• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Halbleiterphysik für Fortgeschrittene – Fragestellungen und…

Unterrichtseinheit
14,99 €

Zunächst lernen die Schülerinnen und Schüler in dieser Unterrichtseinheit die Unterschiede zwischen der Bewegungsrichtung von Elektronen (Minus nach Plus) und der willkürlich festgelegten technischen Stromrichtung (Plus nach Minus) kennen, was bei Schaltbildern und mathematischen Berechnungen sehr wichtig wird. Zudem werden die unterschiedlichen, den Transistor beschreibenden Kennlinien besprochen und in der Dreiquadranten-Darstellung aufgezeigt.An einfachen Beispielen werden die Lernenden mit Schaltskizzen und den jeweiligen Strom- und Spannungsverläufen in Abhängigkeit von der technischen Stromrichtung vertraut gemacht. Mit Widerständen können dabei die Stromstärken und Spannungen so gewählt werden, wie es für die Strombegrenzung und den zugehörigen Spannungsabfall nötig ist. Durch Auswertung vorgegebener Wertetabellen lernen die Schülerinnen und Schüler unter anderem, welche Bedeutung Begriffe wie Eingangskennlinie, Stromsteuerkennlinie und Ausgangskennlinie für die Basisstromstärke und die Kollektorstromstärke in Hinblick auf den Verstärkungsfaktor B haben. Halbleiterphysik und Bipolartransistoren als Unterrichtsthema Ohne Transistoren wäre die für uns alle selbstverständliche digitale Technologie nicht möglich, die auch von Laien ohne Kenntnis der dafür notwendigen Technik und Infrastruktur mit etwas Übung problemlos bedient werden kann. Dennoch sollten Schülerinnen und Schüler in dieser hochtechnisierten Welt mit einer Vielzahl von neuen Berufen im Hochtechnologiesektor einen Einblick in die grobe Funktionsweise im Rahmen des Schulunterrichts bekommen. Vorkenntnisse Grobe Vorkenntnisse können von Lernenden erwartet werden, die sich von klein an mit Elektronik in Form von Baukästen beschäftigt haben – für alle anderen wird die Halbleitertechnologie und im Besonderen der Transistor Neuland sein. Deshalb sollte im Unterricht auf gut nachvollziehbare Beispiele und Anwendungen zurückgegriffen werden. Es bietet sich zudem an, zuvor die Unterrichtseinheit Grundlagen des Bipolartransistors im Unterricht durchzunehmen. Didaktische Analyse Bei der Behandlung dieses Themas muss man darauf achten, dass Schülerinnen und Schüler nicht überfordert werden, was bei der Komplexität vieler Schaltungen mit Transistoren schnell passieren kann. Dies sollte den Teilnehmerinnen und Teilnehmern der Kurse in der Sekundarstufe II vorbehalten bleiben. Methodische Analyse Anhand überschaubarer Schaltskizzen in Verbindung mit Elektronikbaukästen – falls in der Physiksammlung vorhanden – können den Lernenden die Grundzüge der Funktions- und Anwendungsweise gut nähergebracht werden. Fachkompetenz Die Schülerinnen und Schüler wissen, dass man Transistoren als Schalter und Verstärker sowie vor allem als Speichermedium in extrem miniaturisierter Form für Computer dienen. kennen die verschiedenen Bauweisen von Transistoren (npn-Transistor und pnp-Transistor). können einfache Übungsaufgaben – wie etwa zur Stromverstärkung – erklären und berechnen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe I

Die Helligkeit der Sterne – Sternbilder mit LEDs

Unterrichtseinheit

