• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Sinus, Kosinus und Tangens eines Winkels

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zum Thema "Sinus, Kosinus und Tangens" wird den Lernenden anhand von Java-Applets der Zusammenhang zwischen dem Winkel am Einheitskreis und den dazugehörigen trigonometrischen Funktionen schnell und verständlich nahe gebracht. Java-Applets ermöglichen Visualisierungs- und Darstellungsformen, die mit Papier und Bleistift, Tafel oder Folie, zu zeitaufwändig und kaum realisierbar sind. Beim Einsatz von Java-Applets lassen sich durch einfaches Ziehen mit der Maus geometrische Figuren und Winkelfunktionen zeichnen und beliebig verändern. Das in dieser Unterrichtseinheit verwendete Java-Applet von Walter Fendt ist ein sehr schönes Werkzeug, um den Lernenden den Zusammenhang zwischen dem Winkel am Einheitskreis und den dazugehörigen trigonometrischen Funktionen schnell und verständlich nahe zu bringen. Darüber hinaus lernen die Schülerinnen und Schüler selbstständig, entdeckend und kooperativ zu arbeiten. Bei Fehlern kann man einfach wieder von vorne beginnen. Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Die Schülerinnen und Schüler erkennen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen. benennen besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion. Eine Einführung der Sinus-, Kosinus- und Tangensfunktion kann natürlich auch über das eigenhändige Zeichnen erfolgen. Da die Trigonometrie jedoch anspruchsvoll und anschaulich behandelt werden kann und soll, bringt der Einsatz des Java-Applets neben einer Auflockerung des Unterrichts auch einen klaren Zeit- und Erkenntnisgewinn: Die Lernenden erkennen nämlich die wesentlichen Zusammenhänge mithilfe des Applets sehr schnell und müssen sich nicht mit zeitaufwändigen Zeichnungen aufhalten, bei denen der Arbeitsaufwand in keinem günstigen Verhältnis zu den so erarbeiteten Ergebnissen steht. Darüber hinaus ist die Nutzung von Java-Applets äußerst einprägsam, so dass Sie in Ihrem Unterricht nicht darauf verzichten sollten! Bei passenden Aufgabenstellungen lernen die Schülerinnen und Schüler zudem, sich die Zusammenhänge zu erklären und sich gegenseitig zu überprüfen. 1. Schritt Die Schülerinnen und Schüler haben die Aufgabe erhalten, am Einheitskreis einen Winkel von 40 Grad, Sinus 40 Grad, Kosinus 40 Grad und Tangens 40 Grad einzuzeichnen. Dabei werden Sinus, Kosinus und Tangens farbig unterschieden. Grundlegende Eigenschaften werden dabei wiederholt. In einer Einführung wird dargestellt, dass Sinus, Kosinus und Tangens Funktionen am Einheitskreis darstellen. Dabei wird jedem Winkel ein Punkt auf dem Einheitskreis zugeordnet (analytische Definition). 2. Schritt Die Lernenden begeben sich (maximal) zu zweit an einen Rechner. Das Java-Applet wird gestartet. Die Schülerinnen und Schüler erhalten den Auftrag, Sinus, Kosinus und Tangens am Einheitskreis mithilfe der Maus darzustellen und dabei den Verlauf der Graphen zu beobachten. Erste Eindrücke sollen festgehalten sowie eine Skizze der Graphen angelegt werden. Als besondere Punkte sind dabei die Winkel 30 Grad, 60 Grad, 90 Grad, 120 Grad, 180 Grad und 270 Grad zu betrachten. 3. Schritt Die Lernenden beschreiben den Verlauf der Graphen und stellen fest, dass die Sinus- und Kosinusfunktionen periodisch mit der Periode 360 Grad sind und dass Sinus- und Kosinusfunktion durch Verschiebung um 90 Grad auseinander hervorgehen. Die Tangensfunktion ist punktsymmetrisch zum Ursprung und hat eine Periode von 180 Grad. 4. Schritt Zur Ergebnissicherung werden die Graphen der Sinus-, Kosinus- und Tangensfunktion auf einem bereits zuvor erstellten Arbeitsblatt (siehe Download auf der Startseite des Artikels) zur Verfügung gestellt. Die Schülerinnen und Schüler tragen nun am Graphen die besonderen Punkte (siehe oben) ein und formulieren die Eigenschaften, die zuvor geäußert worden sind. Zusätzlich dazu müssen die Lernenden als Wiederholung den Zusammenhang zwischen Gradmaß und Bogenmaß (Pi) herstellen, um sich mit dem Arbeitsblatt erfolgreich auseinandersetzen zu können.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Trigonometrie mit GeoGebra – ein variables Übungskonzept

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit zum Thema Trigonometrie bietet durch dynamische Arbeitsblätter ein differenziertes Übungsumfeld zu Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dadurch werden die aktuellen Kenntnisse und Fertigkeiten aller Schülerinnen und Schüler berücksichtigt. Die Besonderheit der Lernumgebung zur Trigonometrie "Sinus, Kosinus und Tangens im rechtwinkligen Dreieck" besteht darin, dass sie in jeder Phase des Unterrichts flexibel eingesetzt werden kann. Die dynamischen Arbeitsblätter eignen sich sowohl für die Erarbeitung der trigonometrischen Zusammenhänge im rechtwinkligen Dreieck, als auch für eine differenzierte Übungs- und Anwendungsphase. Die Lernumgebung bietet dynamische Veranschaulichungen sowie einfachere und komplexere Übungen und ermöglicht so den Lernenden eine eigenständige und selbstverantwortliche Wissenserweiterung. Die zu bearbeitenden Aufgaben werden per Computer analysiert und bewertet. Deshalb kann sich die Lehrkraft in der Übungsphase individuell leistungsschwächeren Lernenden zuwenden und gemeinsam mit ihnen Probleme analysieren. So wird eine gezielte Förderung möglich. Das Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck (grüner Kasten auf der rechten Seite). Dazu kommen sechs Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen (blauer Kasten auf der rechten Seite) sowie drei variable Übungen zur Unterrichtsdifferenzierung (gelber Kasten auf der rechten Seite). Die Navigation der Lernumgebung befindet sich rechts neben der dynamischen Darstellung. Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Die Schülerinnen und Schüler lernen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen. beheben erkannte Defizite im Bereich dieser Zusammenhänge selbstständig. können die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden. Das hier vorgestellt Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Da die Lernumgebung aber flexibel einsetzbar ist, können diese auch innerhalb der Lernumgebung selbstständig erarbeitet werden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dazu kommen drei Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen sowie zwei variable Übungen zur Unterrichtsdifferenzierung. Die Navigation der Lernumgebung (Einführung und Erläuterung sowie Übungen) befindet sich rechts neben der dynamischen Darstellung. Übungen zur Selbstkontrolle und Leistungsbestimmung In dieser Unterrichtsphase haben die Schülerinnen und Schüler Zeit, sich mit den ersten drei Übungen zu beschäftigen und so ihre bisherigen Kenntnisse zu überprüfen. Bei allen Übungen erzeugt der Computer per Zufallsgenerator unterschiedliche rechtwinklige Dreiecke und gibt Winkelfunktion und Winkelmaß vor. Die Lernenden sollen den richtigen Quotienten ergänzen. Computer gibt Lösungshinweise Mit dem Button "prüfen" können die Schülerinnen und Schüler ihre Eingabe prüfen und sich mit "Neue Aufgabe" eine weitere Aufgabe stellen lassen. Sie erhalten auf fehlerhafte Eingaben neben der Meldung, dass ihre Eingabe falsch war, einen Lösungshinweis: "Leider falsch! Für Tangens brauchst du doch die Gegenkathete und die Ankathete im Dreieck. Also versuch's noch mal". Die Mindestbearbeitungsdauer der drei Übungen ergibt sich aus der Vorgabe "Schaffst du mehr als 199 Punkte?". Die Lehrkraft kann auch eine bestimmte Zeit für jede Übung vorgeben. Sollten die Schülerinnen und Schüler mit der Bearbeitung der ersten drei Online-Arbeitsblätter nicht zurechtkommen, können sie stets die jeweilige Erläuterungsseite verwenden und sich den einen oder anderen Zusammenhang noch einmal veranschaulichen lassen. Die Lernenden können so die noch bestehenden Defizite aufarbeiten. Die Lehrkraft wird nur dann aktiv ins Unterrichtsgeschehen eingreifen, wenn sich die Schülerinnen und Schüler auch anhand der Erläuterungsseite nicht zurechtfinden. Variation der Aufgaben Bei der ersten variablen Übung werden abwechselnd eine der drei Winkelfunktionen sin, cos, tan und ein bestimmtes Winkelmaß vorgegeben. Die Aufgabe der Schülerinnen und Schüler besteht darin, den richtigen Quotienten anzugeben. Die Funktionsweise des interaktiven Arbeitsblatts unterscheidet sich nicht von der der ersten Übungen. Mit dem Button "prüfen" wird die Eingabe kontrolliert und mit "Neue Aufgabe" werden weitere Aufgaben erzeugt. Die Variation der Aufgabenstellung führt zur Festigung des bisher Gelernten. Dabei besteht auch weiterhin die Möglichkeit, innerhalb der Lernumgebung zu den vorausgegangenen Übungen oder den Erläuterungsseiten zurückzukehren, um Defizite aufzuarbeiten. Differenzierung des Unterrichts Die zweite variable Übung eignet sich zur inneren Differenzierung des Unterrichts. Zu einem zufällig erzeugten Dreieck werden nun der Quotient und das Winkelmaß vorgegeben. Die Schülerinnen und Schüler sollen die zugehörige Winkelfunktion sin, cos oder tan angeben. Dazu müssen sie zuerst die jeweiligen Seitenlängen als Katheten oder Hypotenuse identifizieren und anschließend über das gegebene Winkelmaß die Katheten als An- oder Gegenkathete bestimmen. Anschließend benötigen sie die Definition des Sinus, Kosinus oder Tangens, um die Aufgabe zu lösen. Die Fülle der notwendigen Überlegungen und deren Einbindung in eine Lösungsstrategie ermöglicht ihnen eine weitere Vertiefung ihrer Kenntnisse. Abschließend bietet sich eine herkömmliche Lernzielkontrolle mit Papier und Bleistift an. Sie kann als Leistungserhebung durchgeführt werden, bei der die Inhalte der vorangegangenen Übungen abgefragt und die Leistungen der Schülerinnen und Schüler überprüft werden. Dieser Test kann aber auch als Hausaufgabe gestellt oder in Form einer Partnerarbeit im Anschluss an die Online-Arbeitsblätter bearbeitet werden. So mündet die Arbeit am Computer wieder in die "normale" Unterrichtsarbeit im Klassenzimmer. Ein wichtiger Aspekt beim Lernen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass eine Interaktion zwischen dem Lernenden und dem Computer möglich wird. Diese Interaktion führt zu einem ständigen Wechsel von spannenden und entspannenden Zuständen. Nach jeder Eingabe wartet die Schülerin oder der Schüler auf die Bewertung, um sich danach sofort eine neue Aufgabe stellen zu lassen. Auf diese Weise