• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Ohne Motor läuft nichts: Motortyp Elektromotor

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler den Elektromotor und dessen Bedeutung für den Fortschritt im Automobilbau kennen. Durch Aufgaben und Versuche wird die Funktionsweise verschiedener E-Motorenarten erklärt und veranschaulicht. Die Unterrichtseinheit "Ohne Motor läuft nichts: Motortyp Elektromotor" führt die Schülerinnen und Schüler mittels drei aufeinander aufbauender Arbeitsblätter in das Themenfeld Elektromotoren ein. Zum Einstieg werden die Schülerinnen und Schüler in der ersten konzipierten Stunde mit dem Thema Magnetismus in ihrer Lebenswelt abgeholt. Dabei arbeiten sie sowohl einzeln als auch in Zweier-Konstellationen sowie in Kleingruppen. Es bleibt demnach viel Raum zum Durchführen eigener Versuche und zum Herleiten eigener Erkenntnisse. Das Thema Magnetismus wird anschließend vertieft und leitet in der zweiten Stunde zum Elektromagnetismus über. Hier findet unter anderem auch eine intensive Einbindung der Frage statt: Welche Bedeutung haben Elektromotoren in unserem und für unseren Alltag? Beide Stunden aktivieren die Schülerinnen und Schüler durch mehrere Versuche und nehmen so eventuelle Berührungsängste mit dem Thema Elektrik. Die dritte konzipierte Stunde schließlich eignet sich vor allem für Schülerinnen und Schüler, die bereits ein vertieftes Interesse an der Materie zeigen oder sich durch besondere Vorkenntnisse auszeichnen. Hier wird eine spezielle Art von Elektromotoren, nämlich der Drehfeld-Elektromotor, vertieft. Auch ist hier das verwendete Vokabular bereits deutlich spezialisierter. Um sich dem für Schülerinnen und Schüler doch recht komplexen Thema Elektromotor langsam anzunähern, beginnt die Unterrichtseinheit mit dem Thema Magnetismus. Dieses ist den Schülerinnen und Schülern aus der eigenen Lebenswelt bekannt und mit dem vorhandenen Wissenshorizont gut erfassbar. Weiterhin liefert es Möglichkeiten für anschauliche Experimente. So werden mittels eines Versuchs Magnetfeldlinien sichtbar gemacht – ein leicht durchzuführendes Experiment, das sehr gut visualisiert und an das sich weiterführende Versuche anschließen lassen. Es erfolgt im Anschluss der Transfer vom Permanent- zum Elektromagneten. Dies geschieht mit einem weiteren Experiment, das dazu geeignet ist, eventuelle Berührungsängste mit dem Thema Elektrizität abzubauen. Als Arbeitsformen schlägt die Unterrichtseinheit sowohl Paar- als auch Kleingruppenarbeit vor. Die Lehrkraft übernimmt Einleitung, Abschluss und eventuell eine Hinführung zur Thematik, nimmt sich dann aber weitestgehend zurück. In einem nächsten Schritt wird anschließend der Elektromotor – eine Kombination aus Permanent- und Elektromagneten – beschrieben. Für den Einstieg werden die Lernenden erneut in ihrer eigenen Lebenswelt abgeholt, indem sie benennen, an welchen Stellen sich in einem Kraftfahrzeug Elektromotoren befinden. Anschließend erfolgt die Einbindung eines Films. Die Schülerinnen und Schüler erhalten dann die Aufgabe, wesentliche Informationen aus dem Film herauszuarbeiten. Hier wird von ihnen ein Transfer vom Magnetismus hin zum Elektromagnetismus verlangt. Arbeitsblatt 3 schlägt thematisch einen Bogen hin zu einem speziellen Typus von Elektromotoren, nämlich dem Drehfeld-Elektromotor. Es richtet sich damit gezielt an Schülerinnen und Schüler, die entweder bereits über Vorkenntnisse verfügen, oder die sich durch eine besonders hohe Auffassungsgabe hervortun. Es ist somit für eine mögliche Differenzierung bestens geeignet. Fachkompetenz Die Schülerinnen und Schüler festigen die Kenntnisse der Grundgesetze des Magnetismus. lernen Aufbau und Funktionsweise eines Elektromotors kennen. vertiefen ihre Kenntnisse über Elektromotoren anhand der detaillierten Beschäftigung mit dem Drehfeld-Elektromotor. erleben die wichtige Rolle von Sorgfalt, Präzision und Beobachtungsgabe bei der Durchführung von Versuchen. Medienkompetenz Die Schülerinnen und Schüler trainieren die Recherche in und mit Online-Medien. üben sich darin, relevante Informationen aus Medien herauszufiltern und zu verwerten. leiten aus Medienquellen Informationen ab und kombinieren sie mit bereits vorhandenem Wissen zu Wissenstransfers. Sozialkompetenz Die Schülerinnen und Schüler trainieren das Arbeiten in Zweierteams beziehungsweise in Gruppenkonstellationen. erfahren, wie man sich im Team komplexen Aufgabenstellungen nähern kann.