In dieser Unterrichtseinheit werden als zentrale Aufgabe Modelle von Sternbildern mit LEDs entworfen. Ein wesentliches Ziel ist dabei, die Helligkeitsunterschiede der Sterne durch die Variation des nötigen Vorwiderstandes zum Ausdruck zu bringen. Die Unterrichtseinheit wurde im Kontext des von der Deutsche Telekom Stiftung geförderten Programms "Junior-Ingenieur-Akademie" entwickelt.In dieser Unterrichtseinheit werden Aspekte der Astronomie und technische Fragen miteinander verwoben. Beide Bereiche bieten vielfältige Anknüpfungsmöglichkeiten. Im Vordergrund steht das praktische Arbeiten mit Werkzeugen wie Lötkolben oder Bohrmaschine. Die Planung der Schaltung und die Wahl des Vorwiderstandes sind grundlegende technische Fragestellungen, die hier praktisch erarbeitet werden können. Durch die (einfache) experimentelle Bestimmung des Zusammenhanges zwischen Leuchtkraft und den wahrgenommenen Sternhelligkeiten (Magnituden) und die Umrechnung in die entsprechende Stromstärke sind zudem theoretische Vertiefungsmöglichkeiten gegeben. Die Schülerinnen und Schüler wählen zunächst ein Sternbild aus und zeichnen es auf eine Holzplatte. An den Sternpositionen bohren sie Löcher für die LEDs (Sacklochbohrung). Sie notieren für jeden Stern seine Helligkeit (Magnitude). Auf der Rückseite gestalten Sie eine einfache (Parallel-)Schaltung, die sie bis auf die Widerstände verlöten und fertigstellen. Die Schülerinnen und Schüler lassen 6 LEDs in gleichmäßigen Helligkeitsabständen von dunkel bis hell leuchten (hier mit Arduino, auch mit Netzgeräten möglich). Es zeigt sich, dass der Zusammenhang nicht linear ist (Weber-Fechner-Gesetz). Die gleichmäßigen Helligkeitsunterschiede entsprechen den astronomischen Magnituden. Über die eigenen Messungen und die Kennlinie der LED können nun die nötigen Vorwiderstände berechnet werden. Hierbei bietet es sich an, diese Informationen dem Produktdatenblatt der LEDs zu entnehmen und somit ein wichtiges technisches Hilfsmittel kennenzulernen. Man kann bereits nach der Messung und der Feststellung des Weber-Fechner-Gesetzes die gemessenen Werte ohne weitere Interpolation als Musterwerte zur Verfügung stellen oder die Lernenden völlig frei durch Probieren versuchen lassen, Helligkeitsunterschiede zum Ausdruck zu bringen. Nach dem Einlöten der passenden Vorwiderstände ist das Sternbild fertig. Durch vielfältige Vertiefungs- und Vereinfachungsmöglichkeiten ist das Projekt im regulären Unterricht, in Wahlpflichtkursen, AGs und in Projektwochen gut einsetzbar.Der Sternenhimmel übt seit Jahrtausenden eine große Faszination auf die Menschen aus. Auch bei Schülerinnen und Schüler der Gegenwart ist die Astronomie ein Thema, das großes Interesse weckt und damit als sinnstiftender Kontext hervorragend geeignet ist, um viele Lernende zu aktivieren. Das durchschnittliche Interesse ist oft größer als an den klassischen Naturwissenschaften. Zudem knüpft der vorliegende Unterrichtsentwurf an die eigenen Sinneswahrnehmungen an, geht es doch vor allem um optische Phänomene, und zwar um die Helligkeit der Sterne, die man mit dem eigenen Auge wahrnehmen kann. Der Einbezug sinnlicher Erfahrungen ist ein ähnlich großer Motivationsfaktor. Das Weltall ist indessen aber auch ein Raum, den man über das, was wir sehen, hinaus nur erforschen kann, wenn man Technik verwendet. Vom einfachen Teleskop mit Nachführung über ferngesteuerte Satelliten ist das Spektrum technischer Anwendungen sehr groß. Astrophysik und Ingenieurwissenschaften sind in diesem Bereich eng miteinander verknüpft. Das vorliegende Kernmodul kann beliebig