sekundarstufe II

Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik

Unterrichtseinheit
5,99 €

Dieses Unterrichtsmaterial regt die Lernenden zum Bau einer Rakete aus zwei Plastikflaschen, Natron und Essig an. An diesem Experiment wird neben der Problematik um den Plastikmüll zum Umweltschutz in der Schule der Antrieb einer Rakete durch das Rückstoßprinzip sowie die chemische Reaktion von Säure und Natriumhydrogencarbonat erläutert.Mit diesem Unterrichtsmaterial lernen die Schülerinnen und Schüler am Beispiel einer Rakete das Rückstoßprinzip als praktische Anwendung des 3. Newtonschen Axioms sowie die chemische Reaktion von Backpulver und Essig kennen. Sie bauen angeleitet durch ein Video selbstständig eine Rakete, erkennen ihren Antrieb und vertiefen die Phänomene der Chemie und Physik durch begleitende Arbeitsblätter. Gleichzeitig soll das Experiment auf den seit Jahren steigenden Verbrauch von Plastikflaschen aufmerksam machen, die nur zum Teil recycelt werden, während der Rest in Müllverbrennungsanlagen oder in der Umwelt landet. Das Material eignet sich je nach Lehrplan für den fächerverbindenden Unterricht in Chemie und Physik der Sekundarstufen I und II. Das Thema "Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik" im Unterricht Am Beispiel einer Rakete erarbeiten die Lernenden mit diesem Unterrichtsmaterial weitgehend selbstständig und praxisorientiert den Antrieb in einem Experiment. Diese Form der experimentellen Erarbeitung des Rückstoßprinzips im Unterricht eignet sich in besonderer Weise, um den Schülerinnen und Schülern der Sekundarstufen nachhaltig aufzuzeigen, warum Raketen eigentlich fliegen. Vorkenntnisse Zu den wesentlichen Voraussetzungen zur Durchführung dieser Unterrichtseinheit zählt, dass die Lernenden mit Lehrvideos arbeiten sowie ein chemisches beziehungsweise physikalisches Experiment aufbauen, durchführen und auswerten können. Didaktische Analyse In diesem Unterrichtsmaterial erarbeiten die Lernenden mit dem Rückstoßprinzip und einer chemischen Reaktion Phänomene der Fächer Physik und Chemie: Während das Rückstoßprinzip in Natur und Technik als praktische Anwendung des 3. Newtonschen Axioms ein physikalisches Phänomen ist, das in der Natur und Technik zur Fortbewegung dient, gilt die Verbindung von Backpulver mit Essig (Säure mit Natron) als ein Beispiel für eine Reaktion der Chemie. Darüber hinaus setzen sich die Schülerinnen und Schüler zum Umweltschutz mit ökologischen Problemen, die beim Recycling von Plastikflaschen entstehen, auseinander und lernen ein Experiment selbstständig vorzubereiten, durchzuführen und auszuwerten. Methodische Analyse Die Auswertung der Filme geschieht sowohl im Plenum als auch in Partnerarbeit. Die Vorbereitung, Durchführung und Auswertung des Experiments erfolgt in Partner- oder Gruppenarbeit, sodass die Lernenden möglichst eigenverantwortlich und selbstständig arbeiten können. Die Lehrkraft steht in diesen Phasen beratend zur Verfügung und sollte nur unterstützend eingreifen, wenn Fragen auftauchen. Fachkompetenz Die Schülerinnen und Schüler bereiten ein Experiment im Chemie- oder Physikunterricht selbstständig vor und führen es nach Anleitung durch. lernen das Rückstoßprinzip sowie die chemische Reaktion von Natron und Essig kennen. unterscheiden ökologisch sinnvolles Recycling von Plastikflaschen von unsinniger Müllverwertung. Medienkompetenz Die Schülerinnen und Schüler entnehmen einem Video im Unterricht die wesentlichen Informationen für den Bau einer Rakete. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konzentriert und zielführend kooperativ im Team zusammen.

  • Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Energietransport mit Hochspannungsleitungen