  • Physik
  • Sekundarstufe I

Hybridmotoren – das Beste aus beiden Welten

Unterrichtseinheit

In dieser Unterrichtseinheit für die Sekundarstufe I für den Physikunterricht setzen sich Lernende mit den Besonderheiten des Hybridantriebs auseinander. Von unterschiedlichen Antriebsarten und deren Funktionsweise über verschiedene Arten der Energieumwandlung und Energieerhaltung lernen die Schülerinnen und Schüler physikalische Konzepte mit Sachbezug zum Kfz-Gewerbe kennen. Was bedeutet es, Vorteile aus zwei Motorenarten zu kombinieren, um Vorteile für technische Entwicklungen zu erzielen? Wie kann man verschiedene physikalische Prozesse gleichzeitig nutzen, um die Effizienz zu steigern? Mit diesen und verwandten Fragen beschäftigen sich die Schülerinnen und Schüler anhand von drei Arbeitsblättern in dieser Unterrichtseinheit. Es geht darum, sich mit dem Hybridantrieb auseinanderzusetzen und herauszufinden, warum er das Beste aus zwei Welten vereint. Ziel der Unterrichtseinheit ist es, diese Antriebsart kennenzulernen und mit anderen Antriebsarten zu vergleichen. Es ist sinnvoll, die Unterrichtseinheiten zum Verbrennungsmotor und zum Elektromotor vorzuschalten. In der ersten Stunde nähern sich die Schülerinnen und Schüler der Frage, welche beiden Antriebsarten im Hybridauto vereint sind. Sie erarbeiten, welche Technik welche Funktion erfüllt und lernen dabei, zwischen Energiespeicher und Energiewandler zu unterscheiden. Anschließend bestimmen sie anhand vorgegebener Kriterien Merkmale von Verbrenner-, Elektro-, und Hybridautos. Die Lernenden recherchieren selbstständig ein Hybridmodell, überprüfen die erarbeiteten Merkmale des Hybridfahrzeugs und nehmen eine Einordnung und Unterteilung vor. Darauf aufbauend lernen sie den Aufbau und die Funktionsweise eines Hybridantriebs kennen. Die Lernenden setzen sich mit den Antriebskomponenten auseinander, indem sie einen Lückentext ausfüllen. Anhand von zwei Abbildungen erarbeiten sie die Unterschiede zwischen Elektro- und Hybridantrieb. Mit diesem Wissen erarbeiten die Lernenden anhand einer Animation zum Energiefluss eines Hybridautos die Vorgänge in den verschiedenen Betriebsphasen. Sie erarbeiten, welcher Motor in welcher Betriebsphase zum Einsatz kommt und warum und wie die Energieumwandlung funktioniert. Optional wird eine Zusatzaufgabe angeboten. Die Lernenden werden aufgefordert, die Infrastruktur für Elektro- und Hybridfahrzeuge aktiv wahrzunehmen. Dazu recherchieren sie in ihrem schulischen Umfeld Tankstellen, Ladesäulen und Werkstätten, die auf Elektro- und Hybridfahrzeuge spezialisiert sind und lernen verschiedene Recherchemöglichkeiten kennen. Die Lernenden vertiefen zudem ihr erworbenes Wissen über Energieumwandlung und Energieerhaltung. Dazu lesen sie einen kurzen Informationstext über die physikalischen Grundlagen, die verschiedenen Energieformen und die Energieumwandlung in einem Hybridauto. Das erworbene Wissen fassen sie zusammen, indem sie Beispiele zur Energieumwandlung sammeln. Die Schülerinnen und Schüler lernen die Energierückgewinnung durch Rekuperation kennen und erarbeiten die Funktionsweise anhand eines Videos, das den Vorgang zielgruppengerecht veranschaulicht. Es folgt ein Quiz zum Hybridantrieb, das die wichtigsten Inhalte spielerisch abfragt. Das Quiz kann in Kahoot erstellt werden, um den Spaßfaktor, die Motivation und die Interaktivität zu erhöhen. Die Einheit endet mit einem Rollenspiel, in dem die Lernenden ein Beratungsgespräch simulieren. Indem die Lernenden einem fiktiven Kunden/einer fiktiven Kundin die Funktionsweise des Hybridfahrzeugs, den Unterschied zwischen den Antriebsarten und den Vergleich zum Elektroauto erklären und die Vor- und Nachteile des Hybrids erläutern, übertragen sie das erworbene Wissen auf eine konkrete Situation. Die Aufgabe verdeutlicht das vielfältige Wissen, das für ein solches Beratungsgespräch im Kfz-Gewerbe erforderlich ist. Die Reflexion des Gelernten, der Unsicherheiten und Herausforderungen während des Rollenspiels kann als Ausgangspunkt für die Wiederholung und Vertiefung der Inhalte mit der Lerngruppe dienen. Verschiedene Autos mit unterschiedlichen Antriebsarten sehen die Schülerinnen und Schüler jeden Tag, beispielsweise auf dem Weg zur Schule. Dabei nehmen sie von außen oft keine offensichtlichen Unterschiede wahr. Die Unterrichtseinheit zum Hybridantrieb ist darauf ausgelegt, dieses alltägliche Phänomen zu durchleuchten und den Lernenden ein tiefergehendes Verständnis für die Antriebsart (Hybrid) zu vermitteln. Vor dieser Unterrichtseinheit sollten die Grundlagen des Verbrennungsmotors und des Elektromotors sowie deren Funktionsweise und Aufbau behandelt worden sein. Sie richtet sich an Lernende, die ein grundlegendes Verständnis dieser Antriebsarten mitbringen. Von Vorteil ist ebenfalls Grundlagenwissen über Energiearten, Energieumwandlung