erweitert werden. Es gibt viele Anknüpfungspunkte, die sich als Ausgangspunkt für Exkurse und Vertiefungen eignen. Im Mittelpunkt steht die Freude am Ausprobieren und Experimentieren, der Spaß am handwerklichen Arbeiten. Daher ist es wünschenswert, dass die Schülerinnen und Schüler möglichst selbstständig löten können und dürfen und genug Geräte zur Verfügung stehen. Ein zentraler Punkt ist die unterschiedliche Leuchtkraft der Sterne. Das heißt, die LEDs sollen in unterschiedlichen Helligkeiten leuchten. Eine hervorragende Möglichkeit bietet hier der Versuch "Helligkeitsstufen" (AB 5). Die Schülerinnen und Schüler lernen hier den (nicht-linearen) Zusammenhang von Leuchtkraft und wahrgenommener Helligkeit (Weber-Fechner-Gesetz) praktisch kennen, entnehmen dem Produktdatenblatt einer LED die passenden Daten und berechnen daraus den passenden Vorwiderstand. Hier gibt es auch eine (optionale) Möglichkeit, den Arduino einzusetzen. Dieses Vorgehen ist aber vor allem für leistungsstarke Schülerinnen und Schüler als Differenzierung möglich, lässt sich aber auch als Demonstrationsexperiment gemeinsam mit der ganzen Klasse durchführen oder zugunsten einer stärkeren Fokussierung auf die praktische Arbeit ganz streichen. Die Vorwiderstände kann man im Einzelfall konkret vorgeben, durch Probieren herausfinden lassen oder berechnen lassen. Wenn die Magnituden des jeweiligen Sternbildes sehr nah zusammen liegen, kann es sinnvoll sein, die Helligkeitsunterschiede nicht als echte Magnituden zu verwenden, sondern die Unterschiede etwas hervorzuheben, indem man die 6 Stufen auf einen kleineren Bereich verteilt (zum Beispiel in 0,5er-Schritten). Das entspricht dann nicht mehr der Situation am Himmel, ist aber etwas wirkungsvoller. Dieses Vorgehen ist als Handlungsalternative auf AB 5 hinzugefügt. Fachkompetenz Die Schülerinnen und Schüler lernen Sternbilder und ihre Position am Himmel kennen. benutzen Schaltpläne als fachtypische Darstellungen. wenden das Ohm'sche Gesetz in einfachen Berechnungen. bohren, löten und stellen ein handwerkliches Produkt her. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet selbstständig zur Wahl eines Sternbild. verwenden Tablets und Computer. Sozialkompetenz Die Schülerinnen und Schüler nehmen Rücksicht auf Mitschülerinnen und Mitschüler. präsentieren Ergebnisse adressatengerecht.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Die strömende Elektrizität - ein Selbstlernkurs

Unterrichtseinheit

Die Verwendung von 3D-Animationen erhöht die Anschaulichkeit und unterstützt die Visualisierung von Aufgabenstellungen. Dies unterstützt das Verständnis der Vorgänge in dem für uns unsichtbaren Universum der Elementarteilchen.Dieser Selbstlernkurs soll den Schülerinnen und Schülern der Mittelstufe helfen, die komplexe Problematik der Elektrizität und des elektrischen Stromes schrittweise zu erkennen und den Umgang mit den physikalischen Grundgrößen Stromstärke, Spannung und Widerstand zur Problemlösung sicher zu beherrschen. Dazu werden die Vorgänge im submikroskopisch kleinen Universum der Elementarteilchen mithilfe von 3D-Animationen verdeutlicht und auf eine höhere Ebene der Anschaulichkeit gehoben. Die Arbeit mit dem Kurs ist in Abschlussklassen zur Wiederholung und selbstständigen Prüfungsvorbereitung hilfreich. Technische Hinweise Der Kurs ist in Form einer interaktiven Webseite angelegt und wird nach dem Download (siehe unten) mit der Datei "index.htm" gestartet. Um das Menü (am linken Rand) anzeigen zu können, muss Ihr Browser in der Lage sein, Flash-Dateien anzuzeigen. Die dreidimensionalen Darstellungen der Lernumgebung wurden durch die objektorientierte Programmiersprache VRML (Virtual Reality Modeling Language) umgesetzt. Das zur Nutzung der 3D-Darstellungen erforderliche Plugin blaxxun Contact kann kostenlos aus dem Internet heruntergeladen werden (siehe unten). Nach dem Installieren des Plugins können die World-Dateien (WRL), die die VRML-Inhalte enthalten, im Browser angezeigt werden. Mit einem Rechtsklick in die 3D-Darstellung öffnet sich ein Kontextmenü, über das man verschiedene Funktionen aufrufen kann. Einsatz im Unterricht Dieser Selbstlernkurs soll als klassenstufenübergreifender Kurs einerseits die Grundlagen für die Arbeit mit den physikalischen Größen Stromstärke, Spannung und Widerstand in der Orientierungsstufe legen und andererseits in den darauf folgenden Klassenstufen gemäß der Kurrikulumsspirale darauf aufbauen. Vom Verständnis des Begriffs "elektrischer Strom" bis hin zu Berechnungen und Analysen von Stromkreisen führt der Kurs die Schülerinnen und Schüler mithilfe interaktiver Übungen zum sicheren Beherrschen dieses interessanten physikalischen Phänomens. Alle Kapitel sind zum besseren Verständnis mit 3D-Animationen ausgestattet. Insbesondere wenn die Schülerinnen und Schüler den Umgang mit dem Plugin blaxxun Contact sowie mit interaktiven Arbeitsblättern noch nicht gewohnt sind, ist der Einsatz eines Beamers bei der Einführung des Kurses zu empfehlen. Themen und Materialien Stoffaufbau - Leiter und Isolatoren Die Begriffe Leiter und Isolator werden mithilfe des Teilchenmodells eingeführt und mit 3D-Animationen veranschaulicht. Elektrischer Strom, Stromstärke und elektrische Spannung Frei bewegliche Elektronen in einem metallischen Leiter werden als Grundvoraussetzung des Modells der Elektronenleitung erkannt. Knotenpunktregel und Maschenregel Schülerinnen und Schüler untersuchen das Verhalten der physikalischen Grundgrößen Stromstärke und Spannung in verschiedenen Stromkreisen. Elektrischer Widerstand, Ohmsches Gesetz und Widerstandsgesetz Das Ohmsche Gesetz wird in einem virtuellen Experiment hergeleitet. Die Formulierung des Widerstandsgesetzes bildet den Abschluss des Kurses zur Elektrizitätslehre. Fachkompetenzen beim Einsatz in Klasse 6 Die Schülerinnen und Schüler sollen im Lernbereich "Elektrische Stromkreise" einfache Modellvorstellungen des elektrischen Stroms kennen lernen. die Begriffe "Leiter" und "Isolatoren" kennen lernen. Bestandteile und Symbole von Schaltplänen beherrschen. Arten von Stromkreisen (einfache, verzweigte und unverzweigte) beherrschen. Fachkompetenzen beim Einsatz in Klasse 7 Die Schülerinnen und Schüler sollen im Lernbereich "Elektrische Leitungsvorgänge" die elektrische Stromstärke kennen, insbesondere die Ladungstrennung, das elektrische Leitungsmodell, die physikalische Größe der elektrischen Stromstärke, die Stromstärkemessung [Umgang mit Messgeräten], die Stromstärke in verschiedenen Stromkreisen, das Erste Kirchhoffsche Gesetz, die Knotenpunktregel. die elektrische Spannung kennen, insbesondere die physikalische Größe der elektrischen Spannung, die Spannungsmessung, die Spannung in verschiedenen Stromkreisen, das Zweite Kirchhoffsche Gesetz, die Maschenregel. Fachkompetenzen beim Einsatz in Klasse 8 Die