Unterrichtseinheit
5,99 €

In dieser Unterrichtseinheit sollen die Lernenden mit den Möglichkeiten der Energieversorgung mittels Hochspannungsleitungen vertraut gemacht werden. Im Vordergrund steht die Bedeutung des Hochtransformierens der Ausgangsspannung am Elektrizitätswerk auf hohe bis sehr hohe Spannungen, die gleichzeitig ein Absenken der durch die Leitung fließenden Stromstärken ermöglicht – Grundvoraussetzungen für einen Stromtransport mit möglichst geringen Leitungsverlusten.Ausgehend von Grundkenntnissen zur Funktionsweise von Transformatoren und den physikalischen Gesetzmäßigkeiten beim Stromtransport (Ohm'scher Widerstand, spezifischer Widerstand des jeweiligen Leiters) wird den Schülerinnen und Schülern gezeigt, dass nur ein Stromtransport mithilfe von Hochspannungsleitungen effektiv und wirtschaftlich ist. Anhand eines Beispiels zur direkten Übertragung des Stromes vom Elektrizitätswerk zum Verbraucher über eine größere Distanz erkennen die Lernenden, dass auf diese Weise beim Verbraucher so gut wie keine brauchbare Energie mehr ankommt. Versorgt man den Verbraucher über dieselbe Distanz jedoch über eine Hochspannungsleitung, ergeben sich nur minimale Verluste, so dass fast die ganze Ausgangsleistung des Elektrizitätswerkes beim Verbraucher zur Verfügung steht. Energietransport mit Hochspannungsleitungen im Unterricht Hochspannungsleitungen sind im Alltag an vielen Stellen ebenso zu sehen wie auch Umspannstationen mit entsprechenden Transformatoren. Die Schülerinnen und Schüler sollen dafür interessiert und sensibilisiert werden, warum es für manche Leitungen bis zu 60 m hohe Masten braucht, während im Ortsbereich oder in der näheren Umgebung auch sehr niedrige Masten für den Stromtransport ausreichen – in Deutschland allerdings nur noch eingeschränkt vorhanden, weil die Nahversorgung häufig bereits über Erdkabel erfolgt. Vorkenntnisse Grobe Vorkenntnisse der Lernenden können dahingehend vorausgesetzt werden, dass die Hochspannungsmasten nicht zu übersehen sind und jeder weiß, dass sie der Stromversorgung dienen. Die wenigsten werden allerdings wissen, warum die Masten mit drei oder sechs Leitungen bestückt sind. Ebenso wird kaum bekannt sein, dass die Hochspannungsleitungen üblicherweise mit Dreiphasenwechselstrom betrieben werden. Didaktische Analyse Bei der Behandlung des Themas sollte man darauf achten, dass die Stromversorgung ein hochkomplexes Gebilde ist, das man – vor allem in der Sekundarstufe I – nur modellmäßig erfassen kann. Dies ist allerdings für ein erstes Verstehen der grundlegenden Prinzipien völlig ausreichend und kann gegebenenfalls in der Sekundarstufe II in entsprechenden Kursen vertieft werden. Methodische Analyse Bei der modellmäßigen Beschreibung des Energietransportes und den in den Übungsaufgaben zu berechnenden Fakten kommt es darauf an, dass die Lernenden erkennen, dass Energietransport an spezielle Gegebenheiten und physikalische Gesetzmäßigkeiten gebunden ist, die nur mithilfe der Hochspannungstechnik möglich sind. Fachkompetenz Die Schülerinnen und Schüler wissen um die Bedeutung und Funktion von Hochspannungsleitungen. kennen die unterschiedlichen und differenzierten Möglichkeiten der Energieübertragung mit Hochspannungsleitungen. können durch Rechnung zeigen, dass ein wirtschaftlicher Energietransport nur mithilfe der Hochspannung funktionieren kann. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschülern auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern oder Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Hybridmotoren – das Beste aus beiden Welten