und Energiespeicherung. Diese Vorkenntnisse bilden die Basis für das Verständnis der Vorteile eines Hybridantriebs, der als Synthese der besten Eigenschaften beider Welten gilt. Um die komplexen Vorgänge des Hybridantriebs verständlich zu machen, wurden die Inhalte didaktisch reduziert aufbereitet. Beispielsweise wurden lediglich die wesentlichen Energiewandlungsprozesse eingeführt. Hierbei spielen vor allem die Begriffe "mechanische", "elektrische" und "chemische" Energie eine zentrale Rolle. Unterkategorien wie "kinetische Energie" und "potenzielle Energie" werden zwar erwähnt, aber nur oberflächlich behandelt, insbesondere die Lageenergie (potenzielle Energie) wird nicht detailliert vertieft. Komplexe Vorgänge werden stets durch eine Abbildung, eine Animation oder ein Video veranschaulicht, um das Thema auf verschiedenen Wahrnehmungsebenen zugänglich zu machen und das Verständnis zu unterstützen. Differenzierte Aufgabenstellungen mit variierenden Schwierigkeitsgraden ermöglichen es allen Schülerinnen und Schülern, die Inhalte auf ihrem individuellen Niveau zu erschließen. Hilfestellungen wie Tipp-Boxen und veranschaulichende Grafiken unterstützen dabei das Lernen und Verstehen, während Wort-Kästen das Leseverständnis fördern und bei der Erschließung unbekannter Begriffe helfen. Die Unterrichtseinheit bedient sich einer Vielfalt an Medienformaten wie Videos, interaktiven Karten und Texten mit Vorlesefunktion, um unterschiedliche Lerntypen anzusprechen. Diese multimediale Herangehensweise ermöglicht es den Lernenden, die Informationen auf vielfältige Weise aufzunehmen und zu verarbeiten. Sie fördert individuelles Lernen und eine vertiefte Auseinandersetzung mit den Lehrinhalten. Ein Schwerpunkt der Unterrichtseinheit ist das forschend-entdeckende Lernen. Neben der Vermittlung theoretischer Grundlagen bieten Erkundungsaufgaben direkte Anknüpfungspunkte an die Lebenswelt der Schülerinnen und Schüler. Die Erforschung der Infrastruktur für Hybridfahrzeuge in ihrer eigenen Region schafft einen konkreten Realitätsbezug. Durch den konkreten Bezug zum Kfz-Gewerbe wird ein Bewusstsein für die eigene Umwelt geschaffen. Die praxisnahen Aufgaben stärken die Selbstständigkeit und das kritische Denken der Lernenden. Die Unterrichtseinheit bietet zahlreiche gesellschaftswissenschaftliche Bezüge. Die Analyse des Schadstoffausstoßes verschiedener Fahrzeugtypen ermöglicht Diskussionen über aktuelle Gesetzgebungen, den Ausbau der Infrastruktur und Bemühungen zur Schadstoffreduktion im Kfz-Gewerbe. Eine vertiefende Einheit zur Nachhaltigkeit im Verkehrssektor kann fachübergreifende Zusammenhänge verdeutlichen. Durch Gruppen- und Paararbeit wird die Zusammenarbeit unter den Schülerinnen und Schülern gefördert. Sie können ihr Wissen austauschen, sich gegenseitig unterstützen und gemeinsam Aufgaben erarbeiten. Diese kooperativen Lernformen stärken soziale Kompetenzen und fördern die Teamarbeit der Lerngruppe. Ein abschließendes Rollenspiel stellt einen praktischen Anwendungsbezug her, indem die Lernenden als Beraterinnen und Berater in einem fiktiven Beratungsgespräch die Funktionsweise und Vorteile eines Hybridfahrzeugs erläutern. Die Reflexion über ihre Erfahrungen während des Rollenspiels dient als Ausgangspunkt für eine vertiefte Wiederholung und Festigung der erlernten Inhalte. Fachkompetenz Die Schülerinnen und Schüler lernen Aufbau und Funktionsweise eines Hybridantriebs kennen. unterscheiden zwischen Energiespeichern und Energiewandlern. verstehen, warum Hybridmotoren effizient sind. lernen die verschiedenen Arten der Energieumwandlung mit Sachbezug zum Hybridauto kennen. beziehen die verschiedenen Energiearten (elektrische, chemische und thermische Energie) auf den Energiefluss und die Energieumwandlung im Hybridfahrzeug. lernen die Rekuperation im Zusammenhang mit dem Elektroantrieb kennen. vergleichen die verschiedenen Antriebsarten (Verbrennungsmotor, Elektroantrieb, Hybridantrieb) hinsichtlich der physikalischen Vorgänge. Medienkompetenz Die Schülerinnen und Schüler gewinnen Informationen aus verschiedenen Medien wie Text, Video, Webseiten und interaktiven Grafiken. recherchieren selbstständig im Internet nach genannten Kriterien und Informationen und lernen, die recherchierten Informationen zu selektieren. lernen, recherchierte Informationen zu präsentieren. Sozialkompetenz Die Schülerinnen und Schüler hören zu und erkennen relevante Informationen zu einer bestimmten Fragestellung. arbeiten kooperativ in Zweiergruppen und in Kleingruppen. führen eine Pro-und-Contra-Diskussion und lernen, eigene Standpunkte zu vertreten sowie fremde Standpunkte zu akzeptieren. übertragen die gesammelten Informationen in ein Rollenspiel und lernen, Informationen zielgruppengerecht zu vermitteln. setzen sich im Zusammenhang mit dem Thema aktiv mit ihrer Umgebung auseinander.