Schülerinnen und Schüler sollen im Lernbereich "Leitungsvorgänge in Metallen" zusätzlich zu den oben beschriebenen Kompetenzen den Zusammenhang zwischen Stromstärke und Spannung kennen lernen, insbesondere das Ohmsche Gesetz, das I(U)-Diagramm von Konstantandraht und Glühlampe sowie den Begriff "Kennlinie". Leben und Werk von Georg Simon Ohm (1789-1854) kennen lernen. die physikalische Größe des elektrischen Widerstands kennen, insbesondere die Deutung mit dem elektrischen Leitungsmodell, die Berechnung von Widerständen, Spannung und Stromstärke und die Abhängigkeit des Widerstandes eines Leiters von Länge, Querschnittsfläche und Material. die Kenntnisse über den elektrischen Widerstand auf technische Sachverhalte anwenden, insbesondere auf Festwiderstände und verstellbare Widerstände (Potentiometer), Vorwiderstände (mit Berechnung) und die Wheatstonesche Brücke. Die Schülerinnen und Schüler sollen einfache Modellvorstellungen des elektrischen Stroms kennen lernen. die Begriffe Leiter und Isolatoren kennen lernen. Die Schülerinnen und Schüler sollen zusätzlich zu den oben genannten fachlichen Kompetenzen das elektrische Leitungsmodell und die Elektronenleitung kennen lernen. Vom Kugelmodell zum Atommodell Zu Beginn des Kurses "Die strömende Elektrizität" wird, aufbauend auf die Eigenschaften von Körpern, der Begriff "Stoff" näher untersucht und der Aufbau der Stoffe aus kleinsten Teilchen verdeutlicht. Die Elementarteilchen Proton und Elektron werden im Besonderen untersucht, da diese für die elektrische Leitung die entscheidende Rolle spielen. Eine 3D-Animation zeigt den Übergang vom Kugelmodell zum Atommodell nach Niels Bohr. Nach dem Start der Animation wird ein Atom zunächst als Kugel dargestellt (Abb. 1, oben; Platzhalter bitte anklicken). Über das Kontextmenü (mit rechter Maustaste in die Animation klicken und "Standorte/Naechster" wählen) rücken Sie in der Animation stufenweise vor (Abb. 1, unten). Gitterstruktur von Metallen Das Atommodell (Abb. 2, Platzhalter bitte anklicken) können Sie mit dem Mauszeiger "anfassen" und bewegen (Kontextmenü: "Bewegung/Betrachten"). Die Gitterstruktur von Metallen wird in dem Kapitel besonders hervorgehoben. Es folgen interaktive Übungen, mit denen die Schülerinnen und Schüler das Gelernte festigen und vertiefen können. Atommodelle von Leitern und Nichtleitern Das nächste Kapitel widmet sich der Unterscheidung von Leitern und Isolatoren. Als Voraussetzung für das Begreifen des Modells der Elektronenleitung wird Wert gelegt auf das Vorhandensein frei beweglicher Elektronen bei einem metallischen Leiter. 3D-Animationen und interaktive Übungen helfen dabei, das Gelernt zu verstehen und umzusetzen. Abb. 3 (Platzhalter bitte anklicken) zeigt einen Screenshot der VRML-Animation zum Aufbau eines typischen Leiters (Aluminiumatom). Die Schülerinnen und Schüler in Klasse 7 sollen im Rahmen des Themas "Elektrische Leitungsvorgänge" die elektrische Stromstärke kennen, insbesondere die Ladungstrennung, das elektrische Leitungsmodell, die physikalische Größe der elektrischen Stromstärke, die Stromstärkemessung (Umgang mit Messgeräten) und die Stromstärke in verschiedenen Stromkreisen. die elektrische Spannung kennen, insbesondere de physikalische Größe der elektrischen Spannung, die Spannungsmessung und die Spannung in verschiedenen Stromkreisen. Stromloser und stromführender Leiter Die beiden ersten 3D-Animationen zeigen