Unterrichtseinheit

In dieser Unterrichtseinheit für die Sekundarstufe I für den Physikunterricht setzen sich Lernende mit den Besonderheiten des Hybridantriebs auseinander. Von unterschiedlichen Antriebsarten und deren Funktionsweise über verschiedene Arten der Energieumwandlung und Energieerhaltung lernen die Schülerinnen und Schüler physikalische Konzepte mit Sachbezug zum Kfz-Gewerbe kennen. Was bedeutet es, Vorteile aus zwei Motorenarten zu kombinieren, um Vorteile für technische Entwicklungen zu erzielen? Wie kann man verschiedene physikalische Prozesse gleichzeitig nutzen, um die Effizienz zu steigern? Mit diesen und verwandten Fragen beschäftigen sich die Schülerinnen und Schüler anhand von drei Arbeitsblättern in dieser Unterrichtseinheit. Es geht darum, sich mit dem Hybridantrieb auseinanderzusetzen und herauszufinden, warum er das Beste aus zwei Welten vereint. Ziel der Unterrichtseinheit ist es, diese Antriebsart kennenzulernen und mit anderen Antriebsarten zu vergleichen. Es ist sinnvoll, die Unterrichtseinheiten zum Verbrennungsmotor und zum Elektromotor vorzuschalten. In der ersten Stunde nähern sich die Schülerinnen und Schüler der Frage, welche beiden Antriebsarten im Hybridauto vereint sind. Sie erarbeiten, welche Technik welche Funktion erfüllt und lernen dabei, zwischen Energiespeicher und Energiewandler zu unterscheiden. Anschließend bestimmen sie anhand vorgegebener Kriterien Merkmale von Verbrenner-, Elektro-, und Hybridautos. Die Lernenden recherchieren selbstständig ein Hybridmodell, überprüfen die erarbeiteten Merkmale des Hybridfahrzeugs und nehmen eine Einordnung und Unterteilung vor. Darauf aufbauend lernen sie den Aufbau und die Funktionsweise eines Hybridantriebs kennen. Die Lernenden setzen sich mit den Antriebskomponenten auseinander, indem sie einen Lückentext ausfüllen. Anhand von zwei Abbildungen erarbeiten sie die Unterschiede zwischen Elektro- und Hybridantrieb. Mit diesem Wissen erarbeiten die Lernenden anhand einer Animation zum Energiefluss eines Hybridautos die Vorgänge in den verschiedenen Betriebsphasen. Sie erarbeiten, welcher Motor in welcher Betriebsphase zum Einsatz kommt und warum und wie die Energieumwandlung funktioniert. Optional wird eine Zusatzaufgabe angeboten. Die Lernenden werden aufgefordert, die Infrastruktur für Elektro- und Hybridfahrzeuge aktiv wahrzunehmen. Dazu recherchieren sie in ihrem schulischen Umfeld Tankstellen, Ladesäulen und Werkstätten, die auf Elektro- und Hybridfahrzeuge spezialisiert sind und lernen verschiedene Recherchemöglichkeiten kennen. Die Lernenden vertiefen zudem ihr erworbenes Wissen über Energieumwandlung und Energieerhaltung. Dazu lesen sie einen kurzen Informationstext über die physikalischen Grundlagen, die verschiedenen Energieformen und die Energieumwandlung in einem Hybridauto. Das erworbene Wissen fassen sie zusammen, indem sie Beispiele zur Energieumwandlung sammeln. Die Schülerinnen und Schüler lernen die Energierückgewinnung durch Rekuperation kennen und erarbeiten die Funktionsweise anhand eines Videos, das den Vorgang zielgruppengerecht veranschaulicht. Es folgt ein Quiz zum Hybridantrieb, das die wichtigsten Inhalte spielerisch abfragt. Das Quiz kann in Kahoot erstellt werden, um den Spaßfaktor, die Motivation und die Interaktivität zu erhöhen. Die Einheit endet mit einem Rollenspiel, in dem die Lernenden ein Beratungsgespräch simulieren. Indem die Lernenden einem fiktiven Kunden/einer fiktiven Kundin die Funktionsweise des Hybridfahrzeugs, den Unterschied zwischen den Antriebsarten und den Vergleich zum Elektroauto erklären und die Vor- und Nachteile des Hybrids erläutern, übertragen sie das erworbene Wissen auf eine konkrete Situation. Die Aufgabe verdeutlicht das vielfältige Wissen, das für ein solches Beratungsgespräch im Kfz-Gewerbe erforderlich ist. Die Reflexion des Gelernten, der Unsicherheiten und Herausforderungen während des Rollenspiels kann als Ausgangspunkt für die Wiederholung und Vertiefung der Inhalte mit der Lerngruppe dienen. Verschiedene Autos mit unterschiedlichen Antriebsarten sehen die Schülerinnen und Schüler jeden Tag, beispielsweise auf dem Weg zur Schule. Dabei nehmen sie von außen oft keine offensichtlichen Unterschiede wahr. Die Unterrichtseinheit zum Hybridantrieb ist darauf ausgelegt, dieses alltägliche Phänomen zu durchleuchten und den Lernenden ein tiefergehendes Verständnis für die Antriebsart (Hybrid) zu vermitteln. Vor dieser Unterrichtseinheit sollten die Grundlagen des Verbrennungsmotors und des Elektromotors sowie deren Funktionsweise und Aufbau behandelt worden sein. Sie richtet sich an Lernende, die ein grundlegendes Verständnis dieser Antriebsarten mitbringen. Von Vorteil ist ebenfalls Grundlagenwissen über Energiearten, Energieumwandlung und Energiespeicherung. Diese Vorkenntnisse bilden die Basis für das Verständnis der Vorteile eines Hybridantriebs, der als Synthese der besten Eigenschaften beider Welten gilt. Um die komplexen Vorgänge des Hybridantriebs verständlich zu machen, wurden die Inhalte didaktisch reduziert aufbereitet. Beispielsweise wurden lediglich die wesentlichen Energiewandlungsprozesse eingeführt. Hierbei spielen vor allem die Begriffe "mechanische", "elektrische" und "chemische" Energie eine zentrale Rolle. Unterkategorien wie "kinetische Energie" und "potenzielle Energie" werden zwar erwähnt, aber nur oberflächlich behandelt, insbesondere die Lageenergie (potenzielle Energie) wird nicht detailliert vertieft. Komplexe Vorgänge werden stets durch eine Abbildung, eine Animation oder ein Video veranschaulicht, um das Thema auf verschiedenen Wahrnehmungsebenen zugänglich zu machen und das Verständnis zu unterstützen. Differenzierte Aufgabenstellungen mit variierenden Schwierigkeitsgraden ermöglichen es allen Schülerinnen und Schülern, die Inhalte auf ihrem individuellen Niveau zu erschließen. Hilfestellungen wie Tipp-Boxen und veranschaulichende Grafiken unterstützen dabei das Lernen und Verstehen, während Wort-Kästen das Leseverständnis fördern und bei der Erschließung unbekannter Begriffe helfen. Die Unterrichtseinheit bedient sich einer Vielfalt an Medienformaten wie Videos, interaktiven Karten und Texten mit Vorlesefunktion, um unterschiedliche Lerntypen anzusprechen. Diese multimediale Herangehensweise ermöglicht es den Lernenden, die Informationen auf vielfältige Weise aufzunehmen und zu verarbeiten. Sie fördert individuelles Lernen und eine vertiefte Auseinandersetzung mit den Lehrinhalten. Ein Schwerpunkt der Unterrichtseinheit ist das forschend-entdeckende Lernen. Neben der Vermittlung theoretischer Grundlagen bieten Erkundungsaufgaben direkte Anknüpfungspunkte an die Lebenswelt der Schülerinnen und Schüler. Die Erforschung der Infrastruktur für Hybridfahrzeuge in ihrer eigenen Region schafft einen konkreten Realitätsbezug. Durch den konkreten Bezug zum Kfz-Gewerbe wird ein Bewusstsein für die eigene Umwelt geschaffen. Die praxisnahen Aufgaben stärken die Selbstständigkeit und das kritische Denken der Lernenden. Die Unterrichtseinheit bietet zahlreiche gesellschaftswissenschaftliche Bezüge. Die Analyse des Schadstoffausstoßes verschiedener Fahrzeugtypen ermöglicht Diskussionen über aktuelle Gesetzgebungen, den Ausbau der Infrastruktur und Bemühungen zur Schadstoffreduktion im Kfz-Gewerbe. Eine vertiefende Einheit zur Nachhaltigkeit im Verkehrssektor kann fachübergreifende Zusammenhänge verdeutlichen. Durch Gruppen- und Paararbeit wird die Zusammenarbeit unter den Schülerinnen und Schülern gefördert. Sie können ihr Wissen austauschen, sich gegenseitig unterstützen und gemeinsam Aufgaben erarbeiten. Diese kooperativen Lernformen stärken soziale Kompetenzen und fördern die Teamarbeit der Lerngruppe. Ein abschließendes Rollenspiel stellt einen praktischen Anwendungsbezug her, indem die Lernenden als Beraterinnen und Berater in einem fiktiven Beratungsgespräch die Funktionsweise und Vorteile eines Hybridfahrzeugs erläutern. Die Reflexion über ihre Erfahrungen während des Rollenspiels dient als Ausgangspunkt für eine vertiefte Wiederholung und Festigung der erlernten Inhalte. Fachkompetenz Die Schülerinnen und Schüler lernen Aufbau und Funktionsweise eines Hybridantriebs kennen. unterscheiden zwischen Energiespeichern und Energiewandlern. verstehen, warum Hybridmotoren effizient sind. lernen die verschiedenen Arten der Energieumwandlung mit Sachbezug zum Hybridauto kennen. beziehen die verschiedenen Energiearten (elektrische, chemische und thermische Energie) auf den Energiefluss und die Energieumwandlung im Hybridfahrzeug. lernen die Rekuperation im Zusammenhang mit dem Elektroantrieb kennen. vergleichen die verschiedenen Antriebsarten (Verbrennungsmotor, Elektroantrieb, Hybridantrieb) hinsichtlich der physikalischen Vorgänge. Medienkompetenz Die Schülerinnen und Schüler gewinnen Informationen aus verschiedenen Medien wie Text, Video, Webseiten und interaktiven Grafiken. recherchieren selbstständig im Internet nach genannten Kriterien und Informationen und lernen, die recherchierten Informationen zu selektieren. lernen, recherchierte Informationen zu präsentieren. Sozialkompetenz Die Schülerinnen und Schüler hören zu und erkennen relevante Informationen zu einer bestimmten Fragestellung. arbeiten kooperativ in Zweiergruppen und in Kleingruppen. führen eine Pro-und-Contra-Diskussion und lernen, eigene Standpunkte zu vertreten sowie fremde Standpunkte zu akzeptieren. übertragen die gesammelten Informationen in ein Rollenspiel und lernen, Informationen zielgruppengerecht zu vermitteln. setzen sich im Zusammenhang mit dem Thema aktiv mit ihrer Umgebung auseinander.

  • Physik
  • Sekundarstufe I

Gravitation im Erde-Mond-System: von der Erde zum Mond und zurück

Unterrichtseinheit

Mithilfe dieser Unterrichtseinheit zur Erde-Mond-Gravitation erkennen die Schülerinnen und Schüler die Auswirkungen differentieller Gravitation und die Wechselwirkungen im Kräftesystem Erde-Mond. In dieser Unterrichtseinheit befassen sich die Schülerinnen und Schüler mit den folgenden Fragen: Wie beeinflusst der Mond die Erde – und wie die Erde den Mond? Was wäre, wenn sich der Mond viel näher um die Erde drehen würde – oder viel weiter weg? Und wieso trifft der Mondschatten die Erde so selten? Die Unterrichtsmaterialien sind im Rahmen des Projektes "Columbus Eye – Live-Bilder von der ISS im Schulunterricht" entstanden. Das übergeordnete Projektziel besteht in der Erarbeitung eines umfassenden Angebots an digitalen Lernmaterialien für den Einsatz im Schulunterricht. Dieses Angebot umfasst interaktive Lerntools und Arbeitsblätter, die über ein Lernportal zur Verfügung gestellt werden. Das Projekt Columbus Eye wird von der Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt e. V. mit Mitteln des Bundesministeriums für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages unter dem Förderkennzeichen 50 JR 1703 gefördert. Anhand der Unterrichtsmaterialien "Gravitation im Erde-Mond-System" mit dazugehöriger App beschäftigen sich die Schülerinnen und Schüler experimentell mit der Veränderung des Erde-Mond-Abstandes. Mit dem Smartphone nehmen sie die Position des Mondes ein und können aus dem Weltraum heraus experimentieren. So finden sie heraus, was passiert, wenn sie der Erde immer näher kommen – sowohl auf der Erde, als auch auf dem Mond. Mit der Mondschatten-Simulation und dem Video einer Mondfinsternis aus dem All ermitteln sie nicht nur, warum Mond- und Sonnenfinsternisse so selten sind, sondern erhalten auch ein Verständnis für die Größenverhältnisse im Weltraum. Die Unterrichtsmaterialien eigenen sich für den Einsatz im Physik- und Astronomie-Unterricht der Sekundarstufe II. Ausführliche Informationen für Lehrkräfte, inklusive thematischer Hintergrund-Informationen, eines Stundenverlaufsplans und Musterlösungen zu den Arbeitsblättern finden sich bei den Downloads. Die Schüler und Schülerinnen erkennen die Auswirkungen differentieller Gravitation erkennen. erkennen Wechselwirkungen im Kräftesystem Erde-Mond. wählen physikalische Größen begründet aus und verarbeiten sie deduktiv in einer Hypothese führen ein Gedankenexperiment durch.

  • Physik / Astronomie
  • Sekundarstufe II, Berufliche Bildung

Radioaktivität: natürliche Strahlenquellen

Unterrichtseinheit
5,99 €

In dieser Unterrichtseinheit geht es um die beiden natürlichen Strahlenquellen, denen der Mensch permanent ausgesetzt ist. Natürliche Strahlenbelastungen entstehen aus den Folgeprodukten der kosmischen und terrestrischen Strahlung. Die im Unterricht vorgestellten Erkenntnisse verdeutlichen den Lernenden, dass man sich dieser Art von Strahlung nur eingeschränkt entziehen kann. Gleichzeitig lernen sie aber auch, dass ein gewisser Verzicht - etwa bei Flugreisen oder bestimmten Genussmitteln - die Gefahr einer natürlichen radioaktiven Belastung reduzieren kann.Wenn man Aussagen über die auf Menschen einwirkende Strahlenbelastung machen will, benötigt man die entsprechenden Messgrößen. Dabei muss den Schülerinnen und Schülern zunächst verdeutlicht werden, dass die verschiedenen Strahlenarten unterschiedlich zu bewerten sind. Dabei werden Begriffe eingeführt wie Energiedosis, Qualitätsfaktor, Äquivalentdosis, Biologische Wirksamkeit und Wichtungsfaktor. Erst dann können die Lernenden ermessen, warum einzelne Strahlenarten besonders gefährlich sind und warum auch nicht jede Form von Körpergewebe auf die entsprechende Strahlung gleich reagiert. Anhand einfacher, aber auch anspruchsvoller Aufgaben werden die Möglichkeiten zur Berechnung gesuchter Zusammenhänge von Strahlung und deren Wirkung in dieser Einheit näher erläutert. Natürliche Strahlenquellen als Thema im Physik-Unterricht Natürliche Strahlenbelastungen entstehen aus den Folgeprodukten der kosmischen und terrestrischen Strahlung. Dabei haben die Folgeprodukte aus der kosmischen Strahlung nur etwa einen Anteil von 15% an der gesamten natürlichen Strahlung, während sich der Rest zu 15% aus in Erde, Wasser und Luft vorkommenden Radionukliden, zu 20% aus in der Nahrung enthaltenen Radionukliden und vor allem aus dem in der Uran-Radium-Zerfallsreihe vorkommenden Edelgas Radon zusammensetzt. Die im Unterricht vorgestellten Erkenntnisse zu natürlichen Strahlenquellen verdeutlichen den Lernenden, dass man sich dieser Art von Strahlung nur eingeschränkt entziehen kann. Gleichzeitig lässt sich die Gefahr einer natürlichen radioaktiven Belastung durch einen gewissen Verzicht, etwa bei Flugreisen oder bestimmten Nahrungsmitteln, reduzieren. Vorkenntnisse Physikalische Vorkenntnisse von Lernenden können bei der Besprechung natürlicher Strahlenquellen nur eingeschränkt vorausgesetzt werden, weil der Fokus in der medialen Berichterstattung in erster Linie auf die Gefahren der künstlichen Strahlenquellen - also beispielsweise radioaktiver Fallout aus Unfällen (Tschernobyl) oder Kernwaffenexperimenten gelegt wird. Allerdings hilft das Gelernte bei der Einordnung der Gefahren rund um das Thema Strahlung. Didaktisch-methodische Hinweise Die Behandlung des Themas "Natürliche Strahlenquellen" im Unterricht kann dazu führen, dass sich Schülerinnen und Schüler verstärkt mit dem umstrittenen Thema Gefahr von Strahlung befassen und sich eine fachlich fundierte Meinung darüber bilden wollen, ob und wann die unterschiedlichen Strahlenquellen zur bedrohlichen Gefahr werden können. Das Thema Strahlenquellen dürfte bei Lernenden ganz allgemein auf hohes Interesse stoßen. Durch ein großes Angebot an Medien mit entsprechendem Material sowie der einfache Zugang zu aktuellen und ausführlich beschriebenen Fakten über das Internet sollte es nicht schwierig sein Methoden zu finden, um den Lernenden das Thema nahezubringen. Fachkompetenz Die Schülerinnen und Schüler können die natürlichen Strahlenquellen in ihren verschiedenen Formen beschreiben und einordnen. kennen die Unterschiede zwischen kosmischer Sekundärstrahlung und terrestrischer Strahlung sowie deren Einwirkung auf den menschlichen Organismus. können die Gesetzmäßigkeiten zur Berechnung der Strahlenbelastung anwenden. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe zum Thema im Internet. überprüfen die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben im Unterricht eine ausreichende Fachkompetenz, um mit anderen Lernenden, Eltern oder Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Das internationale Einheitensystem (SI): Vereinheitlichung durch Naturkonstanten

Unterrichtseinheit

Die Unterrichtseinheit zum Thema "SI-Einheiten" beschäftigt sich mit den seit vielen Jahren zunehmenden Problemen bei der genauen Vermessung der Welt. Am 16. November 2018 kamen in Versailles die Ländervertreter für nahezu 100 Staaten zur Generalkonferenz für Maß und Gewicht zusammen und trafen einstimmig eine historische Entscheidung: Das internationale Einheitensystem (Système international d‘unités, kurz SI-System genannt) soll von Grund auf renoviert werden.In dieser Unterrichtseinheit werden die Lernenden zunächst mit den Unzulänglichkeiten des seit Jahrzehnten geltenden "alten SI-Einheitensystems" vertraut gemacht. Dazu werden anhand des in vielen physikalischen Größen benötigten Kilogramms sowie exemplarisch bei der Definition der Stromstärke gezeigt, welche weitreichenden Fehler und Ungenauigkeiten sich bei diesen "willkürlich" gewählten Einheiten in der Vergangenheit ergaben. Mit der Einführung des neuen SI-Systems im Mai 2019 gelang es, die bisher verwendeten Einheiten mithilfe von – nach heutigem Wissen – unveränderlichen Naturkonstanten zu definieren und durch Verknüpfungen der einzelnen Naturkonstanten miteinander zu kombinieren. Die Genauigkeit der sieben sogenannten Basiseinheiten Sekunde, Meter, Kilogramm, Ampere, Kelvin, Mol und Candela und der sie definierenden Naturkonstanten werden durch Präzisionsmessungen beschrieben. Durch Ableitungen und Umformungen erkennen die Lernenden die Zusammenhänge. Den Unterricht begleitend und ergänzend können den Lernenden vier kurze Videos angeboten werden, die von im Rahmen der sogenannten "Mini Lectures" (ML) zur Verfügung gestellt werden. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier Die Forschung der Nobelpreisträger im Unterricht . Das Thema "Neue SI-Einheiten – ihre Vereinheitlichung" im Unterricht Dieses alle Fachrichtungen der Physik umfassende Thema zeigt über die Neudefinition der veralteten SI-Einheiten, wie die sieben neuen Basiseinheiten der Physik über allgemein gültige und nach jetzigem Wissensstand unveränderliche Naturkonstanten miteinander verknüpft werden können. Dabei werden die Schwachstellen des alten SI-Systems, die vor allem mit den problematischen Definitionen des Kilogramms und daraus resultierend mit Ampere und Kelvin zusammenhängen, beseitigt. Vorkenntnisse Die für die Neugestaltung des SI-Systems wichtigen Naturkonstanten wie Lichtgeschwindigkeit, Avogadro-Konstante und Boltzmann-Konstante sollten im Rahmen des Unterrichtes der Sekundarstufen I und II bereits besprochen worden sein. Besondere Bedeutung kommt darüber hinaus dem Planck´schen Wirkungsquantum zu, dessen Kenntnis voraussetzt, dass die Grundlagen der Quantenphysik ebenfalls bereits erarbeitet wurden. Didaktische und methodische Analyse Klaus von Klitzing, der den Nobelpreis in Physik für die Entdeckung des sogenannten quantisierten Hall-Effekts im Grenobler Hochfeld-Magnetlabor erhielt, bezeichnete bei der Generalkonferenz für Maße und Gewichte im Jahr 2018 die Neuordnung des SI-Einheitensystems als "die größte Umwälzung im Einheitensystem seit der Französischen Revolution". Schul- und Lehrbücher müssen umgeschrieben werden; Naturkonstanten sind keine Messgrößen mehr, sondern besitzen exakte Werte. Physiklehrkräfte und in der Folge ihre Lernenden müssen umlernen, denn nun sind unverrückbare Naturkonstanten vorhanden: Die Werte der sieben neuen Basiseinheiten stellen keine willkürlich gewählten Ausgangsgrößen mehr dar, sondern sind umgekehrt durch Konstanten definiert und festgelegt. Allerdings ist das neue internationale Einheitensystem wesentlich abstrakter und für die Lernenden anspruchsvoller als das bisherige System. Deshalb ist es für jeden Schüler und jede Schülerin besonders wichtig, die generelle Bedeutung der Naturkonstanten in ihren Grundzügen zu verstehen und das dahinterstehende Konzept zu hinterfragen. Fragestellungen wie etwa, was Naturkonstanten überhaupt sind, warum sie so sind wie sie sind oder woher sie letztlich kommen, müssen beantwortet werden. Danach geht es erst um das Verstehen der einzelnen Naturkonstanten, was bei der Lichtgeschwindigkeit sicher noch gut nachvollziehbar ist, aber bei einer Konstante wie dem Planck´schen Wirkungsquantum mit der eigenartig anmutenden Dimension einer "Wirkung" schon deutlich komplexer wird. Schwierig wird es für die Lernenden auch dadurch, dass die ausgewählten Naturkonstanten nicht identisch die Basiseinheiten abbilden – dies würde nur "funktionieren", wenn jede Einheit ihre eigene "Konstante" bekommen hätte. Allerdings wäre es dann auch notwendig, dass diese "Konstante" dann auch die Dimension dieser Einheit hätte. Eine solche einfache Zuordnung war die frühere Definition des Meters über eine bestimmte Lichtwellenlänge als Basiseinheit. So einfach macht es das neue SI-Einheitensystem den Lernenden nicht: Vielmehr werden alle mechanischen Größen, die sich aus den Einheiten für Zeit, Länge und Masse zusammensetzen, über die drei Naturkonstanten für eine Frequenz Δv( 133 Cs), die Lichtgeschwindigkeit c und das Planck'sche Wirkungsquantum h dargestellt. Dies erfordert ein hohes Maß an Transferleistung und stellt eine durchaus große Herausforderung für die Lernenden dar - aber auch für Lehrerinnen und Lehrer, die neue didaktische und methodische Konzepte finden müssen. Fachkompetenz Die Schülerinnen und Schüler können die Herleitung der für das neue SI-System nötigen Naturkonstanten nachvollziehen. wissen, dass die neuen Basiseinheiten keine willkürlichen Artefakte sind, sondern auf unveränderlichen Naturkonstanten beruhen. kennen die Zusammenhänge der einzelnen Basiseinheiten über die Naturkonstanten und können die Beziehungen herleiten. Medienkompetenz Die Schülerinnen und Schüler informieren sich in Lehrbüchern und im Internet über physikalische Fakten und können entsprechende Kommentare vergleichend bewerten. können Animationen und Videos auf ihre Inhalte und sachliche Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen in Partner- und Gruppenarbeit, wie man als Team optimal zusammenarbeitet. erwerben ausreichendes Fachwissen, um sich mit anderen Lernenden, aber auch Freunden und Eltern, wertfrei austauschen zu können. nehmen Erkenntnisse und Ergebnisse von Mitschülern und Mitschülerinnen auf und lernen so, die eigenen Ergebnisse richtig einzuordnen.

  • Mathematik / Rechnen & Logik / Technik / Sache & Technik
  • Sekundarstufe II, Sekundarstufe I

Elektromagnetische Induktion – Stromerzeugung mithilfe der Lorentzkraft

Unterrichtseinheit
5,99 €

In dieser Unterrichtseinheit entwickeln die Schülerinnen und Schüler ein Verständnis für die Voraussetzungen zur Erzeugung von elektrischem Strom, den wir ganz selbstverständlich der Steckdose entnehmen können. Den Lernenden wird dabei vermittelt, dass in einem Leiter, der senkrecht zu einem Magnetfeld bewegt wird, die mit dem Leiter mitbewegten Ladungsträger senkrecht zu ihrer Bewegungsrichtung abgelenkt werden. Diese Erkenntnis des niederländischen Physikers Hendrik Anton Lorentz schuf Ende des 19. Jahrhunderts die Grundlagen für die technische Stromerzeugung, die bis heute gültig sind.Mit einfachen Versuchen mittels einer sogenannten Leiterschaukel werden die Schülerinnen und Schüler damit vertraut gemacht, wie die Ladungsträger des elektrischen Stromes – die Elektronen – in einem Leiter je nach Bewegungsrichtung des Leiters abgelenkt werden. Somit baut sich an den Leiterenden eine Spannungsdifferenz auf und bei Verbindung der Leiterenden durch ein dünnes Kupferkabel entsteht ein mit einem Messgerät feststellbarer Stromfluss. Ebenso lässt sich ganz leicht zeigen, dass sich durch das sich selbst überlassene schaukelartige Hin- und Herschwingen des Leiters die Stromrichtung periodisch ändert; daraus entsteht eine Wechselspannung und somit Wechselstrom. Strom aus der Steckdose – wie funktioniert das eigentlich? Strom aus der Steckdose ist für Schülerinnen und Schüler eine Selbstverständlichkeit. Doch dass es sich dabei um Wechselstrom handelt, welcher Unterschied zwischen Wechselstrom und Gleichstrom besteht, warum manchmal Wechselstrom nötig ist und manchmal aber auch Gleichstrom notwendig ist – das dürfte für viele Lernende neu und interessant sein. Vorkenntnisse Physikalische Vorkenntnisse der Lernenden sind trotz der Kenntnis, dass der Strom für fast alle Haushaltsgeräte aus der Steckdose kommt und dass dieser Strom in Kraftwerken mit riesigen Generatoren erzeugt wird, kaum vorhanden. Dazu fehlt das Wissen, um die eigentlichen Vorgänge, die innerhalb des stromführenden Leiters ablaufen, zu beschreiben. Didaktische Analyse Die Grundlagen für die weiterführenden Themen in der Sek II – wie etwa die Vorgänge und Gesetzmäßigkeiten bei der elektromagnetischen Induktion – werden durch die einfachen Versuche zur Lorentzkraft gelegt. Haben die Lernenden diese Zusammenhänge verstanden, kann mit diesem Grundwissen auch der weiterführende Stoff gut verstanden werden. Methodische Analyse Durch die einfach durchzuführenden und nachzuvollziehenden Versuche mit der Leiterschaukel, die von den Lernenden gefahrlos selbst ausprobiert werden können, kann sowohl ein schneller Lernerfolg generiert werden als auch ein nachhaltiges Interesse an der Elektrizitätslehre. Fachkompetenz Die Schülerinnen und Schüler erkennen die Zusammenhänge bei der Ablenkung von Elektronen im Magnetfeld. können die Entstehung einer Wechselspannung mithilfe der Lorentzkraft beschreiben. kennen die Bedeutung der Lenz'schen Regel für die Stromerzeugung. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen anderer Gruppen auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewissen Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden diskutieren zu können.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Energie.Transfer – Moodle-Kurse zum phänomenorientierten Physik-Unterricht

Unterrichtseinheit

In diesen auf Project-Based Learning basierenden Moodle-Kursen untersuchen und erklären Schülerinnen und Schüler interessante und relevante naturwissenschaftliche Phänomene. Bei jeder dieser sogenannten Curriculum Replacement Units (CRU) handelt es sich um eine kontextorientierte, vernetzende, digitale Unterrichtseinheit zum Basiskonzept Energie. Naturwissenschaftlicher Unterricht soll Schülerinnen und Schüler dazu befähigen, naturwissenschaftliche Phänomene zu erklären und Probleme zu lösen. Häufig können Schülerinnen und Schüler jedoch nur auswendig gelerntes, isoliertes Faktenwissen wiedergeben. Für die Erklärung von Phänomenen und die Lösung von Problemen braucht es aber eine vernetzte Wissensbasis, in der Ideen miteinander verknüpft statt isoliert sind. Zentrale Ideen verknüpfen verschiedene Teilbereiche und unterstützen daher den Aufbau einer vernetzten Wissensbasis. Die Betonung von zentralen Ideen für den Aufbau einer vernetzten Wissensbasis findet sich auch in den KMK-Bildungsstandards durch die Einführung von Basiskonzepten wieder. Mithilfe der Basiskonzepte sollen Sachgebiete der Physik stärker miteinander verbunden werden, um kumulatives Lernen zu erleichtern. Eines der Basiskonzepte und zudem eine der zentralen Ideen in Physik ist das Energiekonzept. Es lassen sich insbesondere durch die vielfältigen Manifestationen von Energie, den Energieformen, und deren Umwandlungen ineinander, unterschiedliche Sachgebiete der Physik miteinander verknüpfen. Beispielsweise können in einem elektrischen Stromkreis die Stromstärke und die Temperatur eines stromdurchflossenen Leiters über die Umwandlung von elektrischer in thermische Energie verknüpft werden Die hier zur Verfügung gestellten zehn digitalen Unterrichtseinheiten (CRUs) im Umfang von 4 bis 6 Unterrichtsstunden können zur Verknüpfung von Sachgebieten mithilfe des Basiskonzepts Energie verwendet werden. Die Links und Hinweise zu allen CRUs finden Sie am Ende dieser Seite. Beispiel einer CRU Um die elektrische Energie auf Grundlage der thermischen Energie im Anfangsunterricht der Sekundarstufe I zu vertiefen, wurde für eine der Unterrichtseinheiten die Fragestellung "Warum wird ein Laptop manchmal heiß?" identifiziert. Die Erarbeitungsphase gliedert sich nach den drei Unterfragen: Wo wird ein Laptop heiß? Wann wird ein Laptop heiß? Wie lässt sich die Erhitzung eines Laptops verhindern? Anhand von Experimenten im einfachen Stromkreis und der Erhitzung der stromdurchflossenen Leiter werden unter Einsatz einer Wärmebildkamera die ersten zwei Fragestellungen beantwortet. Zur Beantwortung der dritten Fragestellung werden die zuvor durchgeführten Experimente in Kombination mit einem Wärmerohr durchgeführt und auf diese Weise auf den (thermischen) Energietransport fokussiert. In der Reflexionsphase wird schließlich das Erlernte auf die Erhitzung eines Smartphones transferiert und mögliche Kühlungsmöglichkeiten diskutiert. Die auf dem Ansatz von Project-Based Learning basierenden Unterrichtseinheiten lassen sich in die drei Phasen Einleitung, Erarbeitung und Reflexion zerlegen. Wobei für die Einleitung eine Unterrichts-stunde, für die Erarbeitung zwei bis vier Unterrichtsstunden und für die Reflexion nochmal eine Unterrichtsstunde eingeplant werden sollte. In der Einleitungsphase sollen sich die Schülerinnen und Schüler zunächst noch keine neuen Inhalte erarbeiten, sondern sich insbesondere mit einem Phänomen und einer damit verbundenen Leitfrage beschäftigen. Gleichzeitig dient die Einleitungsphase zur Strukturierung der Unterrichtseinheit entlang der Beantwortung der Leitfrage durch die Entwicklung und Strukturierung von Unterfragen. Jede Erarbeitungsphase einer Unterrichtseinheit beginnt im ersten Schritt mit der Wiederholung der für das Phänomen beziehungsweise die Leitfrage wichtigen Energieformen. Im zweiten Schritt findet auf inhaltlicher Ebene die Vernetzung von Inhalten verschiedener physikalischer Sachgebiete über das Prinzip der Umwandlung zweier Energieformen statt. Im dritten Schritt, der Vertiefung , wird schließlich die Vernetzung durch das Aufgreifen weiterer Energieaspekte (Transfer, Entwertung und Erhaltung) vertieft und verstärkt. Passend zu den drei Schritten in der Erarbeitungsphase werden jeweils drei Unterfragen zur Leitfrage je CRU entwickelt und untersucht. Während die Einleitung der Unterrichtseinheit entsprechend vorstrukturiert ist, sind die Lernaktivitäten in der Erarbeitung bewusst variabel gehalten. Die Wahl der Lernaktivität unterscheidet sich je nach Inhalt, Klassenstufe beziehungsweise der curricularen Vorgabe und der Unterfragen. Zum Abschluss der Unterrichtseinheit werden in einer Reflexionsphase entweder die Leitfrage und die Unterfragen selbstständig durch die Schülerinnen und Schüler beantwortet. Die Schülerinnen und Schüler sollen so die Fragen nacheinander und auf diese Weise kumulativ die Leitfrage. Oder es wird eine Concept Map von den Schülerinnen und Schülern entwickelt, in der die Inhalte der Einheit grafisch von den Schülerinnen und Schülern geordnet und miteinander verbunden werden sollen. Auf diese Weise sollen die Wissensnetzwerke der Schülerinnen und Schüler expliziert und so noch nicht vorhandene Verbindungen zwischen physikalischen Ideen identifiziert werden. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigiCompEdu Modell) Die Lehrenden … … müssen sich die Moodle-Kurse unter dem jeweiligen Link herunterladen und in das Moodle der Schule hochladen. (2.1 Digitale Ressourcen auswählen) … sollten in der Lage sein, die digitale Lernumgebung so in ihren Unterricht einzubetten, dass die Lernenden einen möglichst großen Lerneffekt haben. Sie können dazu unter anderem in den einzelnen Phase der Unterrichtseinheit zwischen verschiedenen Optionen auswählen. Zum Beispiel entscheiden sie je nach Lerngruppe und lokalen Gegebenheiten zwischen Demonstrationsexperiment, Lernendenexperiment oder Video. (2.2 Digitale Ressourcen erstellen und Anpassen). Es wird empfohlen, die jeweilige Einheit wenigstens einmal selbst getestet oder im besten Fall komplett durchlaufen zu haben. Zudem ist ein grundlegendes Verständnis für den Umgang mit dem jeweiligen Endgerät (Computer, Mobiles Device,…) nötig. … sollten gewährleisten, dass allen Lernenden unabhängig von ihrer digitalen Affinität zu den eingesetzten Endgeräten oder von anderen besonderen Bedürfnissen ein Zugang zu der digitalen Lernumgebung ermöglicht wird (5.1 Lerner-Orientierung - Digitale Teilhabe). Fachkompetenz Die Schülerinnen und Schüler ordnen Alltagsbeispiel darin auftretende Energieformen zu. beschreiben und analysieren Vorgänge in denen Energie umgewandelt wird. analysieren im Sachzusammenhang vorhandene Energieformen und deren Umwandlung. Medienkompetenz Die Schülerinnen und Schüler erfassen, speichern und organisieren Daten und Informationen. nutzen digitale Werkzeuge zum Lernen, Arbeiten und Problem lösen. 21st Century Skills Die Schülerinnen und Schüler lösen Probleme, indem sie zum Verständnis von Phänomenen wesentliche Leitfragen entwickeln und diese in Unterfragen aufteilen und beantworten. denken kritisch, in dem sie die Antworten auf die Unterfragen zusammenfassen und hinsichtlich der Phänome und Leitfragen reflektieren. organisieren Wissen, in dem sie verschiedene Teilbereiche der Physik durch zentrale Ideen vernetzen und so eine vernetzte Wissensbasis konstruieren. Fischer, Julian Alexander; Steinmann, Tatjana; Kubsch, Marcus et al.: Die Rettung der Phänomene! Durch Leitfragen sinnstiftendes Lernen initiieren und strukturieren. in: MNU Journal, Jahrgang 74, Nr. 2, 03.2021, S. 140–145. Weßnigk, Susanne; Neumann, Knut; Kerres, Michael: Energie unterrichten über eine digitale Lehr-Lernplattform – Konzeption von Unterrichtseinheiten mit digitalen Medien und Werkzeugen. in: Unterricht Physik 179, 2020, S. 31–36 *Die Hauptenergieform ist die Energieform, die in der letzten Stunde eingeführt wurde. Diese soll mit Bezug zur Bezugsenergieform, die zuvor unterrichtet wurde, vertieft werden.

  • Physik / Astronomie
  • Sekundarstufe I
ANZEIGE
Zum Link