  • Physik
  • Sekundarstufe I

Elektroniker-Azubis: Wie stehen sie zu Elektroautos?

Video

Anhand des Videoclips erfahren die Schülerinnen und Schüler, was Auszubildende des Elektrohandwerks von Elektroautos halten.Finden Auszubildende des Elektrohandwerks die Entwicklung hin zum Elektromotor gut oder gibt es vielleicht Probleme, die der normale Verbraucher gar nicht mitbekommt? In einem Blitzinterview auf der Weltleitmesse für Licht- und Gebäudetechnik "Light + Building" gaben sie zur Frage Auskunft: Was haltet ihr von Elektroautos? Der Clip ist Teil der Unterrichtseinheit „ Elektromobilität: Zukunft schreibt man mit E “. Dort kann er als Einstieg zur eigenen Reflexion und anschließende Diskussion zur Frage genutzt werden wie die Schülerinnen und Schüler ganz persönlich zum Thema Elektromobilität stehen und welches Zukunftspotenzial mit dieser Technik einhergeht. Dabei haben sie auch die Aspekte Energiewende sowie Endlichkeit fossiler Ressourcen im Blick. Daran schließt sich eine tiefergehende Auseinandersetzung mit dem Thema Elektromobilität an. Hierfür stellt die Unterrichtseinheit Informations- und Arbeitsblätter, ein interaktives Quiz sowie Link- und Literaturempfehlungen bereit. So lernen die Schülerinnen und Schüler unter anderem verschiedene Antriebs- und Ladetechnologien von Elektrofahrzeugen sowie ihre Vor- und Nachteile kennen. Hier befassen sie sich auch mit der Energiegewinnung von Elektrofahrzeugen. So erarbeiten sie sich die Funktionsweise von Lithium-Ionen-Akkus für Elektroautos sowie Brennstoffzellen für Wasserstoffautos und setzen sich mit den Vor- und Nachteilen der verschiedenen Konzepte auseinander. Anhand von textlichen und grafischen Informationen zu staatlichen Unterstützungsmaßnahmen sowie dem aktuellen Entwicklungsstand reflektieren sie anschließend das Zukunftspotenzial von Elektrofahrzeugen für die Gesellschaft und den eigenen Alltag. Der Clip als Teil der Unterrichtseinheit „Elektromobilität: Zukunft schreibt man mit E“ bietet vor allem Einsatzmöglichkeiten in den Fächern Physik, Technik und Sozialkunde der Sekundarstufe II. Darüber hinaus kann er im Rahmen von Projektwochen sowie im fachübergreifenden und fächerverbindenden Unterricht genutzt werden, in denen Themen wie Elektromobilität oder Zukunft des Automobils im Mittelpunkt stehen.