den Übergang vom stromlosen Leiter zum stromführenden Leiter. Durch unterschiedliche Betrachtungsweisen (Kontextmenü "Bewegung/Betrachten") kann die Bewegung der Elektronen sehr gut erkannt werden. Das Atomgitter wird durch rote Kugeln, die Elektronen werden durch kleine grüne Kugeln dargestellt (Abb. 4, Platzhalter bitte anklicken). Stromkreis Weitere Animationen zeigen einen einfachen Stromkreis, in dem die Bewegung der Elektronen durch Heranzoomen an den Leiter genau beobachtet werden kann (im Kontextmenü "Standorte/Standard Tour" wählen; Abb. 5, Platzhalter bitte anklicken). So wird der Zusammenhang zwischen geöffnetem Stromkreis und Unterbrechen des Stromflusses gezeigt. Mit interaktiven Übungen (Lückentext, Zuordnung, Schüttelsatz) kann das Gelernte überprüft und geübt werden. Definition der physikalischen Grundgrößen Der nächst Schwerpunkt des Kurses ist die Definition der physikalischen Grundgrößen Stromstärke und Spannung. Neben den Merksätzen werden der Anschluss der Messgeräte erklärt und somit die Begriffe "in Reihe" und "parallel zu" wiederholt und gefestigt. Eine Flash-Animation verdeutlicht den Zusammenhang zwischen dem Anlegen einer äußeren Spannung an den metallischen Leiter und der Bewegung seiner freien Elektronen. Dabei kann zwischen keiner und verschieden großen Spannungen gewählt werden. Abb. 6 zeigt einen Screenshot der Animation. Die Schülerinnen und Schüler in Klasse 7 sollen im Rahmen des Themas "Elektrische Leitungsvorgänge" die elektrische Stromstärke kennen, insbesondere das elektrische Leitungsmodell, die physikalische Größe der elektrischen Stromstärke, die Stromstärkemessung (Umgang mit Messgeräten), die Stromstärke in verschiedenen Stromkreisen und das Erste Kirchhoffsche Gesetz (Knotenpunktregel). die physikalische Größe der elektrischen Spannung, die Spannungsmessung, die Spannung in verschiedenen Stromkreisen, und das Zweite Kirchhoffsche Gesetz (Maschenregel) kennen lernen. Das Erste Kirchhoffsche Gesetz Das Verhalten der physikalischen Grundgrößen Stromstärke und Spannung in Stromkreisen wird ausführlich untersucht. Ziel dabei ist auch das Auffinden von formelmäßigen Zusammenhängen. Viel wichtiger ist aber das Begreifen der inneren Zusammenhänge - und die werden durch die Kirchhoffschen Gesetze bestens erklärt. Auch wenn weder die Knotenpunktregel noch die Maschenregel vom Lehrplan ausdrücklich verlangt werden, hat sich im Unterricht gezeigt, dass die Schülerinnen und Schüler das Thema so besser verstehen als durch bloßes "Formelwissen". Zu Anfang werden die Formeln für die Stromstärke im unverzweigten und verzweigten Stromkreis hergeleitet. Der allgemeingültige Zusammenhang in Form der Knotenpunktregel als Erstes Kirchhoffsches Gesetz bildet die Grundlage für die Analyse aufwändigerer Stromkreise. Online-Materialien In animierten Stromkreisen wird das Maß der elektrischen Stromstärke durch die Dicke der Animationslinie anschaulich dargestellt. So ist klar erkennbar, wo viel Strom fließt und wo weniger. In einer daran anschließend betrachteten 3D-Animation wird nun der Kreis zur Bewegung der Elektronen geschlossen (Abb. 7, Platzhalter bitte anklicken). So kann die Bewegung der Elektronen am Knotenpunkt genau "unter die Lupe" genommen werden. Interaktive Übungen dienen der Kontrolle und Festigung des Gelernten. Das Zweite Kirchhoffsche Gesetz Das Verhalten der physikalischen Grundgrößen Spannung in den verschiedenen Stromkreisen ist das Thema dieses Kapitels. Auch hier werden zuerst die Formeln für die Spannung im unverzweigten und im verzweigten Stromkreis hergeleitet. GIF-Animationen erklären dann den Begriff der Masche im Stromkreis aus physikalischer Sicht. Es folgt die Verallgemeinerung der Formeln für die Spannung zur Maschenregel - dem Zweiten Kirchhoffschen Gesetz. Eine interaktive Flash-Animation zeigt den Zusammenhang zwischen den unterschiedlichen Maschen und der Summe der Einzelspannungen in diesen Maschen. Zum Schluss wird die Maschenregel auf Teilstromkreise übertragen. Online-Materialien Auch in diesem Kapitel dienen interaktive Übungen der Kontrolle und Festigung des Gelernten. Abb. 8 (Platzhalter bitte anklicken) zeigt einen Screenshot (Ausschnitt) aus dem interaktiven Arbeitsblatt von Übung 5. Die Schülerinnen und Schüler in Klasse 8 sollen im Rahmen des Themas "Leitungsvorgänge in Metallen" den Zusammenhang zwischen Stromstärke und Spannung kennen. sich mit Leben und Werk von Georg Simon Ohm (1789-1854) beschäftigen. das Ohmsche Gesetz, das I(U)-Diagramm von Konstantandraht und Glühlampe sowie den Begriff "Kennlinie" kennen. die physikalische Größe des elektrischen Widerstands kennen, insbesondere die Deutung mit dem elektrischen Leitungsmodell, die Berechnung von Widerständen, Spannung und Stromstärke sowie die Abhängigkeit des Widerstands eines Leiters von Länge, Querschnittsfläche und Material. Kenntnisse über den elektrischen Widerstand auf technische Sachverhalte anwenden, insbesondere auf Festwiderstände und verstellbare Widerstände (Potentiometer), Vorwiderstände (mit Berechnung) und die Wheatstonesche Brücke. Geltungsbereich des Ohmschen Gesetzes Das Ohmsche Gesetz wird in einem virtuellen Experiment hergeleitet. Durch die Nutzung verschiedener "Standorte" (Kontextmenü dazu per rechtem Mausklick aufrufen) in der 3D-Visualisierung ist es möglich, zeitgleich die Spannung zu wählen (Abb. 9, Platzhalter bitte anklicken) und dann die Auswirkung auf die frei beweglichen Elektronen zu beobachten und die Stromstärke abzulesen. Der Schritt zum Ohmschen Gesetz als Ergebnis der Untersuchungen ist dann reine Formsache. Es folgt der gleiche Versuch mit einer Glühlampe an Stelle des Ohmschen Widerstandes. Durch die zuvor untersuchte Abhängigkeit der Teilchenbewegung von der Temperatur wird der Geltungsbereich des Ohmschen Gesetzes auf nahezu konstante Temperatur eingeschränkt. Nach der Formulierung des Ohmschen Gesetzes wird die physikalische Größe des elektrischen Widerstands definiert. Online-Materialien Nach der Bearbeitung des Kapitels folgen interaktive Übungen zur Prüfung und Festigung des Gelernten. Informationen und Animationen Das Ohmsche Gesetz und der elektrische Widerstand Übungsaufgaben zum Ohmschen Gesetz Interaktive Übungen, Aufgaben von Dieter Welz, Leben und Werk von Georg Simon Ohm Einfluss von Querschnitt und Länge des Leiters Die Formulierung des Widerstandsgesetzes bildet den Abschluss dieses Kurses. Die Abhängigkeit des elektrischen Widerstands von Querschnitt (Abb. 10, Platzhalter bitte anklicken) und Länge des Leiters wird in einer Folge von virtuellen Experimenten untersucht. Danach folgt die Herleitung des eigentlichen Widerstandsgesetzes. Die Einteilung der Stoffe in Leiter, Halbleiter und Nichtleiter ist dann die logische Folgerung, mit der der Kurs abschließt.

  • Physik / Astronomie
  • Sekundarstufe I
ANZEIGE