• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Subtraktion ganzer Zahlen mit GeoGebra

Unterrichtseinheit

In dieser Unterrichtseinheit zur Subtraktion ganzer Zahlen wird durch interaktive dynamische Arbeitsblätter eine Veranschaulichung der Subtraktion vermittelt. Die Mathematiksoftware GeoGebra kommt dabei zum Einsatz.Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Einführung der Subtraktion ganzer Zahlen Hier finden Sie Hinweise zur Funktionsweise und zum Einsatz des dynamischen Arbeitsblattes zur Subtraktion ganzer Zahlen. Vertiefung, Individualisierung und Wettbewerb In der Phase der Anwendung und Vertiefung erfolgt eine Variation der Aufgabenstellungen mithilfe eines interaktiven Arbeitsblattes. Die Schülerinnen und Schüler erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. können die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden. Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die dynamische Veranschaulichung realisiert werden kann, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die folgenden Webseiten können in den Stunden vor der hier vorgestellten Unterrichtseinheit verwendet werden: realmath.de: Das Zahlenpfeilmodell der Subtraktion Die Lernenden sollen die Darstellung ganzer Zahlen mit Zahlenpfeilen und die Subtraktion von natürlichen Zahlen mithilfe des Zahlenpfeilmodells kennen. realmath.de: Der Begriff der Gegenzahl Der Begriff der Gegenzahl einer ganzen Zahl sollte vorbesprochen sein. Hier finden sich Aufgaben für die Einführung und die Grundlegung dieses Begriffs. realmath.de: Welche Zahl muss man zu ... addieren, um ... zu erhalten? Zur Hinführung auf die Subtraktion ganzer Zahlen sollte auf Additionsaufgaben dieser Art nicht verzichtet werden. Das erste Online-Arbeitsblatt dient zur Erarbeitung der Regel für die Subtraktion ganzer Zahlen. Mit dem Button "Aufgabe neu" wird eine entsprechende Aufgabe erzeugt. Die Aufgabe kann anschließend im dynamischen Arbeitsblatt mit den Elementen "Minuend" und "Subtrahend" eingestellt werden. Zeitgleich wird die entsprechende Subtraktion im Zahlenpfeilmodell erzeugt, und das Ergebnis kann abgelesen werden. Dieses wird in das vorgesehene Feld eingetragen. Der Button "Auswertung" dient zur Kontrolle des Ergebnisses. Ist das Ergebnis richtig, so wird die zu dieser Subtraktion gehörige Additionsaufgabe erzeugt. Dabei wird der Minuend zum ersten Summanden, das Ergebnis bleibt erhalten. Nun soll der fehlende zweite Summand in das freie Feld eingetragen werden. Damit wird die Subtraktion durch die Addition der Gegenzahl ersetzt. Mit dem Button "Kontrolle " wird die Eingabe überprüft. Erarbeitungsphase Die Schülerinnen und Schüler probieren, beobachten, ordnen, vermuten und sollen so Schritt für Schritt den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen erkennen. Dazu bearbeiten sie Aufgaben auf die oben angesprochene Weise und halten die Ergebnisse auf dem von der Lehrkraft bereitgestellten Notizblatt fest. Sie sind beim Lösen der Aufgaben durch die dynamische Veranschaulichung ferner aufgefordert, herauszufinden, wie die Subtraktion ganzer Zahlen durch eine zugehörige Addition ersetzt werden kann. Ihre Vermutung können sie dadurch verifizieren, dass sie Aufgaben lösen, ohne dabei die Veranschaulichung zu benutzen. Haben die Schülerinnen und Schüler eine Regel gefunden, so sollen sie diese schriftlich auf dem Notizblatt festhalten. Zusammenfassung Im nächsten Unterrichtsschritt stellen die Lernenden ihre Ideen für den gesuchten Zusammenhang vor. Zusammen mit den Wertungen und Kommentaren der Lehrkraft ergibt sich so das Arbeitsergebnis, das die Lehrkraft als Zusammenfassung auf einer Folie, die dem Arbeitsblatt der Schülerinnen und Schüler entspricht, festhält. Die Einträge werden von den Schülerinnen und Schülern in ihr Arbeitsblatt übernommen. Durch die zusätzlich auf dem Arbeitsblatt eingefügten Zahlenpfeildarstellungen wird noch einmal Schritt für Schritt der Prozess der Regelfindung für alle Schülerinnen und Schüler nachvollziehbar festgehalten. Anwendung Auf dem Schülerarbeitsblatt finden sich zusätzlich einige Aufgaben zur Subtraktion ganzer Zahlen. Diese können anschließend in Auswahl in Partner- oder Einzelarbeit bearbeitet und anschließend besprochen werden. Nicht bearbeitete Aufgabe können als Hausaufgabe verwendet werden. Anwendung mit Wettbewerb Nun folgt eine Phase der Anwendung und Vertiefung durch erste Übungsaufgaben. Die Schülerinnen und Schüler sollen dabei die Aufgaben des zweiten interaktiven Arbeitsblattes bearbeiten. Online-Arbeitsblatt 2: Übung zur Subtraktion ganzer Zahlen Interaktives Arbeitsblatt mit Variationen der Aufgabenstellungen auf realmath.de, der Website des Autors. Einfacher Aufbau des Arbeitsblattes Der Aufbau des interaktiven Arbeitsblattes ist gemäß der Altersstufe der Schülerinnen und Schüler einfach gehalten. Sie sind hier aufgefordert, das Ergebnis einer Subtraktion aus vier vorgegebenen Antworten auszuwählen. Ist das Ergebnis angeklickt, so kann durch Betätigung des Buttons "Auswertung" die Eingabe überprüft werden. Mit "Neu erstellen" wird per Zufallsgenerator eine neue Subtraktionsaufgabe erstellt. Individuelle Betreuung Im Rahmen der Individualisierung des Unterrichts, indem nun jeweils zwei Schülerinnen und Schüler Aufgaben in Partnerarbeit bearbeiten, kann die Lehrkraft die Arbeitsweise der Schülerinnen und Schüler gezielt beobachten. Die fortwährende Anzeige des erreichten Punktestandes und die Anzahl der bearbeiteten Aufgaben im interaktiven Arbeitsblatt ermöglicht der Lehrkraft, jederzeit zu erkennen, bei welchem Schülerpaar noch Schwierigkeiten bestehen. Hier kann sie gezielt helfen. Schülerinnen und Schüler, die mit den Aufgaben gut zurecht kommen, kann sie durch Lob und Anerkennung ermuntern, weitere Aufgaben zu bearbeiten und ihre Kenntnisse weiter zu vertiefen. Das interaktive Arbeitsblatt bietet zudem einen Wettbewerb, bei dem derjenige gewinnt, der am Ende die meisten Punkte erreicht. Da die Punkte in einer Bestenliste gespeichert werden, kann dies für Schülerinnen und Schüler eine besondere Motivation darstellen. Aufgaben zur Nachbereitung finden sich in allen zugelassenen Schulbüchern. Sollten die im verwendeten PDF-Arbeitsblatt enthaltenen Aufgaben nicht alle gelöst worden sein, so können auch diese als Hausaufgabe verwendet werden. Auf der Webseite des Autors finden sich für die nachfolgenden Unterrichtsstunden sechs weitere interaktive Übungen zur Subtraktion ganzer Zahlen. In der sich im Unterricht anschließenden Übungsphase kann hier die eine oder andere Aufgabe ausgewählt werden, um so die folgenden Unterrichtsstunden abwechslungsreich zu gestalten. realmath.de: Weitere Interaktive Übungen Für die Nutzung muss Javascript aktiviert sein.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Terme - eine kontextorientierte Einführung mit GeoGebra

Unterrichtseinheit

In dieser Unterrichtseinheit wird der zentrale Begriff des Terms durch interaktive Arbeitsblätter eingeführt und in seinem vollen Umfang im Gedächtnis der Lernenden verankert.Bei der Einführung des Termbegriffs gilt es, Kontexte zu finden, die es den Schülerinnen und Schülern ermöglichen, Grundvorstellungen auszubilden. Die Länge eines Zugs ist abhängig von der Länge der Lokomotive und der Länge sowie der Anzahl der Waggons. Anhand dieses konkreten Kontexts werden in dieser Unterrichtseinheit die Begriffe Term und Termwert anschaulich eingeführt. Ein wesentliches Element dieser kontextorientierten Einführung ist die enge Verknüpfung von bildlicher, symbolischer und nummerischer Darstellung, die durch die Verwendung der dynamischen Mathematiksoftware GeoGebra möglich wird. Für die sich anschließende Übungsphase werden Aufgaben bereitgestellt, die ein individualisiertes und differenziertes Lernen ermöglichen. Hinweise zum Einsatz im Unterricht Die Schülerinnen und Schüler können eigenständig mit den interaktiven dynamischen Arbeitsblättern arbeiten. Erste und zweite Unterrichtsstunde Zunächst erschließen sich die Lernenden den Termbegriff an einem konkreten Beispiel und reflektieren anschließend ihre Lösungsstrategie. Dritte Unterrichtsstunde Die Lernenden vertiefen die bisher erworbenen Kenntnisse anhand verschiedener Aufgabenvariationen, indem sie fehlende Termwerte sowie Terme ermitteln. Die Schülerinnen und Schüler erkennen, dass die Länge eines Zugs von der Länge der Lokomotive, der Länge und der Anzahl der Waggons abhängt. erkennen, dass die Zuglänge, abhängig von der Anzahl der Waggons, mithilfe von Tabellen dargestellt werden kann. gewinnen die Einsicht, dass Zuglängen mit Termen beschrieben werden können. analysieren Tabellen und können fehlende Termwerte ergänzen. können ausgehend von tabellarischen Darstellungen Terme selbstständig entwickeln. Die Unterrichtseinheit selbst beinhaltet insgesamt vier HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Beschreibung des Aufbaus der Arbeitsblätter Der Aufbau und die Bedienung aller im Rahmen der Unterrichtseinheit verwendeten Online-Arbeitsblätter ist identisch (Abb. 1, zur Vergrößerung bitte anklicken). Bei allen Aufgabenblättern wird beim Seitenstart im rechten Teil des Arbeitsblatts eine dynamische Zeichnung erzeugt, die eine ikonische, tabellarische, symbolische und grafische Darstellung eines Zuges und dessen Länge zeigt. Die einzelnen Schieberegler ermöglichen es, unterschiedliche Aufgabenstellungen nachzubilden. Da das Arbeiten mit interaktiven dynamischen Arbeitsblättern keine speziellen Softwarekenntnisse