• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Sinus, Cosinus und Tangens im rechtwinkligen Dreieck

Unterrichtseinheit
14,99 €

Wie hängen Seitenlängen und Winkel in rechtwinkligen Dreiecken zusammen? Diese Unterrichts-einheit führt anschaulich mit GeoGebra zu Sinus, Cosinus und Tangens. Die Schülerinnen und Schüler lernen, Winkel und Längen rechnerisch zu bestimmen und wenden ihr Wissen in besonderen Vierecken und im dreidimensionalen Raum an. Diese Unterrichtseinheit führt Schülerinnen und Schüler systematisch in die Welt der Winkelfunktionen ein – beginnend beim rechtwinkligen Dreieck bis hin zur Anwendung im dreidimensionalen Raum. Ausgehend vom Satz des Pythagoras und der Beobachtung, dass Seitenverhältnisse in rechtwinkligen Dreiecken nur vom jeweiligen Winkel abhängen, werden die Winkelfunktionen Sinus, Cosinus und Tangens eingeführt. Mithilfe der Begriffe Ankathete, Gegenkathete und Hypotenuse werden diese Verhältnisse definiert und rechnerisch nutzbar gemacht. Die Inhalte werden durch interaktive Aufgaben und anschauliche Darstellungen in GeoGebra vertieft. Besonders betont wird dabei die visuelle Erkenntnis, dass Winkelverhältnisse unabhängig von der Größe des Dreiecks sind. In einem zweiten Abschnitt wenden die Schülerinnen und Schüler die Winkelfunktionen auf besondere Vierecke an und reflektieren deren Grenzen. Den Abschluss bildet die Übertragung ins Dreidimensionale: Hier lernen die Lernenden, wie sich Winkel im Raum verorten lassen und wenden ihr Wissen in praxisnahen Aufgaben an. Die gleichzeitige Nutzung der Grafik- und 3D-Ansicht in GeoGebra ermöglicht einen besonders anschaulichen Zugang und fördert ein nachhaltiges Verständnis der mathematischen Zusammenhänge. Die Unterrichtseinheit baut auf dem bereits bekannten Satz des Pythagoras auf und vertieft das Verständnis für die grundlegenden Winkelfunktionen Sinus, Cosinus und Tangens im rechtwinkligen Dreieck. Im Zentrum steht die Erkenntnis, dass Seitenverhältnisse bei gleichen Winkeln unabhängig von der Größe des Dreiecks konstant bleiben. Diese zentrale mathematische Einsicht wird mithilfe von GeoGebra anschaulich visualisiert, um ein nachhaltiges, konzeptuelles Verständnis aufzubauen. Die Visualisierung in GeoGebra ermöglicht es den Schülerinnen und Schülern, mathematische Zusammenhänge selbst zu entdecken und aktiv zu überprüfen. Durch gezielte Übungen lernen sie, mit den definierten Winkelfunktionen Längen und Winkel rechnerisch zu bestimmen. Darauf aufbauend werden die gelernten Inhalte in vielfältigen Anwendungsszenarien im Zwei- und Dreidimensionalen vertieft. Die Raumvorstellung spielt dabei eine zentrale Rolle: Die Schülerinnen und Schüler lernen Winkel im Raum zu lokalisieren, zu beschreiben und zu begrenzen. Die parallele Nutzung der Grafik- und 3D-Ansicht in GeoGebra unterstützt diesen Prozess wirkungsvoll und trägt zur Förderung einer ganzheitlichen, anschaulich-analytischen Kompetenzentwicklung bei. Die Einheit ist so konzipiert, dass sie differenziertes Lernen erlaubt, sowohl durch unterschiedliche Anforderungsniveaus in den Aufgaben als auch durch den Wechsel zwischen visuellen, rechnerischen und begrifflichen Zugängen. Dadurch werden sowohl leistungsschwächere als auch leistungsstärkere Schülerinnen und Schüler gezielt gefördert. Fachbezogene Kompetenzen Die Schülerinnen und Schüler kennen die Definitionen von Sinus, Cosinus und Tangens im rechtwinkligen Dreieck. berechnen fehlende Seitenlängen und Winkel im rechtwinkligen Dreieck. wenden das Wissen auf Objekte in der Fläche und im Raum an. Medienkompetenz Die Schülerinnen und Schüler setzen mobile Endgeräte im Unterricht ein. nutzen eine Geometriesoftware in 2D und 3D. Sozialkompetenz Die Schülerinnen und Schüler steigern Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Antwortmöglichkeiten). arbeiten in Paar- und Gruppenarbeit und unterstützen sich gegenseitig.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Flächen und Umfänge von geometrischen Formen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zu Geometrie betrachten die Lernenden Größen wie den Flächeninhalt und den Umfang der geometrischen Figuren Rechteck, Parallelogramm, Dreieck, Trapez und Kreissektor. Mithilfe von GeoGebra lassen sich die Berechnungsideen sehr anschaulich darstellen. In der Geometrie werden zur Beschreibung von Flächen Größen wie der Flächeninhalt und der Umfang betrachtet. In dieser Unterrichtseinheit erstellen die Schülerinnen und Schüler mithilfe von GeoGebra dynamisches Material zu Rechtecken, Parallelogrammen, Dreiecken, Trapezen und Kreissektoren sowie dessen geometrische Zusammenhänge für Flächeninhalte und Umfänge. Zuvor haben sie stets die Möglichkeit an sehr anschaulichen vorbereiteten GeoGebra-Dateien zu experimentieren, um Erfahrungen zu sammeln und Gesetzmäßigkeiten zu erkennen. Durch die Möglichkeit, schnell Änderungen vornehmen zu können, werden die Lernenden angeregt, selbst Fragestellungen zu ermitteln. Die Schülerinnen und Schüler entdecken außerdem Möglichkeiten, mithilfe von GeoGebra die Anschaulichkeit zu erhöhen. Lehrpläne sehen es vor, dass Schülerinnen und Schüler Flächeninhalte unterschiedlicher geometrischer Figuren ihrer Lebenswelt vergleichen, messen und schätzen. Mit GeoGebra lassen sich derartige Figuren einfach erstellen. Die Schülerinnen und Schüler können sich die Zusammenhänge für Fläche und Umfang für die grundlegenden Formen selbst erarbeiten und visualisieren, so dass ein besseres Verständnis für verschiedene Problemlösestrategien (beispielsweise Zerlegen, Auslegen von fremden Formen mit bekannten Flächentypen) entsteht, diese verwendet und eingeübt werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler produzieren und präsentieren. analysieren und reflektieren ihre erstellten GeoGebra Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). arbeiten im Team und geben Hilfestellungen. stoßen durch offene Fragestellungen auf neue Ideen und zeigen Engagement und Motivation.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Mit Geogebra arbeiten – Grundlagen Teil 3

Unterrichtseinheit
14,99 €

Für den Mathematikunterricht eignet sich bei vielen Themen der Einsatz vom Computer – beispielsweise um Probleme unter einem anderen Blickwinkel zu betrachten und vielseitiger zu erforschen. In der Geometrie bewährt sich dazu die dynamische Geometriesoftware GeoGebra. Die Schülerinnen und Schüler üben in dieser Unterrichtseinheit das computergestützte Konstruieren, Verstehen und Reflektieren geometrische Zusammenhänge und Erlernen gleichzeitig wertvolle Grundlagen im Umgang mit der Software. Diese Unterrichtseinheit baut auf der Einheit "Mit GeoGebra arbeiten – Grundlagen Teil 2" auf und handelt vom Konstruieren und Messen im zweidimensionalen Raum mit Hilfe der dynamischen Geometriesoftware GeoGebra. Auf dem ersten Arbeitsblatt dreht sich dabei alles um die Konstruktion von Dreiecken. So werden beispielsweise gleichschenklige und gleichseitige Dreiecke mithilfe von Schiebereglern konstruiert. Auch die Konstruktionsbeschreibung mithilfe des Textwerkzeuges und die Möglichkeit der Integration von gemessenen Werten (Variablen) in Texte wird thematisiert. Auf dem zweiten Arbeitsblatt werden neben der Konstruktion von rechtwinkligen Dreiecken und Ellipsen das Anzeigen von Spuren erkundet, indem Spuren von Punkten und Flächen entdeckt werden. Abschließend werden an zwei Experimentierdateien "Thaleskreis_und_mehr" sowie "Winkelbetrachtungen" besondere geometrische Eigenschaften dynamisch wiederholt. Da die Schülerinnen und Schüler unterschiedliche Voraussetzungen im Umgang mit dem Computer haben, ermöglichen die kleinschrittig konzipierten Aufgaben den Lernenden selbstständig oder in Paar-Arbeit die Arbeitsblätter zu bearbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten bestehen, so können die Musterlösungen alternativ als Begleittexte verwendet werden. Diese enthalten detaillierte Hinweise mit Visualisierungen. Des Weiteren gibt es zu jeder Aufgabe eine fertig konstruierte GeoGebra-Datei als Download. Um mit GeoGebra arbeiten zu können, müssen die Grundelemente erlernt und eingeübt werden. Mithilfe der beiden Arbeitsblätter entdecken die Schülerinnen und Schüler in Einzel- oder Paar-Arbeit weitere Grundlagen der dynamischen Geometriesoftware, indem sie einfache geometrische Figuren konstruieren, Abmessungen an ihnen vornehmen und Lagen erforschen. Zusätzlich können die Musterlösungen den Lernenden als Hilfestellung angeboten werden. Durch die freie Erarbeitungsphase hat die Lehrkraft die Möglichkeit leistungsschwächere Schülerinnen und Schüler individuell zu unterstützen. So wird gewährleistet, dass den Lernenden der Einstieg individuell im Umgang mit GeoGebra ermöglicht wird. Durch die entstehenden Konstruktionen werden die Lernenden außerdem dazu angeregt selbst Fragestellungen zu Lageverschiebungen und neuen Konstruktionsproblemen zu entwickeln. Der Umgang mit Computern und Software ist den Schülerinnen und Schülern bekannt, so dass sie mit der Oberfläche von GeoGebra schnell vertraut werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler verwenden computergestützte Software zum Konstruieren und Messen. erforschen geometrische Beziehungen in interaktiven Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Vektorrechnung – Anwendung

Interaktives

Dieses Arbeitsmaterial zur Vektorrechnung thematisiert die Anwendungen in der räumlichen Geometrie.Das Arbeitsmaterial "Anwendung" beinhaltet die interaktive Lösung eines Problems, das in der Praxis häufig vorkommt: die Berechnung des Flächeninhalts eine Dreiecks im Raum. Die Schülerinnen und Schüler werden schrittweise zur Lösung der Aufgabe geführt: Von der Erstellung der Ortsvektoren sowie der Richtungsvektoren des Dreieckes über die Berechnung des Kreuzproduktes bis hin zur Berechnung des Flächeninhaltes sind die Lernenden angehalten, die Aufgabe in kleineren Teilschritten selbstständig zu lösen. Die GeoGebra 3D-Animation zeigt auch hier wieder deutlich den Zusammenhang zwischen den Punktkoordinaten und dem Flächeninhalt des aufgespannten Dreiecks. Durch die Veränderung der Lage der Punkte wird simultan der entsprechende Flächeninhalt berechnet und angezeigt. Durch die freie Wahl der Lage der Dreiecksebene wird klar, dass diese Zusammenhänge wirklich für jedes räumliche Dreieck gelten müssen. Die Lernenden können die Arbeitsblätter in Einzel- oder Partnerarbeit nutzen. Die im Material integrierten GeoGebra-Dateien stehen für Sie als Lehrkraft zusätzlich als Download zur Verfügung. So können die Dateien auch über die interaktiven Arbeitsblätter hinaus verwendet werden. Weitere Materialien des Autors zum Themenbereich Vektorrechnung finden Sie hier: Einführung des Vektorbegriffs Addition und Subtraktion von Vektoren Multiplikation von Vektoren und das Skalarprodukt Kreuzprodukt von Vektoren Spatprodukt von Vektoren Vorwissen und technische Voraussetzungen Bei der Einführung des interaktiven Arbeitsblattes sollte der Umgang mit GeoGebra erläutert werden, falls die Software den Lernenden nicht bekannt ist. Diese kann zum Beispiel mithilfe eines Beamers durchgeführt werden. Für die Nutzung der Übungen zur Einführung der Vektorrechung bedarf es Tablets oder Computer mit einer Internetverbindung, da die Informationstexte, Grafiken, Videos, Applets und 3D-Animationen in einer HTML-Seite eingebunden sind. Alle 3D-Konstruktionen (die mit dem 3D Rechner von GeoGebra erstellt worden sind) können mit der GeoGebra-App auch in Augmented Reality betrachtet werden. So kann man diese Konstruktionen direkt in den Klassenraum holen. Fachkompetenz Die Schülerinnen und Schüler beherrschen die Addition von Vektoren. beherrschen die Subtraktion von Vektoren. Medienkompetenz Die Schülerinnen und Schüler interpretieren mithilfe des Computers räumliche Darstellungen mittels Vektorrechnung. führen mithilfe des Computers Körperberechnungen mittels Vektorrechnung durch. Sozialkompetenz Die Schülerinnen und Schüler üben Teamfähigkeit und unterstützen sich gegenseitig. erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Trigonometrie mit GeoGebra – ein variables Übungskonzept

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit zum Thema Trigonometrie bietet durch dynamische Arbeitsblätter ein differenziertes Übungsumfeld zu Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dadurch werden die aktuellen Kenntnisse und Fertigkeiten aller Schülerinnen und Schüler berücksichtigt. Die Besonderheit der Lernumgebung zur Trigonometrie "Sinus, Kosinus und Tangens im rechtwinkligen Dreieck" besteht darin, dass sie in jeder Phase des Unterrichts flexibel eingesetzt werden kann. Die dynamischen Arbeitsblätter eignen sich sowohl für die Erarbeitung der trigonometrischen Zusammenhänge im rechtwinkligen Dreieck, als auch für eine differenzierte Übungs- und Anwendungsphase. Die Lernumgebung bietet dynamische Veranschaulichungen sowie einfachere und komplexere Übungen und ermöglicht so den Lernenden eine eigenständige und selbstverantwortliche Wissenserweiterung. Die zu bearbeitenden Aufgaben werden per Computer analysiert und bewertet. Deshalb kann sich die Lehrkraft in der Übungsphase individuell leistungsschwächeren Lernenden zuwenden und gemeinsam mit ihnen Probleme analysieren. So wird eine gezielte Förderung möglich. Das Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck (grüner Kasten auf der rechten Seite). Dazu kommen sechs Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen (blauer Kasten auf der rechten Seite) sowie drei variable Übungen zur Unterrichtsdifferenzierung (gelber Kasten auf der rechten Seite). Die Navigation der Lernumgebung befindet sich rechts neben der dynamischen Darstellung. Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Die Schülerinnen und Schüler lernen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen. beheben erkannte Defizite im Bereich dieser Zusammenhänge selbstständig. können die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden. Das hier vorgestellt Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Da die Lernumgebung aber flexibel einsetzbar ist, können diese auch innerhalb der Lernumgebung selbstständig erarbeitet werden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dazu kommen drei Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen sowie zwei variable Übungen zur Unterrichtsdifferenzierung. Die Navigation der Lernumgebung (Einführung und Erläuterung sowie Übungen) befindet sich rechts neben der dynamischen Darstellung. Übungen zur Selbstkontrolle und Leistungsbestimmung In dieser Unterrichtsphase haben die Schülerinnen und Schüler Zeit, sich mit den ersten drei Übungen zu beschäftigen und so ihre bisherigen Kenntnisse zu überprüfen. Bei allen Übungen erzeugt der Computer per Zufallsgenerator unterschiedliche rechtwinklige Dreiecke und gibt Winkelfunktion und Winkelmaß vor. Die Lernenden sollen den richtigen Quotienten ergänzen. Computer gibt Lösungshinweise Mit dem Button "prüfen" können die Schülerinnen und Schüler ihre Eingabe prüfen und sich mit "Neue Aufgabe" eine weitere Aufgabe stellen lassen. Sie erhalten auf fehlerhafte Eingaben neben der Meldung, dass ihre Eingabe falsch war, einen Lösungshinweis: "Leider falsch! Für Tangens brauchst du doch die Gegenkathete und die Ankathete im Dreieck. Also versuch's noch mal". Die Mindestbearbeitungsdauer der drei Übungen ergibt sich aus der Vorgabe "Schaffst du mehr als 199 Punkte?". Die Lehrkraft kann auch eine bestimmte Zeit für jede Übung vorgeben. Sollten die Schülerinnen und Schüler mit der Bearbeitung der ersten drei Online-Arbeitsblätter nicht zurechtkommen, können sie stets die jeweilige Erläuterungsseite verwenden und sich den einen oder anderen Zusammenhang noch einmal veranschaulichen lassen. Die Lernenden können so die noch bestehenden Defizite aufarbeiten. Die Lehrkraft wird nur dann aktiv ins Unterrichtsgeschehen eingreifen, wenn sich die Schülerinnen und Schüler auch anhand der Erläuterungsseite nicht zurechtfinden. Variation der Aufgaben Bei der ersten variablen Übung werden abwechselnd eine der drei Winkelfunktionen sin, cos, tan und ein bestimmtes Winkelmaß vorgegeben. Die Aufgabe der Schülerinnen und Schüler besteht darin, den richtigen Quotienten anzugeben. Die Funktionsweise des interaktiven Arbeitsblatts unterscheidet sich nicht von der der ersten Übungen. Mit dem Button "prüfen" wird die Eingabe kontrolliert und mit "Neue Aufgabe" werden weitere Aufgaben erzeugt. Die Variation der Aufgabenstellung führt zur Festigung des bisher Gelernten. Dabei besteht auch weiterhin die Möglichkeit, innerhalb der Lernumgebung zu den vorausgegangenen Übungen oder den Erläuterungsseiten zurückzukehren, um Defizite aufzuarbeiten. Differenzierung des Unterrichts Die zweite variable Übung eignet sich zur inneren Differenzierung des Unterrichts. Zu einem zufällig erzeugten Dreieck werden nun der Quotient und das Winkelmaß vorgegeben. Die Schülerinnen und Schüler sollen die zugehörige Winkelfunktion sin, cos oder tan angeben. Dazu müssen sie zuerst die jeweiligen Seitenlängen als Katheten oder Hypotenuse identifizieren und anschließend über das gegebene Winkelmaß die Katheten als An- oder Gegenkathete bestimmen. Anschließend benötigen sie die Definition des Sinus, Kosinus oder Tangens, um die Aufgabe zu lösen. Die Fülle der notwendigen Überlegungen und deren Einbindung in eine Lösungsstrategie ermöglicht ihnen eine weitere Vertiefung ihrer Kenntnisse. Abschließend bietet sich eine herkömmliche Lernzielkontrolle mit Papier und Bleistift an. Sie kann als Leistungserhebung durchgeführt werden, bei der die Inhalte der vorangegangenen Übungen abgefragt und die Leistungen der Schülerinnen und Schüler überprüft werden. Dieser Test kann aber auch als Hausaufgabe gestellt oder in Form einer Partnerarbeit im Anschluss an die Online-Arbeitsblätter bearbeitet werden. So mündet die Arbeit am Computer wieder in die "normale" Unterrichtsarbeit im Klassenzimmer. Ein wichtiger Aspekt beim Lernen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass eine Interaktion zwischen dem Lernenden und dem Computer möglich wird. Diese Interaktion führt zu einem ständigen Wechsel von spannenden und entspannenden Zuständen. Nach jeder Eingabe wartet die Schülerin oder der Schüler auf die Bewertung, um sich danach sofort eine neue Aufgabe stellen zu lassen. Auf diese Weise kann die Konzentration der Lernenden über einen längeren Zeitraum aufrechterhalten werden. Die Rückmeldungen des Computers auf falsche Eingaben führen in der Lerngruppe oft zu einer regen Diskussion über die gemachten Fehler. Wo die kritische Nachfrage der Lehrkraft oft als lästig empfunden und daher möglichst ignoriert wird, akzeptieren die Schülerinnen und Schüler die Rückmeldung des Computers bereitwillig und korrigieren ihre Fehler. Im Unterricht lässt sich immer wieder beobachten, dass selbstständiges Arbeiten Begabungsunterschiede sehr deutlich hervortreten lässt. So sind oft einige Klassenmitglieder mit der Bearbeitung einer Aufgabe bereits fertig, während andere damit noch gar nicht begonnen haben. Um diesem Phänomen zu begegnen, ist ein differenziertes Angebot von Übungen erforderlich, das die Unterschiede im Arbeitstempo und in der Auffassung berücksichtigt. Im regulären Unterricht mit gewöhnlichem Material ist dies nur schwer zu realisieren. Durch die Verwendung der hier vorgestellten interaktiven dynamischen Übungsumgebung wird ein differenziertes und selbsttätiges Lernen möglich. Zudem stehen alle Übungen den Schülerinnen und Schülern - sofern sie über einen Internetzugang verfügen - auch zu Hause zur Verfügung. So können Interessierte das Angebot unbegrenzt nutzen, was die Eigenverantwortlichkeit in hohem Maße fördern kann. Ein wichtiges Element in einer Übungsphase ist die Motivation, mit der die Lerngruppe Aufgaben bearbeitet. Übungen, die die Schülerinnen und Schüler widerwillig ausführen, verfehlen ihr Ziel und sind eigentlich verlorene Zeit. Eine Intensivierung der Übungsarbeit kann durch gelegentliche Wettbewerbe und spielerische Elemente erreicht werden. Wettbewerbe bringen Abwechslung in eine Übungsphase und mobilisieren zusätzlich Motivationskräfte. Die Klasse setzt sich bei Wettbewerben im Allgemeinen in einer Weise ein, wie dies sonst kaum der Fall ist. Wer Lernen und Spielen in einem Zusammenhang nennt und dies noch mit Mathematik in Verbindung bringt, stößt bei Mathematiklehrkräften oft auf große Skepsis. Setzt man aber die bestimmenden Elemente des Spiels mit Aufgabenfunktionen sowie mit den meist vernachlässigten emotionalen Aspekten des Lernens zueinander in Beziehung, wird deutlich, dass das Spiel durchaus ein interessantes didaktisches Rahmenkonzept darstellen kann, das neue unterrichtliche Gestaltungsmöglichkeiten bietet. Für die hier vorgestellten interaktiven Übungen gilt, was für alle Arbeitsmaterialien gelten sollte, nämlich, dass sie zur Unterrichtssituation passen sowie selbsterklärend und motivierend in Form und Inhalt sind. Sie lassen sich nahtlos in einen bestehenden Mathematikunterricht einbinden. Somit wird das Lernen am Computer nicht zu einer Sonderveranstaltung, sondern zu einem weiteren Element eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Zusätzlich können die Schülerinnen und Schüler bei der Bearbeitung der interaktiven Aufgabenblätter immer erkennen, ob sie die Aufgabe korrekt gelöst haben, was in dieser Form bei herkömmlichen Unterrichtsmaterialien nicht leicht zu realisieren ist.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Mit GeoGebra arbeiten – Grundlagen 2

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zum Thema "Mit GeoGebra arbeiten" üben die Schülerinnen und Schüler das computergestützte Konstruieren, verstehen und reflektieren geometrische Zusammenhänge und erlernen gleichzeitig wertvolle Grundlagen im Umgang mit der Software. Für den Mathematikunterricht eignet sich bei vielen Themen der Einsatz vom Computer – beispielsweise um Probleme unter einem anderen Blickwinkel zu betrachten und vielseitiger zu erforschen. In der Geometrie bewährt sich dazu die dynamische Geometriesoftware GeoGebra. Diese Unterrichtseinheit baut auf der Einheit "Mit GeoGebra arbeiten – Grundlagen" auf und handelt vom Konstruieren und Messen im zweidimensionalen Raum mit Hilfe der dynamischen Geometriesoftware GeoGebra. Auf dem ersten Arbeitsblatt dreht sich dabei alles um das Entdecken der verschiedenen Symbole und Auswahlmöglichkeiten von GeoGebra. So werden beispielsweise Mittelsenkrechten, Winkelhalbierende, Lote und Schnittpunkte konstruiert, um In- und Umkreise von Dreiecken zu erarbeiten. Auf dem zweiten Arbeitsblatt werden weitere Möglichkeiten beim Konstruieren erkundet, indem mit Tangenten an Kreisen gearbeitet wird. Diese werden verwendet, um ein Tangentenviereck zu konstruieren. Abschließend werden an einem Viereck besondere Eigenschaften von Vierecken dynamisch wiederholt. Da die Schülerinnen und Schüler unterschiedliche Voraussetzungen im Umgang mit dem Computer haben, ermöglichen die kleinschrittig konzipierten Aufgaben den Lernenden selbstständig oder in Paararbeit die Arbeitsblätter zu bearbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten bestehen, so können die Musterlösungen alternativ als Begleittexte verwendet werden. Diese enthalten detaillierte Hinweise mit Visualisierungen. Des Weiteren gibt es zu jeder Aufgabe eine fertig konstruierte GeoGebra-Datei als Download. Um mit GeoGebra arbeiten zu können, müssen die Grundelemente erlernt und eingeübt werden. Mithilfe der beiden Arbeitsblätter entdecken die Schülerinnen und Schüler in Einzel- oder Paararbeit weitere Grundlagen der dynamischen Geometriesoftware, indem sie einfache geometrische Figuren konstruieren, Abmessungen an ihnen vornehmen und Lagen erforschen. Zusätzlich können die Musterlösungen den Lernenden als Hilfestellung angeboten werden. Durch die freie Erarbeitungsphase hat die Lehrkraft die Möglichkeit leistungsschwächere Schülerinnen und Schüler individuell zu unterstützen. So wird gewährleistet, dass den Lernenden der Einstieg individuell im Umgang mit GeoGebra ermöglicht wird. Durch die entstehenden Konstruktionen werden die Lernenden außerdem dazu angeregt, selbst Fragestellungen zu Lageverschiebungen und neuen Konstruktionsproblemen zu entwickeln. Der Umgang mit Computern und Software ist den Schülerinnen und Schülern bekannt, sodass sie mit der Oberfläche von GeoGebra schnell vertraut werden. Fachkompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner / auf dem Tablet dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler verwenden eine computergestützte Software zum Konstruieren und Messen. erforschen geometrische Beziehungen in interaktiven Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Mit GeoGebra arbeiten – Grundlagen