  • Technik / Sache & Technik / Elektrotechnik / Physik / Astronomie / Politik / WiSo / SoWi / Fächerübergreifend
  • Berufliche Bildung, Fort- und Weiterbildung, Sekundarstufe II

Versuch von Oersted – experimentelle Vertiefung

Unterrichtseinheit

Die Unterrichtseinheit dient als Experimentierstunde, bei dem die Schülerinnen und Schüler ihr vorhandenes Wissen über einen stromdurchflossenen Leiter und die Lorentzkraft in Verbindung bringen. Ziel der Unterrichtsstunde ist die Formulierung des Ampèreschen Kraftgesetzes.Der Versuch von Oersted zeigt, dass ein stromdurchflossener Leiter ein konzentrisches Magnetfeld um den Leiter herum zur Folge hat. Anhand einer Magnetfeldnadel und deren veränderten Ausrichtung, sobald der Stromkreis geschlossen ist, kann dieses Magnetfeld nachgewiesen werden. Das Wissen über dieses Magnetfeld wird sowohl für das Feldlinienbild einer stromdurchflossenen Spule als auch für die Erklärung einer Kraft auf einen stromdurchflossenen Leiter benötigt. Die AR-Applikation stellt die konzentrischen Felder graphisch im Raum dar. Weitere Informationen und einen Link zum Download finden Sie am Ende dieser Seite. Die Unterrichtseinheit dient als experimentelle Vertiefung des Versuchs von Oersted und ist in drei Teile gegliedert. Nachdem die Schülerinnen und Schüler das Phänomen an einem Leiter feststellen konnten, wird dasselbe Phänomen auf zwei parallele Leiter mit derselben Polung übertragen. Anschließend erörtern die Lernenden den Fall für zwei parallele Leiter mit entgegengesetzter Polung. Zum Schluss der Unterrichtsstunde folgt eine Zusammenfassung, welches das Ampèresche Kraftgesetz wiedergibt. Relevanz des Themas Der elektrische Strom in einem Kabel hat eine magnetische Wirkung auf seine Umgebung. Diese Tatsache dient als Grundlage für Phänomene wie beispielsweise die Lorentzkraft. Durch diese Grundlage findet der Versuch von Oersted in allen Themen des Elektromagnetismus seine Berechtigung. Mit diesem Wissen können Anwendungen – wie Feldlinienbilder von Spulen, grundlegende Induktionsphänomene, Elektromotoren oder ähnliches – erklärt und verstanden werden. Vorkenntnisse Die Funktionsweise (Grundlagen, benötigte Ladungsträger et cetera) eines geschlossenen Stromkreislaufes sollte bekannt sein. Didaktisch-methodische Analyse In dieser Unterrichtseinheit folgen die Lernenden dem Prinzip des entdeckenden Unterrichts. Durch Beobachtung des Ausschlages der Kompassnadel wird auf das Phänomen aufmerksam gemacht. Durch Anwendung auf weitere analoge Versuchsdurchführungen wird das Wissen vertieft, mit Abschluss in einer allgemein gültigen Aussage. Hinweis zum Arbeitsblatt Hier finden Sie Angaben zur Verteilung an die Schülerinnen und Schüler. Dabei kann frei entschieden werden, ob die Lernenden Aufgabenteil 3 bearbeiten. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigCompEdu Modell) Die Lehrenden benötigen die Kompetenz die richtige digitale Ressource für das Lehren und Lernen zu identifizieren und auszuwählen. Dabei müssen sie das spezifische Lernziel, den Kontext, den pädagogischen Ansatz und die Lerngruppe bei der Auswahl der Ressource berücksichtigen (2.1 Auswahl digitaler Ressourcen). Zusätzlich müssen die Lehrenden die digitalen Geräte richtig im Unterrichtsprozess implementieren, um die Effektivität der Unterrichtsinterventionen zu verbessern (3.1 Lehren). Zusätzlich muss die digitale Technologie richtig eingesetzt werden, um die Zusammenarbeit der Lernenden zu verbessern und zu fördern (3.3 Kollaboratives Lernen). Die Einheit bietet die Möglichkeit, dass Lernende auf unterschiedlichen Ebenen und mit unterschiedlichen Geschwindigkeiten vorankommen und ihre Lernziele verfolgen. Diese Möglichkeit muss durch den Lehrenden durch die digitale Technologie und den Ablauf der Einheit angeboten werden (5.2 Differenzierung und Personalisierung). Durch diese Möglichkeit können die Lernenden sich aktiv und kreativ mit der Thematik auseinandersetzen. Deshalb ist von den Lehrenden gefordert diese Möglichkeit zu nutzen und neue reale Kontexte zu eröffnen, die die Lernenden selbst in praktischen Aktivitäten und wissenschaftlichen Untersuchungen einbeziehen und somit eine aktive Beteiligung der Lernenden an dem komplexen Thema zu erhöhen (5.3 Lernende aktiv einbeziehen). Fachkompetenz Die Schülerinnen und Schüler erkennen den Zusammenhang zwischen Stromfluss und magnetischer Wirkung. fördern ihre experimentelle Kompetenz. kennen die Bedeutung des Ampèreschen Kraftgesetz. Medien- und Sozialkompetenz Die Schülerinnen und Schüler kommunizieren und Kooperieren, um das Phänomen zu erfassen. setzen ein digitales Werkzeug bedarfsgerecht ein, um das Phänomen zu erklären. 21st Century Skills Die Schülerinnen und Schüler decken Zusammenhänge auf, indem sie komplexe Systeme analysieren, Hypothesen formulieren und dies aktiv überprüfen. arbeiten zusammen an einem Experiment, sodass sich Gruppendynamiken entwickeln und klare Vereinbarungen getroffen werden müssen. nutzen Fragetechniken und stellen Fragen, um gemeinsam die Ursache des Phänomens zu finden. werden im Umgang mit digitalen Medien geschult. Schwanke, Hagen; Trefzger, Thomas (2022): Entwicklung und Evaluierung der AR-Applikation "Magneto". In: Gesellschaft für Didaktik der Chemie und Physik (GDCP) (Hg.): Unsicherheit als Element von naturwissenschaftsbezogenen Bildungsprozessen. Unter Mitarbeit von Sebastian Habig und Helena van Vorst: Universität Duisburg-Essen; Universität Erlangen-Nürnberg (Band 42). Online verfügbar unter https://www.gdcp-ev.de/wp-content/tb2022/TB2022_572_Schwanke.pdf

  • Physik / Astronomie
  • Sekundarstufe I

Energiespeicher in Stromversorgungssystemen

Unterrichtseinheit

Der Ausbau erneuerbarer Energien macht gleichzeitig auch die Weiterentwicklung von Speichertechnologien notwendig, da Stromproduktion und Stromnachfrage im Zeitverlauf schwanken. Gerade beim Thema Erneuerbare Energien spielen Speichertechnologien eine bedeutsame Rolle. Denn häufig ist die Menge der Stromproduktion aus Solar- oder Windkraft nicht genau vorhersehbar und entspricht nicht immer der Nachfrage. Speichertechnologien sind aus diesem wichtig, um überschüssigen Strom (beispielsweise bei starkem Wind) zwischenzuspeichern und in Zeiten höherer Nachfrage in das Netz einzuspeisen. Ohne sie erscheint ein weiterer Ausbau Erneuerbarer Energien kaum denkbar. Ziel dieser Unterrichtseinheit ist es, den Schülerinnen und Schülern zu vermitteln, dass der Ausbau erneuerbarer Energien ebenso eine parallele Weiterentwicklung von Möglichkeiten zur Energiespeicherung erfordert. Die Lernenden sollen im Internet verschiedene Speicherformen und ihre Funktionsweise recherchieren und die Ergebnisse dann im Plenum präsentieren. Energiespeicher in Stromversorgungssystemen Der Text des VDE bietet zusammenfassende Informationen zu verschiedenen Formen von Energiespeichern und kann als Ausgangsbasis für die Internetrecherche dienen. Die Schülerinnen und Schüler sollen lernen, dass Stromversorgungssysteme mit einem hohen Anteil an regenerativen Energien wie Solar- oder Windkraft aufgrund des schwankenden Angebots Energiespeicher benötigen. im Internet Informationen zu Energiespeichern recherchieren und dabei verschiedene Energieformen unterscheiden (mechanisch, chemisch). in Partner- oder Gruppenarbeit das Funktionsprinzip einzelner Speichertechnologien genauer erarbeiten. ihre Ergebnisse den Mitschülerinnen und Mitschülern in geeigneter Form präsentieren. Thema Energiespeicher in Stromversorgungssystemen Autor Antje Schmidt Fach Physik, Technik Zielgruppe Klasse 8 bis 10 Zeitraum 2-3 Stunden Technische Voraussetzungen Computer mit Internetzugang (im Idealfall ein Computer für 2 Personen) In einem Stromversorgungsnetz muss die erzeugte Leistung zu jeder Zeit dem Bedarf entsprechen. Insbesondere die meisten erneuerbaren Energien (Wind, Sonne, Laufwasser) sind jedoch nicht gleichmäßig verfügbar. Zudem werden keine Vorräte gebildet, und sie sind in ihrer Intensität im Voraus nicht exakt planbar. Daher stellt sich die Herausforderung, wie mit Schwankungen zwischen Stromangebot und -nachfrage umzugehen ist. Erforderlich sind flexible Lösungen, die kurzfristig Ausgleich schaffen können. Geplant ist der Ausbau erneuerbarer Energien bis 2020 auf bis zu 40 % der gesamten Stromerzeugung. Dies kann bei einem Überangebot (zum Beispiel bei Starkwind) dazu führen, dass thermische Kraftwerke zum Ausgleich gedrosselt oder abgeschaltet werden müssen, da erneuerbare Energien als CO 2 -freie Energiequelle Vorrang haben. Wenn solche thermischen Kraftwerke nur im Teillastbetrieb laufen, erhöhen sich der Verschleiß und die Aufwendungen für Wartung und Instandhaltung. Insgesamt sind dadurch steigende Stromerzeugungskosten zu erwarten. Ideal wäre es daher, Speichermöglichkeiten für Strom aus erneuerbaren Energiequellen zu haben, um den Strom dann abzurufen, wenn er gebraucht wird und Angebotsschwankungen abzufedern. Solche Energiespeicher können einen Überschuss an erzeugter Energie für einige Tage oder Wochen zwischenspeichern. Prinzipiell sind solche Technologien verfügbar, jedoch sind bis zur Marktreife noch hohe Investitionen für Forschung und Entwicklung erforderlich. Im Folgenden werden einige Speichertechnologien vorgestellt. Diese Wasserkraftwerke verbinden zwei Wasserbecken unterschiedlicher Höhe. Ist das Angebot an elektrischer Energie größer als die Nachfrage (in der Regel nachts), kann der Überschuss an Energie genutzt werden, um Wasser aus dem unteren Becken in das obere Becken zu pumpen. Bei Bedarf lässt man das Wasser zurück in das untere Becken fließen und so eine Turbine antreiben. Der mit der Turbine verbundene Motor-Generator kann dann die gespeicherte Energie wieder in Elektrizität wandeln und in das Stromnetz einspeisen. Der Wirkungsgrad liegt derzeit im Bereich 70 bis 80 %, da zum Hochpumpen mehr Energie benötigt wird als beim Herunterfließen des Wassers wieder gewonnen werden kann. Im Vergleich zu anderen Speichertechnologien ist die Leistung deutlich höher und die Generatoren können etwa 4 bis 8 Stunden Strom erzeugen. Pumpspeicher sind jedoch an bestimmte topografische Voraussetzungen gebunden. Abgesehen von den Landschaftseingriffen beim Bau solcher Anlagen sind geeignete Standorte in der Regel zu weit entfernt von Gebieten mit hohem Windpotenzial wie Küstengegenden. Diese auch als CAES-Kraftwerke bezeichneten Energiespeicher (CAES = Compressed Air Energy Storage) arbeiten nach dem Prinzip, ein Luftreservoir in einer unterirdischen Kaverne (meist ein ausgehöhlter Salzstock) zu verdichten. In Spitzenzeiten wird die so gespeicherte Energie zum Antrieb von Gasturbinen genutzt, indem man die komprimierte Luft sich wieder ausdehnen lässt. Eine solche Anlage dient im Wesentlichen zur Netzregelung, da sie zur Abfederung von Spitzenlasten eingesetzt wird. Ein wichtiges Merkmal ist die Fähigkeit, das ein solches Werk schnell gestartet werden kann (innerhalb von Minuten stehen 100 % der Leistung zur Verfügung). Weltweit gibt es derzeit zwei diabate CAES-Anlagen, davon eine in den USA und eine in Deutschland. Die deutsche Anlage in norddeutschen Huntorf hat die Aufgabe, Strom in Schwachlastzeiten vom Kernkraftwerk Unterweser zwischenzuspeichern. Daneben sichert sie die Stromversorgung des Kernkraftwerks im Fall eines Netzzusammenbruchs ab. Druckluftspeicher sind an bestimmte geologische Voraussetzungen gebunden (Salzstöcke), die in Norddeutschland häufig vorkommen. Damit können sie als Speicher für den weiteren Ausbau von Windkraftanlagen in der Nordsee dienen und zukünftig eine größere Bedeutung erlangen. Um elektrische Energie über längere Zeit zu speichern (mehrere Tage bis Wochen), kommen Systeme infrage, die Wasserstoff als Energieträger nutzen. Dazu wird mithilfe von Elektrolyse überschüssige elektrische Energie in Wasserstoff gewandelt, der dann verdichtet und in unterirdischen Kavernen gespeichert werden kann. Somit bieten insbesondere Wasserstoffspeicher die technische Möglichkeit, fluktuierende erneuerbare Energiequellen wie Sonne und Wind bei Bedarf auszugleichen. Aufgrund der höheren Energiedichte kann mit Wasserstoff in Kavernen im Vergleich zu Druckluftspeichern die 60-fache Nutz-Energiemenge gespeichert werden. Wasserstoff-Speichersysteme bieten zwei Vorteile: zum einen eignen sie sich für Szenarien, bei denen die Energie relativ selten, das heißt im Schnitt weniger als einmal pro Woche, benötigt wird. Zum anderen muss der Wasserstoff nicht zwingend in elektrische Energie zurückgewandelt werden, sondern es ist auch eine direkte Nutzung des Wasserstoffs etwa als Fahrzeugantrieb (Brennstoffzellen) oder in der industriellen Produktion denkbar. Grob lassen sich elektrochemische Speicher in zwei Gruppen einteilen: mit internem und mit externem Speicher. Zur ersten Gruppe zählen übliche Batterien für tragbare Geräte wie Laptops, Handys oder MP3-Player. In diesen Systemen wird die Energie dort gespeichert, wo auch die elektrochemische Reaktion stattfindet. Bei Systemen mit externem Speicher kann das Speichermedium getrennt der Reaktionseinheit gelagert werden, beide können unabhängig voneinander dimensioniert werden. Blei-Säure-Akkumulatoren Sie finden derzeit die größte Verwendung. Genutzt werden sie als Starterbatterien in Verbrennungsmotoren, als Traktionsbatterien in Elektrofahrzeugen sowie für die Notstromversorgung. Im Bereich erneuerbare Energien dienen Blei-Säure-Akkumulatoren als Zwischenspeicher für Photovoltaik- oder Windkraftanlagen. Lithium-Ionen-Batterien Schon seit einiger Zeit werden Lithium-Batterien erfolgreich in Laptops und Handys als Energiespeicher genutzt. Ihr Vorteil liegt in einer geringen Selbstentladungsrate und einer hohen Energiedichte. Sie gelten auch als vielversprechend für Elektrofahrzeuge (siehe auch Energiespeicherung im Verkehrssektor). Redox-Flow-Batterien Zur Langzeitspeicherung oder Spannungsregulierung bieten sich Redox-Flow-Batterien an. Da hier das Seichermedium getrennt von der Umwandlungseinheit ist, kann die Energiemenge flexibel dimensioniert werden. In zwei Tanks werden die Flüssigkeiten, bestehend aus in flüssigen Elektrolyten gelösten Salzen, getrennt gelagert. Bei Bedarf werden die Flüssigkeiten mittels Pumpen der zentralen Reaktionseinheit für den Lade- oder Entladeprozess zugeführt. Diese Batterien haben den Vorteil, dass sie sich praktisch nicht entladen und daher sehr lange Energie speichern können. Für die zukünftige Entwicklung des Verkehrssektors werden erneuerbare Energien eine zunehmende Bedeutung haben. Viele Autokonzerne bringen derzeit Elektrofahrzeuge auf den Markt. Man unterscheidet drei Varianten: Hybridfahrzeug (HEV) Diese Fahrzeugart besitzt einen Speicher von etwa 1 kWh und lädt diesen nur während der Fahrt auf. Mithilfe des Elektroantriebs lässt sich eine Einsparung von Kraftstoff von bis zum 20% erzielen. Plug-in Hybrid (PEHV) Hier handelt es sich um ein Kraftfahrzeug mit Hybridantrieb, dessen Elektroantrieb über eine Steckdose geladen werden kann. Der Speicher ist größer als bei einem reinen Hybridfahrzeug und enthält 5 bis 10 kWh. Die Reichweite des Elektromotors beträgt 30 bis 70 km, bei längeren Strecken erfolgt der Antrieb über Kraftstoff wie Benzin, Erdgas oder auch Biokraftstoffe. Elektrofahrzeug (EV) Ein reines Elektrofahrzeug hat derzeit eine Reichweite von 100 bis 300 km bei einem Speicher von 14 bis 40 kWh. Auch hier lässt sich die Batterie über Steckdosen gewöhnlicher Hausanschlüsse laden. Zeiten, in denen das Fahrzeug nicht benötigt wird, zum Beispiel während der Arbeitszeit oder in den Nachtstunden, können zum Aufladen genutzt werden. Als geeignete Speichertechnologie erweist sich dabei vorzugsweise die Lithium-Ionen-Batterie, da sie eine hohe Energiedichte besitzt. Viele der genannten Speichersysteme weisen ein erhebliches Entwicklungspotenzial auf. Teilweise ist noch Forschungs- und Entwicklungsarbeit notwendig, um die erforderliche Marktreife zu erreichen. Insbesondere die Batterieentwicklung als eine Schlüsseltechnologie für Elektrofahrzeuge wird eine große Rolle spielen. Bedeutsam für die Etablierung von Speichersystemen allgemein sind zudem planbare energiewirtschaftliche Rahmenbedingungen, wie sie beispielsweise Anreizsysteme bieten. Parallel zum Einsatz von Energiespeichern ist der Ausbau der Netzkapazitäten erforderlich, um die Menge an erzeugtem Strom durch regenerative Energieträger über lange Distanzen zu übertragen und lokale Netzengpässe zu entspannen. Der Verband der Elektrotechnik Elektronik Informationstechnik e.V. (VDE) hat im Jahr 2008 eine Studie veröffentlicht zum Thema "Energiespeicher in Stromversorgungssystemen". In ausführlicher Form behandelt die Studie die verschiedenen Energiespeicher und ihre Rolle bei der Entkoppelung von Angebot und Bedarf an elektrischer Energie. Interessierte Lehrkräfte können die Studie direkt beim VDE bestellen (250 Euro für Nichtmitglieder): VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Stresemannallee 15 60596 Frankfurt am Main service@vde.com

  • Technik / Sache & Technik / Physik / Astronomie / Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE