Anzeige

Jetzt für innovative Schulprojekte bewerben!

Jetzt für innovative Schulprojekte bewerben! Deutsches Kinderhilfswerk
Anzeige

Jetzt für innovative Schulprojekte bewerben!

So macht Unterricht Spaß: 3D-drucken, plottern, Kurzvideos erstellen und mehr: "Zukunft Mitgemacht" fördert Schulprojekte mit 1 Million Euro.

Tipp der Redaktion

AR in GeoGebra: Grundlagen und platonische Körper

Zeichenutensilien, platonische Körper und Zirkel
Tipp der Redaktion

AR in GeoGebra: Grundlagen und platonische Körper

In dieser Unterrichtseinheit werden mithilfe des Augmented Reality (AR) Modus der Software GeoGebra die platonischen Körper entdeckt.

Tipp der Redaktion

Wie die Digitalisierung das Handwerk verändert

Bild von einem Mann der arbeitet
Tipp der Redaktion

Wie die Digitalisierung das Handwerk verändert

In diesem Fachartikel geht es darum, wie die Digitalisierung das Berufsbild und das Image der Handwerkerin und des Handwerkers nachhaltig verändert.

Tipp der Redaktion

Mechanik: Geradlinige Bewegungen

Fahrradspur mit Schatten eines Fahrrads
Tipp der Redaktion

Mechanik: Geradlinige Bewegungen

In dieser Einheit lernen die Schülerinnen und Schüler Bewegungsabläufe kennen, die ihnen vom Auto- oder Radfahren her bekannt sein sollten.

Tipp der Redaktion

Wasser – Lebenselixier und Herausforderung

Kind befüllt eine Flasche mit Wasser
Tipp der Redaktion

Wasser – Lebenselixier und Herausforderung

Unsere Materialien im Themendossier beleuchten die Bedeutung von Wasser, Trinkwasserqualität, Wasserversorgung, globalen Verbrauch und Plastikmüll. Die Lernenden entdecken nachhaltige Umgangsweisen…

  • Schulstufe 2
    zurücksetzen
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp 11
    zurücksetzen
  • Quelle 7
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Lineare Funktionen im Alltag

Unterrichtseinheit

Diese Unterrichtseinheit ist für das Fach Mathematik in der 9. Klasse am Gymnasium konzipiert und richtet sich an die Sekundarstufe I. Sie umfasst vier Unterrichtsstunden und ermöglicht einen anschaulichen und lebensnahen Zugang zum Thema funktionale Zusammenhänge. Anhand eines Beispiels aus dem Gerüstbau lernen Schülerinnen und Schüler, lineare Funktionen im Koordinatensystem darzustellen und zu interpretieren. Grafische Darstellungen werden mit einer praktischen Anwendung verknüpft, wodurch mathematische Inhalte greifbarer und motivierender vermittelt werden. Die Einheit eignet sich ideal, um den Alltagsbezug von Mathematik im Unterricht zu stärken und funktionale Zusammenhänge kontextbezogen zu vertiefen. Die Unterrichtseinheit zum Thema "Lineare Funktionen im Gerüstbau" vermittelt den Schülerinnen und Schülern die mathematischen Grundlagen der linearen Funktionen und deren Anwendung im Kontext des Gerüstbaus. Ausgangspunkt ist die direkte Proportionalität, die in dieser Einheit funktional betrachtet wird. Zunächst wird die lineare Funktion y=mx eingeführt, die später als Teil der allgemeinen linearen Funktion y=mx+t vertieft wird. Die Schülerinnen und Schüler erarbeiten dabei anschaulich die Bedeutungen der Parameter m (Steigung) und t (y-Achsenabschnitt). Im nächsten Schritt lernen die Schülerinnen und Schüler, wie die Funktionsvorschrift einer linearen Funktion anhand von zwei vorgegebenen Punkten erarbeitet wird. Dies erfolgt zunächst durch theoretische Aufgaben und wird anschließend in Übungseinheiten vertieft. Der Lehrplanbezug liegt hier besonders auf der Anwendung von mathematischen Modellen zur Bestimmung von Funktionen und deren Parametern. Im abschließenden Teil der Einheit wird der Definitionsbereich von linearen Funktionen thematisiert, was einen wichtigen Aspekt der mathematischen Modellierung und Analyse darstellt. Ein weiterer wichtiger Teil der Einheit ist die Betrachtung des Zusammenhangs zwischen mathematischen Konzepten und deren Anwendung im Berufsfeld des Gerüstbaus. Hierbei werden die Schülerinnen und Schüler auf die Relevanz von linearen Funktionen bei der Planung und Berechnung von Gerüsten hingewiesen. Die Einheit schließt mit der Auseinandersetzung mit der mathematischen Theorie der linearen Funktionen, wobei der Fokus auf der exakten Bestimmung von Parametern und der korrekten Anwendung im konkreten Kontext liegt. Diese Unterrichtseinheit hat das Ziel, den Schülerinnen und Schülern die Anwendung von linearen Funktionen im praktischen Kontext näherzubringen, insbesondere im Bereich des Gerüstbaus. Der Fokus liegt auf der Berechnung von Funktionsgleichungen und der Anwendung dieser Funktionen auf alltägliche Aufgaben, wie die Berechnung von Löhnen oder die Planung von Gerüsten. Zu Beginn der Einheit wird die Bedeutung linearer Funktionen anhand eines praxisnahen Beispiels eingeführt: dem Taschengeld von Benni. Die Schülerinnen und Schüler erkennen, dass bei einer festen Bezahlung pro Stunde eine direkte Proportionalität besteht, die durch eine lineare Funktion beschrieben werden kann. In der Erarbeitungsphase lernen die Schülerinnen und Schüler, wie sie diese Beziehungen mit der Funktion f(x) = m ∙ x + t berechnen können. Durch den Einsatz von Paararbeit und Gruppenarbeit können die Lernenden ihre Ergebnisse austauschen und das Verständnis vertiefen. In der anschließenden Sicherungsphase werden die wichtigsten Ergebnisse zusammengefasst und reflektiert. In der zweiten Stunde wird der mathematische Fokus auf die Berechnung von Funktionsgleichungen aus zwei gegebenen Punkten gelegt. Die Schülerinnen und Schüler nutzen die Datei " Durch_zwei_Punkte.ggb ", um interaktiv zu erfahren, wie sich die Steigung und der y-Achsenabschnitt einer linearen Funktion durch das Verschieben der Punkte verändern. Auch hier wird durch Gruppenarbeit das kollaborative Lernen gefördert, und in der Sicherungsphase werden die Ergebnisse gemeinsam diskutiert, um die Bedeutung der Parameter m und t zu vertiefen. Die dritte Stunde wendet die erlernten mathematischen Konzepte direkt auf den Gerüstbau an. Die Schülerinnen und Schüler berechnen Funktionsgleichungen für verschiedene Teile eines Gerüsts und visualisieren ihre Berechnungen mit der Datei " Hausgeruest.ggb ". Diese praktische Anwendung fördert das Verständnis, wie Mathematik im Bauwesen genutzt wird, um präzise Berechnungen für die Positionierung von Gerüststützen und -streben durchzuführen. In der Sicherungsphase reflektieren die Schülerinnen und Schüler ihre Berechnungen und diskutieren die Auswirkungen von Änderungen der Parameter auf die Stabilität des Gerüsts. In den letzten Stunden setzen sich die Schülerinnen und Schüler mit der Anwendung linearer Funktionen im Gerüstbau auseinander. Sie berechnen Funktionsgleichungen für geneigte Flächen und untersuchen, wie unterschiedliche Höhen die Gerüstkonstruktion beeinflussen. Dabei analysieren sie, wie lineare Modelle bei der Planung und Anpassung von Gerüsten eingesetzt werden – etwa zur Bestimmung von Aufbauhöhen und Neigungswinkeln. Die Methodenwahl – Plenumsdiskussionen, Paararbeit, Gruppenarbeit und der Einsatz von digitalen Tools wie Geogebra – ermöglichen es den Schülerinnen und Schülern, das Thema auf verschiedene Weise zu bearbeiten und das Verständnis zu vertiefen. Der interaktive Umgang mit den digitalen Tools unterstützt das visuelle Lernen und veranschaulicht abstrakte mathematische Konzepte. Die Unterrichtseinheit zielt darauf ab, den Schülerinnen und Schülern nicht nur die Berechnung von linearen Funktionen zu vermitteln, sondern auch ihre praktische Relevanz zu verdeutlichen. Indem die Lernenden mathematische Modelle auf konkrete Probleme anwenden, erkennen sie die Bedeutung von Mathematik im Alltag und im Berufsleben. Fachkompetenz Die Schülerinnen und Schüler verstehen den Zusammenhang zwischen linearen Funktionen und deren Anwendung in alltäglichen und beruflichen Kontexten. erarbeiten die mathematischen Grundlagen zur Berechnung von Funktionsgleichungen und deren Anwendung auf reale Fragestellungen wie Lohnberechnung und Gerüstbau. reflektieren die Bedeutung der Parameter m (Steigung) und t (y-Achsenabschnitt) in linearen Funktionen und deren Auswirkungen auf reale Berechnungen. wenden mathematische Konzepte auf praxisnahe Aufgaben im Bereich des Bauwesens an und erkennen den praktischen Nutzen von linearen Funktionen im Gerüstbau. Medienkompetenz Die Schülerinnen und Schüler nutzen digitale Tools wie GeoGebra, um mathematische Aufgaben zu visualisieren und interaktiv zu bearbeiten. recherchieren Informationen zu praktischen Anwendungen von linearen Funktionen und reflektieren diese im Hinblick auf reale berufliche Aufgaben. präsentieren ihre Ergebnisse in digitalen Formaten und verwenden dabei angemessene Darstellungsformen und Tools zur Visualisierung ihrer Berechnungen. Sozialkompetenz Die Schülerinnen und Schüler arbeiten kooperativ in Paar- und Gruppenarbeit und unterstützen sich gegenseitig beim Lösen mathematischer Aufgaben. lernen, ihre Ergebnisse im Plenum zu präsentieren, und geben konstruktives Feedback zu den Lösungen ihrer Mitschülerinnen und Mitschüler. erweitern ihre Fähigkeit zur klaren Kommunikation von mathematischen Prozessen und Ergebnissen und entwickeln eine gemeinsame Lösungsstrategie im Team.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Virtuelle Touren im Unterricht: Logistik & IT-Berufe interaktiv entdecken

Fachartikel

Unterrichtsidee zur Berufsorientierung: Mit den virtuellen Touren von Amazon Future Engineer bringen Sie Ihren Schülerinnen und Schülern die Welt von Logistik, Technik und IT näher – digital, praxisnah und kostenfrei. Das Angebot unterstützt die Berufsorientierung im Unterricht und fördert digitale Kompetenzen. Entwickelt in Zusammenarbeit mit erfahrenen Partnern aus dem Bildungs- und Digitalbereich, lässt sich das Programm flexibel in den Unterricht integrieren.

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Technik / Sache & Technik / Informationstechnik / Berufsvorbereitung /Berufsalltag / Arbeitsrecht / Elektrotechnik
  • Sekundarstufe I, Sekundarstufe II

Geraden im Raum

Video / Kopiervorlage

Mit diesem Arbeitsblatt lernen die Schülerinnen und Schüler die Darstellung von Geraden mit der Geradengleichung in IR³. Sie erarbeiten sich selbstständig mithilfe eines YouTube-Videos, wie man Geraden im dreidimensionalen Koordinatensystem darstellt und diese bei GeoGebra eingibt. Vertieft werden diese Kenntnisse nach dem Konzept "Flip the Classroom" anhand von verschiedenen Anwendungsaufgaben. Das Arbeitsmaterial ermöglicht den Schülerinnen und Schülern eine anschauliche Einführung in die Darstellung und Analyse von Geraden im dreidimensionalen Raum. Die Aufgabenstellungen kombinieren geometrische Modellierung mit praktischer Anwendung und regen zur eigenständigen Erarbeitung von Lösungsstrategien an. Die Schülerinnen und Schüler schauen sich vor der Bearbeitung des Arbeitsblattes zunächst das Video "12 Geraden im Raum" an, welches als QR-Code auf dem Arbeitsblatt hinterlegt ist. In diesem Video lernen die Schülerinnen und Schüler, wie man Flugbahnen von Drohnen als Geraden modelliert und mit GeoGebra überprüft, ob sich zwei Geraden schneiden. In der darauffolgenden Aufgabe 1 müssen zwei Geraden, die unterschiedlich angegeben sind, in ein Koordinatensystem eingetragen werden. Da man hier nicht erkennen kann, ob die Geraden sich schneiden, werden in Aufgabe 2 die Geraden in GeoGebra veranschaulicht. Durch die Nutzung von GeoGebra wird das räumliche Vorstellungsvermögen gefördert und mathematische Zusammenhänge werden interaktiv erfahrbar gemacht. Abschließend wenden die Lernenden ihr Wissen an, indem sie eine Gerade entwickeln, die mit einer gegebenen Geraden einen Schnittpunkt haben soll. Fachkompetenz Die Schülerinnen und Schüler wenden mathematische Methoden zur Beschreibung und Analyse von Geraden an. interpretieren die geometrische Bedeutung von Schnittpunkten. Medienkompetenz Die Schülerinnen und Schüler nutzen das Internet eigenständig zur Vorbereitung auf den Unterricht. nutzen GeoGebra zum Visualisieren und Lösen der Aufgaben. analysieren und interpretieren mathematische Modelle. Sozialkompetenz Die Schülerinnen und Schüler unterstützen sich gegenseitig beim gemeinsamen Lösen der Aufgaben.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Die Exponentialfunktion mit ihren Eigenschaften und Anwendungen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit wird die e-Funktion mit ihren wichtigen Eigenschaften und Anwendungen in der Differential- und Integralrechnung untersucht. Die Schülerinnen und Schüler bearbeiten Aufgaben zur Ableitung und Integration der e-Funktion, beschäftigen sich mit der Kurvendiskussion und lernen spezielle Anwendungen aus der höheren Differentialrechnung kennen. Die e-Funktion hat viele besondere Eigenschaften. Der erste Teil der Unterrichtseinheit beschäftigt sich mit der Ableitung der Funktion und zeigt deren Bedeutung, auch für andere Exponentialfunktionen. Im zweiten Teil der Einheit werden diese besonderen Eigenschaften bezüglich der Ableitung und der Integration geübt. Eine wichtige Aufgabe in der Differentialrechnung stellt die Kurvendiskussion dar. In einigen Aufgaben werden neben der Durchführung ausführlicher Kurvendiskussionen weitere besondere Eigenschaften der e-Funktion erarbeitet. Hierzu zählen Grenzwertbetrachtungen. Der letzte Teil der Unterrichtseinheit zeigt die Bedeutung der e-Funktion für die Wissenschaft an ausgewählten Beispielen. Da beim Auftreten der e-Funktion neben anderen Funktionstypen häufig algebraisch unlösbare Gleichungen auftreten, wird viel mit GeoGebra gearbeitet, damit mit Näherungen bestimmte Fragen beantwortet werden können. Die Besonderheit der Ableitung der e-Funktion wird erarbeitet. Ebenso die Ableitungen für andere Exponentialfunktionen. Bei der Anwendung der Ableitungs- und Integrationsregel werden auch andere Funktionstypen mit eingebracht und die Regeln wiederholt. Nach einer Zusammenstellung der Punkte einer Kurvendiskussion werden diese an Beispielen abgearbeitet. Hierbei werden weitere Besonderheiten der e-Funktion vorgestellt. Mit Blick auf die höhere Differentialrechnung erfahren die Lernenden die Bedeutung der Differentialgleichung und lernen das Auftreten in der e-Funktion in einigen wissenschaftlichen Bereichen kennen. Beim Aufgabenniveau wird gestreut, sodass neben wichtigen Grundlagen auch anspruchsvolle Lösungen erarbeitet werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler erkennen die besondere Ableitungseigenschaft der e-Funktion. lernen weitere Besonderheiten der e-Funktion im Rahmen von Kurvendiskussionen kennen und bekommen einen Einblick in die Grenzen der Berechenbarkeit. erhalten Einblick in "höhere Differentialrechnung" mit Differentialgleichungen und Beispielen der Anwendung der e-Funktion in besonderen Zusammenhängen. Medienkompetenz Die Schülerinnen und Schüler experimentieren mit GeoGebra-Dateien zur Visualisierung. erstellen eigene GeoGebra-Dateien. Analysieren und Reflektieren. Sozialkompetenz Die Schülerinnen und Schüler steigern ihr Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Antwortmöglichkeiten). arbeiten in Paararbeit zusammen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Nature of Science: Das Wesen der Naturwissenschaften verstehen