Unterrichtseinheit
14,99 €

Für den Mathematik-Unterricht eignet sich bei vielen Themen der Einsatz vom Computer – beispielsweise um Probleme unter einem anderen Blickwinkel zu betrachten und vielseitiger zu erforschen. In der Geometrie bewährt sich dazu die dynamische Geometrie-Software GeoGebra. Die Schülerinnen und Schüler üben in dieser Unterrichtseinheit das computergestützte Konstruieren, Verstehen und Reflektieren geometrischer Zusammenhänge und Erlernen gleichzeitig wertvolle Grundlagen im Umgang mit der Software. Diese Unterrichtseinheit handelt vom Konstruieren und Messen im zweidimensionalen Raum mithilfe der dynamischen Geometriesoftware GeoGebra. Auf dem ersten Arbeitsblatt dreht sich dabei alles um das Entdecken der verschiedenen Symbole und Auswahlmöglichkeiten von GeoGebra. So werden beispielsweise Punkte, Schnittpunkte, Strecken, Halbgeraden, Geraden, Dreiecke, Kreise und so weiter konstruiert. Auf dem zweiten Arbeitsblatt werden die verschiedenen Möglichkeiten des Messens erkundet, indem beispielsweise Flächeninhalte, Strecken, Umfänge und Innenwinkel gemessen werden. Auch wird unter Vorgabe definierter Größen konstruiert und das Verhalten bestehender Konstruktionen bei Verschiebungen von Eckpunkten untersucht. Da die Schülerinnen und Schüler unterschiedliche Voraussetzungen im Umgang mit dem Computer haben, ermöglichen die kleinschrittig konzipierten Aufgaben den Lernenden selbstständig oder in Paararbeit die Arbeitsblätter zu bearbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten bestehen, so können die Musterlösungen alternativ als Begleittexte verwendet werden. Diese enthalten detaillierte Hinweise mit Visualisierungen. Des Weiteren gibt es zu jeder Aufgabe eine fertig konstruierte GeoGebra-Datei als Download. Aufbauend auf dieser Einheit finden Sie hier den zweiten Teil "Mit GeoGebra arbeiten – Grundlagen 2" . Um mit GeoGebra arbeiten zu können, müssen die Grundelemente erlernt und eingeübt werden. Mithilfe der beiden Arbeitsblätter entdecken die Schülerinnen und Schüler in Einzel- oder Paararbeit die Grundlagen der dynamischen Geometrie-Software, indem sie einfache geometrische Figuren konstruieren, Abmessungen an ihnen vornehmen und Lagen erforschen. Zusätzlich können die Musterlösungen den Lernenden als Hilfestellung angeboten werden. Durch die freie Erarbeitungsphase hat die Lehrkraft die Möglichkeit, leistungsschwächere Schülerinnen und Schüler individuell zu unterstützen. So wird gewährleistet, dass den Lernenden der Einstieg im Umgang mit GeoGebra individuell ermöglicht wird. Durch die entstehenden Konstruktionen werden die Lernenden außerdem dazu angeregt selbst Fragestellungen zu Lageverschiebungen und neuen Konstruktionsproblemen zu entwickeln. Der Umgang mit Computern und Software ist den Schülerinnen und Schülern bekannt, so dass sie mit der Oberfläche von GeoGebra schnell vertraut werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler verwenden computergestützte Software zum Konstruieren und Messen. erforschen geometrische Beziehungen in interaktiven Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Kongruenzabbildungen 1

Unterrichtseinheit
14,99 €

In der Unterrichtseinheit zum Thema Kongruenzabbildungen erwerben die Lernenden mithilfe anschaulicher Elemente das Verständnis zur Achsenspiegelung, zur Punktspiegelung und zur Verschiebung von Punkten, Strecken und Figuren. Dabei nutzen sie die Software GeoGebra. Im Mathematikunterricht hilft Software dabei, Aufgaben zu lösen, die man auf dem Papier nur schwer lösen kann oder um Lösungswege anschaulicher darzustellen. Lernende können dadurch einen anderen Blickwinkel auf Fragestellungen erhalten. GeoGebra eignet sich hervorragend für den Einsatz in der Geometrie, denn die Software bietet viele Möglichkeiten mit interaktiven Materialien Inhalte zu erarbeiten. Lernende gehen mit unterschiedlichen Voraussetzungen an den Umgang mit einem Rechner. Durch die sehr einfachen GeoGebra-Aufgaben, die hier genutzt werden, werden viele Schülerinnen und Schüler beim Erarbeiten der Lösungen selten Hilfe benötigen – falls doch, steht unter anderem ein Begleittext mit detaillierten Hinweisen zur Verfügung. Durch die entstandenen Dokumente und der Möglichkeit, schnell Änderungen vornehmen zu können, werden die Lernenden angeregt, selbst Fragestellungen zu ermitteln. Während der Zeit, in der viele Lernende selbständig arbeiten, können diese auch bei einfachen Fragestellungen unterstützt werden, sodass jeder und jedemm der Einstieg in den Umgang mit GeoGebra einfach und auf dem eigenen Niveau ermöglicht wird. Das Arbeitsblatt ist in vier Teile unterteilt. Im ersten Teil des Arbeitsblattes wird der Begriff der Kongruenz vorgestellt. Im zweiten Teil wird thematisiert, welche Möglichkeiten es gibt, kongruente Flächen entstehen zu lassen. Im dritten Teil werden dann die Achsenspiegelung, die Punktspiegelung und die Verschiebung mit interaktiven Experimentierdateien entdeckt. Diese unterstützen und veranschaulichen das Verständnis der Schülerinnen und Schüler im Umgang mit Kongruenzabbildungen und motivieren, selbst zu konstruieren. Außerdem wird das Konstruieren mit "Zirkel und Lineal" vorgestellt. Im letzten Abschnitt befinden sich Übungsaufgaben zum Konstruieren mit GeoGebra. Die Lernenden konstruieren dazu in der GeoGebra Software allein mit den Hilfsmitteln Zirkel und Lineal und dann mit allen Möglichkeiten, die die Software zur Verfügung stellt. Ziel des Arbeitsblattes ist es, Kongruenzabbildungen eines Kreises, eines Sterns und eines Dreiecks mithilfe der Achsenspiegelung, der Punktspiegelung und der Verschiebung zu konstruieren. Kleinschrittig konzipierte Aufgaben und Arbeitsblätter ermöglichen es den Lernenden, selbstständig oder in Paararbeit die Inhalte zu erarbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten auftreten, können die Musterlösungen als Begleitung verwendet werden. Zu jeder Aufgabe gibt es fertige Lösungen als Download. Lehrpläne sehen es vor, dass Schülerinnen und Schüler bestimmte Abbildungen als Kongruenzabbildungen identifizieren. Mit GeoGebra lassen sich Kongruenzabbildungen entdecken und Besonderheiten herausarbeiten. In dieser Unterrichtseinheit wird durch entdeckendes Lernen das Thema der Kongruenzabbildungen behandelt. Die Software unterstützt dabei, Hilfeleistungen individuell zu geben. Der Vergleich der Möglichkeiten des Konstruierens "mit Zirkel und Lineal" und "mit den vereinfachten Möglichkeiten von GeoGebra" erweitert zudem den Blickwinkel der Schülerinnen und Schüler über den Einsatz von GeoGebra. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen mathematische Probleme und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler erforschen geometrische Beziehungen in interaktiven Dateien. verwenden computergestützte Software zum Konstruieren und Messen. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Umkreis konstruieren

Video / Kopiervorlage

Mit diesem Arbeitsblatt festigen die Schülerinnen und Schüler ihr Verständnis geometrischer Konstruktionen. Anhand alltagsnaher Kontexte wenden sie die Konstruktion eines Umkreises praktisch an. Die Einführung erfolgt selbstständig nach dem Prinzip "Flip the Classroom" über ein erklärendes YouTube-Video. Dieses Arbeitsmaterial führt die Schülerinnen und Schüler schrittweise in die Konstruktion des Umkreises eines Dreiecks ein. Über einen QR-Code gelangen sie zu einem anschaulichen YouTube-Video, das die Konstruktion sowie die Bedeutung des Umkreismittelpunkts verständlich erklärt. Die Aufgaben verbinden geometrisches Wissen mit praktischen Anwendungen und fördern das eigenständige Entwickeln von Lösungsstrategien. In Aufgabe 1 konstruieren die Lernenden den Umkreis eines Dreiecks, dessen Eckpunkte symbolisch für drei mittelalterliche Siedlungen stehen. Der Mittelpunkt des Umkreises wird dabei als optimaler Standort für einen gemeinsamen Brunnen bestimmt – eine Anwendung, die geometrische Inhalte sinnvoll kontextualisiert. In Aufgabe 2 wird das mathematische Wissen im digitalen Umfeld vertieft: Die Schülerinnen und Schüler nutzen GeoGebra, um den Umkreis eines selbstgewählten Dreiecks zu konstruieren. So werden digitale Kompetenzen gefördert und das Gelernte weiter gefestigt. In Aufgabe 3 überprüfen die Lernenden ihr Verständnis durch eine Reihe von Richtig-/Falsch-Aussagen. Thematisiert werden zentrale Merkmale wie die Lage des Umkreismittelpunkts, die Konstruktionsregeln bei verschiedenen Dreiecksarten sowie die Definition des Radius. Die Aufgabe schult das kritische Hinterfragen mathematischer Aussagen und unterstützt die sichere Anwendung des erworbenen Fachwissens – ideal zur Wiederholung und Festigung. Fachkompetenz Die Schülerinnen und Schüler arbeiten mit symbolischen, formalen und technischen Elementen der Mathematik und wenden diese auf Anwendungsaufgaben an. verwenden mathematische Darstellungen und veranschaulichen Situationen im Koordinatensystem. übertragen geometrische Konzepte auf praxisnahe Problemstellungen. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet eigenständig zur Vorbereitung auf den Unterricht. nutzen GeoGebra zum Visualisieren und Lösen der Aufgaben. Sozialkompetenz Die Schülerinnen und Schüler unterstützen sich gegenseitig beim gemeinsamen Lösen der Aufgaben.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Materialsammlung Geometrie

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Geometrie. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler erarbeiten den Einstieg in die Sinusfunktion weitgehend eigenständig und kooperativ. Dynamische Arbeitsblätter helfen dabei, die jeweilige Problem- oder Aufgabenstellung zu veranschaulichen. Ein virtuelles Experiment zur Pendelbewegung stellt den Anwendungsbezug her. Wenn die Sinusfunktion im Unterricht eingeführt wird, geschieht dies meist durch Angabe des Funktionsterms, Erstellen einer Wertetabelle und die anschließende Zeichnung des Funktionsgraphen. Demgegenüber ist der Zugang durch dynamische Arbeitsblätter intuitiver und experimenteller. Die Schülerinnen und Schüler sollen die Darstellung von Sinus, Cosinus und Tangens am Einheitskreis wiederholen. die Darstellung des Bogenmaßes am Einheitskreis wiederholen. eine Einführung und Definition der Sinusfunktion erarbeiten. die Bedeutung der Sinusfunktion für die Beschreibung von Schwingungsvorgängen erkennen. eigenständig und kooperativ mathematische Zusammenhänge erarbeiten und dokumentieren. Thema Einführung der Sinusfunktion Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 9 bis 10 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die Schülerinnen und Schüler sollen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen erkennen. besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion benennen. Thema Einführung der Sinus-, Kosinus- und Tangensfunktion Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Klasse 9 und 10 Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, idealerweise Beamer Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Mehrwert des Applets und Unterrichtsverlauf Warum Sie auf das Applet nicht verzichten sollten und wie Sie es im Zusammenhang mit einem Arbeitsblatt einsetzen können. Die Schülerinnen und Schüler sollen die Definition des Sinus, Cosinus und Tangens eines Winkels als Seitenverhältnis in einem rechtwinkligen Dreieck kennen und anwenden. die x- und y-Koordinate eines Punktes P auf dem Einheitskreis bestimmen können. begründen können, warum beim rechtwinkligen Dreieck im Einheitskreis die Katheten als Sinus (alpha) und Cosinus (alpha) bezeichnet werden. für die Winkel 0° < alpha < 90° die entsprechenden Seitenverhältnisse berechnen. besondere Seitenverhältnisse (alpha = 0°, alpha = 90°, ... ) und die Periodizität der Funktionsgrafen angeben können. Thema Vom Dreieck zur Funktion - Einführung der trigonometrischen Funktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 9, zur Wiederholung auch Klasse 10 Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Rechner in ausreichender Zahl für die Partnerarbeit; die Nutzung der dynamischen GeoGebra-Arbeitsblätter erfordert Java (Version 1.4 oder höher, kostenfrei) Die Schülerinnen und Schüler mussten für den Einsatz der dynamischen Arbeitsblätter nicht extra im Umgang mit dem Programm GeoGebra geschult werden. Lehrerinnen und Lehrern, die sich noch nicht mit GeoGebra auskennen, sei jedoch empfohlen, sich mit den Arbeitsblätter vor deren Einsatz im Unterricht gründlich vertraut zu machen, da die Schülerinnen und Schüler doch immer mehr entdecken, als man erwartet und dann entsprechende Fragen stellen. Durch den Einsatz der GeoGebra-Arbeitsblätter konnte dynamisch erklärt und veranschaulicht werden, wie die Funktionen entstehen und welche Eigenschaften sie besitzen. Über die Verwendung in Klasse 9 hinaus lassen sich die Materialien in Klasse 10 zur Wiederholung einsetzen, wenn die Eigenschaften der trigonometrischen Funktionen noch einmal aufgegriffen werden. Unterrichtsverlauf Hinweise zum Einsatz der Arbeitsblätter Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Er hat die dynamischen Arbeitsblätter zu dieser Unterrichtseinheit entwickelt. Die Schülerinnen und Schüler sollen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen lernen. erkannte Defizite im Bereich dieser Zusammenhänge selbstständig beheben. die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden können. Thema Trigonometrie mit GeoGebra - ein variables Übungskonzept Autor Andreas Meier Fach Mathematik Zielgruppe 9. und 10. Klasse Zeitraum 2-3 Stunden, je nach Unterrichtsintention Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Personen, Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript Unterrichtsplanung Verlaufsplan: Trigonometrie mit Geogebra Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch das Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich dieses Programm sehr gut für die Erstellung interaktiver dynamischer Lernumgebungen. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Voraussetzungen, Einführung und Nutzung der Arbeitsblätter Auf die Warm-up-Phase mit Übungen zur Selbstkontrolle und Leistungsbestimmung erfolgt das eigenverantwortliche Aufarbeiten von Defiziten und die Festigung des Gelernten. Besonderheiten interaktiver Lernumgebungen Allgemeine Informationen zu den Vorteilen der Nutzung interaktiver Übungsumgebungen und ihrer Rolle als Elemente eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Die Schülerinnen und Schüler sollen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden verstehen. über das physikalische Phänomen Schwebung ein Additionstheorem erhören. Thema Die Sinusfunktion zur Beschreibung von Schwingungen und Schwebungen Autor Stefan Burzin Fächer Mathematik, Physik (fächerübergreifend) Zielgruppe Klasse 10 Zeitraum 8 Stunden (je nach Vertiefung) Technische Voraussetzungen CAS (zum Beispiel Derive oder Maple), Funktionenplotter oder geeignete Java-Applets (für die Applets benötigen Sie einen Browser mit Java-Unterstützung, Java Runtime Environment ); idealerweise Beamer Planung Sinusfunktion - Schwingungen und Schwebungen Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Arbeitsmaterialien Experimente und alle Arbeitsblätter zu den Themen Sonnenaufgangszeiten, Frequenzen, Schwebungen und Sinusfunktionen im Überblick Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler sollen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern festigen. mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt beeinflussen. die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik erkennen. durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen lernen. die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke" kennen. den Aufbau eines Tons durch Überlagerung seiner Partialtöne kennen. das Phänomen der Schwebung kennen lernen. mit dem Prinzip der Fourier-Analyse vertraut sein und Anwendungsgebiete kennen. Thema Schwingungen in Mathematik, Musik und Physik Autorin Judith Preiner Fächer Mathematik, fächerübergreifend auch Musik, Physik Zielgruppe Gymnasium, Klasse 10; als experimentelle Idee zu den Trigonometrischen Funktionen auch Jahrgangsstufe 11 Zeitraum 6 bis 8 Unterrichtsstunden für die Bearbeitung der Unterrichtsmaterialien; bei fächerübergreifendem Unterricht erweiterbar Technische Voraussetzungen Computer in ausreichender Anzahl mit Soundkarte und Software zum Abspielen von MP3-Dateien, Lautsprecher und Kopfhörer (für Einzel- oder Partnerarbeit), ein Computer mit Beamer (für Lehrerpräsentationen) Software Internet-Browser, Java (Version 1.4.2 oder höher) zur Bearbeitung der Applets Planung Verlaufsplan Schwingungen Sie können alle Arbeitsmaterialien (sieben dynamische Arbeitsblätter) und die umfangreiche Lehrerinformation ("Lexikon" zu den Fachbegriffen, Lösungen der Arbeitsaufträge und Unterrichtsanregungen) von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Das Kreuzprodukt verstehen

Kopiervorlage

In diesem Arbeitsblatt lernen die Schülerinnen und Schüler selbstständig, wie sie das Kreuzprodukt von Vektoren berechnen und anwenden können. Mithilfe von Anwendungsaufgaben und GeoGebra überprüfen sie ihre Lösungen und vertiefen das Verständnis für die Berechnung von Flächeninhalten in der Vektorrechnung. Die Schülerinnen und Schüler lernen in dem YouTube-Video "Kreuzprodukt" , wie man das Kreuzprodukt berechnet. In der ersten Aufgabe des Arbeitsblattes berechnen die Schülerinnen und Schüler das Kreuzprodukt zweier Vektoren, um den Flächeninhalt eines Dreiecks zu bestimmen. Sie verwenden dazu GeoGebra zur Überprüfung ihrer Berechnungen. In der zweiten Aufgabe wenden die Schülerinnen und Schüler das Kreuzprodukt in einer Anwendung zur Simulation einer Ballmaschine an. Die Flugrichtung eines Balls wird durch das Kreuzprodukt zweier Vektoren bestimmt, wobei die Lernenden die fehlenden Komponenten eines Vektors berechnen. Das Arbeitsblatt "Kreuzprodukt" vermittelt den Schülerinnen und Schülern das Rechnen mit dem Kreuzprodukt sowie die Anwendung zur Berechnung von Flächeninhalten. Durch den Einsatz von GeoGebra wird die Visualisierung der Aufgaben gefördert. Fachkompetenz Die Schülerinnen und Schüler arbeiten mit symbolischen, formalen und technischen Elementen der Mathematik und wenden diese auf Anwendungsaufgaben an. führen Berechnungen mit Vektoren durch, insbesondere das Kreuzprodukt. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet eigenständig zur Vorbereitung auf den Unterricht. nutzen GeoGebra zur Überprüfung mathematischer Zusammenhänge. Sozialkompetenz Die Schülerinnen und Schüler unterstützen sich gegenseitig beim gemeinsamen Lösen der Aufgaben.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Vom Lotto zum Pascalschen Dreieck