voraussetzt, wird das selbständige Arbeiten der Schülerinnen und Schüler optimal unterstützt. Kontextorientiertes Lernen Verständnis fördern bedeutet, Raum geben für eigenes Experimentieren und die Lernenden auf ihren individuellen Lernwegen unterstützen. Durch ein kontextorientiertes Lernen kann das Verständnis mathematischer Begriffe zusätzlich gefördert werden. Interaktive dynamische Arbeitsblätter verbinden mathematische Inhalte mit der Erfahrungswelt der Lernenden. Unterschiedliche Darstellungen von Sachverhalten, zum Beispiel durch Bilder, in tabellarischer, grafischer oder algebraischer Form, können zu einem umfassenderen Verständnis des Zusammenhangs oder Begriffs führen. Dies trifft besonders dann zu, wenn diese verschiedenen Darstellungen wechselseitig aufeinander bezogen sind. Verständnis vertiefen durch Aufgabenvariation Um einen mathematischen Zusammenhang beziehungsweise Begriff in seinem vollen Bedeutungsumfang zu erfassen, ist es notwendig, den Schülerinnen und Schülern durch ein vielfältiges Angebot aus Übung, Festigung und Anwendung Möglichkeiten zu eröffnen, ihre Vorstellungen und Kenntnisse einer Prüfung zu unterziehen. Da auf alle Eingaben der Lernenden unmittelbar eine Rückmeldung folgt, wird verhindert, dass sich Fehlvorstellungen verfestigen können. Durch die Variation der Aufgabenstellung kann ferner verhindert werden, dass sich ein verengtes Begriffsbild manifestiert. Interessante Aufgabenstellungen ergeben sich zudem, wenn zwischen anschaulicher und symbolischer Anwendung gewechselt wird. So kann es sich zum Beispiel als fruchtbar erweisen, wenn aus Sachzusammenhängen Terme gebildet werden sollen oder die Schülerinnen und Schüler gegebene Terme unter einem bestimmten Gesichtspunkt analysieren können. Nach einer kurzen Einführung durch die Lehrkraft in den Sachkontext anhand unterschiedlicher Zugdarstellungen, die mit der editierbaren Folienvorlage (terme_folienvorlagen.doc) erstellt werden können, folgt eine Einweisung in die Funktionsweise und Bedienung des Online-Arbeitsblatts 1 (Abb. 2). Anschließend können die Schülerinnen und Schüler selbstständig die Möglichkeiten der unterschiedlichen Darstellungen erkunden. Dabei sollen die drei Einstiegsaufgaben des PDF-Arbeitsblatts 1 mithilfe der Veranschaulichung nachgebildet und auf diese Weise gelöst werden. Nach der Auswertung der Ergebnisse erfolgt ein strukturierter Überblick anhand des PDF-Arbeitsblatts 2. Abschließend bearbeiten die Lernenden Aufgaben, bei denen per Zufall die Aufgabentexte in beschreibender Form beziehungsweise in mathematischer Form gegeben sind (Abb. 3). Dazu müssen sie lediglich den Button "Aufgabe stellen" betätigen. Durch einen Klick auf den Button "prüfen" können sie ihre Eingabe prüfen lassen. Für jede richtig gelöste Aufgabe erhalten die Schülerinnen und Schüler Punkte, bei fehlerhaften Eingaben werden Punkte abgezogen. Dabei ist die Art der Bearbeitung nicht festgelegt. So können die Lernenden mit oder auch ohne Veranschaulichung arbeiten. Nach einer kurzen Zusammenfassung der Ergebnisse der vorhergehenden Stunde anhand der dort angefertigten Folien erfolgt eine Einführung in die Aufgabenstellung 1.1 bis 1.3 des PDF-Arbeitsblatts 3. Eine Einführung in die Bedienung des Online-Arbeitsblatts 2 kann entfallen, da Aufbau und Bedienung identisch zu dem in der vorhergehenden Stunde verwendeten Online-Arbeitsblatt sind. Nach der Bearbeitung dieser drei Aufgaben sollen die Lernenden nun ohne Verwendung des Computers die Aufgaben 2.1 bis 2.3 des Arbeitsblatts lösen und ihre Lösungsstrategien schriftlich festhalten. Dadurch werden sie angehalten, ihr Vorgehen zu reflektieren und ihre Strategien anderen zu verdeutlichen. Die gestellten Aufgaben sind dabei so gewählt, dass stets unterschiedliche Lösungswege erforderlich sind. An die Vorstellung von Lösungsstrategien durch vorher ausgewählte Schülerinnen und Schüler und einer Diskussion der einzelnen Lösungsstrategien im Plenum schließt sich die Übungsphase am Computer an. Bei der Bearbeitung der Aufgaben des Online-Arbeitsblatts 2 sollte es dann das Ziel sein, möglichst viele Punkte zu erreichen. Bestimmung fehlender Termwerte Mit der ersten Übung in der dritten Stunde sollen die Schülerinnen und Schüler ihre Kenntnisse bezüglich der Struktur eines Terms vertiefen und auf unterschiedliche Tabellensituationen anwenden. Dabei wird nun auf einen beschreibenden Kontext verzichtet. Die Lernenden sollen bei der Bearbeitung des Online-Arbeitsblatts 3 nur aufgrund des gegebenen Terms und der unvollständigen Tabelle auf den fehlenden Wert schließen (Abb. 4). Nach einem Klick auf den Button "prüfen" erhält die Schülerin oder der Schüler eine entsprechende Rückmeldung auf die Eingabe. Ist die Aufgabe gelöst, so wird dies dem Lernenden bestätigt, ist der Wert falsch, so ist die Rückmeldung entsprechend formuliert: "Leider falsch!" Zusätzlich wird der richtige Wert angegeben und mit roter Farbe in die Tabelle eingetragen. Bestimmung des Terms anhand der Tabelle Die Aufgabenstellung erfährt durch das Online-Arbeitsblatt 4 eine weitere Variation. Die Aufgabe der Schülerinnen und Schüler besteht darin, den Term zu ermitteln, der zu der gegebenen Tabelle gehört (Abb. 5). Wieder sind die Aufgaben kontextunabhängig gestellt. Der Kontext ergibt sich allerdings bei allen Online-Arbeitsblättern durch die stets eingeblendete Zeichnung. Somit erfolgt die mathematische Abstraktion immer im Kontext der Bilder und Vorstellungen der Lernenden. Die Bedienung des Online-Arbeitsblatts ist wieder identisch zu den vorhergehenden, eine Einweisung durch die Lehrkraft kann somit entfallen. Die Eingabe der Lernenden wird wieder geprüft und in der Rückmeldung bewertet. Wichtig in diesem Zusammenhang ist die Tatsache, dass die Eingaben nicht nach syntaktischen sondern nach semantischen Kriterien ausgewertet werden. Dies bedeutet, dass jede Eingabe, sofern sie mathematisch korrekt ist, als richtig erkannt wird. So spielt es zum Beispiel keine Rolle, ob die Reihenfolge der einzelnen Termbestandteile mit 12x + 10 oder 10 + 12x angegeben wird oder ob die Lernenden 8*x oder 8x schreiben. Hausaufgabenstellung oder Lernzielkontrolle Am Ende der Unterrichtseinheit kann eine Lernzielkontrolle oder eine Hausaufgabenstellung stehen. Dazu steht das PDF-Arbeitsblatt 4 zur Verfügung. Die Aufgaben dieses Arbeitsblatts stellen noch einmal den Zusammenhang zur Aufgabenbearbeitung am Computer her. Wird das Aufgabenblatt im Unterricht als Lernzielkontrolle verwendet, so können die Lernenden die Aufgaben in Partnerarbeit lösen und dann ihre Lösungsstrategien im Team den Mitschülerinnen und Mitschülern vorstellen. Werden die Aufgaben hingegen als Hausaufgabe gestellt, so kann eine von der Lehrkraft angefertigte Folie an eine Schülerin oder einen Schüler ausgegeben werden, die oder der dann die Aufgaben bis zur nächsten Stunde auf dieser anfertigt. Auf diese Weise mündet die Arbeit im Computerraum wieder in den normalen Unterricht im Klassenzimmer. So verstandener Computereinsatz ist dann keine unterrichtliche Sonderveranstaltung, sondern wichtiger Bestandteil eines unterrichtlichen Gesamtkonzepts.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Nature of Science: Das Wesen der Naturwissenschaften verstehen

Unterrichtseinheit

Im gesellschaftlichen Diskurs wird häufig von der (Natur-)Wissenschaft gesprochen, die oft als allgemeingültige Argumentationsgrundlage herangezogen wird. In der Unterrichtseinheit sollen Schülerinnen und Schüler dieses Verständnis kritisch hinterfragen. Als Beitrag zu einer umfassenden naturwissenschaftlichen Bildung erarbeiten sie die Rahmenbedingungen von naturwissenschaftlichem Forschen und Handeln, diskutieren bestehende Kontroversen und Grenzen und gelangen so zu einem vertieften Verständnis über das Wesen bzw. die Eigenschaften der naturwissenschaftlichen Erkenntnisgewinnung. In dieser Unterrichtseinheit setzen sich die Lernenden mit den (Natur-)Wissenschaften auseinander und werden befähigt, naturwissenschaftliche Erkenntnisse kritisch zu reflektieren und kompetent einzuordnen. Eine Schülerin stellt ihre Erfahrung mit der Unterrichtseinheit im Community Call des Forums Bildung (2023) vor: https://www.youtube.com/watch?v=DV387Otll_M&t=22s . Die Unterrichtseinheit ist nach den Prinzipien des Unterrichtskonzept des Deeper Learning nach Anne Sliwka und Britta Klopsch konzipiert und folgt dem Drei-Phasen-Modell des Deeper Learning. Vertiefende Informationen dazu bietet das Workbook für Lehrkräfte: "Deeper Learning gestalten" (Beigel, Klopsch & Slwika, 2023) der Deutsche Telekom Stiftung, das am Ende der Einheit verlinkt und kostenfrei verfügbar ist. Ziel der Unterrichtseinheit ist es, dass die Schülerinnen und Schüler Fachwissen im Bereich Naturwissenschaften erwerben und dieses durch die ko-kreative und ko-konstruktive Bearbeitung einer authentischen Lernleistung anwenden. Der Fokus liegt dabei auf dem Erwerb vielfältiger Kompetenzen, die in verschiedenen Konzepten beschrieben sind. Zum einen in den sogenannten 4Ks, die vier zentralen Kompetenzen des Lernens im 21. Jahrhundert: kritisches Denken, Kreativität, Kommunikation und Kollaboration. Zum anderen in den 21st Century Skills, die über das reine Fachwissen hinausgehen und Fähigkeiten wie Problemlösefähigkeit oder Eigenverantwortung umfassen. Weitere Kompetenzen sind die Entwicklung von Mastery – das tiefergehende Verständnis von einem bestimmten Fachgebiet –, von Kreativität sowie der Stärkung der Identität in Co-Agency, das gemeinsame Gestalten von Lernprozessen. Was zeichnet Prozesse der naturwissenschaftlichen Erkenntnisgewinnung aus? Wie arbeiten Wissenschaftlerinnen und Wissenschaftler? Welche naturwissenschaftlichen Forschungsmethoden gibt es? Diese Fragen stehen im Mittelpunk von Phase I, der Instruktions- und Aneignungsphase der Einheit. Schülerinnen und Schüler erhalten verschiedene Lernmaterialien, die in einer vorbereiteten Lernumgebung, teilweise auch digital, zur Verfügung stehen. Ziel ist es, mit Hilfe der Materialien die Eigenschaften von Naturwissenschaften zu verstehen und fachwissenschaftlich korrekt wiederzugeben. Dabei dienen die sieben von Lederman et al. (2002, 2006, 2014) identifizieren Merkmale von Naturwissenschaften als angestrebtes gemeinsames Wissensfundament für die Schülerinnen und Schüler, da sie alltagsrelevante und lebensnahe Eigenschaften darstellen. Die Lernenden wenden diese gelernten Merkmale daraufhin in einem fachlichen Kontext an und zeigen so, dass sie verstanden haben, wodurch wissenschaftliche Ergebnisse geprägt sind. In Phase II, der Phase "Ko-Konstruktion und Ko-Kreation" , wenden die Schülerinnen und Schüler ihr Wissen aus Phase I praktisch an, indem sie die Merkmale naturwissenschaftlicher Erkenntnisgewinnungsprozesse am konkreten Beispiel einer Wissenschaftlerin bzw. eines Wissenschaftlers oder alternativ anhand einer historischen oder aktuellen naturwissenschaftlichen Fragestellung erarbeiten. Die entstehenden Erkenntnisse werden für eine anschließende Präsentation aufbereitet, wobei den Schülerinnen und Schülern die Wahl des zu erstellenden Lernprodukts freisteht. In Phase III, der Phase "Authentische Leistung" , präsentieren die Schülerinnen und Schüler anschließend ihre authentische Lernleistung und teilen ihren Erkenntnisgewinn mit der Lerngruppe und ggf. der Schulöffentlichkeit. Relevanz des Themas In aktuellen gesamtgesellschaftlichen Diskussionen und Entwicklungen wird den Naturwissenschaften eine gemeinhin hohe Bedeutung zugemessen. Unsere heutige Welt basiert in vielen Bereichen auf naturwissenschaftlichen Erkenntnissen – technologische, medizinische und ökologische Fortschritte sind untrennbar mit ihnen verbunden. Gleichzeitig wird bestimmten naturwissenschaftlichen Erkenntnissen, etwa dem menschengemachten Klimawandel, aber auch immer wieder von einzelnen Personengruppen die Legitimität abgesprochen. Ziel einer umfassenden naturwissenschaftlichen Bildung sollte es daher sein, Schülerinnen und Schüler dazu zu befähigen, die Grundlagen und Rahmenbedingungen naturwissenschaftlicher Forschung zu verstehen, bestehende Kontroversen und Grenzen zu kennen und diese differenziert bewerten zu können. So entwickeln sie die Fähigkeit, naturwissenschaftliche Erkenntnisse kritisch einzuordnen, argumentativ zu verteidigen und fundiert in gesellschaftliche Diskurse und Aushandlungsprozesse einzubringen und werden letztlich in die Lage versetzt, ihre Zukunft reflektiert und verantwortungsvoll mitzugestalten. Vorkenntnisse Es ist davon auszugehen, dass Schülerinnen und Schüler zum Ende der Sekundarstufe I bereits grundlegend mit dem Prozess der naturwissenschaftlichen Erkenntnisgewinnung vertraut sind. Je nach Bedarf stellt Material III dahingehend eine Wiederholung oder Einführung dar. Die Unterrichtseinheit ist so konzipiert, dass sich die Lernenden die notwendigen fachlichen Kenntnisse zur "Nature of Science" in der Aneignungs- und Instruktionsphase aneignen. Schülerinnen und Schüler, die in diesem Bereich bereits über Vorwissen verfügen, können die Phase schneller abschließen bzw. sich intensiver mit den weiterführenden Informationen in Material II auseinandersetzen. Didaktisch-methodische Kommentar Die Lerneinheit wurde für den Einsatz in der Grundlagenakademie der Einführungsphase entwickelt. Sie stellt eine Ergänzung zum fachgebundenen (Mathematik-, Deutsch- oder Englisch-) Vertiefungskurs nach der Ausbildungs- und Prüfungsordnung für die gymnasiale Oberstufe NRW dar, fördert gezielt fachliche und überfachliche Kompetenzen und führt die Schülerinnen und Schüler an das Konzept des Deeper Learning heran. Thematisch ist die Einheit in den naturwissenschaftlichen Fächern Biologie, Chemie und Physik verankert, wobei die Wahl der Vertiefungsthemen den Interessen und Neigungen der Schülerinnen und Schülern überlassen bleibt. Ziel ist die explizite Vermittlung von "Nature of Science" bzw. der Eigenschaften von Naturwissenschaften. Gebhard, Höttecke und Rehm (2017) stellen in ihrer "Pädagogik der Naturwissenschaften" heraus, dass die fachdidaktische Forschungslage zur Wirksamkeit der Vermittlung eindeutig ist. Dabei beziehen sie sich auch auf Khisfhe und Abd-El-Khalick (2002), die herausgearbeitet haben, dass Schülerinnen und Schülern von vielfältigen Reflexionsanlässe profitieren. Die naturwissenschaftliche Erkenntnisgewinnung bzw. die Natur der Naturwissenschaften, soll von einer Meta-Ebene aus nachvollzogen werden. Am Beispiel der weiterentwickelten Bildungsstandards in den Naturwissenschaften für das Fach Chemie (MSA) (KMK, 2024) lässt sich exemplarisch die Passung von "Nature of Science" auf die curricularen Vorgaben verdeutlichen: "Bildung in der Chemie ermöglicht Einblicke in die Arbeitsweisen der chemischen Industrie und Forschung, fördert das Wissenschaftsverständnis im Sinne von Nature of Science, trägt zur lebenslangen individuellen Kompetenzentwicklung bei und ist somit ein wichtiger Teil der Allgemeinbildung (KMK, 2024, S.6)." "Die Erkenntnisgewinnungskompetenz der Lernenden zeigt sich in der Kenntnis grundlegender naturwissenschaftlicher Denk- und Arbeitsweisen verbunden mit der Fähigkeit, diese zu beschreiben, zu erklären, für Erkenntnisprozesse systematisch zu nutzen und deren Möglichkeiten und Grenzen zu reflektieren (KMK, 2024, S.7)." Dittmer und Zabel (2019) betonen, dass naturwissenschaftliche Bildung die Rahmenbedingungen, Kontroversen und Grenzen von Wissenschaft in den Blick nehmen sollte. Der Bildungswert der Wissenschaft wird dabei unter dem Begriff "Nature of Science" diskutiert. "Nature of Sciene" steht für den didaktischen Anspruch, wissenschaftstheoretische und -historische Aspekte in den Naturwissenschaftsunterricht zu integrieren und die Vermittlung naturwissenschaftlicher Mythen durch eine rein lehrbuchorientierte geprägte Unterrichtspraxis zu verhindern (Dittmer & Zabel, 2019). Zentrale Fragen dabei lauten: Welche Fragen können Naturwissenschaftlerinnen und Naturwissenschaftler beantworten – und welche prinzipiell nicht? Welches Welt- und Menschenbild transportieren naturwissenschaftliche Theorien und Forschungsvorhaben? Worauf gründet sich naturwissenschaftliches Wissen, und wie haltbar und weitreichend ist es? Wie verhalten sich Naturwissenschaft und Religion zueinander? Worin unterscheidet sich die naturwissenschaftliche Sichtweise auf die Welt beispielsweise von einer künstlerischen Perspektive? (ebd.). In Phase I der Unterrichtseinheit steht das Sammeln bedeutungsvoller Lernerfahrungen im Mittelpunkt. Die Schülerinnen und Schüler erwerben ein solides Wissensfundament, das sie in Phase II gezielt vertiefen und weiterentwickeln. Die Vermittlung erfolgt über Impulse durch die Lehrkraft (z. B. Kurzvorträge) sowie durch die gemeinsame Diskussion im Plenum. Ergänzend arbeiten die Lernenden in Einzel- und Gruppenarbeitssettings an der Erschließung der "Lederman seven", wobei der Fokus auf eigenständiger Recherche liegt. Zur Unterstützung dient Material II, das als vorstrukturierte Lernhilfe konzipiert ist und Binnendifferenzierung ermöglicht. Es bündelt Informationen zum Thema "Nature of Science" für unterschiedlichen Niveaustufen - von populärwissenschaftlichen Texten über fachdidaktische Beiträge bis hin zu englischsprachigen Quellen. Darüber hinaus stehen audio-visuelle Angebote zur Verfügung, um unterschiedliche Lernzugänge zu ermöglichen und eine adressatengerechte Differenzierung zu fördern. Die zur Sicherung der Lerninhalte eingesetzte Mystery-Methode basiert auf einem problemorientierten Ansatz, bei dem die Schülerinnen und Schüler ein zunächst rätselhaftes Phänomen oder eine spannende Leitfrage bearbeiten. Im Sinne eines problemorientierten Unterrichtsansatzes gilt es, Informationen zu sammeln, zu analysieren und auf der Grundlage des in Phase I erworbenen Wissen miteinander zu verknüpfen, um das eingangs gestellte Problem bzw. die Frage zu beantworten. Das Ergebnis der Auseinandersetzung ist eine Concept-Map, die die individuellen Denkwege, Hypothesen, Ideen und Vorstellungen der Schülerinnen und Schülern sichtbar macht. Durch die kooperative Erstellung der Concept-Map werden, neben fachlichen Kompetenzen, insbesondere auch Kommunikationsfähigkeiten, Argumentationsfähigkeit und soziale Kompetenzen gezielt gefördert. In Phase II erfolgt die Erstellung der Lernprodukte. Die Schülerinnen und Schüler arbeiten kollaborativ, kreativ und während der Recherchephase auch digital. Dabei wählen sie eigenverantwortlich ihre Lerngruppe, ihren Lernweg sowie die Form des Lernprodukts nach dem Prinzip "voice & choice" und gestalten ihren Lernweg aktiv mit. Durch den selbstgesteuerten Lernweg stärken sie sowohl ihre Recherchekompetenz als auch ihr methodisches Know-how. Ein zentrales Element dieser Phase ist die kritische Auseinandersetzung mit den gesammelten Informationen, die von den Lernenden analysiert und reflektiert werden. Die Lehrkraft begleitet diesen Prozess durch formatives Feedback zu dem Arbeitsprozess sowie zu den entstehenden Lernprodukten. Zur Strukturierung der Teamarbeit stellt Material IV eine koordinierende Aufgabenübersicht in Tabellenform zur Verfügung, die als niedrigschwellige Planungs- und Organisationshilfe in Phase II dient. Ergänzend wird die Kanban-Methode (Material V) eingeführt, die die Schülerinnen und Schüler in das agile Arbeiten einführt, agile Arbeitsprozesse und die Aufgabenverteilung im Team visualisiert und als Feedbackgrundlage dient. Für Lernende, die Unterstützung bei der Themenwahl benötigen, ist eine Liste mit Themenvorschlägen beigefügt, die passende Vorschläge zur Vermittlung der "Nature of Science" enthält und fachdidaktisch erprobt ist. Die Präsentation der authentischen Lernprodukte vor der Schulgemeinschaft und ggf. einer schulexternen Öffentlichkeit in Phase III fördert sowohl die Kommunikationskompetenz als auch das Selbstwirksamkeitserleben der Schülerinnen und Schüler. Sie erleben, dass sie komplexe naturwissenschaftliche Inhalte adressatengerecht vermitteln können und sie aktiv zu gesellschaftlich relevanten Diskussionen über die Eigenschaften von Naturwissenschaften beitragen können. In die Bewertung der Lernleistung durch die Lehrkraft werden dabei mehrere Komponenten einbezogen: Berücksichtigt werden vor allem die individuellen Lernprozesse, die Qualität der Lernprodukte, die Teamarbeit sowie die Präsentationsleistung vor der Schulgemeinschaft. Den Abschluss der Einheit bildet die Retrospektive im jeweiligen Team, in deren Rahmen die Schülerinnen und Schüler reflektieren, welche neuen fachlichen, methodischen und sozialen Kompetenzen sie in der Deeper Learning-Einheit entwickelt haben. Diese Reflexionsphase dient nicht nur der individuellen Auseinandersetzung der Lernenden mit dem eigenen Lernprozess, sondern liefert auch der Lehrkraft wertvolle Impulse zur Weiterentwicklung der Unterrichtseinheit. Fachbezogene Kompetenzen Die Schülerinnen und Schüler erläutern das Konzept der „Nature of Science“, kennen die Möglichkeiten und Grenzen naturwissenschaftlicher Erkenntnisgewinnung und können die zentralen Kriterien, Bedingungen und Eigenschaften wissenschaftlicher Wissensproduktion beschreiben. stellen die wissenschaftlichen Grundlagen fachwissenschaftlicher Probleme dar und ordnen diese in fachliche, historische und gesellschaftspolitische Kontexte ein. beurteilen Quellen in Bezug auf spezifische Interessenlagen. begründen die eigene Meinung kriteriengeleitet anhand von Sachinformationen, bewerten die persönliche und gesellschaftliche Tragweite und Bedeutsamkeit einzelner Forschungsprojekte im Kontext von „Nature of Science“. Medienkompetenz Die Schülerinnen und Schüler führen zielgerichtete Informationsrecherchen durch und wenden dabei Suchstrategien an (Medienkompetenzrahmen NRW 2.1.). filtern und strukturieren themenrelevante Informationen und Daten aus Medienangeboten, wandeln diese um und arbeiten sie auf (Medienkompetenzrahmen NRW 2.2). präsentieren Lern- und Arbeitsergebnisse sach-, adressaten- und situationsgerecht unter Einsatz geeigneter analoger und digitaler Medien, belegen verwendete Quellen, kennzeichnen Zitate und tauschen sich mit anderen konstruktiv über naturwissenschaftliche Sachverhalte auch in digitalen kollaborativen Arbeitssituationen aus. 21st Century Skills Die Schülerinnen und Schüler arbeiten ko-konstruktiv und ko-kreativ bei der Erstellung ihrer Lernprodukte. hinterfragen die von ihnen bearbeiteten Materialien kritisch und bewerten die Qualität von Informationen. kommunizieren ihre Arbeitsergebnisse sach- und adressatengerecht in ihren Gruppen und vor der Schulgemeinschaft. Beigel, J., Klopsch, B. & Sliwka, A. (2023). Deeper Learning gestalten. Ein Workbook für Lehrkräfte. Weinheim: Beltz. Open access: https://www.telekom-stiftung.de/sites/default/files/files/media/publications/deeper-learning-gestalten-workbook.pdf Deeper Learning Initiative: https://hse-heidelberg.de/hsedigital/hse-digital-teaching-and-learning-lab/deeper-learning-initiative/deeper-learning Dittmer, A. & Zabel, J. (2019) . Das Wesen der Biologie verstehen; Impulse für den wissenschaftspropädeutischen Biologieunterricht. In Groß, J. et al. (Hrsg.), Biologiedidaktische Forschung: Erträge für die Praxis. Berlin: SpringerSpektrum. Heering, P. & Kremer, K. (2018). Nature of Science. In: Krüger, D. et al. (Hrsg.), Theorien in der naturwissenschaftlichen Forschung. Berlin: SpringerSpektrum. Gebhard, U., Höttecke, D. & Rehm, M. (2017). Pädagogik der Naturwissenschaften. Ein Studienbuch. Berlin: SpringerSpektrum. Forum Bildung Digitalisierung: Community Call: Digitaltag 2023 mit Deeper Learning: Entdecken. Verstehen. Gestalten.: https://www.youtube.com/watch?v=DV387Otll_M&t=22s Kultusministerkonferenz. (o. D.). Medienbildungskompetenz - Rahmenlehrplan für die Sekundarstufe I .: https://www.schulministerium.nrw/sites/default/files/documents/Medienkompetenzrahmen_NRW.pdf

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Algebra

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Algebra: Rechnen in Zahlenbereichen, Zuordnungen, Gleichungen und Ungleichungen, lineare Funktionen, quadratische Funktionen, Potenzfunktionen, ganzrationale Funktionen, Exponentialfunktionen und Begabtenförderung. Das Wilhlem-Ostwald-Gymnasium nutzt ab der 8. Klasse Note- und Netbooks im Unterricht. So können die Kosten für teure CAS-Systeme gespart werden, die nur für den Mathematik-Unterricht genutzt werden könnten. Mit freier Software können die Schülerinnen und Schüler alle im Lehrplan geforderten Themen im Mathematikunterricht bearbeiten. Die Geräte können darüber hinaus aber auch in anderen Fächern eingesetzt werden. In diesem Webtalk stellt Henrik Lohmann eine Unterrichtsreihe vor, die exemplarisch zeigt, wie mobile Geräte und digitale Arbeitsmaterialien genutzt werden. Die Materialien zum Thema "Quadratische Gleichungen und Funktionen" stehen unten zum Download bereit. Thema Stationenlernen mit Netbooks: "Quadratische Gleichungen und Funktionen" Autor Henrik Lohmann Anbieter Universität Duisburg Essen - learning lab, MINTec Fächer Informatik, Mathematik Zielgruppe Sekundarstufe I und II, Material erprobt in Jahrgangsstufe 9 Technische Voraussetzungen Computer mit Geogebra und Maxima, Internetzugang mit Schulplattform Materialien zur Informationstechnischen Grundbildung Beiträge und Resultate aus den vielfältigen Aktivitäten des nationalen Excellence-Schulnetzwerks MINT-EC und seiner Netzwerkschulen werden in der Schriftenreihe "Materialien zur Informationstechnischen Grundbildung" zusammengeführt und veröffentlicht. In verschiedenen Themenclustern erarbeiten MINT-EC-Lehrkräfte und Schulleitungen Schul- und Unterrichtskonzepte, entwickeln diese weiter und nehmen dabei neue Impulse aus Wissenschaft und Forschung und aus aktuellen Herausforderungen der schulischen Praxis auf. Das learning lab der Universität Duisburg Essen befasst sich seit Jahren mit der Konzeption und Entwicklung innovativer Lösungen für das Lernen insbesondere mit digitalen Medien. Im IT-Cluster des MINT-EC arbeitet eine Gruppe von Schulleitung und Medienbeauftragten aus dem Netzwerk von über 180 Gymnasien bundesweit zusammen, um die Potentiale digitaler Medien für den Unterricht systematisch nutzbar zu machen. Die Kopiervorlagen lassen sich einfach und schnell individualisieren und an die jeweiligen schulischen Erfordernisse anpassen - und Sie gehen als Lehrkraft stets bestens gerüstet in Ihren Unterricht. Der Mathelehrer Algebra unterstützt Sie mit allem, was Sie zur Unterrichtsvorbereitung brauchen. Hier wird das gesamte Algebra-Wissen der Unter- und Mittelstufe vermittelt - und zwar vollständig vertont. 80 spannende Themenaufgaben helfen den Schülerinnen und Schülern, den Unterrichtsstoff zu begreifen. Druckbare Darstellungen und viele Beispiele machen den trockenen Algebra-Stoff zum leicht verständlichen Lernerlebnis. Die vielen Beispielaufgaben mit Lösungen schaffen abwechslungsreiche Übungsmöglichkeiten. Auch Eltern profitieren von der Lernsoftware - als Nachschlagewerk, Übungsquelle und Unterstützung beim gemeinsamen Lernen mit den Schülerinnen und Schülern. Empfehlen Sie als Mathelehrkraft den Eltern Ihrer Schülerinnen und Schüler diese Software, damit diese auch in ihren Familien die optimale Lernunterstützung erhalten. Die Mappe im praktischen DIN-A4-Format enthält: Lernsoftware für das Fach Algebra 133 Kopiervorlagen mit allen lehrplanrelevanten Themen Alle Kopiervorlagen zum Drucken und Editieren in elektronischer Form Auszeichnung: CLEVER 2009 für Mathelehrer Algebra! CLEVER ist das Prüfsiegel für empfehlenswerte Software, das die ZUM (Zentrale für Unterrichtsmedien) und die Redaktionsagentur S@M Multimedia Services gemeinsam herausgeben. Die hier vorgestellte dynamische Veranschaulichung wurde mit der kostenlosen Mathematiksoftware GeoGebra erstellt und in eine interaktive Webseite eingebunden. Dies ermöglicht es den Schülerinnen und Schülern zu probieren, zu beobachten und ihre Vermutungen einer Prüfung zu unterziehen. Direkte Rückmeldungen unterstützen die Lernenden auf dem Weg, die Rechenregeln für die Addition ganzer Zahlen zu finden, sowie bei der Anwendung und Festigung der erworbenen Kenntnisse. Durch den Einsatz interaktiver dynamischer Arbeitsblätter erfährt das selbstverantwortete Lernen eine methodische Bereicherung. Die Schülerinnen und Schüler sollen durch Experimentieren die unterschiedlichen Regeln für die Addition ganzer Zahlen selbstständig finden. die Regeln für die Addition ganzer Zahlen verbal beschreiben und die erworbenen Kenntnisse auf unterschiedliche Beispiele anwenden können. Thema Addition ganzer Zahlen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Addition ganzer Zahlen Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Die Schülerinnen und Schüler sollen erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden können. Thema Subtraktion ganzer Zahlen mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Verlaufsplan: Subtraktion ganzer Zahlen Die Schülerinnen und Schüler sollen im Lernbereich "Natürliche Zahlen" die Begriffe Teilbarkeit, Vielfache und Teiler sowie Mengen kennen (Klasse 5). im Wahlpflichtbereich "Wie die Menschen Zählen und Rechnen lernten" Einblick gewinnen in das Zählen und in die Schreibweisen von Zahlen in einem anderen Kulturkreis (Klasse 5). sich im Rahmen der Prüfungsvorbereitung mit den Begriffen Teiler- und Vielfachmengen sowie mit Stellenwertsystemen auseinandersetzen (Klasse 10). Thema Zahlen und Kalender der Maya Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 5 (natürliche Zahlen, Schreibweisen von Zahlen) Klasse 10 (Prüfungsvorbereitung) Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit) Einführung der Lernumgebung per Beamer Schülerinnen und Schüler der Klasse 5 sind den Einsatz interaktiver Arbeitsblätter oft noch nicht gewohnt. Daher sollte der Umgang damit zunächst von der Lehrperson per Beamer gezeigt werden. Auch die Steuerung einer VRML-Animation sollte demonstriert werden. Die 3D-Animationen der Lernumgebung zum Maya-Kalender sorgen für Anschaulichkeit und vereinfachen die Visualisierung von Aufgabenstellungen und Zusammenhängen. Alle animierten GIFs und Videos der Lernumgebung wurden vom Autor mithilfe des 3D-CAD-Programmes FluxStudio 2.0 erzeugt. Hinweise zum Einsatz der Übungen Ein Hinweis auf die Notwendigkeit einer korrekten Zahleneingabe bei den Übungen führt zu erhöhter Konzentration und damit zu weniger Frusterlebnissen. Diese entstehen, wenn Fragen inhaltlich richtig, aber formal fehlerhaft (zum Beispiel durch Leerstellen) in die Arbeitsblätter eingegeben werden. Die Angaben werden dann als falsch bewertet. Auch Partnerarbeiten zwischen Schülerinnen und Schülern mit guten Deutschkenntnissen und Lernenden, denen die deutsche Sprache schwer fällt (Integrationskinder), kann zur Vermeidung von Frusterlebnissen beitragen. Inhalte der Lernumgebung Schülerinnen und Schüler lernen die Maya-Ziffern kennen. Zahnrad-Modelle veranschaulichen die Kalenderzyklen bis hin zum "Long Count", der 2012 enden wird. Die Schülerinnen und Schüler sollen eigene Vorstellungen zu den verschiedenen Grundvorstellungen der Bruchzahlen entwickeln. ihre eigenen Vorstellungen von Bruchzahlen verbalisieren können. Bruchzahlen als wichtige Bestandteile in ihrer Umwelt identifizieren und Verständnis für Sinn und Bedeutung der einzelnen Aufgaben entwickeln. an die Bedeutung von Bruchzahlen intuitiv herangehen und ein eigenes Verständnis für diese entwickeln, ohne die Begriffe Zähler und Nenner zu benutzen. die Aufgaben nach Abschluss des jeweiligen Entdeckerarbeitsblattes selbst erarbeiten können. Thema Schulung der Grundvorstellung von Bruchzahlen Autor Katrin Hausmann unter Mithilfe von Thomas Borys Fach Mathematik Zielgruppe Klasse 5 oder 6 Zeitraum 2 Stunden Technische Voraussetzungen Computerraum, Software: Excel Innerhalb der gesamten Anwendung wurde das Konzept verfolgt, zu den Grundvorstellungen spezielle Übungsaufgaben (im Hauptmenü grün gefärbt) und eine zugrunde liegende Erklärung - oder Entdeckungsseite (gelb gefärbt) - anzubieten. Die Entdeckungsseiten sollen für unerfahrene Schülerinnen und Schüler einen ersten Zugang liefern. Sie verfügen über ein Textfeld, in das die Lernenden ihre Beobachtungen und ersten Versuche zur Beschreibung der verschiedenen Grundvorstellungen der Bruchzahlen schreiben können. Die Texte können nach Ende der Bearbeitung von der Lehrkraft in dem Tabellenblatt "Beobachtungen" eingesehen werden. Damit die Excel-Arbeitsblätter richtig funktionieren, müssen Makros aktiviert sein und die Sicherheitsstufe auf "mittel" eingestellt werden. Hinweise zur Durchführung im Unterricht Die interaktive Excel-Lernumgebung ermöglicht den Schülerinnen und Schülern ein selbstständiges Entdecken der Lerninhalte. Thomas Borys ist Gymnasiallehrer für Mathematik und Physik. Er arbeitet als Studienrat im Hochschuldienst an der Pädagogischen Hochschule Karlsruhe am Institut für Mathematik und Informatik. Die Subtraktion gemischter Zahlen ist einer der Bereiche der Bruchrechnung, der sich durch eine hohe Fehlerquote bei Schülerinnen und Schülern auszeichnet. Grund dafür ist nicht selten die Tatsache, dass die Lernenden über unzureichende Grundvorstellungen verfügen. So ist es oftmals im Unterricht verwunderlich, dass Aufgaben wie zum Beispiel "1 minus 3/5", die allein auf der anschaulichen Ebene ohne jedes formale Rechenkalkül zu lösen wären, zu Fehlern führen. Die hier vorgestellte Lernumgebung möchte Wege aufzeigen, wie Schritt für Schritt Grundvorstellungen aufgebaut werden können, um Aufgaben des Typs "3 2/7 minus 1 4/7" auf der anschaulichen und bildlichen Ebene zu lösen. So erzeugte Grundvorstellungen können ein nachhaltiges Lernen fördern. Die Verwendung von interaktiven dynamischen Arbeitsblättern unterstützt die Lernenden und ermöglicht ihnen einen individuellen und eigenständigen Zugang zu Grundvorstellungen. Alle dynamischen Darstellungen wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um algebraische Zusammenhänge dynamisch zu veranschaulichen. Die Schülerinnen und Schüler sollen natürliche Zahlen als Scheinbrüche in die Bruchzahlen einordnen können. Brüche von natürlichen Zahlen und gemischten Zahlen anschaulich und symbolisch subtrahieren können. die Subtraktion einer gemischter Zahl als Subtraktion einer natürlichen Zahl und eines Bruchs verstehen lernen. die Subtraktion gemischter Zahlen symbolisch ausführen können. Thema Gemischte Zahlen anschaulich subtrahieren Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 2-3 Stunden Technische Voraussetzungen Mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; für die Nutzung der dynamischen Materialien benötigen Sie das kostenlose Plugin Java Runtime Environment (Version 1.4 oder höher), Javascript muss aktiviert sein. Planung Gemischte Zahlen anschaulich subtrahieren Die geometrische Veranschaulichung des Erweiterns anhand der Verfeinerung der Unterteilung eines gegebenen Rechtecks wird mithilfe von GeoGebra realisiert. Neben der dynamischen Veranschaulichungs- und Experimentierumgebung bietet die Unterrichtseinheit eine javascript-basierte algebraische Übungsmöglichkeit zur Individualisierung und Differenzierung des Unterrichts. Eine zusätzliche, nicht zu unterschätzende, Motivation während dieser Übungs- und Vertiefungsphase bietet ein Wettbewerb, bei dem die Schülerinnen und Schüler die von Ihnen erreichte Punktzahl in eine Bestenliste eintragen können. Die Schülerinnen und Schüler sollen erkennen, dass für eine Bruchzahl unterschiedliche Darstellungen möglich sind. durch Experimentieren das Erweitern eines Bruchs visuell erfahren. das Erweitern eines Bruchs durch das Multiplizieren von Zähler und Nenner mit der gleichen Zahl selbstständig entdecken. die erworbenen Kenntnisse über das Erweitern von Brüchen auf unterschiedliche Beispiele anwenden. Thema Erweitern von Brüchen - eine interaktive Einführung Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript; Java Runtime Environment (kostenloser Download) Unterrichtsplanung Erweitern von Brüchen - eine interaktive Einführung In dieser Unterrichtseinheit werden drei unterschiedliche Übungsmöglichkeiten vorgestellt, mithilfe derer das Rechnen mit ganzen Zahlen vertieft werden kann. Anhand von zwei Übungen soll dabei zuerst das Ausgangsniveau gesichert werden. Darin werden noch einmal die Kenntnisse zur Addition und Multiplikation von ganzen Zahlen auf einen aktuellen Stand gebracht. Durch die Verwendung von variablen Rechenbäumen werden in einem zweiten Schritt die Rechenarten miteinander verbunden. Abschließend wird das bereits im Bereich der Dezimalzahlen behandelte arithmetische Mittel in Verbindung mit dem Rechnen mit ganzen Zahlen aufgefrischt und in einen Anwendungskontext, der Ermittlung von Durchschnittstemperaturen, gestellt. Die Schülerinnen und Schüler sollen ihre Kenntnisse im Bereich der Addition und Multiplikation ganzer Zahlen vertiefen. durch die Kombination von Grundrechenarten im Bereich der ganzen Zahlen Sicherheit im Rechnen erlangen. das arithmetische Mittel auf ganze Zahlen anwenden können. mithilfe des arithmetischen Mittels auf Ausgangswerte schließen können. Thema Ganze Zahlen - Grundrechenarten verbinden und anwenden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schüler oder Schülerinnen; Software: Java , Version 1.4 oder höher, kostenfreier Download Interaktive dynamische Arbeitsblätter können durch die automatische Kontrolle der Ergebnisse und Rückmeldungen, die den Schülerinnen und Schülern eine eigenständige Fehleranalyse ermöglichen, einen wertvollen Beitrag zur Vertiefung der erworbenen Kenntnisse leisten. Hinweise zum Einsatz im Unterricht Aufbau und Funktionsweise der interaktiven Arbeitsblätter werden erläutert. Die Lernenden können eigenständig mit ihnen arbeiten. Erste Unterrichtsstunde In der einführenden Stunde lösen die Lernenden Aufgaben zur Multiplikation und Addition positiver und negativer ganzer Zahlen. Zweite Unterrichtsstunde Anhand von variablen Rechenbäumen sollen die Schülerinnen und Schüler drei fehlende ganze Zahlen ermitteln. Dritte Unterrichtsstunde Das Rechnen mit positiven und negativen ganzen Zahlen wird in einen Anwendungskontext zur Ermittlung von Durchschnittstemperaturen gestellt. Bei der Einführung des Termbegriffs gilt es, Kontexte zu finden, die es den Schülerinnen und Schülern ermöglichen, Grundvorstellungen auszubilden. Die Länge eines Zugs ist abhängig von der Länge der Lokomotive und der Länge sowie der Anzahl der Waggons. Anhand dieses konkreten Kontexts werden in dieser Unterrichtseinheit die Begriffe Term und Termwert anschaulich eingeführt. Ein wesentliches Element dieser kontextorientierten Einführung ist die enge Verknüpfung von bildlicher, symbolischer und nummerischer Darstellung, die durch die Verwendung der dynamischen Mathematiksoftware GeoGebra möglich wird. Für die sich anschließende Übungsphase werden Aufgaben bereitgestellt, die ein individualisiertes und differenziertes Lernen ermöglichen. Die Schülerinnen und Schüler sollen erkennen, dass die Länge eines Zugs von der Länge der Lokomotive, der Länge und der Anzahl der Waggons abhängt. erkennen, dass die Zuglänge, abhängig von der Anzahl der Waggons, mithilfe von Tabellen dargestellt werden kann. Einsicht gewinnen, dass Zuglängen mit Termen beschrieben werden können. Tabellen analysieren und fehlende Termwerte ergänzen können. ausgehend von tabellarischen Darstellungen Terme selbstständig entwickeln können. Thema Terme - eine kontextorientierte Einführung mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Software: Java , Version 1.4 oder höher, kostenfreier Download Planung Terme - eine kontextorientierte Einführung mit GeoGebra Die Schülerinnen und Schüler sollen den Dreisatz für die direkte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen. Zuordnungsvorschriften der Form y=mx formulieren. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen direkt proportionaler Zuordnungen ansteigende Geraden ergeben, die durch den Koordinatenursprung verlaufen. Thema Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-3 Unterrichtsstunden Technische Voraussetzungen Computerarbeitsplatz (am Besten ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten Die Unterrichtseinheit zielt in erster Linie auf das Übertragen von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können die interaktiven Übungen der Arbeitsblätter entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten werden (eine Unterrichtsstunde), oder bereits für die Erarbeitung des Themas "Darstellung der direkten Proportionalität im Koordinatensystem" verwendet werden (drei Unterrichtsstunden). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Schülerinnen und Schüler sollen den Dreisatzes für die indirekte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen können. Zuordnungsvorschriften der Form y=m/x formulieren können. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen indirekt proportionaler Zuordnungen keine ansteigende Geraden mehr ergeben, sondern bestimmte Arten von Kurven: Hyperbeläste (ohne den Begriff zu kennen). Thema Indirekte Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten und Voraussetzungen Die Unterrichtseinheit zielt in erster Linie auf das Üben des Übertragens von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können diese interaktiven Übungen bereits bei der Behandlung dieses Themas im Unterricht als selbstständige Schülertätigkeit angeboten werden. Voraussetzung dafür ist allerdings, dass die direkte Proportionalität bereits auf diese Weise bearbeitet wurde (siehe Unterrichtseinheit Direkte Proportionalität ). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Verwendung webbasierter interaktiver Arbeitsblätter zum Thema Gleichungen und Ungleichungen ermöglicht Schülerinnen und Schülern in dieser Unterrichtseinheit einen neuen Umgang mit Fehlern. Die eingesetzten Online-Arbeitsblätter sind Bestandteil der umfangreichen Unterrichtsmaterialien von realmath.de . Bei der Bearbeitung des ersten Arbeitsblattes analysieren die Schülerinnen und Schüler die Hausaufgaben des fiktiven Geschwisterpaares Paul und Paula, suchen Fehler und beschreiben deren Ursachen. Anschließend begegnen sie in einem zweiten Online-Arbeitsblatt Aufgabenstellungen, bei denen sie ihre Fehleranalyse produktiv umsetzen können: Sie bauen ganz bewusst Fehler in Gleichungen ein, die ihre Partnerin oder ihr Partner dann korrigieren soll. Die hier vorgestellte Unterrichtseinheit entstand im Rahmen der Mitarbeit am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung webbasierter Arbeitsblätter umgesetzt werden können (Modul 3: Aus Fehlern lernen). Die Schülerinnen und Schüler sollen Fehler in bearbeiteten Gleichungen und Ungleichungen finden. Fehler und deren Ursachen beschreiben. das Wissen über Fehler kreativ und produktiv umsetzen. Thema Gleichungen und Ungleichungen - Fehler produktiv nutzen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 7-8 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Browser mit aktiviertem Javascript; Beamer Unterrichtsplanung Verlaufsplan Gleichungen und Ungleichungen der Unterrichtseinheit Das Lösen von Gleichungen und Ungleichungen durch Äquivalenzumformungen sowie das Inversions- und Distributivgesetz müssen bereits besprochen und an Beispielen behandelt worden sein. Die Unterrichtseinheit selbst basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Methodische Vorgehensweise Wie können die negativen Vorerfahrungen der Schülerinnen und Schüler mit dem Begriff ?Fehler? ins Positive gewendet werden? Unterrichtsverlauf "Gleichungen und Ungleichungen" Beschreibung der Unterrichtsphasen, Hinweise zum Einsatz der Arbeitsmaterialien und Screenshots der Online-Arbeitsblätter Bezug der Unterrichtseinheit zu SINUS-Transfer Aus Fehlern lernen - Schwerpunkt von SINUS-Modul 3 ist die Rehabilitierung des Fehlers als Lerngelegenheit. Zentrales Element dieser Lerneinheit ist das Beispiel eines Flugzeugs, das für Scanneraufnahmen über eine Landschaft fliegt und durch eine Windböe vom geraden Kurs abkommt. Die dadurch auf dem Scannerbild entstandene Verzerrung können die Schülerinnen und Schüler durch eine Funktion korrigieren. Zusätzlich zum Verständnis der mathematischen Inhalte lernen die Schülerinnen und Schüler auch Aspekte der Fernerkundung kennen. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen die Entstehung von Scannerbildern nachvollziehen können. einen klaren Bezug zwischen den mathematischen Inhalten und der realen Situation herstellen können. die Struktur eines digitalen Bildes kennen und auf die Problemstellung übertragen können. die Anforderung an eine Funktion formulieren, welche für die Lösung der Problemstellung notwendig ist. denn Sinn und die Arbeitsweise von Funktionen anhand des zu entzerrenden Bildes verstehen. Thema Pixel auf Abwegen Autoren Dr. Kerstin Voß, Henryk Hodam Fach Mathematik Zielgruppe Klasse 8 Zeitraum 2 Stunden Technische Voraussetzungen Adobe Flash-Player (kostenloser Download) Planung Pixel auf Abwegen Ziel der Unterrichtseinheit ist es, Aufgaben und die Mechanismen einfacher linearer Funktionen zu verstehen. Durch die praktische Anwendung sollen mögliche Verständnisbarrieren frühzeitig überwunden werden und den Lernenden ein klarer Bezug der mathematischen Inhalte zu realen Situationen aufgezeigt werden, in diesem Fall zur rechnerischen Entzerrung von Scannerbildern. Schülerinnen und Schüler sollen mithilfe des Moduls vielmehr das Verständnis für den Sinn und die Charakteristik von einfachen Funktionen festigen, bevor es lehrplangemäß zur Vertiefung dieser Thematik kommt. Es ist jedoch denkbar, Themen wie den Aufbau einer Funktionsgleichung oder die Herleitung einer Funktionsgleichung aus zwei Punkten eines Graphen an das Modul anzulehnen und sich im regulären Unterricht sukzessive die Werkzeuge zur Lösung des Moduls zu erarbeiten. Die mathematische Auseinandersetzung mit dem Funktionsbegriff ist zentrale Aufgabe des Moduls. Zusätzlich lernen die Schülerinnen und Schüler Aspekte der Fernerkundung kennen. Einführung in die Thematik Das interaktive Modul gliedert sich in ein Startmenü, eine Einleitung und den in drei Bereiche unterteilten Aufgabenteil. Aufgabenteil im Computermodul Hier wird der Aufgabenteil mit den drei Bereichen Analyse, Funktion und Entzerrung genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der multimedialen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Um den Kern der Problematik im Modul erfassen zu können, ist eine kurze Erklärung notwendig, denn die hier behandelte Verzerrung ist nur charakteristisch für Scannerbilder. Die Beispiele aus den Hintergrundinformationen und vor allem die interaktive Animation am Anfang des Moduls sollen hier behilflich sein. Folie 1 zeigt klar den Unterschied zwischen einem normalen Luftbild und einem Scannerbild auf. Um zu verdeutlichen, wo die Vorteile eines Scannerbildes liegen, kann Folie 2 gezeigt werden. Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus ist die durchgeführte Bildkorrektur nur mithilfe eines Rechners durchführbar. Ein Umstand, der den Schülerinnen und Schülern das Medium Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei "FIS_Pixel auf Abwegen.exe" gestartet. Dazu ist ein Adobe Flash Player notwendig. Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Die Animation verdeutlicht die Arbeitsweise eines flugzeuggestützten Scanners. Das Flugzeug scannt dabei eine Landoberfläche ab, gleichzeitig wird auf der rechten Seite der gescannte Bildbereich Reihe für Reihe, der aktuellen Flugzeugposition entsprechend, aufgebaut. Abb. 1 verdeutlicht dies (Platzhalter bitte anklicken). Die mittig angeordneten Pfeile dienen der Beeinflussung des Flugverhaltens. Das gescannte Bild reagiert dabei auf die ausgelösten Manöver und die entstandene Verzerrung wird angezeigt. Wird eine Seitwärtsbewegung ausgelöst, erscheint ein Button. Ein Klick auf den Button "Driftverzerrung bearbeiten" leitet über zum nächsten Menüpunkt. Zur Anpassung der Animation an geringere Rechnerleistung kann die Qualität mithilfe des Buttons im oberen linken Fensterbereich angepasst werden. Der zweite Bereich bietet eine animierte Einführung, in der ein Flugzeug über eine Landschaft fliegt. Abb. 2 gibt einen Eindruck dieser Animation (bitte auf den Platzhalter klicken). Eine semi-fiktionale Geschichte erzählt kurz, wie es zur Situation der Driftverzerrung gekommen ist, die es auf mathematischem Weg zu lösen gilt. Die "Weiter"-und "Zurück"-Buttons navigieren durch die beiden Abschnitte dieses Bereichs und leiten zum dritten Bereich, dem Aufgabenteil, weiter. Die Besonderheit der Übungen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass von Schülerinnen und Schülern erstellte Zeichnungen per Computer analysiert und bewertet werden. Somit muss sich die Lehrkraft nicht mehr mit der unmittelbaren Korrektur der Schülerarbeiten befassen, sondern kann sich in einer differenzierten Unterrichtssituation leistungsschwächeren Schülerinnen und Schülern zuwenden und diesen bei auftretenden Schwierigkeiten helfend und erklärend zur Seite stehen. Alle dynamischen Zeichnungen innerhalb der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um interaktive dynamische Lernumgebungen zu erstellen. Die Schülerinnen und Schüler sollen erkennen, dass die Steigung einer Geraden durch das Steigungsdreieck eindeutig festgelegt ist. die Gleichung von Ursprungsgeraden anhand der Steigung bestimmen können. Ursprungsgeraden nach einer gegebenen Gleichung zeichnen können. die Gleichung von Ursprungsgeraden aus den Koordinaten eines Punktes bestimmen können. Thema Steigung einer Geraden - mit GeoGebra entwickeln Autor Dr. Andreas Meier Fach Mathematik Zielgruppe 8. und 9. Klasse Zeitraum 2-3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript, Java Runtime Environment (kostenloser Download) Planung Steigung einer Geraden - mit GeoGebra entwickeln In der Verbindung von Alltagssituationen mit dem Thema Lineare Funktionen soll den Schülerinnen und Schülern in dieser Unterrichtseinheit durch den Einsatz von interaktiven Webseiten ein eigenständiger Wissenserwerb ermöglicht werden. Die grafische Darstellung der bei Regen steigenden Wasserhöhe in einer Regentonne in Abhängigkeit von der Zeit ist das Thema des ersten interaktiven Arbeitsblattes (von der Website realmath.de ), das in dieser Unterrichtseinheit zum Einsatz kommt. Wird das Arbeitsblatt für den Einstieg in das Themengebiet "Lineare Funktionen" verwendet, kann hier propädeutisch der Begriff der Steigung erarbeitet werden. Kommt das Online-Arbeitsblatt erst im Verlauf des Themas zum Einsatz, so kann der mathematisch erarbeitete Begriff der Steigung mit neuer anschaulicher Bedeutung gefüllt werden. In dem darauf folgenden zweiten interaktiven Arbeitsblatt sind unterschiedliche Preisangebote eines Kartbahnbetreibers grafisch dargestellt. Es ermöglicht den Schülerinnen und Schülern, die eben erworbenen Kenntnisse in einem neuen Aufgabenumfeld anzuwenden und sich in einem Wettbewerb mit den Mitschülern zu messen. Die Unterrichtseinheit entstand im Rahmen der Mitarbeit des Autors am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung von webbasierten Arbeitsblättern umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Schülerinnen und Schüler sollen Texte grafischen Darstellungen zuordnen. Informationen aus grafischen Darstellungen entnehmen und interpretieren. selbstständig Texte zu grafischen Darstellungen erstellen. eigene grafische Darstellungen zu Sachverhalten entwerfen. Thema Lineare Funktionen - grafische Darstellungen interaktiv erkunden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 8-9 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler, Browser mit aktiviertem Javascript, Beamer, OHP Unterrichtsplanung Lineare Funktionen der Unterrichtseinheit Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die Interaktivität möglich wird, muss jedoch Javascript im Browser aktiviert sein. Die Inhalte der Webseiten sind so konzipiert, dass eine Behandlung der Linearen Funktionen als Voraussetzung zur Bearbeitung der Aufgaben nicht zwingend notwendig ist. Die Aufgaben können sogar als Baustein für den Einstieg in die Thematik Lineare Funktion verwendet werden. Das ?ICH-DU-WIR?-Prinzip Das methodische Konzept der Schweizer Didaktiker Peter Gallin und Urs Ruf zeigt einen Weg zur nachhaltigen Anregung individueller Lernprozesse auf. Unterrichtsverlauf "Lineare Funktionen" Hinweise zum Verlauf des Unterrichts und zum Einsatz der Arbeitsmaterialien (Arbeits- und Hausaufgabenblatt, Online-Arbeitsblätter) Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen anhand der Funktionsmaschine den Funktionsbegriff verinnerlichen. Zuordnungsvorschriften linearer Funktionen kennen und anwenden können. Zuordnungsvorschriften der Form y=mx+n formulieren können. das Ablesen von linearen Funktionen aus dem Koordinatensystem beherrschen. das Eintragen von linearen Funktionen in ein Koordinatensystem beherrschen. Achsenabschnitte als Hilfsmittel zur Darstellung linearer Funktionen erkennen. das grafische Lösen linearer Gleichungssysteme kennen lernen. Thema Lineare Funktionen - die Funktionsmaschine Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 7 oder 10 Zeitraum etwa 4 Stunden bei der Erarbeitung in Klasse 7; etwa 2 Stunden beim Einsatz als Prüfungskomplex in Klasse 10 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Schülerin/Schüler), Flash-Player (kostenloser Download aus dem Internet), Browser mit aktiviertem Javascript Die Unterrichtseinheit dient der Erarbeitung des Funktionsbegriffs. Da sehr viele Schülerinnen und Schüler Schwierigkeiten haben, den Funktionsbegriff zu verinnerlichen, wird gerade auf die anschauliche Darstellung der Funktion als Maschine, die Zahlen verändert, Wert gelegt. Das Modell der Funktionsmaschine hat sich in der Mathematik-Didaktik als sehr anschaulich und einprägsam für die Lernenden erwiesen. Die auf dem ersten Arbeitsblatt verwendete Animation soll einen Beitrag zur weiteren Erhöhung dieser Anschaulichkeit leisten! Damit die Animation richtig angezeigt wird, muss ein Flash-Player für den Browser installiert sein und interaktive Webinhalte müssen zugelassen werden. Einsatz der Materialien Hinweise zum Einsatz der Arbeitsblätter, Links zu den Onlinematerialien und Screenshots. Die Schülerinnen und Schüler sollen die Bedeutung des Vorfaktors a in der Funktionsvorschrift f(x) = ax 2 + bx + c erkennen und benennen können. erkennen, dass ein negatives (positives) Vorzeichen des Vorfaktors b eine Verschiebung der Parabel nach rechts (links) bewirkt, vorausgesetzt der Vorfaktor a ist positiv (negativ). den Einfluss des Vorfaktors c auf die Lage der Parabel angeben können. anhand vorgegebener Funktionsvorschriften angeben können, wie die Parabel geöffnet und verschoben ist. Thema Untersuchung von Parabeln mit Excel Autorin Sandra Schmidtpott Fach Mathematik Zeitraum 1-2 Unterrichtsstunden (je nach Excel-Vorkenntnissen) Zielgruppe Klasse 9 technische Voraussetzungen Rechner in ausreichender Menge für Partnerarbeit, Beamer Software Excel Die Schülerinnen und Schüler sollen Quadratische Funktionen in der Normalform erkennen und zeichnen können. Quadratische Funktionen in der Scheitelpunktform erkennen und zeichnen können. Quadratische Funktionen von der Scheitelpunktform in die Normalform überführen können und umgekehrt. das Lösen Quadratischer Gleichungen beherrschen. das Lösen von Sachaufgaben mittels Quadratischer Gleichungen beherrschen. Thema Quadratische Funktionen und Gleichungen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 9 oder 10 Zeitraum 7 Stunden Technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Flash-Player , Java Runtime Environment , Browser mit aktiviertem Javascript, Excel (für die Nutzung einer Hilfedatei zur Lösung Quadratischer Gleichungen); im Idealfall Beamer Die Schülerinnen und Schüler sollen die Problematik der Konstruktionen mit Zirkel und Lineal bewältigen. das Rechnen mit komplexen Zahlen üben. Funktionen mit zwei Variablen und deren Darstellung als Flächen im Raum kennen lernen. den Einsatz von Funktionen und Ortslinien in GeoGebra trainieren. Die Schülerinnen und Schüler sollen im Umgang mit verschiedenen Software-Programmen vertraut werden. die Mathematiksoftware wxMaxima anwenden. die Mathematiksoftware GeoGebra anwenden. Thema Quadratische Gleichung Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 3 Stunden Technische Voraussetzungen ein Rechner pro Schülerin und Schüler, die (kostenfreie) Software GeoGebra und wxMaxima sollte installiert sein. Auf zwei verschiedene Arten sollen diese komplexen Lösungen sichtbar gemacht werden. Zum Einsatz kommen dabei die frei zugänglichen Mathematik-Programme GeoGebra und wxMaxima. Unterrichtsverlauf "Nullstellen" Hier sind die Voraussetzungen und die verwendeten Materialien für diese Unterrichtseinheit genauer beschrieben. Anregungen und Erweiterungen Weitere Vorschläge zu Anwendungen mit höhergradigen Polynomen sind hier aufgeführt. Literatur Richard Courant, Herbert Robbins Was ist Mathematik?, 5. Auflage Springer 2000, ISBN 3-540-63777-X, Seite 204 Am Beispiel der Einführung in die Potenzfunktion mit ganzzahligem Exponent soll aufgezeigt werden, wie Schülerinnen und Schüler sich die Eigenschaften dieser Funktionen durch Experimentieren und Beobachten erarbeiten können. Durch die mit GeoGebra erzeugten dynamischen Veranschaulichungen werden sie in die Lage versetzt, sich ihrem eigenen Lerntempo entsprechend mit den Eigenschaften von Potenzfunktionen aktiv auseinander zu setzen. Die inhaltliche Aufbereitung der einzelnen interaktiven dynamischen Arbeitsblätter bietet eine Vorstrukturierung der zu erarbeitenden Unterrichtsinhalte. So leitet die Unterteilung in geradzahlige und ungeradzahlige Exponenten sowie die Vorgabe von jeweils neun zu prüfenden Aussagen zu zielgerichtetem Experimentieren an und unterstützt den individuellen Lernprozess. Die Zahl n als Exponent steht im Folgenden in allen Funktionsgleichungen stets für eine natürliche Zahl. Die Schüler und Schülerinnen sollen erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax n auf den Verlauf des Graphen beschreiben können. erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x -n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax -n auf den Verlauf des Graphen beschreiben können. anhand vorgegebener Graphen deren Gleichung ermitteln können. Thema Potenzfunktion - Graphen analysieren, Eigenschaften entdecken Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 10 Zeitraum etwa 3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang und aktiviertem Javascript für je zwei Lernende, Java Plugin (1.4.2 oder höher, kostenloser Download) Planung Potenzfunktion - Graphen analysieren Die Schülerinnen und Schüler sollen Potenzfunktionen erkennen und in ein Koordinatensystem einzeichnen können. Potenzfunktionen mithilfe von Funktionsplottern darstellen können. das Berechnen von Wertetabellen für Potenzfunktionen beherrschen. den Einfluss des Koeffizienten a auf den Verlauf der Potenzfunktionen y = f(x) = ax n erarbeiten. Wurzelfunktionsgraphen erkennen und beschreiben können. Thema Potenzfunktionen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 2 Stunden technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript; eventuell Beamer Die Vorteile von Netbooks für den schulischen Einsatz liegen auf der Hand: Sie sind klein, leicht und deutlich preiswerter als herkömmliche Laptops. Die vorliegende Unterrichtseinheit zeigt Einsatzmöglichkeiten digitaler Medien für den Mathematikunterricht, ohne dass dafür der Computerraum aufgesucht werden muss. Vielmehr dienen die Netbooks dazu, im eigenen Klassenraum die fachlichen Inhalte mithilfe digitaler Medien noch anschaulicher zu vermitteln. Die Schülerinnen und Schüler sollen die mathematischen Inhalte der Kurvendiskussion erfassen und anwenden können. die mathematische Software (GeoGebra, wxMaxima) bedienen können. die verschiedene Software entsprechend ihrer Vorteile unterscheiden und zielgerichtet einsetzen können. Thema Nullstellen ganzrationaler Funktionen in Netbook-Klassen Autor Dr. Karl Sarnow Fach Mathematik Zielgruppe Klasse 10 im G8 Zeitraum 7 Stunden Technische Voraussetzungen Netbooks, Mathematiksoftware GeoGebra und wxMaxima (beides kostenfrei erhältlich) Hintergrund Einordnung der Unterrichtseinheit in den schulischen Kontext mit einer Verkürzung der Gymnasialzeit auf acht Jahre Unterrichtsverlauf 1. bis 3. Stunde Die ersten Stunden dienen dazu, dass sich die Lernenden beim ersten Einsatz von Netbooks mit den Geräten vertraut machen können. Unterrichtsverlauf 4. bis 6. Stunde Die Nullstellen einer Gleichung 3. Grades werden mit wxMaxima untersucht und anschließend mit dem konventionellen Ansatz begründet. Unterrichtsverlauf 7. Stunde Thema der letzten Stunde ist die Untersuchung der Nullstellen ganzrationaler Funktionen mit wxMaxima. Das Ergebnis wird im Nullstellensatz zusammengefasst. Die Schülerinnen und Schüler sollen im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a* x n kennen lernen. Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. die Nutzung von Funktionsplottern üben. Die Schülerinnen und Schüler sollen im Lernbereich "Wachstumsvorgänge und periodische Vorgänge" Einblick in verschiedene Wachstums- und Zerfallsprozesse gewinnen. die Begriffe unbeschränktes Wachstum (zum Beispiel linear und exponentiell) und beschränktes Wachstum (zum Beispiel logistisch) verstehen. ihre Kenntnisse auf Exponentialfunktionen und auf Wachstumsvorgänge übertragen. die exponentielle Regression unter Verwendung von Hilfsmitteln nutzen. im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a * x n und Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. Thema Die Exponentialfunktion und die "Unendlichkeitsmaschine" Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit), VRML-Plugin (blaxxun Contact, Cortona3D Viewer) In der Unterrichtseinheit kommt eine interaktive Lernumgebung zum Einsatz. Wenn die Schülerinnen und Schüler die Arbeit mit dynamischen Arbeitsblättern nicht gewohnt sind, hat sich eine Einführung der Materialien per Beamer bewährt. Auch der Umgang mit einem VRML-Plugin sollte über den Beamer demonstriert werden. Hinweise zur Technik und zum Unterrichtsverlauf Das 3D-Modell der Unendlichkeitsmaschine soll die Motivation der Lernenden steigern, sich mit der Exponentialfunktion auseinanderzusetzen. Die Schülerinnen und Schüler sollen den Unterschied zwischen Linearen Funktionen und Exponentialfunktionen kennen. die Begriffe Wachstumsrate und Wachstumsfaktor kennen und anwenden können. den Unterschied zwischen Linearem Wachstum und Exponentiellem Wachstum (Zerfall) kennen und aus Anwendungsbezügen das entsprechende Wachstumsmodell bestimmen können. die Begriffe Anfangswert und Wachstums-(Zerfalls-)faktor kennen und anwenden können. den Einfluss des Wachstumsfaktors a beziehungsweise des Zerfallsfaktors 1/a auf den Graphen der Exponentialfunktion kennen. die Eigenschaften der Exponentialfunktionen kennen. verschiedene Wachstums-(Zerfalls-)faktoren bestimmen und Funktionsvorschriften angeben können. Thema Einführung der Exponentialfunktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 10 Zeitraum 6-8 Unterrichtsstunden Technische Vorraussetzungen Computer in ausreichender Anzahl (Partner- oder Kleingruppenarbeit), Beamer, GeoGebra, Java-Plugin Von der GeoGebra-Homepage können Sie die dynamischen Arbeitsblätter der Unterrichtseinheit in zwei Paketen (ZIP-Archive) herunterladen: Das Bevölkerungsmodell von Malthus sowie die Materialien zur Verzinsung und Exponentialfunktion . Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen magische Quadrate als solche erkennen können. magische "4 x 4"-Quadrate auf weitere Eigenschaften hin untersuchen können. aus bereits bekannten magischen Quadraten neue erstellen können. ein magisches Geburtstagsquadrat erstellen können. Hypothesen aufstellen und überprüfen. weitgehend eigenverantwortlich und kooperativ arbeiten. magische Quadrate mit den Zahlen 1 bis 16 erzeugen können (eine nicht ganz einfache Krönung der Arbeit). Thema Magische Quadrate Autorin Dr. Renate Motzer Fach Mathematik Zielgruppe begabte Schülerinnen und Schüler ab Klasse 5 Zeitraum 2-10 Stunden, je nachdem wie viele Fragestellungen bearbeitet werden Technische Voraussetzungen Computer mit Tabellenkalkulationssoftware (hier Microsoft Excel) Die vorliegende Unterrichtseinheit beschäftigt sich mit magischen "4 mal 4"-Quadraten, wie sie von der Grundschule bis zur gymnasialen Oberstufe untersucht werden können. Schülerinnen und Schüler können sich oder Freunden ein magisches Geburtstagsquadrat errechnen, sobald ihnen negative Zahlen vertraut sind. Es sind auch schon gute Erfahrungen mit Lernenden in der Primarstufe gesammelt worden, die sich, so weit es bei ihren Daten nötig war, auch an negative Zahlen herangewagt haben. Für Schülerinnen und Schüler höherer Jahrgangsstufen gibt es weiterführende Aufgabenstellungen, die zum einen mit dem Lösen von Gleichungssystemen, zum anderen mit Matrizenaddition und skalarer Multiplikation zu tun haben. Oberstufenschülerinnen und -schüler können mit den Eigenschaften von Vektorräumen arbeiten. Auch in niedrigeren Jahrgangsstufen kann man sich mit manchen Vektorraumeigenschaften - ohne die zugehörigen Begrifflichkeiten - auseinandersetzen. Unterrichtsverlauf und Materialien Neben der Addition der Linearkombinationen von Grundquadraten können magische Quadrate auch auf anderen Wegen gefunden werden. Die Schülerinnen und Schüler sollen sich magischen Quadraten auf spielerische Weise nähern. die grundsätzlichen Eigenschaften magischer Quadrate kennen lernen. Thema Magisches Quadrat digital Autoren Elfi Petterich Fach Mathematik, auch für Vertretungsstunden geeignet Zielgruppe ab Klasse 5 (für alle Klassenstufen als spielerische Ergänzung zu magischen Quadraten) Zeitraum weniger als 1 Stunde Technik Computerarbeitsplätze zur Nutzung des Computermoduls, Lautsprecher müssen aktiviert sein. Das Programm ist im Grunde altersstufenunabhängig. Es ist ab der Klasse 5 einsetzbar, kann aber ebensogut auch bei älteren Schülerinnen und Schülen genutzt werden. Nutzung und Anpassung des magischen Quadrates Hier finden Sie Erläuterungen zur Funktionsweise des Programms sowie zur Möglichkeit der Darstellung eigener magischer Quadrate.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE