• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Umgang mit dem Gasbrenner: der Gasbrenner-Führerschein

Unterrichtseinheit
14,99 €

In der Unterrichtseinheit "Umgang mit dem Gasbrenner: der Gasbrenner-Führerschein" lernen die Schülerinnen und Schüler in den ersten Stunden des Chemie-Unterrichts den sicheren Umgang mit dem Gasbrenner, indem sie die Bauteile vom Teclu-Brenner oder Bunsenbrenner benennen und Schritt für Schritt an das Entzünden herangeführt werden.Im Chemie-Anfangsunterricht der Sekundarstufe I starten die Lernenden oft mit der Hoffnung auf spannende Experimente und aufregende Unterrichtssituationen. Um die Motivation zu erhalten und gleichzeitig von Anfang an das sichere Arbeiten und die Selbstständigkeit bei Versuchen zu trainieren, bietet es sich an, zuerst den Umgang mit dem Gasbrenner zu erlernen. Dieses Unterrichtsmaterial eignet sich daher für die ersten Stunden im Chemie-Unterricht, in denen die Schülerinnen und Schüler relevante Sicherheitsregeln kennenlernen müssen, bevor sie die ersten Experimente durchführen können. Als Einführung in das Fach Chemie erarbeiten die Lernenden dabei zunächst je nachdem, welches Gerät im Unterricht verwendet wird, die Bauteile vom Teclu-Brenner oder auch vom Bunsenbrenner, bevor sie Stück für Stück an das Entzünden des Gasbrenners herangeführt werden, das die schließlich in einer abschließenden Prüfung für den Gasbrenner-Führerschein unter Beweis stellen. Zum Abschluss der Einheit ist es für die Lernenden damit selbstverständlich, dass sie beim Experimentieren beispielsweise Schutzbrillen tragen, lange Haare zusammenbinden, den Tisch vorab aufräumen und den Gasbrenner kippsicher aufstellen. Das Thema "Umgang mit dem Gasbrenner: der Gasbrenner-Führerschein" im Unterricht Bei vielen Versuchen im Chemie-Unterricht wird der Gasbrenner benötigt, wenn auch nur oft sehr kurz. Es ist daher sinnvoll, wenn die Lernenden den Gasbrenner ganz selbstverständlich und ohne Berührungsängste nutzen können. Durch dieses Unterrichtsmaterial zum Umgang mit dem Gasbrenner haben die Schülerinnen und Schüler Gelegenheit, die Arbeit mit dem Gasbrenner oder auch Bunsenbrenner zu trainieren, relevante Sicherheitsregeln kennenzulernen und das selbstständige Arbeiten in ihrer Stammgruppe zu üben. Vorkenntnisse Die Lernenden sollten die allgemeinen Sicherheitsregeln für den Chemie-Raum kennen. Didaktische Analyse Zum Einstieg schauen die Lernenden sich den Gasbrenner genau an und finden heraus, welche Bauteile beweglich sind, wie man sie bewegt und was dabei passiert. Sie stellen erste Vermutungen über die Aufgaben der Bauteile an. Da es noch nicht darum geht, den Gasbrenner anzuzünden, können alle Lernenden unbefangen arbeiten. Anschließend werden die Bezeichnungen und Bauteile vorgestellt, durch die Lernenden zugeordnet und die Aufgaben kurz zusammengefasst. Ein erstes, von der Lehrkraft begleitetes, Anzünden kann an dieser Stelle des Unterrichts bereits erfolgen, um zunächst die Erwartung der Lernenden zu befriedigen. Bevor die Lernenden den Gasbrenner selbstständig anzünden dürfen, erarbeiten sie sich die Abläufe vor dem Anzünden und beim Löschen. Anhand dieser wird der richtige Umgang mit dem Gasbrenner geübt. Zum Schluss zeigen die Lernenden bei einer praktischen Prüfung, dass sie den Gasbrenner vorschriftsmäßig anzünden können und erhalten dafür den "Gasbrenner-Führerschein", die Bestätigung ihrer neu erworbenen Kenntnisse und Belohnung zugleich. Methodische Analyse Die Arbeit in der Gruppe oder in Partnerarbeit führt dazu, dass die Lernenden etwaige Berührungsängste nach und nach abbauen. Die Gruppe kann Hilfestellung beim Umgang mit dem Gasbrenner geben und ermutigen. In Erarbeitungsphasen können unsichere Lernende sich zuerst in der Gruppe oder beim Partner rückversichern, bevor sie ihre Ergebnisse im Plenum vorstellen. Die praktische Prüfung am Schluss verdeutlicht den Lernenden die Relevanz dieser Unterrichtssequenz und motiviert zum Mitmachen. Erkenntnisgewinnung Die Schülerinnen und Schüler beobachten Phänomene nach vorgegebenen Kriterien. stellen Untersuchungsmaterialien nach Vorgaben zusammen und nutzen sie unter Beachtung von Umwelt- und Sicherheitsaspekten. Kommunikation Die Schülerinnen und Schüler finden Informationen zu vorgegebenen Begriffen in ausgewählten Quellen und fassen sie angemessen zusammen. arbeiten mit einer Partnerin, einem Partner oder in einer Gruppe gleichberechtigt, zielgerichtet und zuverlässig. beachten unterschiedliche Sichtweisen. Fachwissen Die Schülerinnen und Schüler können Fachbegriffe angemessen und korrekt verwenden.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

WebQuest "Luft" - Müdigkeit im Klassenraum?

Unterrichtseinheit

Schülerinnen und Schüler kennen es aus eigener Erfahrung: In der Schule wird man im Klassenraum oft müde, wenn die "Luft“ verbraucht ist. Dieses Phänomen ist der Ausgangspunkt des hier vorgestellten WebQuest. Die Ergebnisse der Recherchen zum Thema Luft werden auf Plakaten festgehalten und in der Klasse vorgestellt und diskutiert. Die Schülerinnen und Schüler setzen sich in Partner- oder Kleingruppenarbeit zunächst mit den allgemeinen Aspekten des Themas und den Eigenschaften von Luft auseinander. Ihnen wird deutlich, aus welchen Bestandteilen Luft besteht und wie sich dieses Stoffgemisch zusammensetzt. Sie sollen erkennen, dass Luft auch "schmutzig" werden kann. In diesem Zusammenhang werden auch Luftschadstoffe behandelt. Abschließend versuchen die Lernenden die Ausgangsfrage (Müdigkeit im Klassenzimmer) zu beantworten. Ihnen soll bewusst werden, dass Klassenräume regelmäßig gelüftet werden müssen, um im Unterricht ?fit? bleiben zu können. Der WebQuest ist für die Klasse 6 konzipiert, sodass eine genaue Arbeitsanleitung für die Lernenden unbedingt nötig ist. Aus diesem Grund sind die Arbeitsaufträge in dem WebQuest-Dokument sehr präzise formuliert. Die Lehrperson soll während der Bearbeitung lediglich Hilfestellungen leisten und Anregungen geben und sich nicht in die Diskussion der Schülerinnen und Schüler einmischen. Hinweise zum Unterrichtsverlauf Der Ablauf der Internetrecherche, die Arbeit in Kleingruppen sowie die Entwicklung und Präsentation eines Plakats werden hier kurz skizziert. Fachkompetenz Die Schülerinnen und Schüler sollen sich über die Zusammensetzung und die Bedeutung von Luft informieren. die gesellschaftliche Relevanz von Luftverschmutzungen erkennen. Medienkompetenz Die Schülerinnen und Schüler sollen den Computer gezielt zur Informationsbeschaffung verwenden. relevante Inhalte aus Online-Dokumenten erarbeiten und diese auf ihre Aufgabenstellung beziehen. Sozialkompetenz Die Schülerinnen und Schüler sollen zu ihren Diskussionsergebnissen gemeinsam ein Plakat entwerfen und präsentieren. die Vorstellungen und Ideen der anderen Gruppen aufmerksam verfolgen und abschließend miteinander vergleichen. Thema WebQuest "Luft" Autorinnen Julia Elsen, Prof. Dr. Julia Michaelis Fach Chemie Zielgruppe Klasse 6 Zeitraum 6 Stunden (je 2 Stunden Recherche, Plakaterstellung und Diskussion) Technische Voraussetzungen Computer mit Internetanschluss pro Arbeitsgruppe (2-4 Personen) Prof. Dr. Julia Michaelis von der Didaktik der Chemie der Universität Oldenburg betreute Julia Elsen bei der Bachelorarbeit "Warum WebQuest? - Erstellung von WebQuest-Materialien mit unterschiedlichen Kompetenzschwerpunkten". Das WebQuest-Dokument wurde mit PowerPoint erstellt. Sie können die Datei "webquest_luft.ppt" (siehe "Download") herunterladen und editieren. Die Hyperlinks sind nur im Präsentationsmodus aktiv. Schülerinnen und Schüler können mit dem Dokument auch arbeiten, wenn es auf der Festplatte ihres Arbeitsrechners liegt (Internetanschluss vorausgesetzt). Anleitungen zur Erstellung von WebQuests mit PowerPoint finden Sie im Internet. Alltagsbezug Der WebQuest thematisiert die allgemeinen fachlichen Grundlagen zur Zusammensetzung und zur Bedeutung von Luft für den Menschen. Durch die Übertragung der Lufteigenschaften auf einen lebensnahen Bezug (Luftqualität im Klassenraum) wird die Relevanz des Themas für die Lernenden deutlich. Außerdem wird das Thema Luftverschmutzung berücksichtigt. So treten auch die gesellschaftliche und ökologische Dimension und die Zukunftsrelevanz des Themas hervor. Fächerverbindende Bezüge Die Unterrichtseinheit bietet auch Bezüge zur Biologie. Die Schülerinnen und Schüler setzen sich sowohl mit der Umweltverschmutzung als auch mit der Gesundheit des Menschen auseinander. Die Gesundheitsaspekte können im Biologieunterricht in der Thematik "Auswirkungen von Umweltverschmutzungen und deren Auswirkungen auf den Menschen" aufgegriffen werden. Internetrecherche Die Schülerinnen und Schüler setzen sich in dem WebQuest in Partner- oder Kleingruppenarbeit mit dem Thema "Luft" auseinander. Dabei soll jedes Kind wichtige Inhalte und Ergebnisse festhalten, um sich später zusammen mit den Mitschülerinnen und Mitschülern darauf zu einigen, welche Informationen bei der Erstellung des Plakats übernommen werden sollen. Diskussion und Entwicklung des Plakats Auf der Basis der Recherchen sollen die Lernenden ihre Ergebnisse über Zusammensetzung und Bedeutung der Luft sowie über die Luftverschmutzung zusammentragen. Danach verständigen sie sich über die wichtigsten Ergebnisse und halten diese auf einem Plakat fest. Die angefertigten Plakate werden im Anschluss an die Gruppenarbeiten den Mitschülerinnen und Mitschülern im Rahmen einer kleinen Ausstellung präsentiert und im Plenum diskutiert.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Fritz Haber: Genie oder Völkermörder?