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Binomialkoeffizient führen die Schülerinnen und Schüler im Kontext des Lottospielens eine etwas andere Art der Kurvendiskussion durch, die eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik herstellt.Ausgangspunkt der Unterrichtseinheit ist die Frage, ob man einen eventuellen Jackpot-Gewinn bei der ("6 aus 49"-)Lotterie bei steigender Teilnehmerzahl umso wahrscheinlicher mit anderen Gewinnerinnen und Gewinnern teilen muss. Die mathematische Modellierung der Aufgabenstellung führt zu einem Funktionsterm, dessen Diskussion zu einem tieferen Verständnis von Exponentialfunktion und Binomialkoeffizient führt.Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler innerhalb eines Mathematik-Pluskurses der Oberstufe oder im Rahmen eines W-Seminars (Wissenschaftspropädeutischen Seminars) geeignet, die bereit sind, sich intensiver mit einem Thema zu befassen. Dabei werden das Urnenmodell beziehungsweise die hypergeometrische Verteilung und die Binomialverteilung als bekannt vorausgesetzt. Unterrichtsverlauf und Materialien Im ersten Teil sollen die Schülerinnen und Schüler eine zunächst intuitiv beantwortete Frage mathematisch begründen. Variation und Verallgemeinerung Der zweite Teil verallgemeinert die Fragestellung des ersten Teils und führt zu tiefer liegenden mathematischen Sachverhalten. Fachkompetenz Die Schülerinnen und Schüler können die Fragestellung mathematisch mithilfe der hypergeometrischen Verteilung und der Binomialverteilung modellieren. können die Regel von l'Hospital kennen lernen und zur Grenzwertberechnung anwenden. können einen Graphen zeichnen und interpretieren. können Aussagen über vorteilhaftes Verhalten beim Lottospielen machen. erkennen den Binomialkoeffizienten "k aus n" als Polynom k-ten Grades in n. lernen das "Pascalsche Dreieck" kennen und verstehen es. lernen eine rekursive Funktionsschreibweise kennen. können mithilfe der Gaußschen Summenformel die Äquivalenz der rekursiven Definition und der Polynomschreibweise einer Funktion zeigen. lernen "Dreieckszahlen" kennen. verstehen, dass eine Exponentialfunktion schneller wächst als jedes Polynom. Sozialkompetenz Die Schülerinnen und Schüler arbeiten weitgehend eigenverantwortlich und kooperativ. Basieux, P. Die Welt als Roulette - Denken in Erwartungen, Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, 1995 Barth, F. et. al. Stochastik, Oldenbourg Schulbuchverlag, München, 7. verb. Auflage, 2001 Krengel, U. Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg, Braunschweig, 3. erw. Auflage, 1991 Schätz, U. und Einsentraut, F. (Hrsg.) delta 11 - Mathematik für Gymnasien, C.C. Buchner Bamberg u. Duden Paetec Schulbuchverlag Berlin, 2009 Voraussetzungen und Einstieg Die Aufgabenstellung gliedert sich in zwei Teile, deren erster ("Konkrete Beantwortung der Fragestellung") die Schülerinnen und Schüler vom Lehrplan der 12. Jahrgangsstufe am Gymnasium abholt. Zum Einstieg und zur Motivation der Fragestellung können eventuell geeignete Zeitungsartikel genutzt werden (siehe Zusatzmaterialien, die einen Bezug zur Realität herstellen. Die schrittweise Modellierung des Problems in den Teilaufgaben 1.1 bis 1.6 gelingt unter der Voraussetzung, dass das "Ziehen mit Zurücklegen" und das "Ziehen ohne Zurücklegen", also die hypergeometrische und die Binomial-Verteilung, bereits bekannt sind. Variation und Verallgemeinerung Durch die Einführung der Regel von l'Hospital erschließt sich das mathematische Modell den bekannten Mechanismen einer Kurvendiskussion. Außerdem ermöglicht die "ungewohnte" Betrachtung des Binomialkoeffizienten als einer Funktion in n das Anknüpfen an vertraute Sachverhalte. Zu den Themen "Rekursion", "Pascalsches Dreieck" und "Dreieckszahlen" in den Teilaufgaben 2.6 bis 2.9 sollen die Schülerinnen und Schüler selbstständig im Internet oder in entsprechender Literatur nach Hintergründen und Bedeutung recherchieren. Zur Förderung des Verständnisses und zum Abschluss des Modellierungsprozesses wird zu den Ergebnissen der Teilaufgaben generell eine Interpretation beziehungsweise eine Versprachlichung eingefordert. Die Lernenden werden mit folgender Fragestellung konfrontiert: "Ist es wahrscheinlicher, dass es bei der ("6 aus 49"-) Lotterie mehr Jackpot-Gewinnerinnen und -gewinner gibt, wenn es mehr Teilnehmende gibt?" Diese Fragestellung soll diskutiert und zunächst intuitiv beantwortet werden. In der Regel wird sich schnell ein Konsens einstellen: Ja. Doch wie genau bleibt noch offen und zu untersuchen. Nach der Ermittlung der Trefferwahrscheinlichkeit für "r Richtige plus Zusatzzahl" sowie der Wahrscheinlichkeit dafür, dass k von insgesamt n Lotterie-Teilnehmerinnen und-teilnehmer r Richtige getippt haben, stellt sich das mathematische Gesamtmodell als eine Kombination aus hypergeometrischer und binomial-verteilter Formulierung dar. Nach einigen konkreten Berechnungen wird für Grenzwertbetrachtungen zum einen die (mittlerweile im Lehrplan oft nur noch optionale) Regel von l'Hospital und zum anderen die einfache, aber mächtige Identität für a > 0 eingeführt. Damit lassen sich alle Grenzwert- und Monotoniebetrachtungen durchführen. Anhand des Graphen für einen geeigneten Spezialfall werden die Schülerinnen und Schüler zur abschließenden Beantwortung der Ausgangsfrage geführt. Verallgemeinerung auf k erfolgreiche Teilnehmer Im zweiten Teil der Aufgabenstellung ("Variation und Verallgemeinerung") wird der Kontext mindestens zweier Jackpot-Gewinnerinnen oder -gewinner vom Ende des ersten Teils auf genau beziehungsweise mindestens k erfolgreiche Lotterie-Teilnehmende verallgemeinert. Nun wird für eine Diskussion des Funktionsterms allerdings ein tieferes Verständnis des Binomialkoeffizienten notwendig. Dazu wird dieser als Funktion in n betrachtet, auf den Bereich der reellen Zahlen verallgemeinert, exemplarisch graphisch dargestellt und berechnet. Hierbei stellen die Schülerinnen und Schüler fest, dass es sich im Grunde bei dem Symbol um nichts anderes als ein Polynom k-ten Grades in x handelt. Damit befinden sich die Lernenden wieder auf vertrautem Terrain aus Mittel- und Oberstufe. Pascalsches Dreieck Im Anschluss wird der Aufbau des Pascalschen Dreiecks bewiesen und gezeigt, dass sich die Werte der jeweiligen "Binomialkoeffizient-Polynome" für natürliche Argumente einfach in den Spalten beziehungsweise Diagonalen des Pascalschen Dreiecks ablesen lassen. Offensichtlich liefert das Pascalsche Dreieck aber auch jeweils eine Rekursionsformel für die einzelnen Polynome. Die Schülerinnen und Schüler lernen dieses andersartige Konzept zur Definition einer Funktion für den Spezialfall k=2 kennen und ermitteln mithilfe der Gaußschen Summenformel den Zusammenhang zwischen der rekursiven und der expliziten Darstellung. Dabei gibt es neben diesem algebraischen aber auch einen geometrischen Beweisweg über die so genannten Dreieckszahlen. Anwendung der Regel von l'Hospital Mithilfe der Regel von l'Hospital erhalten die Schülerinnen und Schüler nun Zugang zu einer mathematisch sehr gewichtigen Tatsache, nämlich dass eine Exponentialfunktion schneller wächst als jede Potenz beziehungsweise jedes Polynom. Damit lässt sich nun auch die Ausgangsfrage allgemein sehr schnell beantworten. Graphen zur Veranschaulichung Zum Abschluss sehen die Schülerinnen und Schüler anhand von exemplarischen Graphen mittels eines Funktionsplotters (hierzu eignet sich zum Beispiel auch GeoGebra), wie sich die gesuchte Wahrscheinlichkeit verhält und in welchem Bereich sich überhaupt erst Bezüge zur Realität anbieten (vergleiche Abb. 1, zur Vergrößerung bitte anlicken). Auf die Thematisierung der für den Kontext kleiner Erfolgswahrscheinlichkeiten bei großer Stichprobe als gute Näherung geeigneten Poisson-Verteilung ("Verteilung der seltenen Ereignisse") wird verzichtet, da in erster Linie nicht das rein statistische Problem, sondern die Vernetzung von stochastischen/statistischen mit analytischen und algebraischen Inhalten im Vordergrund stehen soll. Fazit Die Schülerinnen und Schüler erhalten durch diese Lerneinheit die Möglichkeit, eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik herzustellen. Zudem zeigt sich, dass neuartige Symbole (wie der Binomialkoeffizient) oder Schreibweisen (wie die rekursive Definition einer Funktion) durch geeignete Betrachtungsweise gar nicht mehr so neuartig sein müssen, sondern bereits bekannten Dingen entsprechen. Durch die zusätzliche Einführung einiger weniger Hilfsmittel (allgemeine Exponentialfunktion als e-Funktion, Regel von l'Hospital) erschließt sich so auch eine ungewohnte Funktion den oftmals schematisch verfolgten Argumenten der Kurvendiskussion.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II
ANZEIGE