kann die Konzentration der Lernenden über einen längeren Zeitraum aufrechterhalten werden. Die Rückmeldungen des Computers auf falsche Eingaben führen in der Lerngruppe oft zu einer regen Diskussion über die gemachten Fehler. Wo die kritische Nachfrage der Lehrkraft oft als lästig empfunden und daher möglichst ignoriert wird, akzeptieren die Schülerinnen und Schüler die Rückmeldung des Computers bereitwillig und korrigieren ihre Fehler. Im Unterricht lässt sich immer wieder beobachten, dass selbstständiges Arbeiten Begabungsunterschiede sehr deutlich hervortreten lässt. So sind oft einige Klassenmitglieder mit der Bearbeitung einer Aufgabe bereits fertig, während andere damit noch gar nicht begonnen haben. Um diesem Phänomen zu begegnen, ist ein differenziertes Angebot von Übungen erforderlich, das die Unterschiede im Arbeitstempo und in der Auffassung berücksichtigt. Im regulären Unterricht mit gewöhnlichem Material ist dies nur schwer zu realisieren. Durch die Verwendung der hier vorgestellten interaktiven dynamischen Übungsumgebung wird ein differenziertes und selbsttätiges Lernen möglich. Zudem stehen alle Übungen den Schülerinnen und Schülern - sofern sie über einen Internetzugang verfügen - auch zu Hause zur Verfügung. So können Interessierte das Angebot unbegrenzt nutzen, was die Eigenverantwortlichkeit in hohem Maße fördern kann. Ein wichtiges Element in einer Übungsphase ist die Motivation, mit der die Lerngruppe Aufgaben bearbeitet. Übungen, die die Schülerinnen und Schüler widerwillig ausführen, verfehlen ihr Ziel und sind eigentlich verlorene Zeit. Eine Intensivierung der Übungsarbeit kann durch gelegentliche Wettbewerbe und spielerische Elemente erreicht werden. Wettbewerbe bringen Abwechslung in eine Übungsphase und mobilisieren zusätzlich Motivationskräfte. Die Klasse setzt sich bei Wettbewerben im Allgemeinen in einer Weise ein, wie dies sonst kaum der Fall ist. Wer Lernen und Spielen in einem Zusammenhang nennt und dies noch mit Mathematik in Verbindung bringt, stößt bei Mathematiklehrkräften oft auf große Skepsis. Setzt man aber die bestimmenden Elemente des Spiels mit Aufgabenfunktionen sowie mit den meist vernachlässigten emotionalen Aspekten des Lernens zueinander in Beziehung, wird deutlich, dass das Spiel durchaus ein interessantes didaktisches Rahmenkonzept darstellen kann, das neue unterrichtliche Gestaltungsmöglichkeiten bietet. Für die hier vorgestellten interaktiven Übungen gilt, was für alle Arbeitsmaterialien gelten sollte, nämlich, dass sie zur Unterrichtssituation passen sowie selbsterklärend und motivierend in Form und Inhalt sind. Sie lassen sich nahtlos in einen bestehenden Mathematikunterricht einbinden. Somit wird das Lernen am Computer nicht zu einer Sonderveranstaltung, sondern zu einem weiteren Element eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Zusätzlich können die Schülerinnen und Schüler bei der Bearbeitung der interaktiven Aufgabenblätter immer erkennen, ob sie die Aufgabe korrekt gelöst haben, was in dieser Form bei herkömmlichen Unterrichtsmaterialien nicht leicht zu realisieren ist.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Trigonometrie am Dach

Unterrichtseinheit

In dieser Unterrichtseinheit für den Mathematikunterricht der Sekundarstufe I zum Thema "Trigonometrie" lernen die Schülerinnen und Schüler die Begriffe und Eigenschaften von Sinus, Kosinus und Tangens für Berechnungen am Dreieck kennen. Sie berechnen Winkel und Seiten von Dreiecken. Ziel ist es, den Unterricht im Sinne des selbstgesteuerten Lernens mit differenzierten Aufgaben umzusetzen. In dieser Unterrichtseinheit für den Mathematikunterricht der Sekundarstufe I erarbeiten die Schülerinnen und Schüler anhand von drei differenzierten Arbeitsblättern die grundlegenden Eigenschaften von Dreiecken und lernen Winkel zu berechnen. Um die Relevanz der Theorie in praktischen Anwendungen zu verdeutlichen, wird ein anschaulicher Bezug zum Dachdecker-Handwerk hergestellt. Die Lernenden erwerben dabei Grundkenntnisse zur Berechnung von rechtwinkligen und nicht rechtwinkligen Dreiecken und vertiefen ihr Verständnis der Trigonometrie im Alltagskontext. Im ersten Schritt ( Arbeitsblatt 1 ) setzen sich die Schülerinnen und Schüler mit den verschiedenen Arten von Dreiecken auseinander. Sie erkennen, dass Dreiecke in vielen alltäglichen Strukturen verborgen sind und erlernen die Unterscheidung nach Winkelarten. Anhand vorgegebener Winkelangaben klassifizieren sie spitzwinklige, rechtwinklige und stumpfwinklige Dreiecke. Darüber hinaus beschäftigen sie sich mit allgemeinen, gleichschenkligen und gleichseitigen Dreiecken und lernen die Aufteilung nach Seiten kennen. Mithilfe der Dreiecksungleichung prüfen sie, ob bestimmte Dreiecke gezeichnet werden können. Schließlich wird ein Bezug zu verschiedenen Dachformen hergestellt. Die Schülerinnen und Schüler erkennen, dass viele Hausdächer in ihrer Grundform als Dreiecke dargestellt werden können. In diesem Kontext lernen sie verschiedene Dachformen und deren Bezeichnungen kennen. Sie wenden ihr Wissen an, indem sie in ihrer Umgebung nach unterschiedlichen Dachformen suchen und diese fotografisch dokumentieren. Mithilfe von Arbeitsblatt 2 vertiefen die Schülerinnen und Schüler ihre Fähigkeiten zur Winkelberechnung und insbesondere Berechnung von rechtwinkligen Dreiecken. Sie üben, die passenden trigonometrischen Funktionen (Sinus, Cosinus, Tangens) zu erkennen und korrekt anzuwenden, um aus vorgegebenen Seitenlängen die fehlenden Winkel zu berechnen. Darüber hinaus lernen sie, fehlende Seitenlängen in Dreiecken zu ermitteln, indem sie ihr Wissen über die Beziehungen zwischen Winkeln und Seiten nutzen. Zum Abschluss wird das erworbene Wissen durch eine praxisnahe Textaufgabe vertieft, die das Dachdecker-Handwerk als Anwendungsbeispiel aufgreift. Dadurch wird der mathematische Lerninhalt in einen alltagsrelevanten Kontext eingebettet, was den praktischen Nutzen der Trigonometrie verdeutlicht. Arbeitsblatt 3 führt die Schülerinnen und Schüler in die Berechnung von nicht-rechtwinkligen Dreiecken ein. Sie lernen den Kosinussatz und den Sinussatz kennen. Im Rahmen der Aufgaben wird der Bezug zur Praxis durch die Analyse von Dachformen hergestellt. Die Lernenden berechnen fehlende Seiten und Neigungswinkel, um die Anwendung der trigonometrischen Grundlagen anhand eines Beispiels zu verdeutlichen. Zum Abschluss recherchieren die Schülerinnen und Schüler, wie die Dachneigung die Wahl der Dacheindeckung beeinflusst und warum die Berechnung von Winkeln in handwerklichen Berufen, insbesondere im Dachdeckerhandwerk, eine wichtige Rolle spielt. Abschließend wenden sie ihr Wissen praktisch an, indem sie sich ein Dach in ihrer Umgebung aussuchen und überlegen, welche Dacheindeckung und Materialien aufgrund der Dachneigung geeignet wären. Diese Unterrichtseinheit fördert das Verständnis der Schülerinnen und Schüler für die Anwendung von Geometrie und Trigonometrie in realen Kontexten, wie dem Planen eines Daches, und überführt das abstrakte Wissen in praxisnahe Zusammenhänge. Diese Unterrichtseinheit vermittelt den Schülerinnen und Schülern der Sekundarstufe I grundlegende und weiterführende Kenntnisse zur Trigonometrie, die sowohl zur Einführung neuer Inhalte als auch zur Wiederholung genutzt werden können. Dabei werden die Lernenden anhand von drei differenzierten Arbeitsblättern systematisch an die geometrische Form des Dreiecks herangeführt und lernen, Dreiecksarten zu bestimmen und Winkel zu berechnen. Je nach Jahrgangsstufe wird neues Wissen erarbeitet oder vorhandenes Wissen vertieft und wiederholt. Das Thema "Trigonometrie" ist in verschiedenen Jahrgangsstufen der Sekundarstufe I (je nach Schulform) lehrplanrelevant. Die in der 7. Klasse erarbeiteten Grundlagen bilden eine wichtige Basis für weiterführende Inhalte, die in der 10. Klasse behandelt werden. Die Arbeitsblätter dieser Einheit sind flexibel einsetzbar: In Klasse 10 dient Arbeitsblatt 1 zur Wiederholung, während die Arbeitsblätter 2 und 3 der Erarbeitung eines neuen Themas gewidmet sind. Vorkenntnisse sind daher für die Bearbeitung von Arbeitsblatt 1 erforderlich. In der Jahrgangsstufe 7 kann Arbeitsblatt 1 für die Einführung in ein neues Thema genutzt werden, währen Arbeitsblatt 2 und 3 sich eher für leistungsstarke Schülerinnen und Schüler eignen. Die Aufgabenblätter sind neben dem Einsatz im regulären Unterricht auch für die Wochenplanarbeit geeignet, da sie durch Hilfestellungen und Info-Kästen ein eigenständiges Arbeiten ermöglichen, welches als Prinzip der Unterrichtseinheit zugrunde liegt. Hilfestellungen dienen als Grundlage für differenzierte Aufgaben, die verschiedene Leistungsniveaus abdecken. Vertiefende Übungen mit Praxisbezug bieten zusätzliche Differenzierungsmöglichkeiten. Der Bezug zum Dachdecker-Handwerk veranschaulicht die praktische Anwendung der Trigonometrie in realen Kontexten, sodass das erworbene Wissen nicht abstrakt bleibt, sondern mit alltäglichen Situationen verknüpft wird. Die Aufgaben sind nach Schwierigkeitsgrad gestaffelt, um unterschiedliche Lernniveaus zu berücksichtigen. Aufgaben mit einem geringeren Schwierigkeitsgrad eignen sich besonders für den Förderunterricht oder zur Wiederholung, während anspruchsvollere Aufgaben leistungsstarke Schülerinnen und Schüler herausfordern und fördern. Dadurch können die Arbeitsblätter in verschiedenen Lernsettings eingesetzt werden. Ziel dieser Unterrichtseinheit ist es, das trigonometrische Verständnis der Schülerinnen und Schüler zu vertiefen und ihre Fähigkeit zu stärken, dieses Wissen auf praktische Fragestellungen anzuwenden. Durch den Einsatz vielfältiger Lernmethoden – von Erklärungen und Beispielen über Info-Kästen bis hin zu praxisnahen Aufgaben – wird ein abwechslungsreicher und motivierender Lernprozess unterstützt. Fachkompetenz Die Schülerinnen und Schüler lernen verschiedene Arten von Dreiecken kennen. berechnen Streckenlängen und Winkelgrößen, auch unter Nutzung von trigonometrischen Beziehungen. operieren gedanklich mit Strecken, Flächen und Körpern. Medienkompetenz Die Schülerinnen und Schüler suchen, verarbeiten und bewahren Inhalte und Materialien auf. kommunizieren und kooperieren auf verschiedenen Ebenen miteinander. Sozialkompetenz Die Schülerinnen und Schüler können sachlich kommunizieren. können gemeinsam Aufgaben bearbeiten und ausführen. können sich an Absprachen und Vereinbarungen halten.