Unterrichtseinheit

Dieser WebQuest thematisiert die historische Persönlichkeit Fritz Haber (1868-1943) und bettet die Ammoniaksynthese sowie ihren Mitentwickler in einen historischen Kontext ein. Neben Habers Beteiligung an der Giftgasforschung werden auch dessen unbekannte und teils spektakuläre Forschungen sowie die Rolle seiner Frau Clara Immerwahr betrachtet.Der WebQuest ist als Teil einer Semesterarbeit Studierender des Lehramtes Chemie für Gymnasien im Rahmen eines Seminars an der Universität Frankfurt entstanden und wurde bisher aber noch nicht im Unterricht eingesetzt. Wenn Sie die Materialien im Unterricht einsetzen, wären die Autoren für Ihre Erfahrungen und Rückmeldungen dankbar (Informationen und Kontakt zu den Autoren). Damit erhalten die Studenten (David Fischer, Sándor Bekö) auch eine Rückmeldung zu ihrer Arbeit.Die Schülerinnen und Schüler schlüpfen in die Rolle von Studierenden (wahlweise aus einem Institut für Physikalische Chemie, Geschichte, Soziologie oder Chemie), die sich innerhalb von Arbeitsgruppen über Leben und Werk Fritz Habers aus verschiedenen Blickwinkeln informieren. Die Ergebnisse der Arbeitsgruppen werden durch Plakate gesichert, die den Mitschülerinnen und Mitschülern vorgestellt werden. Die vier Poster werden aufgehängt und im Rahmen einer "Poster-Session" gemeinsam betrachtet. Eine Podiumsdiskussion ("Kongress"), in der das Wirken von Fritz Haber kritisch reflektiert und auch der historische Versuch der Ammoniaksynthese demonstriert wird, schließt die Unterrichtseinheit ab. Zielgruppe, Themen, Anbindung an den Lehrplan Hier finden Sie Informationen zu den Voraussetzungen der Unterrichtseinheit, den Themen und ihrer Anbindung an den Lehrplan sowie einen Überblick zum Unterrichtsverlauf. Durchführung des WebQuest In arbeitsteiliger Gruppenarbeit recherchieren die Schülerinnen und Schüler eigenständig und selbst gesteuert Informationen zu Leben und Werk von Fritz Haber. Präsentation der Arbeitsergebnisse Nach einer Poster-Session werden in einem Rollenspiel die Person und die wissenschaftlichen Leistungen Fritz Habers aus verschiedenen Perspektiven betrachtet. Fachkompetenz Die Schülerinnen und Schüler sollen die Forschungsschwerpunkte Fritz Habers benennen können. die Reaktionsgleichung der Ammoniaksynthese nach Haber und Bosch formulieren können. unterschiedliche (historische) Methoden der Ammoniaksynthese benennen können. mindestens drei Giftgase nennen und die Beteiligung Fritz Habers am Gaskrieg beschreiben können. die Gründe für den Suizid von Clara Immerwahr (Fritz Habers Ehefrau) kennen lernen. Medienkompetenz Die Schülerinnen und Schüler sollen relevante Inhalte aus Online-Dokumenten exzerpieren, ordnen und aufarbeiten. den Rechner zur Informationssuche verwenden können. ein Plakat erstellen, das die Ergebnisse der Gruppenarbeit strukturiert zusammenfasst. Sozialkompetenz Die Schülerinnen und Schüler sollen in der Gruppenarbeitsphase konstruktiv mit den Vorschlägen anderer Schülerinnen und Schüler umgehen. auf der Basis des angeeigneten Wissens einen Sachverhalt gemeinsam diskutieren, argumentieren und überprüfen. in der Gruppenarbeit eigenverantwortlich Inhalte erarbeiten, auswählen und gemeinsam präsentieren. sich bei der Podiumsdiskussion frei und selbstsicher äußern. Thema Fritz Haber: Genie oder Völkermörder? Autoren David Fischer, Silke Weiß Fach Chemie; fächerübergreifend Aspekte: Politikwissenschaft, Religion/Ethik, Geschichte (Krieg und Frieden, Verantwortung des Wissenschaftlers) Zielgruppe Jahrgangsstufe 13 (G9) beziehungsweise 12 (G8), bevorzugt Leistungskurs Zeitraum 5-6 Stunden Technische Voraussetzungen ein Computer pro Arbeitsgruppe Silke Weiß studierte an der Universität zu Heidelberg und Frankfurt die Fächer Biologie, Chemie, Spanisch und Deutsch auf Lehramt (Sek II) und arbeitet am Alten Kurfürstlichen Gymnasium in Bensheim (Hessen). Sie ist zur Zeit im Projekt "Lehr@mt: Medienkompetenz als Phasenübergreifender Qualitätsstandard" abgeordnet an das Institut für Didaktik der Chemie der Universität Frankfurt und betreut dort den Bereich "Kompetent Chemie unterrichten mit Neuen Medien". Vorwissen der Schülerinnen und Schüler Die Schülerinnen und Schüler sollten das chemische Gleichgewicht und Massenwirkungsgesetz bereits kennen gelernt haben. Technische Voraussetzungen Die WebQuest-Materialien dieser Unterrichtseinheit sind HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Die Schülerinnen und Schüler sollten Zugang zu einem Drucker haben, um zum Beispiel das Anmeldeformular für den Kongress ausdrucken zu können, aus dem sich dann die Gruppeneinteilung ergibt (siehe Aufgabenseite im WebQuest; "Internetadresse" oder "Download" auf der Startseite der Unterrichtseinheit). Chemie Der WebQuest soll von Schülerinnen und Schülern der Oberstufe (vorzugsweise Leistungskurs) bearbeitet werden. Inhaltlich greift er das verbindliche Unterrichtsthema "Ammoniaksynthese" auf und leitet auch zu einem Demonstrationsversuch an. Die Thematisierung des Haber-Bosch-Verfahrens als Beispiel für das "Prinzip des kleinsten Zwangs" ist im G9-Lehrplan für die Jahrgangsstufe 13 vorgesehen. Zukünftige G8-Oberstufen behandeln dieses Prinzip entsprechend in Jahrgangsstufe 12. Politikwissenschaft, Religion/Ethik Das Haber-Bosch-Verfahren ist als technisches Verfahren über den Chemieunterricht hinaus als fakultativer Unterrichtsinhalt mit Querverweisen zu dem Themengebiet "Krieg und Frieden" (zum Beispiel Politikwissenschaft, Religion/Ethik) möglich. Die Unterrichtseinheit reiht diese Leistung Fritz Habers neben anderen Forschungen ein und erweitert das Wirken Habers um den Aspekt der Verantwortung eines Chemikers. Somit kann der im Lehrplan geforderten Entwicklung eines Wertebewusstseins und der Berücksichtigung der Würde des Menschen Rechnung getragen und die im Lehrplan vorgeschlagene Fächervernetzung hergestellt werden (Politikwissenschaft, Geschichte, Ethik oder der Religion). Einstieg Eine fiktive "Einladung" mit dem provozierenden Untertitel stellt den Einstieg in den WebQuest dar. Ein Professor lädt Studentinnen und Studenten verschiedener Universitäten - darunter auch solche der Universität zu Berlin, an der Fritz Haber selber lehrte - ein, die Fragestellung "Genie oder Völkermörder" kontrovers auf einem "Jungwissenschaftler-Kongress" zu diskutieren. Die Schülerinnen und Schüler erarbeiten zunächst in Expertengruppen ("Arbeitsgruppen") individuelle Antworten auf die zentrale Fragestellung, ob Haber ein Genie oder "Völkermörder" sei. Dabei informieren sie sich anhand vorgegebener Links gemäß der Rollen, in die sie schlüpfen. Dies sind Studierende folgender Fächer oder Fachbereiche: Chemie Physikalische Chemie Geschichte Soziologie "Postersession" und "Kongress" Die Gruppen präsentieren ihre Ergebnisse in Form von Plakaten - ähnlich, wie es auch auf echten wissenschaftlichen Versammlungen der Fall ist ("Poster-Session"). Daraus ergibt sich eine abschließende Podiumsdiskussion, die von den nicht direkt teilnehmenden Schülerinnen und Schülern schriftlich zusammengefasst wird. Demonstrationsexperiment Im Rahmen des WebQuest ist ein Versuch zur Darstellung von Ammoniak nach dem Haber-Bosch-Verfahren vorgesehen. (Nur die Gruppe der Chemikerinnen und Chemiker wird das Experiment vorführen.) Ausgehend von einem zentralen WebQuest-Dokument erarbeiten Schülerinnen und Schüler mithilfe des Internets ein Wissensgebiet und präsentieren anschließend ihre Ergebnisse. Die Arbeit mit dem WebQuest erfolgt in den Schülergruppen eigenständig und selbst gesteuert. Der Lehrkraft kommt die Rolle eines Lernbeobachters zu. Allgemeine Informationen zum Thema WebQuest im naturwissenschaftlichen Unterricht finden Sie hier: WebQuests in den Naturwissenschaften Informationen zu den internetbasierten "Lernabenteuern" Expertengruppen In der ersten Phase der Bearbeitung des WebQuest werden vier Arbeits- oder "Expertengruppen" gebildet, die sich mit den folgenden Schwerpunkten beschäftigen. Die Zuordnung der Schülerinnen und Schüler zu den Arbeitsgruppen kann eigenständig erfolgen. Zu beachten ist hierbei, dass nur die Gruppe der Chemikerinnen und Chemiker den Versuch zur Darstellung von Ammoniak durchführt. Studierende der Physikalischen Chemie (Universität zu Berlin) Aufgabe dieser Arbeitsgruppe ist es, den anderen Gruppen die Leistungen und vielseitigen Forschungen Fritz Habers vorzustellen. (Haber studierte und lehrte unter anderem auch an der Universität zu Berlin.) So versuchte Haber zum Beispiel im Jahr 1921 aus Meerwasser Gold zu gewinnen, um so Deutschlands Reparationszahlungen an die Alliierten zu unterstützen. Die Forschungen zur Schädlingsbekämpfung und den Flammenreaktionen gehören ebenfalls zu den weniger bekannten Aktivitäten Habers, die in der Arbeitsgruppe "Physikalische Chemie" gelesen und den anderen Gruppen vorgestellt werden sollen. Studierende der Geschichte (Universität zu Tübingen) Diese Arbeitsgruppe untersucht die Verwicklungen Habers in den ersten Weltkrieg und deckt historische Zusammenhänge auf. Am 22. April 1915 in Belgien (Ypern) wurden zum Beispiel auf Anraten Habers erstmals 150 Tonnen Chlorgas als "moderne Massenvernichtungswaffe" eingesetzt. Studierende der Soziologie (Universität zu Darmstadt) Die Arbeitsgruppe der Soziologen untersucht die Rolle der Frau in der Wissenschaft zur damaligen Zeit und erweitert so das Hauptthema um einen wichtigen Aspekt. Im Mittelpunkt dieser Gruppenrecherche steht Habers Ehefrau Clara Immerwahr, ihr Standpunkt zu den umstrittenen Aktivitäten Habers und ihr tragisches Schicksal. Studierende der Chemie (Universität zu Frankfurt) Die Arbeitsgruppe der Chemikerinnen und Chemiker konzentriert sich auf die Forschungen Habers rund um die Ammoniak-Hochdrucksynthese. Zu den Aufgaben dieser Arbeitsgruppe gehört neben einer vergleichenden Literaturrecherche auch die Durchführung eines Modellversuches zur Haber-Bosch-Ammoniaksynthese im kleinen Maßstab. Zeitaufwand Für die Arbeitsphase mit dem WebQuest sind in dieser Unterrichtseinheit etwa zwei bis drei Stunden zu veranschlagen. Für ihre jeweiligen Forschungsgebiete steht den Schülerinnen und Schülern im Quellenbereich der WebQuest-Seite eine Liste mit mehr aus dreißig ausgewählten Links zur Verfügung. Ein Teil der Literatur liegt auch als PDF-Dokument vor, von dem bei Bedarf je ein Exemplar pro Gruppe ausgedruckt werden kann. Darüber hinaus ist es hilfreich, wenn sich die Lernenden selbstständig in der Schul- oder Stadtbibliothek weitere Materialien beschaffen. Poster-Session Mithilfe der verschiedenen Quellen wird von jeder der vier Arbeitsgruppen ein Plakat erstellt, das die wichtigsten Informationen und Erkenntnisse zu den jeweiligen Schwerpunktthemen der Gruppe enthält. Diese Plakate - die im Ansatz den Kriterien eines wissenschaftlichen Plakates genügen sollen - werden zum "Kongress" mitgebracht und dort im Rahmen einer "Poster-Session" ausgestellt. Auf diese Weise werden die sich gegenseitig ergänzenden Informationen und Facetten zu Fritz Habers Leben und Werk allen Schülerinnen und Schülern schon transparent, bevor die Diskussion beginnt. Es ist daher darauf zu achten, dass der Inhalt der Plakate von einem unwissenden Betrachter in fünf bis zehn Minuten erfasst werden kann! Fritz Habers Forschungen werden in der Diskussion nicht allein auf die Ammoniak-Hochdrucksynthese reduziert, sondern in den historischen Kontext eingebettet und kritisch beleuchtet. Zeitaufwand Für die Erstellung der Plakate wird eine Schulstunde benötigt. Die Ausstellung der Plakate dauert etwa eine halbe Stunde. Dies sollte optimalerweise zu Beginn einer Doppelstunde geschehen, da die restliche Zeit dann für den Kongress verwendet werden kann. Podiumsdiskussion Nach der Recherche und Sicherungsphase (Erstellung der Plakate) werden in einer Podiumsdiskussion ("Jungwissenschaftler-Kongress") Vertreterinnen und Vertreter jeder Arbeitsgruppe zu Wort kommen (insgesamt acht Personen) und Habers Aktivitäten kritisch kommentieren. Zentral ist hierbei die Ausgangsfrage, ob Haber ein Genie oder ein Völkermörder sei. Planung Für den Jungwissenschaftler-Kongress ist in dieser Unterrichtseinheit eine Unterrichtsstunde zu veranschlagen. Darin ist die Nachbesprechung nicht enthalten. Schülerinnen und Schüler, die nicht aktiv am Kongress beteiligt sind, erstellen eine stichpunktartige Zusammenfassung des Disputes, in der die unterschiedlichen Sichtweisen der Arbeitsgruppen und ihr Bezug zu der Ausgangsfrage dargestellt werden. Die Zusammenfassungen sollen mit einer persönlichen Stellungnahme enden. Silke Weiß studierte an der Universität zu Heidelberg und Frankfurt die Fächer Biologie, Chemie, Spanisch und Deutsch auf Lehramt (Sek II) und arbeitet am Alten Kurfürstlichen Gymnasium in Bensheim (Hessen). Sie ist zur Zeit abgeordnet im Projekt "Lehr@mt: Medienkompetenz als Phasenübergreifender Qualitätsstandard" an das Institut für Didaktik der Chemie der Universität Frankfurt und betreut dort den Bereich "Kompetent Chemie unterrichten mit Neuen Medien".

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Ist Biodiesel eine Alternative zu fossilen Kraftstoffen?

Unterrichtseinheit

Im Rahmen eines BlogQuests - ein WebQuest, der mit einem Blog erstellt wurde - informieren sich Schülerinnen und Schüler aus verschiedenen Blickwinkeln über Vor- und Nachteile der Kraftstoffalternative zu herkömmlichen Diesel oder Benzin.Das Biodiesel-BlogQuest beschäftigt sich mit dem Problem, dass die Preise für Benzin und Diesel stetig steigen. Es handelt von einem berufstätigen Mann namens Karl, der eines Morgens aus dem Radio die Information erhält, dass die Erdölpreise wieder einmal gestiegen sind und somit die Benzin- und Dieselpreise einen neuen Höhepunkt erreichen werden. In dem BlogQuest nehmen die Schülerinnen und Schüler verschiedene Interessensstandpunkte ein und nehmen als Experten an einem Symposium zum Thema Biodiesel teil. Abschließend wird die ganzheitliche Betrachtung des Themas in Form von Zeitungsartikeln zu Papier gebracht. Relevanz des Themas im Unterricht Um auch weiterhin mobil zu bleiben, ist es wichtig, alternative Treibstoffe für Kraftfahrzeuge zu finden. Eine Möglichkeit bietet hier der Biodiesel. Ein Vorteil stellt der Bezug zur aktuellen Forschung dar. Derzeit gibt es in der EU mehrere wissenschaftliche Arbeitsgruppen, welche an der Optimierung des regenerativen Kraftstoffs arbeiten. Dies zeigt, dass Biodiesel in den Augen vieler Wissenschaftler eine Zukunft hat. Auch politisch ist das Thema Biodiesel aktuell, da zum Beispiel die obligatorische Beimischung von Biodiesel zu fossilem Diesel gesetzlich geregelt ist. Die wirtschaftliche und politische Aktualität wie auch die Verknüpfung zum Alltag der Schülerinnen und Schüler können die Motivation steigern. Ansätze zum unterrichtlichen Einsatz Zur Durchführung des BlogQuests gibt es zwei mögliche Ansätze: als Gruppenpuzzle oder als Einzelarbeit innerhalb der Gruppe. Beide Varianten werden in den Hinweisen zum Ablauf erläutert. Lehrplanbezug und Voraussetzungen Die Einordnung des WebQuests in die Lehrpläne von Hauptschule und Realschule sowie in die Typologie des WebQuest-Erfinders Bernie Dodge wird dargestellt. Hinweise zum Unterrichtsverlauf Zeiteinteilung und Ablauf der Unterrichtseinheit werden skizziert. Selbst gesteuertes, problemlösendes und (quellen-)kritisches Arbeiten stehen dabei im Mittelpunkt. Die Schülerinnen und Schüler sollen gemäß der Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss am Beispiel des Themas Biodiesel Verknüpfungen zwischen gesellschaftlichen Entwicklungen und Erkenntnissen der Chemie aufzeigen. (E8) zum Thema Biodiesel unterschiedliche Internetquellen für ihre Recherchen nutzen. (K1) die Ergebnisse ihrer Internetrecherche situationsgerecht und adressatenbezogen präsentieren. (K7) fachlich korrekt und folgerichtig argumentieren. (K8) ihre Arbeit als Team planen, strukturieren, reflektieren und präsentieren. (K10) einen Zweig der Automobilindustrie darstellen, in denen chemische Kenntnisse zum Thema Wasser und Wasserstoff bedeutsam sind. (B1) gesellschaftsrelevante Aussagen aus unterschiedlichen Perspektiven diskutieren und bewerten. (B5) Thema Ist Biodiesel eine Alternative zu fossilen Kraftstoffen? Autoren Melina Hermsen, Silke Weiß; überarbeitet von Stephen Amann, Sven-Heiko Bubel, Rolf Goldstein Fach Chemie Zielgruppe 9. Klasse Gymnasium, 10. Klasse Realschule, 9. Klasse Hauptschule Zeitraum 5 Stunden Technische Voraussetzungen Computer, Internetzugang, Schreibprogramm, Mindmap-Programm (beispielsweise Freemind oder MindManager) 8.6 Wasser und Wasserstoff (Wasserstoff als möglicher Energieträger) Als Arbeitsmethode wird das eigenständige Informieren zum Thema "Wasserstoff als möglicher Energieträger" empfohlen. 8.6 Ohne Wasser kein Leben (Eigenschaften von Wasserstoff ) Als Arbeitsmethode wird die Internetrecherche zum Thema Energiequellen der Zukunft empfohlen. Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Hauptschule, Jahrgangsstufen 5 bis 9/10. 2002 Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Realschule, Jahrgangsstufen 5 bis 10. 2002 Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Gymnasialer Bildungsgang, Jahrgangsstufen 8 bis 13. Sekretariat der Ständigen Konferenz der Länder in der Bundesrepublik Deutschland (Herausgeber): Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. München/Neuwied: Luchterhand, 2005 Technische Voraussetzungen Die BlogQuest-Materialien dieser Unterrichtseinheit sind HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Pro Kleingruppe sollte mindestens ein Computer mit Internetzugang vorhanden sein. Sollte ein Programm zur Erstellung von Mindmaps genutzt werden, ist vor Beginn des BlogQuests eine Einführung in den Umgang mit dem Programm für die Schülerinnen und Schüler notwendig. Beispielsweise kann das kostenfrei zu beziehende Programm FreeMind Verwendung finden. Fachliche Voraussetzungen Wasser mit seiner chemischen Zusammensetzung wird direkt zuvor im Unterricht behandelt. Dabei wird Wasserstoff als Zersetzungsprodukt des Wassers eingeführt. Aufgabentyp "Informationen zusammenstellen" und "Sachverhalte analysieren" WebQuests können nach ihrem Erfinder Bernie Dodge unterschiedlichen Aufgabentypen zugeteilt werden (WebQuest: A Taxonomy of Tasks, 2002). Der hier vorgestellte WebQuest lässt sich dem Aufgabentyp "Entscheidungen treffen" (Judgement Tasks) zuordnen. Dieser Aufgabentyp beinhaltet Kompetenzen aus anderen Aufgabentypen wie "Informationen zusammenstellen" (Compilation Tasks) und "Sachverhalte analysieren" (Analytical Tasks). Auch der Journalistic Task wird in diesem WebQuest mit einbezogen. Die Schülerinnen und Schüler sollen als eine Teilaufgabe den Beruf eines Journalisten annehmen und Fakten über die Diskussion des Symposiums in einem Zeitungsartikel darstellen. Darüber hinaus ist aber eine Entscheidung zu treffen, die nachvollziehbar begründet werden muss. Hierbei wird nicht nur reproduziert, sondern problemlösend und (quellen-)kritisch gearbeitet. Gerade dieser Aufgabentyp ist sehr praxisnah und bereitet die Schülerinnen und Schüler auf das spätere Berufsleben oder Studium vor. Das für die Durchführung dieser Unterrichtseinheit erforderliche Tool, der ArcExplorer der ESRI Geoinformatik GmbH, können Sie sich kostenlos aus dem Internet herunterladen. Allgemeine Informationen zum Einsatz des Tools, zum Beispiel zu seiner Funktionalität oder eine Anleitung zur Installation sowie die Internetadresse für den Download finden Sie in dem Lehrer-Online-Artikel "GIS-Projekte mit dem ArcExplorer". Auch in der Unterrichtseinheit "Wasser im Nahen Osten", mit der Lernende (und Lehrende!) an die Arbeit mit dem GIS-Tool herangeführt werden, finden Sie wichtige Informationen, die Sie sich nicht entgehen lassen sollten, wenn Sie noch nicht ganz "GIS-sattelfest" sind (zum Beispiel zur Pfadberichtigung, die erforderlich wird, wenn Projektdateien auf einem Datenträger verschoben werden). Wasser im Nahen Osten - Einführung in ein GIS-Tool Diese Unterrichtseinheit führt Lernende und Lehrende an die Arbeit mit GIS heran. Die Schülerinnen und Schüler sollen gemäß ihrer Rolle eine Recherche zu dem Thema Biodiesel durchführen und anschließend in einer Gruppendiskussion ihren Interessensstandpunkt vertreten. Anschließend wird pro Gruppe ein Zeitungsartikel erstellt. Bei den Arbeitsphasen wird im Folgenden eine Unterteilung in Gruppenpuzzle (gekennzeichnet mit a) und klassische Gruppenarbeit (gekennzeichnet mit b) vorgenommen. Gruppenpuzzle (a) In dieser Phase werden fünf Stammgruppen gebildet und die unterschiedlichen Interessensgruppen an die Schülerinnen und Schüler vergeben. Nach der Bildung der Stammgruppe gehen die Schülerinnen und Schüler bei der Erarbeitungs-Phase in Expertengruppen (siehe Abb. 2). Klassische Gruppenarbeit (b) Es werden in dieser Phase Gruppen gebildet, sodass jedes Interessengebiet einmal vertreten ist. Hier bleiben die Schülerinnen und Schüler, anders als beim Gruppenpuzzle, bis zum Ende der Unterrichtseinheit in der gleichen Gruppe zusammen. Expertengruppen (a) In dieser Phase bilden sich die Expertengruppen (bei Anwendung des Gruppenpuzzles), in denen die Schülerinnen und Schüler zu dem Thema Biodiesel aus dem Blick ihrer Interessensgruppe recherchieren. Dabei können die Schülerinnen und Schüler ergänzend auf aktuelle Themen aus der Tageszeitung oder Artikel aus Zeitschriften zurückgreifen. Die Ergebnisse der Recherche können beispielsweise In einer Mindmap gesammelt und festgehalten werden. Bei der Erstellung der Mindmap sollte darauf geachtet werden, dass die Lernenden nur die Informationen notieren, die für ihre Interessensgruppe interessant sind. Bei dem Gruppenpuzzle ist es von Vorteil, wenn die einzelnen Expertengruppen sich noch innerhalb der Expertengruppe austauschen, sodass jede Schülerin beziehungsweise jeder Schüler mit den gleichen Ergebnissen zurück in die Stammgruppe gehen kann. Klassische Gruppenarbeit (b) In der Erarbeitungs-Phase sollen die Lernenden in Einzelarbeit nach ihrem Interessensgebiet wie auch Allgemein eine Recherche durchführen. Auch hier können die Schülerinnen und Schüler ergänzend auf aktuelle Themen aus der Tageszeitung oder Artikel aus Zeitschriften zurückgreifen. Die Ergebnisse der Recherche können die Schülerinnen und Schüler zum Beispiel in einer Mindmap sichern. Bei der Erstellung der Mindmap sollte darauf geachtet werden, dass die Schülerinnen und Schüler nur die Informationen notieren, die für ihre Interessensgruppe interessant sind. Selbst gesteuertes Arbeiten Die Arbeit mit dem BlogQuest erfolgt in den Schülergruppen eigenständig und überwiegend selbst gesteuert. Der Lehrkraft kommt die Rolle eines Lerncoaches zu. Ergänzende Materialien Für ihre jeweiligen Forschungsgebiete stehen den Schülerinnen und Schülern im Quellenbereich des BlogQuests ausgewählte Links (siehe oben) zur Verfügung. Darüber hinaus ist es wünschenswert, wenn die Lernenden selbstständig in der Schul- oder Stadtbibliothek weitere Materialien beschaffen. Stammgruppen (a) Zurück in den Stammgruppen sollen die Schülerinnen und Schülern eine Diskussion führen, in der jeder Experte seinen Standpunkt vertritt. Gemeinsam sollen sie nun über den Nutzen von Biodiesel entscheiden. Dabei können die Mindmaps zur Diskussionsgrundlage herangezogen werden. Klassische Gruppenarbeit (b) In Ihrer Gruppe sollen die Schülerinnen und Schüler eine Diskussion führen, in der jeder Experte seinen Standpunkt vertritt. Ziel der Diskussion ist es eine gemeinsame Lösung zum Thema "Nutzen von Biodiesel" zu finden. Dabei können die Mindmaps als Diskussionsgrundlage dienen. Stammgruppen (a) Die Schülerinnen und Schüler sollen nun einen Zeitungsartikel aus eigener Sicht erstellen, indem sie die vorausgegangene Diskussion mit einbinden. Die einzelnen Zeitungsartikel können nun zusammengefasst werden und in einer Gruppenzeitung publiziert werden. Klassische Gruppenarbeit (b) Die Schülerinnen und Schüler sollen nun in der Gruppe einen gemeinsamen Zeitungsartikel erstellen, der die Ergebnisse der Diskussion zusammenfasst. Auch eigene Meinungen können mit einbezogen werden. Aus den Gruppenartikeln kann anschließend eine Klassenzeitung verfasst werden.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

MINT-Town – spielbasierte Förderung von kritischem Denken in der Chemie

Unterrichtseinheit

Die Lernenden erlangen – beziehungsweise erweitern – Fähigkeiten im Bereich des kritischen Denkens mithilfe der spielbasierten Lernumgebung MINT-Town. In den drei browserbasierten Szenarien der Lernumgebung werden sie mit einem fachübergreifenden (Eutrophierung eines Teiches) und zwei chemiespezifischen Problemkontexten (Synthese von Apfelester & Hydrolyse von Fetten) konfrontiert, welche sie im Laufe der Szenarien schrittweise lösen.In dieser Unterrichtseinheit spielen die Schülerinnen und Schüler die digitale Lernumgebung MINT-Town. MINT-Town besteht aktuell aus drei inhaltlich aufeinander aufbauenden Teilen, in denen die Lernenden jeweils mit einem Problemkontext konfrontiert werden, welchen sie schrittweise lösen müssen. Dabei durchlaufen die Lernenden Phasen des Problemlösens (Problem verstehen, Problem charakterisieren, Problem lösen) und müssen verschiedene Teilfähigkeiten des kritischen Denkens (zum Beispiel Analyse von Argumenten, Beobachten, logisches Schlussfolgern) einsetzen, um zu einer Problemlösung zu gelangen. Die Lernumgebung kann sowohl lokal als auch mobil in gängigen Windows- und Android-Browsern ausgeführt werden. Zum Spielen wird eine Internetverbindung benötigt. Im ersten Szenario "MINT-Town Tutorial" machen sich die Schülerinnen und Schüler zunächst mit der Steuerung vertraut und werden dann mit dem Problem eines eutrophierten Teiches konfrontiert. Sie sammeln durch Interaktion mit der virtuellen Welt, darin enthaltenen Gegenständen sowie Nicht-Spieler-Charakteren Informationen, welche ihnen bei der Charakterisierung und der anschließenden Lösung des Problems helfen. Das zweite Szenario "Apfelhain" konfrontiert die Spielenden mit einer Situation, in der Wespen mithilfe von Apfelester weggelockt werden müssen. Dieser steht allerdings nicht einfach zur Verfügung, sondern muss zunächst aus einer Carbonsäure und einem Alkohol mithilfe einer Kondensationsreaktion synthetisiert werden. Die Spielenden müssen auch hier schrittweise alle nötigen Informationen sammeln und auf dieser Basis in einer Multiple-Choice Abfrage geeignete Schlussfolgerungen auswählen, um die passende Lösungsstrategie zu finden. Diese wird nach dem Sammeln aller notwendigen Gegenstände in Form einer Ester-Synthese im virtuellen Labor umgesetzt. Die Spielenden müssen ihr Produkt anschließend virtuell herausdestillieren, indem sie die richtige Siedetemperatur herausfinden und angeben. Danach kontrollieren sie das Produkt mit dem Brechungsindex, welchen sie in einem Laborbuch abgleichen können. Die Schülerinnen und Schüler lernen hier neben den fachlichen Inhalten auch wichtige Vorgehensweisen bei einer Laborsynthese (virtuell) kennen. Sie kommen dadurch zudem zu der Erkenntnis, dass nach einer Synthese nicht immer gleich das fertige Produkt vorliegt, sondern weitere Schritte nötig sind, um dieses in reiner Form zu erhalten. In einem abschließenden Dialog mit einem Nicht-Spieler-Charakter reflektieren die Spielenden noch einmal ihre Vorgehensweise bei der Problemlösung. Im dritten Szenario "Bergregion" werden die Spielenden mit einer neuen Problemsituation konfrontiert, in der sie durch den Einsatz von Nitroglycerin einen Tunnel freisprengen sollen. Das Nitroglycerin liegt allerdings nicht von Anfang an vor, sondern muss von einem Nicht-Spieler-Charakter synthetisiert werden. Von diesem werden die Spielenden im Rahmen einer Quest losgeschickt, um Glycerin zu beschaffen, welches mithilfe einer sauren Ester-Hydrolyse aus einem fetten Öl (Raps) gewonnen werden soll. Auch in diesem Szenario gibt es verschiedene Multiple-Choice-Abfragen, in denen beispielsweise das Problem schrittweise charakterisiert oder eine Quelle auf Glaubwürdigkeit untersucht werden muss. Die Spielenden gelangen gegen Ende des Szenarios zu der Erkenntnis, dass die saure Hydrolyse die entgegengesetzte Reaktion der Ester-Synthese ist, und viele chemische Reaktionen nicht nur in eine Richtung ablaufen. Wie man dieses chemische Gleichgewicht beeinflussen kann, wird hier noch nicht thematisiert.Sowohl das "Tutorial" als auch das Szenario "Apfelhain" sind so aufgebaut, dass sie sich vorwissensunabhängig bearbeiten lassen. Das Szenario "Bergregion" knüpft hingegen thematisch an das Szenario "Apfelhain" an, sodass ein separater Einsatz nur zu empfehlen ist, wenn das Thema Ester-Synthese vorher im Unterricht behandelt wurde. Die chemiespezifischen Szenarien "Apfelhain" und "Bergregion" lassen sich beispielsweise im "Rahmenlehrplan Teil C Chemie" für Berlin/Brandenburg im Themenbereich 3.12 "Ester – Vielfalt der Produkte aus Alkoholen und Säuren" der Klassenstufe 10 verorten (Senatsverwaltung für Bildung, Jugend und Familie, 2015). Sie fokussieren das "Basiskonzept der chemischen Reaktion". Nach dem Spielen beider Teilszenarien sollten die Lernenden ein erstes Verständnis dafür entwickelt haben, dass nicht alle chemischen Reaktionen vollständig ablaufen und sich einige Reaktionen umkehren lassen. Die Faktoren zur Beeinflussung des Gleichgewichts zwischen Hin- und Rückreaktion werden in den Lernumgebungen nicht thematisiert. Zudem werden zwar Summenformeln und funktionelle Gruppen der eingesetzten Stoffe benannt, auf konkrete Reaktionsgleichungen wird aber zugunsten allgemeiner Wortgleichungen verzichtet. Es empfiehlt sich, entweder nach dem Spielen beider Teilszenarien oder nach jedem einzelnen Teilszenario eine Sicherungsphase durchzuführen, in der allgemeine Erkenntnisse entsprechend festgehalten werden. Denkbar wäre auch ein Einsatz in der Qualifikationsphase (11) in den Themenbereichen 3.1.4 "Grundlagen der organischen Chemie", 3.1.5 "Organische Stoffe als Energielieferanten" oder in der Sekundarstufe II (12–13) als Einstieg in den Themenbereich "3.2.5 Chemisches Gleichgewicht" (Senatsverwaltung für Bildung, Jugend und Familie Berlin; Ministerium für Bildung, Jugend und Sport des Landes Brandenburg, 2021), um die "Umkehrbarkeit chemischer Reaktionen als Voraussetzung für das chemische Gleichgewicht" aufzugreifen. Erforderliche digitale Kompetenzen der Lehrenden (nach dem DigCompEdu-Modell) Die Lehrenden sollten in der Lage sein, die digitale Lernumgebung so in ihren Unterricht einzubetten und mit entsprechenden Sicherungsphasen thematisch nachzubereiten, dass die Lernenden einen möglichst großen Lerneffekt haben. Es wird empfohlen, die Szenarien wenigstens einmal selbst getestet oder im besten Fall komplett durchlaufen zu haben (3.1 Lehren). Zudem ist ein grundlegendes Verständnis für den Umgang mit dem jeweiligen Endgerät (Computer, Mobiles Device) nötig. Da die Umgebung im Browser ausgeführt wird, sollte das jeweilige Gerät eine Verbindung mit dem Internet aufweisen. Die Lehrenden sollten gewährleisten, dass allen Lernenden unabhängig von ihrer digitalen Affinität zu den eingesetzten Endgeräten oder von anderen besonderen Bedürfnissen ein Zugang zu der digitalen Lernumgebung ermöglicht wird (5.1 Digitale Teilhabe). Sofern mit dem „Tutorial“ begonnen wird, eignet sich die Lernumgebung grundsätzlich für Selbstgesteuertes Lernen (3.4), welches je nach individuellem Bedarf der Lernenden durch die Lehrenden unterstützt werden kann (5.2 Differenzierung und Individualisierung). Fachkompetenz Die Schülerinnen und Schüler beschreiben chemische Reaktionen anhand von Wortgleichungen. beschreiben Vorgänge, bei denen sich Stoffeigenschaften ändern. beschreiben die Umkehrbarkeit chemischer Reaktionen. 21st Century Skills Die Schülerinnen und Schüler erlangen/festigen Teilkompetenzen des kritischen Denkens. lösen schrittweise Probleme in authentischen Kontexten. Medienkompetenz Die Schülerinnen und Schüler analysieren, interpretieren und bewerten Informationen und Daten kritisch. arbeiten selbstständig mit einer digitalen spielbasierten Lernumgebung. verwenden eine strukturierte Sequenz zur Lösung eines Problems.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Drug Targets: Angriffspunkte für Medikamente

Unterrichtseinheit

In dieser Unterrichtssequenz zum Thema "Drug Targets" erarbeiten die Schülerinnen und Schüler anhand eines Videos mögliche Angriffspunkte von Medikamenten und die Entwicklung von Drug Design über die letzten Jahrzehnte. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Schülerinnen und Schüler lernen anhand dieses Unterrichtsmaterials Wirkungsweisen bestimmter Medikamente kennen und gewinnen so ein umfassendes Bild von verschiedenen Wirkungsmöglichkeiten. Außerdem reflektieren sie die Entwicklung dieses Forschungsgebietes in den letzten Jahrzehnten und setzen sich mit zukünftigen Ansätzen auseinander. Die nötigen Informationen beziehen die Lernenden aus einem Lehrvideo. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Drug Targets im Unterricht Medikamente sind heutzutage allgegenwärtig. Man kennt unzählige Medikamente, die auf unterschiedlichste Weise und gegen verschiedenste Erkrankungen wirken. Die hohe Gesellschafts- und Alltagsrelevanz legitimiert eine Thematisierung der Medikamentenentwicklung und -wirkung im Unterricht der naturwissenschaftlichen Fächer, beispielsweise in einer Unterrichtseinheit zur Mikrobiologie oder Enzymatik im Fach Biologie oder zur organischen Chemie im Fach Chemie. Vorkenntnisse Die Schülerinnen und Schüler sollten den Aufbau der DNA sowie die Bedeutung der Basenpaarung kennen. Allgemeine Grundkenntnisse zu Enzymen sowie ihrer Wirkung und Bedeutung im Körper sind notwendig, da viele Medikamente durch das Hemmen oder Blockieren von Enzymen wirken. Didaktische Analyse Medikamente, mit denen Krankheiten wie Krebs oder Aids erfolgreich behandelt werden können, gibt es nur wenige. Das macht viele Schülerinnen und Schüler betroffen. Die Betroffenheit und die Fragen der Lernenden können im Einstieg aufgegriffen werden, sodass das Interesse an dieser Unterrichtssequenz geweckt wird. Anschließend lernen die Schülerinnen und Schüler an konkreten Beispielen Wirkungsmechanismen von Medikamenten kennen, die dann abstrahiert werden können. Die Beschäftigung mit der bisherigen und zukünftigen Entwicklung auf diesem Forschungsgebiet lässt die Lernenden eine respektvolle Haltung entwickeln. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz sind die Schülerinnen und Schüler zu Austausch und Diskussion angehalten. Das Video als Medium erhält das durch den Einstieg geweckte Interesse am Thema aufrecht. Um mögliche Schwierigkeiten bei der Bearbeitung der Arbeitsaufträge zu vermeiden, wird als Sozialform die Partnerarbeit empfohlen. Die Aufgaben können aber auch in Einzelarbeit gelöst werden, wobei das individuelle Lerntempo berücksichtigt wird. Um die Interessen der Lernenden zu berücksichtigen, werden drei Möglichkeiten zur Vertiefung oder Weiterarbeit gegeben, aus denen die Lehrkraft bei Bedarf wählen kann. Fachkompetenz Die Schülerinnen und Schüler erarbeiten beispielhaft Wirkungsmechanismen bestimmter Medikamente und gewinnen so einen Einblick in verschiedene Möglichkeiten auf dem Gebiet der Drug Targets. vergleichen Drug Targets und Drug Design früher und heute. nennen Vor- und Nachteile eines zukünftigen Ansatzes bezüglich Drug Targets. Medienkompetenz Die Schülerinnen und Schüler können das in einem Video dargestellte Wissen nach Relevanz filtern und strukturiert wiedergeben. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken ihr Selbstkonzept durch die geschützte Atmosphäre in den Partnerarbeitsphasen. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Bioethanol: Herstellung und Anwendungen

Unterrichtseinheit

Die Nutzung von nachwachsenden Rohstoffen für die Erzeugung von Biokraftstoffen, Biogas und Festbrennstoffen ist vor dem Hintergrund der internationalen Klimaschutzbemühungen ein aktuelles Thema. Dies besonders, weil der Anteil erneuerbarer Energien am Endenergieverbrauch steigen muss, wenn der noch große Anteil der fossilen Energieträger zurückgehen soll.Es ist zwar nicht kurz vor zwölf, dennoch müssen wir uns intensiv damit auseinandersetzen, welche Energien außer den fossilen als Alternativen für eine sichere Zukunft zur Verfügung stehen. Bei diesen Überlegungen darf natürlich auch nicht die globale Klimaproblematik außer Acht gelassen werden. Ein Lösungsvorschlag ist Bioethanol. Bereits heute ist in Deutschland gesetzlich geregelt, dass dieser aus Pflanzen hergestellte Kraftstoff dem herkömmlichen Benzin beigemischt werden muss. Doch wer ist eigentlich auf die Idee gekommen, ausgerechnet Alkohol als Kraftstoff zu verwenden? Woraus und wie erfolgt die Herstellung in Deutschland? Ist das Ganze ökonomisch sowie ökologisch tragbar? Welches Potenzial steckt in Bioethanol? In dieser Unterrichtsreihe erarbeiten die Schülerinnen und Schüler in einem Lernzirkel viel Interessantes rund um das Thema Bioethanol. Relevanz des Themas im Unterricht Nachhaltiges Handeln wird in Bezug auf die uns zur Verfügung stehenden Energieressourcen immer wichtiger. Fossile Lagerstätten von Energieträgern sind nicht unbegrenzt vorhanden, zudem erwächst aus der Verbrennung fossiler Brennstoffe eine zunehmende Klimaproblematik. Daher bedarf es neuer Wege, Kraftstoffe bereitzustellen, und das möglichst umweltfreundlich. Eine Möglichkeit kann hier das Bioethanol sein. Was in den USA und Brasilien begonnen hat, wird seit Beginn des 21. Jahrhunderts im großen Stil betrieben: die Herstellung des klimaneutralen Kraftstoffs aus nachwachsenden Rohstoffen wie zum Beispiel Getreide und Zuckerrüben. Bei der Herstellung von Bioethanol entstehen in großem Umfang zahlreiche Nebenprodukte (auch Kuppel- oder Koppelprodukte genannt), wie Futter- und Düngemittel. Wirtschaftlich und politisch aktuell und lebensnah Mehrere wissenschaftliche Arbeitsgruppen arbeiten zudem an Optimierungsmöglichkeiten im Herstellungsprozess sowie an der Nutzung anderer Ausgangsstoffe, wie zum Beispiel Lebensmittelabfälle. Dies zeigt, dass "Biosprit" in den Augen vieler Wissenschaftler eine Zukunft hat. Auch politisch ist das Thema Bioethanol aktuell, da zum Beispiel die obligatorische Beimischung zu fossilem Ottokraftstoff gesetzlich geregelt ist. Die wirtschaftliche und politische Aktualität wie auch die Verknüpfung zum Alltag der Schülerinnen und Schüler (die eigene Mobilität) können die Motivation steigern. Lehrplanbezug und Voraussetzungen Die Einordnung des Themas in die Lehrpläne der verschiedenen Schulformen wird dargestellt. Außerdem erhalten Sie wertvolle Tipps zur technischen Umsetzung. Hinweise zum Unterrichtsverlauf Die Unterrichtseinheit ist in Form eines Lernzirkels aufgebaut, den die Schülerinnen und Schüler in Kleingruppen durchlaufen. Fachkompetenz Die Schülerinnen und Schüler sollen wichtige Stationen in der Geschichte des Bioethanols in einem Zeitstrahl einordnen. die Herstellung von Bioethanol erklären. Haupt- und Nebenprodukte der Bioethanolproduktion nennen. experimentelle Untersuchungen zur Fermentation durchführen. in selbst erhobenen oder recherchierten Daten Trends, Strukturen und Beziehungen erklären und geeignete Schlussfolgerungen ziehen. Medienkompetenz Die Schülerinnen und Schüler sollen unterschiedliche Textquellen für die Recherchen zum Thema Bioethanol nutzen. fachlich korrekt und folgerichtig argumentieren. Sozialkompetenz Die Schülerinnen und Schüler sollen die Arbeit im Team strukturieren und planen. Thema Bioethanol - Herstellung und Anwendungen Autor Rolf Goldstein Fächer Biologie, Chemie, Geographie, Politik/SoWi Zielgruppe Klasse 9 oder 10 Schulformen Hauptschule, Realschule, Gymnasium Zeitraum 4 Schulstunden Technische Voraussetzungen ein Computer mit Internetzugang pro Kleingruppe Ansatzpunkte Eine direkte Einordnung in die Lehrpläne gestaltet sich schwierig. Jedoch lassen sich für die verschiedenen Unterrichtsfächer Ansatzpunkte finden: Biologie Stoffkreisläufe, Treibhauseffekt, globale Umweltfragen, nachwachsende Rohstoffe Chemie Alkoholische Gärung, Green Chemistry, nachwachsende Rohstoffe Geographie Raumprägung durch die Wirtschaft, Politik und Gesellschaft Politik/SoWi Ökonomie und Arbeitswelt Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Hauptschule, Jahrgangsstufen 5 bis 9/10. 2002. Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Realschule, Jahrgangsstufen 5 bis 10. 2002. Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Gymnasialer Bildungsgang, Jahrgangsstufen 8 bis 13. Sekretariat der Ständigen Konferenz der Länder in der Bundesrepublik Deutschland (Herausgeber): Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. München/Neuwied: Luchterhand, 2005. Technische Voraussetzungen Die zur Erfüllung der Arbeitsaufträge relevanten Links führen zu HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Pro Kleingruppe sollte mindestens ein Computer mit Internetzugang vorhanden sein. Sollte ein Programm zur Erstellung von MindMaps genutzt werden, kann beispielsweise das Programm XMind Verwendung finden (zum Beispiel kostenlos zu beziehen unter www.xmind.net/downloads ). Es lässt sich intuitiv bedienen und liefert anschauliche Ergebnisse. Fachliche Voraussetzungen Die Schülerinnen und Schüler sollten im Unterricht bereits Stoffkreisläufe kennengelernt haben. Auch der Umgang mit Infografiken und anderen Schaubildern sollte bekannt sein. Kenntnisse über die chemischen Grundlagen von Ethanol sind von Vorteil, aber nicht zwingend notwendig. Die Medienkompetenz der Schülerinnen und Schüler sollte bereits soweit ausgebildet sein, dass sie in der Lage sind, eigenständig und zielorientiert im Internet zu recherchieren sowie ein Tabellenkalkulationsprogramm mit seinen Grundfunktionen zu bedienen. Blitzlicht, stummer Impuls oder Video Zunächst werden in einem kurzen Blitzlicht Schüleräußerungen zum Thema "Bioethanol" an der Tafel festgehalten. Alternativ ist auch ein stummer Impuls durch ein Bild möglich, um den Schülerinnen und Schülern direkt einen Kontext aus dem eigenen Alltag anzubieten. Kurzer Überblick Im Anschluss daran wird den Schülerinnen und Schülern kurz ein Überblick über die Unterrichtseinheit gegeben. Diese Einstiegsphase sollte nicht länger als zehn Minuten dauern. Versuch zur alkoholischen Gärung Anschließend teilen sich die Schülerinnen und Schüler in Kleingruppen auf und führen das Schülerexperiment zur Fermentation durch (siehe Material 1). Ob Bioethanol entstanden ist, werden die Schülerinnen und Schüler in der abschließenden Stunde der Unterrichtseinheit überprüfen. Das Experiment kann auch als gemeinsame Hausaufgabe in die häusliche Küche verlegt werden, um in der Schule Zeit zu sparen. Die Schülerinnen und Schüler müssen dann lediglich zur folgenden Stunde ihre Ansätze mitbringen. Vorbereitungen Kopieren Sie alle Arbeitsblätter bitte in Klassenstärke. Gehen Sie mit den Schülerinnen und Schülern zu Beginn der Stunde den Laufzettel durch und erinnern Sie sie auch an allgemeine Verhaltensregeln bei einem Lernzirkel. Vergessen Sie auch nicht, den zeitlichen Rahmen abzustecken, damit alle Gruppen die Pflichtstationen erledigen können. Bei der Gruppenorganisation können Rollenkarten helfen, um die Teamorganisation zu erleichtern. An einem gesonderten Tisch im Raum werden die Arbeitsblätter zu den Stationen deponiert und bei Bedarf geholt. Natürlich steht es Ihnen frei, die Arbeitsblätter auch digital zu verwenden. Selbstgesteuertes Arbeiten Die Arbeit im Lernzirkel erfolgt in den Schülergruppen eigenständig und überwiegend selbstgesteuert. Die Schülerinnen und Schüler überprüfen ihre Ergebnisse selbsttätig am Lehrertisch nach Ihrer Freigabe. Der Lehrkraft kommt in dieser Phase die Rolle eines Lerncoaches zu. Nachweis von Alkohol im Gäransatz Im ersten Teil dieser Stunde überprüfen die Schülerinnen und Schüler in Kleingruppen mit einem sehr empfindlichen Nachweis, ob bei der Fermentation Alkohol entstanden ist. Abschließend tragen die Schülerinnen und Schüler in einem Blitzlicht ihren Lernzuwachs zusammen. Mögliche Fragen können sein: Was wusste ich schon? Was war mir neu? Ist Bioethanol ein möglicher Energieträger für die Zukunft? Anfertigung einer MindMap Alternativ oder auch zusätzlich können die Schülerinnen und Schüler nach Durchlauf des Lernzirkels eine MindMap anfertigen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Rund um den Wasserstoff

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Funktionsweise einer Brennstoffzelle kennen, wobei auf die verschiedenen Herstellungsverfahren des Wasserstoffs in Bezug auf die Nachhaltigkeit eingegangen wird. Außerdem wird Wasserstoff hinsichtlich einer möglichen zukünftigen Antriebstechnologie beleuchtet. Diese Unterrichtseinheit kann in den Rahmenlehrplan der Sekundarstufe II eingeordnet werden. Thematisch orientiert sie sich dabei an den aktuell auch politisch stark diskutierten Themen der Nachhaltigkeit und der Sicherung der Energieversorgung. Im Detail wird hier auf elektrochemische Prozesse im Alltag und Energiewandlungssysteme eingegangen. Besonderes Augenmerk wird dabei auf die Funktionsweise der Wasserstoffbrennstoffzelle für Personenkraftwagen gelegt. Die schon lange bekannte Elektrolyse von Wasser, als ein zukünftig wichtiges Herstellungsverfahren des Wasserstoffs, wird in diesem Zusammenhang ebenfalls betrachtet. Die Aspekte der Nachhaltigkeit werden in weiterführenden Aufgabenstellungen diskutiert. Hierbei lernen die Schülerinnen und Schüler verschiedene Herstellungsverfahren in Hinblick auf die Umweltverträglichkeit zu bewerten. In einigen Aufgabenstellungen wird dabei die eigene Recherchefähigkeit entwickelt und verbessert. Energieträger der Zukunft Vor allem hinsichtlich des stetig steigenden Bedarfs an Energie und der Aktualität in der Gesellschaft gewinnt Wasserstoff als möglicher Energieträger der Zukunft an Relevanz. Die fossilen Brennstoffe stehen zunehmend in der Kritik, weswegen eine frühzeitige Sensibilisierung der Schülerinnen und Schüler für dieses Thema wichtig ist. Hinsichtlich der Dringlichkeit der Energiewende und dem damit verbundenen Vorsatz der deutschen Bundesregierung, die Kohlenstoffdioxidemissionen zu reduzieren, sollte diese Thematik ebenfalls in den Schulunterricht eingebunden werden. Curriculum und Vorwissen Die Unterrichtseinheit ist ideal für den Chemieunterricht der Sekundarstufe II geeignet. Sie kann für den Kontext "Energie und chemische Reaktionen" genutzt werden und bezieht sich dabei vor allem auf die Rahmenlehrpläne der Länder Berlin, Brandenburg und Nordrhein-Westfalen. Die Einheit kann aber ebenso fächerübergreifend als Exkurs im Fach Physik eingesetzt werden. Für die Bearbeitung der Aufgaben sollte ein gewisses chemisches Grundlagen-Wissen, wie beispielsweise das Aufstellen von Reaktionsgleichungen sowie eine grundlegende textsortenspezifische Lesekompetenz von Fachtexten, vorhanden sein. Weiterhin sind keine Vorkenntnisse notwendig, da die Arbeitsblätter relevante Informationen zur Bearbeitung der Aufgaben liefern. Unterrichtsablauf und Lehrinhalte In der ersten Doppelstunde wird zunächst in das Thema Wasserstoff eingeleitet, wobei in erster Linie auf die Darstellung im Labor sowie die Herstellung durch Elektrolyse von Wasser eingegangen wird. Wahlweise kann hier auch der Hofmannsche Zersetzungsapparat besprochen werden. Im weiteren Verlauf werden verschiedene großtechnische Herstellungsmethoden in Hinblick auf den Umwelteinfluss besprochen. Insbesondere sollte dabei die kritische Betrachtung der Nutzung von Energie behandelt werden. Im Anschluss erarbeiten sich die Schülerinnen und Schüler allgemeine Informationen über die Wasserstoff-Brennstoffzelle in Still- oder Paararbeit. An dieser Stelle kann die Funktionsweise anhand eines veranschaulichenden Videos thematisiert werden. Schüleraktivierung und Binnendifferenzierung Die Unterrichtseinheit bietet ausreichend Möglichkeiten, darbietenden Unterricht und aktive Mitgestaltung durch Schülerinnen und Schüler zu variieren. Sie ist realitätsnah gestaltet und bietet außerdem höchste Aktualität. Mögliche Differenzierung: Mit den Arbeitsaufträgen kann flexibel umgegangen werden. Es besteht die Möglichkeit, aus verschiedenen Schwierigkeitsstufen zu wählen und einzelne Aufgaben herauszunehmen oder als Hausaufgabe zu vergeben. Die Bewertungsaufgabe ( Arbeitsblatt 2 , Aufgabe 5) kann als Grundlage für eine methodische Diskussion herangezogen werden. Weiterführend zu dieser Unterrichtseinheit können Lithium-Ionen-Batterien als Pendant zur Brennstoffzelle oder weitere Energiespeicherformen thematisiert und ergänzt werden. Fachkompetenz Die Schülerinnen und Schüler beschreiben die Vorgänge bei der Wasserelektrolyse. lernen die komplexe Funktionsweise einer Brennstoffzelle kennen. bewerten die Relevanz der angewandten Chemie hinsichtlich der Energieversorgung. können Phänomene der Stoff- und Energieumwandlung bei chemischen Reaktionen erklären. Medienkompetenz Die Schülerinnen und Schüler stärken ihre Fähigkeit, den Computer für die Recherche zu nutzen. Sozialkompetenz Die Schülerinnen und Schüler können kritisch hinterfragen. können in einer Diskussion das Für und Wider betrachten. können ihr Wissen auf fächerübergreifende Problemstellungen anwenden.

  • Chemie
  • Sekundarstufe II

Bau eines Feuerlöschers

Unterrichtseinheit

Das Löschen eines Feuers durch Ausschalten einer der Faktoren, die zu seinem Entstehen notwendig sind, stellt eine ideale Verknüpfung zu Themen wie „Nachhaltiger Umgang mit Ressourcen – Luft zum Atmen“ oder „Zündender Funke und flammendes Inferno“ her.Versuche zum Bau eines Feuerlöschers werden herkömmlicherweise mit Glasgeräten und exakten Vorgaben durchgeführt. Setzt man dazu jedoch medizinische Spritzentechnik mit entsprechenden Plastikmaterialien ein, eignet sich das Thema Feuerlöscher hervorragend für ein so genanntes "Egg Race". Bei dieser Unterrichtsform beschäftigen sich die Schülergruppen mit überschaubaren Problemsituationen, für die sie unter der Beachtung von Sicherheitsregeln eigenständig Lösungswege planen und beschreiten. Aus dem bisherigen Unterricht wissen die Schülerinnen und Schüler bereits, dass Kohlenstoffdioxid erstickend wirkt und dass dieses Gas beim Lösen einer Brausetablette in Wasser entsteht. Wenn sie zudem im Umgang mit medizintechnischen Kunststoffspritzen geübt sind, können sie ohne vorgegebene Versuchsbeschreibung selbstständig einen kleinen Feuerlöscher konstruieren und erproben. Neben realen Experimenten kommt auch ein vom SWR entwickelter Online-Brandsimulator zum Einsatz, der auch Bestandteil der CD-ROM ist. Abschluss des Themas "Luft" und Verbrennung Vor dem Bau eines Feuerlöschers nutzen die Lernenden Informationen und einen Brandsimulator aus dem SWR-Online-Angebot "Warum löscht Wasser Feuer?". Die Egg-Race-Methode Allgemeine Hinweise zur Unterrichtsform, bei der die Lernenden Experimente selbstständig entwickeln und so eigene Wege finden können. Hinweise zum Unterrichtsverlauf Die Schülerinnen und Schüler entwickeln mit medizinischer Spritzentechnik einen kleinen Schaumlöscher. Die Schülerinnen und Schüler sollen im Internet Informationen zur Brandlöschung recherchieren und dabei insbesondere die SWR-Materialien zum Thema "Warum löscht Wasser Feuer?" nutzen. gemäß der Bildungsstandards im Kompetenzbereich "Fachwissen" ihre Vorkenntnisse über Kohlenstoffdioxid, seine Herstellung aus einer Brausetablette, seine Dichte und seine erstickende Wirkung, verknüpfen, um einen Feuerlöscher zu konstruieren. im Kompetenzbereich "Erkenntnisgewinnung" einen Versuch vollkommen eigenständig entwickeln, durchführen und gegebenenfalls optimieren (E1-4). im Kompetenzbereich "Kommunikation" im Team Versuche durchführen und fachsprachlich korrekt präsentieren (K4, K7). Die hier vorgestellte Unterrichtseinheit zur Brandlöschung beschließt eine Reihe zum Thema "Luft und Verbrennung". Vor dem Bau eines eigenen Schaumlöschers werden, ausgehend vom Verbrennungsdreieck, die Bedingungen für ein Feuer noch einmal aufgegriffen. Daraus wird dann abgeleitet, wie man einen Brand löschen kann. Mithilfe der SWR-Online-Materialien zum Thema "Warum löscht Wasser Feuer?" recherchieren die Schülerinnen und Schüler in Kleingruppen, welche Löschmethoden es gibt und wie sie funktionieren. Dabei sortieren sie diese Methoden, zum Beispiel nach den Kategorien Sauerstoff entziehen. unter die Entzündungstemperatur kühlen. Brennstoff entziehen. Die SWR-Materialien bieten neben allgemeinen Informationen zu den Themen Feuer und Löschen (Geschichte, Löschmittel, Löschgeräte, ... ) auch einen Film sowie ein interaktives Online-Experiment. Dass man mit Wasser Brände löschen kann, ist jedem bekannt. Wie schnell ein kleiner Brand so intensiv wird, dass auch ein Gartenschlauch nicht mehr genügend Wasser zum Löschen liefern kann, lässt sich mit einer interaktiven Feuerlöschsimulation ermitteln. Die Simulation basiert auf der Annahme, dass der Hauptlöscheffekt des Wassers auf dem Kühlungseffekt beim Verdampfen beruht. Etwa 2.600 Kilowatt beträgt die theoretische Kühlleistung von 60 Litern Wasser pro Minute. In der Brandbekämpfungspraxis muss jedoch mit der etwa dreifachen Wassermenge gerechnet werden, da unter realen Bedingungen ein Großteil des Wassers den Brandherd nicht erreicht und somit auch nicht zur Kühlung beitragen kann. Tab. 1 gibt einen Überblick über den Zusammenhang zwischen Wassermenge und tatsächlich erreichter Kühlleistung bei der Brandbekämpfung. Tab. 1 Wassermenge Kühlleistung 50 Liter / Minute 700 kW 100 Liter / Minute 1.400 kW 200 Liter / Minute 2.800 kW 300 Liter / Minute 4.200 kW 550 Liter / Minute 7.700 kW Mit dem interaktiven Experiment kann die Entwicklung von vier verschiedenen Brandsituationen simuliert werden (Kaminfeuer, Matratzenbrand, brennendes Stapelbett und Kioskbrand). Während der Brandfilm abläuft (Abb. 1, Platzhalter bitte anklicken) - kann, nach der Wahl einer Löschwassermenge - jederzeit ein Löschversuch unternommen werden. Eine Effizienzanalyse gibt danach Auskunft, ob zuviel oder zu wenig Wasser eingesetzt wurde. Letztlich kann noch auf richtiges und falsches Löschen hingewiesen werden - mitunter gibt es in den Klassen Jugendfeuerwehrleute als Experten, die dazu berichten können. Zum Abschluss der Sequenz zum Thema "Luft und Verbrennung" bauen die Schülerinnen und Schüler im Rahmen eines "Egg Race" dann einen eigenen Feuerlöscher. "Normale" Schülerexperimente dienen in der Praxis häufig dem Erwerb eng vorgegebener Ziele und sollen aus zeitökonomischen Gründen meist direkt erfolgreich verlaufen. Dazu werden Fehlerquellen bereits in der Planungsphase so weit wie möglich ausgeschlossen. Dadurch erhalten die Schülerinnen und Schüler jedoch viel zu selten die Gelegenheit, eigene Lösungswege zu beschreiten, sich selbst zu korrigieren und daraus zu lernen - was aber dem eigentlichen naturwissenschaftlichen Arbeiten entspräche. Genau dies gewährleistet die so genannte Egg-Race-Methode. Die Schülergruppen erhalten bei dieser Methode überschaubare Problemstellungen, für die sie unter der Beachtung von Sicherheitsregeln eigenständig Lösungswege planen und beschreiten sollten. Das bedeutet, dass die Schülerinnen und Schüler auch Wege gehen können, die eventuell nicht oder nur teilweise zur Lösung des Problems führen. Da sie im weiteren Verlauf ihre Vorgehensweise eigenständig reflektieren und optimieren können, führen solche Fehlplanungen aber nicht zu Frustrationen. Egg Races verknüpfen Alltagserfahrungen und Fachwissen zu kreativem Denken und praktischem Handeln. nutzen innerhalb einer Gruppe Kooperation sowie die Konkurrenz zu den anderen Gruppen als Motivation und ermöglichen zugleich soziales Lernen. geben den Schülerinnen und Schülern Gelegenheit, Probleme selbstständig zu lösen und eigene Wege zu finden. Hans Joachim Gärtner und Volker Scharf Chemische "Egg Races" in Theorie und Praxis, Studienmaterialien des SIL Speyer Band 144, Boppard/Speyer 1994 Hans Joachim Gärtner Kreativität und Wettbewerb. Chemisches Egg-Racing in der Sekundarstufe I, NiU Chemie, 6/1997, S. 17-20 Gregor von Borstel und Andreas Böhm Bau eines Schaumlöschers mit medizintechnischen Geräten, NiU Chemie Nr. 74, 2003, S. 42-44 Hans Joachim Gärtner und Gregor von Borstel Kohlenstoffdioxid und Wettbewerb, "Egg-Races" in der Sekundarstufe I, NiU Chemie Nr. 78, 2003, S. 19-21 Die Grundstruktur der Stunde ist sehr einfach: Die Schülerinnen und Schüler erhalten die Aufgabe, mit vorgegebenen Materialien einen Feuerlöscher zu bauen und bearbeiten dieses Problem anschließend eigenständig in Teams mit zwei bis drei Personen. Die Aufgabe der Lehrperson besteht zunächst nur darin, die Problemstellung und die Rahmenbedingungen für die Experimentierphase festzulegen: Welche Materialien dürfen die Schülergruppen verwenden? Welche Bedingungen muss das Versuchsergebnis erfüllen? Welche Verhaltensregeln müssen von den Schülergruppen eingehalten werden? Experimentierphase In der anschließenden Experimentierphase sollte sich die Lehrperson zurückhalten und die Ansätze der Schülergruppen nur auf Sicherheit überprüfen, nicht aber auf Funktionalität. Entscheidend ist, dass die Planung der Versuche in den Schülergruppen erfolgt. Auch wenn die Lehrperson erkennt, dass der eingeschlagene Weg nicht unbedingt zur Lösung führt, wird dies nicht vorab diskutiert. Vielmehr sollen die Schülerinnen und Schüler die Möglichkeit haben, Optimierungen eigenständig durchzuführen. Lösungsbeispiel Eine Spritze kann mit einer Brausetablette und Spüli befüllt werden. Dann wird Wasser hineingezogen und der Kolben nach einiger Zeit arretiert (Abb. 2). Damit es keine Wasserschlacht gibt, wird die Aufgabe so eingeschränkt, dass man zur Lösung des Problems den Kolben nur ziehen, aber nicht drücken darf (siehe "feuerloescher_aufgabe.pdf"). Wenn man dann durch Zuhalten oder kurzzeitiges Verschließen per Dreiwege- oder Absperrhahn einen Druck in der Spritze aufbaut, kann man "mühelos" aus größerer Entfernung eine Kerze löschen. Präsentation In der abschließenden Präsentationsphase stellen die Schülergruppen ihre Ergebnisse vor und diskutieren sie im Plenum. Verschiedene Lösungswege Wir haben das Egg Race schon häufig mit Schülerinnen und Schülern und auch Lehrkräften in Fortbildungen und Workshops durchgeführt. Die Lösungswege und Ergebnisse sind vielfältig. Einige Gruppen mischen alle Substanzen in einer Spritze und benutzten diverse Schlauchverbindungen oder Hähne, um einen Druck aufzubauen. Andere mischen über eine Hahnbank die Substanzen durch Einspritzen von Wasser oder Spüli in die Spritze mit der Brausetablette oder greifen auch auf selbstgebaute Gasentwickler im Reagenzglas zurück. Hohe Motivation Insgesamt zeigen die Erfahrungen, dass alle Schülerinnen und Schüler in der Lage sind, die Aufgabe eigenständig zu lösen. Damit wenden sie bereits Erlerntes erfolgreich an und festigen so ihr Wissen. Den meisten Gruppen macht die Arbeit zudem schlichtweg Spaß. Sie erleben, dass nicht gleich der erste Versuch zum Erfolg führt, lassen sich davon aber nicht entmutigen. Dadurch erhält der Chemieunterricht eine stark positive Konnotation.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Ein Evolutionspfad durch das Schulgebäude

Unterrichtseinheit

Die Evolution des Universums, der Ursprung und die Entwicklung des Lebens auf der Erde – das sind die Themen des hier vorgestellten Evolutionspfads. In dem fächer- und jahrgangsstufenübergreifenden Projekt entwickeln Schülerinnen und Schüler im Rahmen von Referaten, Fach- oder Projektarbeiten Beiträge zu wichtigen "Meilensteinen" der letzten 14 Milliarden Jahre. Die evolutionären Zeiträume sind kaum vorstellbar. Der Evolutionspfad des Gymnasiums am Stadtpark in Krefeld-Uerdingen soll das Unanschauliche jedoch anschaulich machen: Auf einer Länge von etwa 130 Metern wird die Geschichte des Universums dargestellt. Wichtige und interessante Kapitel - wie zum Beispiel die Entstehung des Planetensystems oder das Auftreten der ersten Vögel - sollen dabei mit Exponaten und Präsentationen von Schülerinnen und Schülern "beleuchtet" werden. Entlang des Pfades durch das Schulgebäude erstreckt sich ein 30 Zentimeter hoher Wandfries, der die Zeiträume in zwei Maßstäben darstellt: Die unvorstellbar großen Realzeit-Zahlen in Jahren werden ergänzt durch Zeitangaben, die die Geschichte des Universums - in Anlehnung an die Schöpfungsgeschichte - auf einen Zeitraum von sechs Tagen verdichten. Das Projekt wird durch die Bayer Foundation gefördert. Wie jede Projektarbeit besitzt die Arbeit an dem Evolutionspfad einen fächerverbindenden Charakter und einen starken Kontextbezug. Neben der Biologie und der Physik sind die Chemie und die Geographie beteiligt. Auch astronomische und astrophysikalische Themen fließen zwangsläufig in die Geschichte des Universums ein. Schülerinnen und Schüler bearbeiten die Themen in Form von Referaten oder auch Facharbeiten. Sie erstellen Informationstafeln oder präsentieren ihre Arbeiten in einem digitalen Bilderrahmen, der in den Evolutionspfad integriert wird. Dadurch kommt diesen Schülerleistungen auch eine besondere Wertschätzung zu. Das Projekt wird ständig fortgeführt und bleibt so "lebendig". Allgemeine Hinweise Als weitere Bausteine des Evolutionspfads dienen Ausstellungsobjekte. Individuelle Förderung und Schulung der Teamfähigkeit spielen bei dem Projekt eine wichtige Rolle. Der Krefelder Evolutionspfad Die ersten Schülerarbeiten sowie die räumliche und zeitliche Einteilung des Krefelder Evolutionspfads werden hier vorgestellt. Die Schülerinnen und Schüler sollen in unterschiedlichen Quellen recherchieren und die Untersuchungsmethoden und Informationen kritisch auswerten. biologische Sachverhalte unter Verwendung der Fachsprache und mithilfe von geeigneten Modellen und Darstellungen beschreiben und veranschaulichen. ihre Arbeit - auch als Team - planen, strukturieren, kommunizieren und reflektieren. den Verlauf und die Ergebnisse ihrer Arbeit sach- und situationsgerecht sowie adressatenbezogen in Form von Texten, Skizzen, Zeichnungen, Tabellen oder Diagrammen dokumentieren und präsentieren - auch mithilfe elektronischer Medien. Thema Ein Evolutionspfad durch das Schulgebäude Autor Andreas Birmes Fächer Biologie, Physik, Chemie, Geographie, Astronomie Zielgruppe Sekundarstufe I und II Zeitraum ständige Fortführung, zum Beispiel durch Fach- und Projektarbeiten Technische Voraussetzungen Computer mit Internetanschluss, Drucker zum Ausdruck farbiger Folien, digitale Bilderrahmen Die hier angegebenen Quellen eignen sich für Recherchen zu Themen der Erdgeschichte und der biologischen Evolution: H. Burda, S. Begall (Herausgeber) Evolution - Ein Lese-Lehrbuch, Spektrum Akademischer Verlag, Heidelberg (2009) F. R. Paturi Die Chronik der Erde, Chronik Verlag, Augsburg (1996) P. D. Ward Der lange Atem des Nautilus, Spektrum Akademischer Verlag, Heidelberg (1998) Neben der Entwicklung eigener Beiträge (Informationstafeln, Präsentationen) planen die Lernenden auch die Anschaffung von Exponaten. Es ist vorgesehen, eine möglichst große Vielfalt unterschiedlicher Anschauungsobjekte zusammenzutragen, zum Beispiel unterschiedliche Arten von Fossilien (Abdrücke, Steinkerne, Bernsteineinschlüsse), Repliken und Modellen. Aber auch selbst gesammelte Fossilien und Gesteine sollen ausgestellt werden. Sie können zum Beispiel im Rahmen von Wandertagen oder auf Klassenfahrten gesammelt und bestimmt werden. Um Anregungen für die Präsentation der Ausstellung zu erhalten, ist auch der Besuch von Museen geplant. Als Produkte der Schülerarbeiten entsteht jeweils ein neues Exponat für die Ausstellung. Die Lernenden werden dabei in verschiedener Hinsicht individuell gefördert. Sie besitzen Freiheiten, was die Auswahl ihres Themas, die verwendeten Quellen und die Art der Präsentation (Texttafeln oder elektronische Präsentationen im digitalen Bilderrahmen) und die Anschaffung von Exponaten betrifft. Sie bestimmen ihr eigenes Arbeitstempo und arbeiten im Team zusammen. Dabei kann durch eine arbeitsteilige Vorgehensweise verschiedenen individuellen Fähigkeiten und Vorlieben Rechnung getragen werden. Dies betrifft insbesondere folgende Tätigkeiten: Quellenrecherche Die Recherche schließt neben der Sichtung allgemeiner fachlicher Informationen auch die Sichtung der Internetseiten von Museen und Ausgrabungsprojekten ein. Formulierung von Texten Alle Textbeiträge, die in den Evolutionspfad eingearbeitet werden, müssen adressatenbezogen formuliert, also informativ für die Mitschülerinnen und Mitschüler sein. Zudem müssen sie einheitlichen formalen Anforderungen genügen, zum Beispiel bezüglich der Textlänge und Textgliederung. Erstellung von Folien oder Präsentationen Die Präsentationen werden in einheitlichem Layout konzipiert und am Rechner erstellt. Handwerkliche Arbeiten Hierunter fallen vielfältige Tätigkeiten, wie zum Beispiel das Zurechtsägen und Aufhängen der Tafeln, das Aufkleben der Folien oder auch der Selbstbau von Modellen. Unser Projekt befindet sich noch im Anfangsstadium. Im Jahr 2010 wurden die beiden ersten Schülerarbeiten fertiggestellt. Das erste Ausstellungsstück ist die Replik des Flugsauriers Pterodactylus kochi aus dem Solnhofer Plattenkalk (Abb. 1, Platzhalter bitte anklicken). Zwei Schülerinnen der Jahrgangsstufe 13 haben die dazugehörigen Informationen für den Evolutionspfad recherchiert und aufbereitet. Außerdem entstand eine Präsentation zur Entstehung von Vielzellern. Dieses Thema war Gegenstand einer Facharbeit der Jahrgangsstufe 12 und wird in einer Zusammenfassung als Präsentation im digitalen Bilderrahmen gezeigt. Realzeit und Sechs-Tage-Woche Der Evolutionspfad erstreckt sich über drei Flure, deren Gesamtlänge etwa 130 Meter beträgt. Am letzten Flur befindet der Biologieraum. Um die großen Zeiträume der Evolutionsgeschichte für die Schülerinnen und Schüler erfahrbar und anschaulich darzustellen, haben wir eine lineare Zeiteinteilung gewählt und geben zwei Zeitmaßstäbe an: Neben den Jahreszahlen ist in Anlehnung an die biblische Schöpfungsgeschichte eine Einteilung der gesamten Entstehungsgeschichte in sechs Tagen dargestellt. "Zeitlupe" für die letzten 2,5 Milliarden Jahre Bei einem durchgängigen, linearen Maßstab nähme der biologisch wichtige Teil der Evolution ab dem Kambrium nur etwa sechs Meter ein. Um dieser Phase einen größeren Raum zu geben, haben wir den Maßstab ausnahmsweise gewechselt: Der erste Flur mit einer Länge von 45 Metern umfasst die ersten fünf Tage der Schöpfungsgeschichte und endet mit dem Archaikum (also vor 2,5 Milliarden Jahren). Danach ändert sich der Maßstab: Auf den übrigen beiden Fluren entspricht eine Strecke von 3,5 Metern einem Zeitraum von 100 Millionen Jahren (Tab. 1). Bezogen auf den sechs-Tage-Maßstab entspricht dies einer Stunde. Auf diese Weise entspricht der Biologieflur (24 Meter Länge) den letzten 720 Millionen Jahren. Die Phylogenese der Gattung Mensch erstreckt sich über eine Länge von nur 10 Zentimetern (zwei Minuten im sechs-Tage-Maßstab), wenn man das erste Auftreten der Gattung Homo auf den Zeitraum vor etwa drei Millionen Jahren datiert. Flur Länge (Meter) Zeitraum (Jahre) Strecke (Meter) entspricht in Jahren Sechs-Tage-Raster (Stunden) Klassenräume 45 14-2,5•10 9 9 2,5•10 9 24 Physik, Chemie 60 2.500-720•10 6 3,5 100•10 6 1 Biologie 24 720•10 6 bis heute 3,5 100•10 6 1

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Gehört dem Wasserstoffauto die Zukunft?

Unterrichtseinheit

In dieser Unterrichtseinheit informieren sich Schülerinnen und Schüler im Rahmen eines BlogQuests über Vor- und Nachteile der "Wasserstoff-Autos".Die Finanz- und Wirtschaftskrise breitet sich auch in Deutschland aus. Viele Unternehmen scheuen sich, in diesen schwierigen Zeiten Investitionen vorzunehmen. Diese sind aber, insbesondere was Zukunftstechnologien betrifft, sinnvoll und könnten einen Wettbewerbsvorteil verschaffen. Vor diesem Hintergrund beauftragt in der Unterrichtseinheit ein fiktiver Autokonzern mehrere Beratungsbüros (Schülerarbeitsgruppen) mit der Beantwortung der Frage: Gehört der Wasserstofftechnologie im Automobilbereich die Zukunft? Nach der Recherche auf vorgegebenen Webseiten und der Sichtung anderer Informationsquellen verfasst jede Schülergruppe eine Stellungnahme, mit der sie dem Konzernvorstand eine begründete Handlungsempfehlung gibt.Zurzeit dominiert die Finanz- und Wirtschaftskrise die Nachrichten. Niemand kann seriös das Ausmaß und das Ende der Krise vorhersagen. Vor der Krise wurde in der Öffentlichkeit viel über die Zukunft der Automobilindustrie diskutiert. Dass die Branche abgasärmere Autos zu bauen hat, wird allgemein erwartet. Aber die Frage, wie die Abgasreduzierung zu erreichen ist, ist noch offen. Die Wasserstofftechnologie ist eine Möglichkeit zur Kohlenstoffdioxid-Reduktion. Ob sie sich letztendlich durchsetzen wird, ist heute aber noch offen. In Krisenzeiten ist es für die Autoindustrie noch wichtiger, ihre geringen Ressourcen sinnvoll einzusetzen und nicht auf die falsche Technik zu setzen. Der hier vorgestellte BlogQuest lässt sich gut in den Regelunterricht einbauen, da in den Lehrplänen eigenständiges Recherchieren zu dem Thema Wasserstoff als zukünftige Energiequelle empfohlen wird. Der BlogQuest kann auch im Rahmen eines Projekt- oder Methodentages zum Einsatz kommen. Lehrplanbezug und Voraussetzungen Die Einordnung des WebQuests in die Lehrpläne von Hauptschule und Realschule sowie in die Typologie des WebQuest-Erfinders Bernie Dodge wird dargestellt. Hinweise zum Unterrichtsverlauf Zeiteinteilung und Ablauf der Unterrichtseinheit werden skizziert. Selbst gesteuertes, problemlösendes und (quellen-)kritisches Arbeiten stehen dabei im Mittelpunkt. Die Schülerinnen und Schüler sollen gemäß der Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss Wasserstoff mit seinen typischen Eigenschaften nennen und beschreiben. (F1.1) die Wortgleichung zur Verbrennungsreaktion von Wasserstoff erstellen. (F3.4) anhand der technischen Verwendung von Wasserstoff die Umkehrung chemischer Reaktionen beschreiben. (F3.5) am Beispiel der Wasserstofftechnologie Verknüpfungen zwischen gesellschaftlichen Entwicklungen und Erkenntnissen der Chemie aufzeigen. (E8) zum Thema Wasserstofftechnologie unterschiedliche Internetquellen für ihre Recherchen nutzen. (K1) die Ergebnisse ihrer Internetrecherche situationsgerecht und adressatenbezogen präsentieren. (K7) fachlich korrekt und folgerichtig argumentieren. (K8) ihre Arbeit als Team planen, strukturieren, reflektieren und präsentieren. (K10) einen Zweig der Automobilindustrie darstellen, in denen chemische Kenntnisse zum Thema Wasser und Wasserstoff bedeutsam sind. (B1) Thema Gehört dem Wasserstoffauto die Zukunft? - Eigenschaften, Herstellung und Verwendung von Wasserstoff Autoren Lars Jakob, Andre Steinmann; überarbeitet von Stephen Amann, Sven-Heiko Bubel, Rolf Goldstein Fach Chemie Zielgruppe Klasse 8, Haupt- und Realschule Zeitraum 5 Stunden Technische Voraussetzungen Computer mit Internetzugang in ausreichender Anzahl (idealerweise für Einzel- oder Partnerarbeit) 8.6 Wasser und Wasserstoff (Wasserstoff als möglicher Energieträger) Als Arbeitsmethode wird das eigenständige Informieren zum Thema "Wasserstoff als möglicher Energieträger" empfohlen. 8.6 Ohne Wasser kein Leben (Darstellung, Eigenschaften, Nachweis von Wasserstoff und Wasserstoff als Energiequelle der Zukunft) Als Arbeitsmethode wird die Internetrecherche zum Thema Energiequellen der Zukunft empfohlen. Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Hauptschule, Jahrgangsstufen 5 bis 9/10. 2002 Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Realschule, Jahrgangsstufen 5 bis 10. 2002 Sekretariat der Ständigen Konferenz der Länder in der Bundesrepublik Deutschland (Herausgeber): Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. München/Neuwied: Luchterhand, 2005 Technische Voraussetzungen Die BlogQuest-Materialien dieser Unterrichtseinheit sind HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Pro Kleingruppe sollte mindestens ein Computer mit Internetzugang vorhanden sein. Fachliche Voraussetzungen Wasser mit seiner chemischen Zusammensetzung wird direkt zuvor im Unterricht behandelt. Dabei wird Wasserstoff als Zersetzungsprodukt des Wassers eingeführt. Aufgabentyp "Entscheidungen treffen" WebQuests können nach ihrem Erfinder Bernie Dodge unterschiedlichen Aufgabentypen zugeteilt werden (WebQuest: A Taxonomy of Tasks, 2002). Der hier vorgestellte WebQuest lässt sich dem Aufgabentyp "Entscheidungen treffen" (Judgement Tasks) zuordnen. Dieser Aufgabentyp beinhaltet Kompetenzen aus anderen Aufgabentypen wie "Informationen zusammenstellen" (Compilation Tasks) und "Sachverhalte analysieren" (Analytical Tasks). Darüber hinaus ist aber eine Entscheidung zu treffen, die nachvollziehbar begründet werden muss. Hierbei wird nicht nur reproduziert, sondern problemlösend und (quellen-)kritisch gearbeitet. Gerade dieser Aufgabentyp ist sehr praxisnah und bereitet die Schülerinnen und Schüler auf das spätere Berufsleben oder Studium vor. BlogQuests: Erstellen von WebQuest mit Blogs Der hier vorgestellte WebQuest wurde mit einem Blog erstellt (daher auch die Bezeichnung BlogQuest). Ursprünglich handelt es sich bei Blogs um internetbasierte Tagebücher, in denen man Artikel verfassen und Seiten gestalten kann. Es gibt zahlreiche Provider, wie zum Beispiel Blogger, blog.de oder overblog. Der vorliegende BlogQuest wurde mithilfe von Wordpress erstellt. Die Arbeit mit dieser Online-Plattform ist nach einer kurzen Einarbeitungsphase sehr einfach, da man hier als Autorin oder Autor viele Optionen vorfindet, die von konventioneller Bürosoftware bekannt sind. Die Arbeitsoberfläche von Wordpress ist übersichtlich strukturiert, man benötigt für die Nutzung keine Programmierkenntnisse in HTML oder PHP. Und weil man den BlogQuest ohnehin online erstellt, entfällt auch der Schritt des Hochladens. Blogs ermöglichen somit eine schnelle und komfortable Erstellung von WeqQuests. Dies ist auch mit kostenfrei nutzbaren WebQuest-Generatoren möglich. Die mit diesen Werkzeugen erstellten HTML-Seiten muss man jedoch noch in einen verfügbaren Webspace hochladen. Lost in Hyperspace - BlogQuest über BlogQuests Der BlogQuest wurde 2008 im Rahmen eines geförderten e-Learning-Projekts an der Johann Wolfgang Goethe-Universität Frankfurt am Main durch Studierende entwickelt. Die Unterrichtseinheit richtet sich an Schülerinnen und Schüler der Haupt- und Realschule. Inhaltlich knüpft sie an das Thema "chemische Zusammensetzung von Wasser" an. Die Arbeit mit dem Blogquest gestaltet sich für die Lernenden recht einfach. Sie arbeiten sich, beginnend mit der "Einleitung", von Seite zu Seite vor. Eine entsprechende Erklärung für die Schülerinnen und Schüler befindet sich auch auf der Startseite des WebQuest-Dokuments. Sie arbeiten zunächst in Gruppen (vier bis fünf Personen) und informieren sich gemäß der von ihnen übernommenen Sachbearbeiterrollen mithilfe der vorgegebenen Webseiten (Herstellung und Eigenschaften von Wasserstoff, Verwendungsmöglichkeiten und Probleme). Sie können arbeitsteilig vorgehen (aus Zeitgründen empfohlen) oder die Aufgaben gemeinsam bearbeiten. Die Ergebnisse ihrer Recherchen tragen die einzelnen Kleingruppen in einem Exposé zusammen. Durch Einsatz der Schneeball-Methode wird mithilfe aller Schülervorschläge ein gemeinsames Endergebnis ausformuliert. In der ersten Unterrichtsphase werden die Arbeitsgruppen gebildet. Die Lernenden können selbst entscheiden, ob sie innerhalb eines Teams arbeitsteilig (empfohlen) oder arbeitsgleich arbeiten. Die Zuordnung der Schülerinnen und Schüler zu den Gruppen erfolgt per Los oder durch eine andere geeignete Methode. Die Lernenden müssen sich als Sachbearbeiterinnen und Sachbearbeiter über folgende Themen informieren: Herstellung und Eigenschaften von Wasserstoff, kurz und nur die wichtigsten (ein Lernender) Verwendungsmöglichkeiten von Wasserstoff (zwei Lernende) Probleme - Speicherung, Sicherheit (ein bis zwei Lernende) Selbst gesteuertes Arbeiten Die Arbeit mit dem BlogQuest erfolgt in den Schülergruppen eigenständig und überwiegend selbst gesteuert. Der Lehrkraft kommt die Rolle eines Lerncoaches zu. Ergänzende Materialien Für ihre jeweiligen Forschungsgebiete stehen den Schülerinnen und Schülern im Quellenbereich des BlogQuests ausgewählte Links (siehe oben) zur Verfügung. Darüber hinaus ist es wünschenswert, wenn die Lernenden selbstständig in der Schul- oder Stadtbibliothek weitere Materialien beschaffen. Die Schülerinnen und Schüler sollen in ihrer Empfehlung die wichtigsten Vor- und Nachteile der Wasserstofftechnologie aufführen. Außerdem ist die Handlungsempfehlung zu begründen. Das Exposé sollte auch einen generellen Ausblick auf die mögliche Zukunft der Wasserstofftechnologie in der Automobilbranche geben. Der Umfang des Beratungsexposés sollte zwei DIN-A4-Seiten (Schriftgröße 12, Zeilenabstand 1,5) nicht überschreiten. Die Präsentation erfolgt nach der Schneeball-Methode. Zunächst finden sich zwei je zwei Gruppen zusammen und präsentieren sich gegenseitig ihre Ergebnisse. Die Dauer der Vorträge sollte fünf Minuten nicht überschreiten. Anschließend diskutieren beide Gruppen ihre Ergebnisse und einigen sich auf ein gemeinsames Ergebnis. In einem zweiten Schritt finden sich jeweils zwei Großgruppen zusammen und verfahren analog. Am Ende stehen zwei Ergebnisse, die im Plenum diskutiert werden. Gemeinsam mit der Lehrkraft formuliert die Klasse das optimale Beratungskonzept für den Automobilkonzern.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I
ANZEIGE