Gravitationswellen: erster indirekter Nachweis mit Pulsar
Unterrichtseinheit
14,99 €
Diese Unterrichtseinheit thematisiert den ersten indirekten Nachweis von Gravitationswellen im Jahr 1974 durch Messung der Umlaufdauer eines Pulsars in einem Binärsystem. Die Ergebnisse stimmen mit großer Genauigkeit mit den Vorhersagen der Allgemeinen Relativitätstheorie von Albert Einstein überein. Zwei Neutronensterne, einer davon ist ein Pulsar, umrunden sich auf stark elliptischen Bahnen. Dieses System stellt ein ideales Testlabor für die Vorhersagen der Allgemeinen Relativitätstheorie dar, wobei zwei relativistische Effekte besonders stark zutage treten - zum einen die Drehung der Bahnellipse des Pulsars (Periastrondrehung) und zum anderen die Verringerung der Umlaufdauer des Pulsars aufgrund der Abstrahlung von Gravitationswellen. Beide Effekte werden in dieser Unterrichtseinheit thematisiert, wobei der Schwerpunkt auf dem Thema Gravitationswellen liegt. Die Lernenden berechnen mithilfe des dritten Keplergesetzes und Ergebnissen der Relativitätstheorie Umlaufzeiten und Abstände des Pulsars und erhalten so einen quantitativen Eindruck, wie das Doppelsternsystem im Laufe der Zeit aufgrund der Abstrahlung von Gravitationsenergie schrumpft. Zudem wird die beeindruckende Übereinstimmung der Messergebnisse mit den theoretischen Berechnungen deutlich. Das Thema Gravitationswellen berührt verschiedene Inhalte der Oberstufenphysik. Insbesondere sind Themen wie Gravitation, Kreisbewegungen und das Michelson-Interferometer von besonderer Relevanz – aber auch Grundkenntnisse der Physik Schwarzer Löcher und Neutronensterne spielen für das Verständnis des Phänomens Gravitationswellen eine wichtige Rolle. In den Lehrplänen ist die Allgemeine Relativitätstheorie und ihre Folgerungen gar nicht oder nur ansatzweise enthalten. Dennoch bieten viele schulinterne Curricula durchaus Möglichkeiten für die Bearbeitung besonderer Themen. Gut lässt sich die Thematik auch in Astronomie-Kursen der Oberstufe, Projektkursen oder Arbeitsgemeinschaften einbauen. Die Berechnungen zu Gravitationswellen beruhen auf der Allgemeinen Relativitätstheorie, was im schulischen Kontext im Detail nicht thematisiert werden kann. Stattdessen wird den Lernenden eine graphische Darstellung der originalen Messergebnisse präsentiert, über die die theoretische Vorhersagekurve aus der Allgemeinen Relativitätstheorie gelegt wurde. So wird die beeindruckende Übereinstimmung zwischen Theorie und Messung sichtbar. Die weiteren Berechnungen der Lernenden beruhen aber auf den Formeln der klassischen Physik (unter anderem drittes Gesetz von Kepler), wobei ein Wert (Zeitinkrement) aus der relativistischen Rechnung Verwendung findet. Methodische Analyse Ein Ziel dieser Unterrichtseinheit besteht darin, den Lernenden zu vermitteln, dass sie mithilfe oberstufenüblicher Inhalte aus Mathematik und Physik in der Lage sind, sich bestimmten Vorhersagen der Allgemeinen Relativitätstheorie von Albert Einstein zu nähern. Dies gelingt im Fall der Periastron-Verschiebung der Bahnellipse durch die Verwendung einer Computersimulation. Für die Berechnung der Umlaufdauer und des Abstandes der beiden Neutronensterne sowie des Energieverlustes aufgrund von Gravitationswellen werden Formeln der klassischen Physik (Newton) und ein Zahlenwert aus der Allgemeinen Relativitätstheorie bereitgestellt. Mithilfe von Daten aus Originalveröffentlichungen zur Physik des Neutronensternsystem PSR1913+16 sind die Schülerinnen und Schüler dann in der Lage, wichtige Größen des Systems vorauszuberechnen und mit der Prognose aus der Allgemeinen Relativitätstheorie zu vergleichen. Vorkenntnisse Die Lernenden sollten mit dem Gravitationsgesetz Newtons und der Physik der Kreisbewegungen vertraut sein und über Kenntnisse zu den Keplergesetzen verfügen. Die Berechnungen erfordern einen sicheren Umgang mit dem Taschenrechner, insbesondere die Behandlung von hohen Zehnerpotenzen und Zahlen mit vielen Nachkommastellen. Fachkompetenz Die Schülerinnen und Schüler… erkennen, dass die Drehung der Bahnellipse den Vorhersagen der Relativitätstheorie entspricht. berechnen physikalische Größen mit komplexen Formeln. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben, sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form (Internet) auf bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. recherchieren fachbezogen im Internet. arbeiten mit einer Computersimulation. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit. diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar.
- Physik / Astronomie
- Sekundarstufe II