  • Mathematik
  • Sekundarstufe I

Materialsammlung Geometrie

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Geometrie. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler erarbeiten den Einstieg in die Sinusfunktion weitgehend eigenständig und kooperativ. Dynamische Arbeitsblätter helfen dabei, die jeweilige Problem- oder Aufgabenstellung zu veranschaulichen. Ein virtuelles Experiment zur Pendelbewegung stellt den Anwendungsbezug her. Wenn die Sinusfunktion im Unterricht eingeführt wird, geschieht dies meist durch Angabe des Funktionsterms, Erstellen einer Wertetabelle und die anschließende Zeichnung des Funktionsgraphen. Demgegenüber ist der Zugang durch dynamische Arbeitsblätter intuitiver und experimenteller. Die Schülerinnen und Schüler sollen die Darstellung von Sinus, Cosinus und Tangens am Einheitskreis wiederholen. die Darstellung des Bogenmaßes am Einheitskreis wiederholen. eine Einführung und Definition der Sinusfunktion erarbeiten. die Bedeutung der Sinusfunktion für die Beschreibung von Schwingungsvorgängen erkennen. eigenständig und kooperativ mathematische Zusammenhänge erarbeiten und dokumentieren. Thema Einführung der Sinusfunktion Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 9 bis 10 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die Schülerinnen und Schüler sollen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen erkennen. besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion benennen. Thema Einführung der Sinus-, Kosinus- und Tangensfunktion Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Klasse 9 und 10 Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, idealerweise Beamer Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Mehrwert des Applets und Unterrichtsverlauf Warum Sie auf das Applet nicht verzichten sollten und wie Sie es im Zusammenhang mit einem Arbeitsblatt einsetzen können. Die Schülerinnen und Schüler sollen die Definition des Sinus, Cosinus und Tangens eines Winkels als Seitenverhältnis in einem rechtwinkligen Dreieck kennen und anwenden. die x- und y-Koordinate eines Punktes P auf dem Einheitskreis bestimmen können. begründen können, warum beim rechtwinkligen Dreieck im Einheitskreis die Katheten als Sinus (alpha) und Cosinus (alpha) bezeichnet werden. für die Winkel 0° < alpha < 90° die entsprechenden Seitenverhältnisse berechnen. besondere Seitenverhältnisse (alpha = 0°, alpha = 90°, ... ) und die Periodizität der Funktionsgrafen angeben können. Thema Vom Dreieck zur Funktion - Einführung der trigonometrischen Funktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 9, zur Wiederholung auch Klasse 10 Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Rechner in ausreichender Zahl für die Partnerarbeit; die Nutzung der dynamischen GeoGebra-Arbeitsblätter erfordert Java (Version 1.4 oder höher, kostenfrei) Die Schülerinnen und Schüler mussten für den Einsatz der dynamischen Arbeitsblätter nicht extra im Umgang mit dem Programm GeoGebra geschult werden. Lehrerinnen und Lehrern, die sich noch nicht mit GeoGebra auskennen, sei jedoch empfohlen, sich mit den Arbeitsblätter vor deren Einsatz im Unterricht gründlich vertraut zu machen, da die Schülerinnen und Schüler doch immer mehr entdecken, als man erwartet und dann entsprechende Fragen stellen. Durch den Einsatz der GeoGebra-Arbeitsblätter konnte dynamisch erklärt und veranschaulicht werden, wie die Funktionen entstehen und welche Eigenschaften sie besitzen. Über die Verwendung in Klasse 9 hinaus lassen sich die Materialien in Klasse 10 zur Wiederholung einsetzen, wenn die Eigenschaften der trigonometrischen Funktionen noch einmal aufgegriffen werden. Unterrichtsverlauf Hinweise zum Einsatz der Arbeitsblätter Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Er hat die dynamischen Arbeitsblätter zu dieser Unterrichtseinheit entwickelt. Die Schülerinnen und Schüler sollen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen lernen. erkannte Defizite im Bereich dieser Zusammenhänge selbstständig beheben. die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden können. Thema Trigonometrie mit GeoGebra - ein variables Übungskonzept Autor Andreas Meier Fach Mathematik Zielgruppe 9. und 10. Klasse Zeitraum 2-3 Stunden, je nach Unterrichtsintention Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Personen, Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript Unterrichtsplanung Verlaufsplan: Trigonometrie mit Geogebra Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch das Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich dieses Programm sehr gut für die Erstellung interaktiver dynamischer Lernumgebungen. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Voraussetzungen, Einführung und Nutzung der Arbeitsblätter Auf die Warm-up-Phase mit Übungen zur Selbstkontrolle und Leistungsbestimmung erfolgt das eigenverantwortliche Aufarbeiten von Defiziten und die Festigung des Gelernten. Besonderheiten interaktiver Lernumgebungen Allgemeine Informationen zu den Vorteilen der Nutzung interaktiver Übungsumgebungen und ihrer Rolle als Elemente eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Die Schülerinnen und Schüler sollen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden verstehen. über das physikalische Phänomen Schwebung ein Additionstheorem erhören. Thema Die Sinusfunktion zur Beschreibung von Schwingungen und Schwebungen Autor Stefan Burzin Fächer Mathematik, Physik (fächerübergreifend) Zielgruppe Klasse 10 Zeitraum 8 Stunden (je nach Vertiefung) Technische Voraussetzungen CAS (zum Beispiel Derive oder Maple), Funktionenplotter oder geeignete Java-Applets (für die Applets benötigen Sie einen Browser mit Java-Unterstützung, Java Runtime Environment ); idealerweise Beamer Planung Sinusfunktion - Schwingungen und Schwebungen Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Arbeitsmaterialien Experimente und alle Arbeitsblätter zu den Themen Sonnenaufgangszeiten, Frequenzen, Schwebungen und Sinusfunktionen im Überblick Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler sollen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern festigen. mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt beeinflussen. die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik erkennen. durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen lernen. die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke" kennen. den Aufbau eines Tons durch Überlagerung seiner Partialtöne kennen. das Phänomen der Schwebung kennen lernen. mit dem Prinzip der Fourier-Analyse vertraut sein und Anwendungsgebiete kennen. Thema Schwingungen in Mathematik, Musik und Physik Autorin Judith Preiner Fächer Mathematik, fächerübergreifend auch Musik, Physik Zielgruppe Gymnasium, Klasse 10; als experimentelle Idee zu den Trigonometrischen Funktionen auch Jahrgangsstufe 11 Zeitraum 6 bis 8 Unterrichtsstunden für die Bearbeitung der Unterrichtsmaterialien; bei fächerübergreifendem Unterricht erweiterbar Technische Voraussetzungen Computer in ausreichender Anzahl mit Soundkarte und Software zum Abspielen von MP3-Dateien, Lautsprecher und Kopfhörer (für Einzel- oder Partnerarbeit), ein Computer mit Beamer (für Lehrerpräsentationen) Software Internet-Browser, Java (Version 1.4.2 oder höher) zur Bearbeitung der Applets Planung Verlaufsplan Schwingungen Sie können alle Arbeitsmaterialien (sieben dynamische Arbeitsblätter) und die umfangreiche Lehrerinformation ("Lexikon" zu den Fachbegriffen, Lösungen der Arbeitsaufträge und Unterrichtsanregungen) von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Kreise im gleichseitigen Dreieck

Unterrichtseinheit

In der Unterrichtseinheit zum Thema "Kreise im gleichseitigen Dreieck" stellen die Schülerinnen und Schüler geometrische Betrachtungen zum Einbeschreiben in Dreiecken an und erarbeiten die algebraische Berechnung von Radien und Flächen.Der Inkreis eines Dreiecks wird durch Konstruktion bereits in Klasse 7 thematisiert. Mit den Mitteln der Algebra und Ideen aus der Geometrie lassen sich für einen Kreis der Radius und somit die Fläche bestimmen. Mit diesem Unterrichtsmaterial können sich die Schülerinnen und Schüler aber darüber hinaus nun erarbeiten, welche Folgen es hat, wenn man nicht nur einen, sondern 3, 6, 10 oder mehr kongruente Kreise in ein gleichseitiges Dreieck einbeschreibt. Dabei können selbstständig Hilfeleistungen zur Lösungsfindung herangezogen werden. Das Thema "Kreise im gleichseitigen Dreieck" im Unterricht Kennenlernen von irrationalen Wurzeln – Kennenlernen des Satzes von Pythagoras: irrationale Zahlen bei Längenbetrachtungen erscheinen in unterschiedlichen Kontexten. Schon die Diagonale in einem Quadrat lässt sich nur mit Hilfe der Wurzel aus 2 exakt bestimmen. Aber Wurzeln treten bei Längenbetrachtungen in vielen Figuren auf. Zum Erarbeiten von Endergebnissen ist oft auch ein sicherer Umgang mit Wurzeln nötig. Vorkenntnisse Die Formeln zur Berechnung von Kreis- und Dreiecksflächen sind bekannt. Wiederholt werden besondere Linien im Dreieck und deren Bedeutung. Der Satz des Pythagoras sowie die Bedeutung von Sinus, Kosinus und Tangens im rechtwinkligen Dreieck sind nötig, auch wenn manche Überlegungen mit Hilfe der Ähnlichkeit gelöst werden können. Ein sicherer Umgang mit Wurzeln und Termen wird vorausgesetzt und geübt. Didaktische Analyse Gelingt es den Schülerinnen und Schülern Teilfiguren zu erkennen? Während der Umgang mit Termen zur Berechnung von Flächen für die Lernenden eine Selbstverständlichkeit sein sollte, treten häufig Schwierigkeiten auf, passende Teilstücke in einer Fragestellung zu entdecken. Oft genügt der Hinweis auf wenige Hilfslinien, sodass den Schülerinnen und Schülern ein anderer Blick auf das Problem gelingt. Ein Teil der Lerngruppe benötigt mehr Hilfen, dem anderen fällt diese Einteilungen leicht. Mit dem vorgestellten Problem können leistungsstarke Schülerinnen und Schüler anspruchsvollere Probleme bearbeiten. Die Vorstellung der Lösung wird aber auch den schwächeren Schülerinnen und Schülern verständlich sein, vor allem da sie sich mit ähnlichen Fragenstellungen beschäftigen konnten. Dadurch, dass sich alle Schülerinnen und Schüler mit der Thematik auseinandergesetzt haben, wird ihnen das Endergebnis – egal ob sie schwierige Fragen selbst oder nur die Einstiegsaufgaben gemeistert haben – plausibel erscheinen. Methodische Analyse Wenn ein Schüler oder eine Schülerin nicht mehr weiter kommt, können unterschiedliche kurze Hilfeleistungen auf den Arbeitsblättern gegeben werden. Vieles sollen die Schülerinnen und Schüler allein oder in Partnerarbeit lösen. So kann sehr individuelle spezielle Unterstützung erfolgen. Fachkompetenz Die Schülerinnen und Schüler argumentieren und modellieren mathematisch. lösen Probleme mathematisch. gehen mit symbolischen, formalen und technischen Elementen der Mathematik um. arbeiten mit mathematischen Darstellungen kommunizieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler arbeiten sicher am PC mit einem dynamischen Geometrie-System. verstehen, wie eine Tabellenkalkulation viele Werte bestimmt und darstellt. Sozialkompetenz Die Schülerinnen und Schüler bringen sich in der Gruppenarbeit ein. geben zur Erarbeitung und Vorstellung von Inhalten Unterstützung und fragen nach individuellen Hilfen von anderen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Untersuchung der ISS-Flugbahn

Unterrichtseinheit

Kerngedanke der hier vorgestellten Versuchsanordnung ist, dass mindestens zwei Schulen aus verschiedenen Regionen oder Ländern zusammenarbeiten, um die Flugbahn und Flughöhe der ISS im Rahmen einer Messreihe zu bestimmen.Das ISS-Triangulations-Experiment wurde im Rahmen der DLR-Initiative School in Space für die 10. Klasse und die Oberstufe konzipiert. Schülerinnen und Schüler ermitteln dabei selbstständig die Parameter Flugbahn, Flughöhe, Geschwindigkeit und die Umlaufzeit der ISS mit einfachen mathematischen Berechnungen und leichtem Gerät. Grundlagen sind die Trigonometrie und die Tatsache, dass die ISS unter bestimmten Bedingungen mit bloßem Auge am Himmel zu beobachten ist. Die Raumstation und die Partnerschulen bilden bei der zeitgleich durchgeführten Beobachtung ein imaginäres Dreieck (oder auch mehrere Dreiecke), dessen Winkel - und somit auch Seiten - auf Grundlage der Trigonometrie bestimmbar sind. Informationen zur Sichtbarkeit der ISS an Ihrem Standort können Sie über die vom DLR gehostete Website Heavens-Above ermitteln. Durch die Aufnahme von Messreihen an aufeinander folgenden Tagen (oder innerhalb mehrerer Tage) können Veränderung der Flughöhe nachgewiesen werden.Triangulation ist die Winkel- und Seitenlängen-Bestimmung unter Ausnutzung der bekannten geometrischen Beziehungen (Sinussatz, Cosinussatz und Tangens-Winkelbeziehung). Die Kenntnis und Beherrschung dieser Grundlagen wird für die Bearbeitung der Aufgaben vorausgesetzt. Die Beobachtungsorte zweier Partnerschulen und die ISS bilden bei beiden Methoden (Theodolit, Fotografie) das Dreieck, welches den Berechnungen zugrunde gelegt wird. Die Berechnungen gestalten sich aber aufgrund der Kugelgestalt der Erde etwas schwieriger. Ausführliche Informationen dazu finden Sie in dem Lehrerheft des DLR zum ISS-Schülerexperiment Triangulation, das von der Website School in Space als PDF heruntergeladen werden kann. Wann ist die ISS zu sehen? Die Sichtbarkeit der ISS kann mithilfe einer Website für jeden möglichen Beobachtungsstandort ermittelt werden. Durchführung des Experimentes Hinweise zur Durchführung der Messreihen und zur Nutzung von Arbeitsplattformen bei der Zusammenarbeit mit Partnerschulen. Die Schülerinnen und Schüler sollen die ISS mit eigenen Augen beobachten und sich so ihrer Existenz bewusst werden. erkennen, dass Informationen aus der hochtechnisierten Raumfahrt hinterfragt und mit einfachen Mitteln überprüft werden können. aus den Gesetzen der Trigonometrie Algorithmen zur Berechnung der Flughöhe erstellen und so Methoden der Mathematik anwendungsorientiert einsetzen. auf der Grundlage trigonometrischer Konstruktionen einfache Beobachtungsinstrumente selber bauen und gegebenenfalls ein Teleskop ausrichten (Fotografieren der Raumstation). lernen, eine Messreihe zu planen, im Team zu organisieren und sich mit anderen Partnern zu koordinieren. Thema Untersuchung der ISS-Flugbahn Autor Dr. Winfried Schmitz, Dr. André Diesel Fächer Physik, Mathematik, Astronomie-AG Zielgruppe ab Klasse 10 Zeitraum etwa 6 Stunden Vorbereitungszeit (Theorie der Trigonometrie, Bau eines Theodoliten), ein AG-Treffen für die Durchführung einer Testmessungen, etwa eine Stunde für jede Beobachtung der Messreihe; es müssen mehrere Messreihen (an aufeinander folgenden Tagen oder innerhalb mehrerer Tage) aufgenommen werden, um eine Veränderung der Flughöhe nachweisen zu können. Technische Voraussetzungen Computer mit Internetzugang für die Ermittlung der Sichtbarkeitsdaten der ISS, Kompass; Material aus dem Baumarkt für den Bau des Theodoliten (zum Beispiel Holz und Schrauben), Bohrmaschine, Säge und Akku-Schrauber; alternativ: Teleskop mit Möglichkeit zur astronomischen Fotografie oder Digitalkamera mit großer Brennweite und manueller Belichtungszeit, Kamerastativ. Dr. André Diesel ist Diplom-Biologe und Fachredakteur für Naturwissenschaften, Mathematik und Geographie bei Lehrer-Online. Die ISS ist nur bei einem wolkenfreien oder leicht bewölkten Himmel und nur bei der Abend- oder Morgendämmerung sichtbar, wenn sie von der Sonne angestrahlt wird. Als Beobachtungszeitfenster kommen also nur etwa zwei Stunden vor Sonnenaufgang und zwei Stunden nach Sonnenuntergang in Frage. Informationen zur Sichtbarkeit der ISS an Ihrem Standort können über die Website Heavens-Above ermitteln. Dazu müssen Sie sich zunächst registrieren. Sie können dann die Koordinaten Ihrer Position oder mehrerer Beobachtungsorte eingeben (manuell oder per Menüauswahl), für die Sie dann die Sichtbarkeitsdaten der ISS oder von Satelliten, zum Beispiel Envisat, für die jeweils nächsten zehn Tage anzeigen lassen können; bei aktuellen Space-Shuttle-Missionen kann auch dessen Sichtbarkeit am eigenen Ort abgefragt werden. Auch zu Planeten und Kometen, finden Sie hier Informationen. Die Sichtbarkeitsdaten der ISS werden als Himmelskarte und als Tabelle ausgegeben (Abb. 1, Platzhalter bitte anklicken). Der rote Pfeil markiert die Flugrichtung der Station. Zudem erhält man auch eine detaillierte Sternenkarte des am höchsten über dem Horizont liegenden Flugbahnabschnittes (nicht dargestellt). Als besonderen Service kann man auch eine "Ground Track"-Karte (Subsatellitenbahn) abrufen, die die Flugbahn der ISS über der Erdoberfläche zeigt (Abb. 2). Vom Auftauchen über dem Horizont bis zum Untergang am gegenüberliegenden Horizont beschreibt die Raumstation eine Flugbahn, bei welcher der Höhenwinkel stetig zunimmt, bis ein Maximalwert erreicht ist. Dieser Maximalwert hängt von der relativen Nähe des Beobachtungspunktes zur Subsatellitenbahn ab. Die Subsatellitenbahn ist die Spur der Satellitenbahn in senkrechter Projektion auf die Erde. Je näher der Beobachtungspunkt und die Subsatellitenbahn zusammen liegen, desto größer sind die maximalen Höhenwinkel, die beim Vorbeiflug gemessen werden können. Zieht die Spur des Satelliten direkt über den Beobachtungspunkt hinweg, dann liegt das Maximum des Höhenwinkels bei 90 Grad. Der Winkel zwischen der Bahnebene eines Satelliten und der Äquatorebene wird als Inklination bezeichnet. Der Wendepunkt einer Satellitenbahn liegt in derjenigen geographischen nördlichen und südlichen Breite, die dem Zahlenwert der Bahnneigung, also dem Winkel der Satellitenbahn beim Äquatordurchgang, entspricht. Da die Flugbahn der ISS eine Inklination von 51,57 Grad aufweist, liegt ihr nördlicher und südlicher Wendepunkt in den Breiten von jeweils 51,57 Grad. Darüber hinaus ist eine Sichtbarkeit in höheren Breiten weiterhin gegeben, allerdings nur unter maximalen Höhenwinkeln, die kleiner als 90 Grad sind. Zur Beobachtung und Vermessung der Flugbahnparameter müssen die Schülerinnen und Schüler einen Theodolit bauen. Eine Anleitung dazu finden Sie im Lehrerheft des DLR zum Triangulationsexperiment. Ist der Zeitpunkt für die Beobachtung der ISS festgelegt, beginnen die Messungen im Team an den beiden Partnerschulen. Sind die Daten von allen Teammitgliedern korrekt erfasst worden, können die Berechnungen beginnen. Gleiches gilt für die Flughöhenbestimmung mithilfe eines Fotoapparats. Folgende Aufgaben müssen bewältigt werden: Messinstrumente nach Anleitung selber (auf)bauen ISS beobachten Messwerte erfassen Werte mit der Partnerschule austauschen Berechnungen durchführen Ergebnisse auswerten und gemeinsam mit der Partnerschule publizieren Bei der Beobachtung der ISS muss der Theodolit in Richtung der Partnerschule weisen. Ein Kompass ist daher unerlässlich. Im Verlauf der Messungen wird derjenige Zeitpunkt festgehalten, zu dem der Mittelpunkt der Erde, die eigene Schule, die Partnerschule und die ISS in einer Ebene liegen. Die Flughöhe der Raumstation kann auch durch Fotografieren des Überflugs von zwei verschiedenen Standorten bestimmt werden. Eine Beschreibung dieser Methode ist dem Lehrerheft des DLR zu entnehmen. Bei der Durchführung der Messreihen wird innerhalb von acht Wochen die ISS jeweils in zwei aufeinander folgenden Wochen abends beziehungsweise morgens kurz nach beziehungsweise kurz vor Sonnenaufgang beobachtet. In diesen Zeitraum gibt es jeweils etwa acht Tage mit günstigen Beobachtungskonstellationen. Die Messungen sind witterungsabhängig. Der Zeitaufwand pro Messung (Aufbau, Justierung, Messung, Abbau, Auswertung) beträgt etwa eine Stunde. Durch die Aufnahme von Messreihen an aufeinander folgenden Tagen (oder innerhalb mehrerer Tage) können Veränderungen der Flughöhe nachgewiesen werden. Gegebenenfalls kann auch registriert werden, dass die Flugbahn der ISS nach einem Besuch des Space-Shuttles durch dessen Triebwerke wieder angehoben wurde.

  • Physik / Astronomie / Mathematik / Rechnen & Logik
  • Sekundarstufe II
ANZEIGE