Unterrichtseinheit

Im gesellschaftlichen Diskurs wird häufig von der (Natur-)Wissenschaft gesprochen, die oft als allgemeingültige Argumentationsgrundlage herangezogen wird. In der Unterrichtseinheit sollen Schülerinnen und Schüler dieses Verständnis kritisch hinterfragen. Als Beitrag zu einer umfassenden naturwissenschaftlichen Bildung erarbeiten sie die Rahmenbedingungen von naturwissenschaftlichem Forschen und Handeln, diskutieren bestehende Kontroversen und Grenzen und gelangen so zu einem vertieften Verständnis über das Wesen bzw. die Eigenschaften der naturwissenschaftlichen Erkenntnisgewinnung. In dieser Unterrichtseinheit setzen sich die Lernenden mit den (Natur-)Wissenschaften auseinander und werden befähigt, naturwissenschaftliche Erkenntnisse kritisch zu reflektieren und kompetent einzuordnen. Eine Schülerin stellt ihre Erfahrung mit der Unterrichtseinheit im Community Call des Forums Bildung (2023) vor: https://www.youtube.com/watch?v=DV387Otll_M&t=22s . Die Unterrichtseinheit ist nach den Prinzipien des Unterrichtskonzept des Deeper Learning nach Anne Sliwka und Britta Klopsch konzipiert und folgt dem Drei-Phasen-Modell des Deeper Learning. Vertiefende Informationen dazu bietet das Workbook für Lehrkräfte: "Deeper Learning gestalten" (Beigel, Klopsch & Slwika, 2023) der Deutsche Telekom Stiftung, das am Ende der Einheit verlinkt und kostenfrei verfügbar ist. Ziel der Unterrichtseinheit ist es, dass die Schülerinnen und Schüler Fachwissen im Bereich Naturwissenschaften erwerben und dieses durch die ko-kreative und ko-konstruktive Bearbeitung einer authentischen Lernleistung anwenden. Der Fokus liegt dabei auf dem Erwerb vielfältiger Kompetenzen, die in verschiedenen Konzepten beschrieben sind. Zum einen in den sogenannten 4Ks, die vier zentralen Kompetenzen des Lernens im 21. Jahrhundert: kritisches Denken, Kreativität, Kommunikation und Kollaboration. Zum anderen in den 21st Century Skills, die über das reine Fachwissen hinausgehen und Fähigkeiten wie Problemlösefähigkeit oder Eigenverantwortung umfassen. Weitere Kompetenzen sind die Entwicklung von Mastery – das tiefergehende Verständnis von einem bestimmten Fachgebiet –, von Kreativität sowie der Stärkung der Identität in Co-Agency, das gemeinsame Gestalten von Lernprozessen. Was zeichnet Prozesse der naturwissenschaftlichen Erkenntnisgewinnung aus? Wie arbeiten Wissenschaftlerinnen und Wissenschaftler? Welche naturwissenschaftlichen Forschungsmethoden gibt es? Diese Fragen stehen im Mittelpunk von Phase I, der Instruktions- und Aneignungsphase der Einheit. Schülerinnen und Schüler erhalten verschiedene Lernmaterialien, die in einer vorbereiteten Lernumgebung, teilweise auch digital, zur Verfügung stehen. Ziel ist es, mit Hilfe der Materialien die Eigenschaften von Naturwissenschaften zu verstehen und fachwissenschaftlich korrekt wiederzugeben. Dabei dienen die sieben von Lederman et al. (2002, 2006, 2014) identifizieren Merkmale von Naturwissenschaften als angestrebtes gemeinsames Wissensfundament für die Schülerinnen und Schüler, da sie alltagsrelevante und lebensnahe Eigenschaften darstellen. Die Lernenden wenden diese gelernten Merkmale daraufhin in einem fachlichen Kontext an und zeigen so, dass sie verstanden haben, wodurch wissenschaftliche Ergebnisse geprägt sind. In Phase II, der Phase "Ko-Konstruktion und Ko-Kreation" , wenden die Schülerinnen und Schüler ihr Wissen aus Phase I praktisch an, indem sie die Merkmale naturwissenschaftlicher Erkenntnisgewinnungsprozesse am konkreten Beispiel einer Wissenschaftlerin bzw. eines Wissenschaftlers oder alternativ anhand einer historischen oder aktuellen naturwissenschaftlichen Fragestellung erarbeiten. Die entstehenden Erkenntnisse werden für eine anschließende Präsentation aufbereitet, wobei den Schülerinnen und Schülern die Wahl des zu erstellenden Lernprodukts freisteht. In Phase III, der Phase "Authentische Leistung" , präsentieren die Schülerinnen und Schüler anschließend ihre authentische Lernleistung und teilen ihren Erkenntnisgewinn mit der Lerngruppe und ggf. der Schulöffentlichkeit. Relevanz des Themas In aktuellen gesamtgesellschaftlichen Diskussionen und Entwicklungen wird den Naturwissenschaften eine gemeinhin hohe Bedeutung zugemessen. Unsere heutige Welt basiert in vielen Bereichen auf naturwissenschaftlichen Erkenntnissen – technologische, medizinische und ökologische Fortschritte sind untrennbar mit ihnen verbunden. Gleichzeitig wird bestimmten naturwissenschaftlichen Erkenntnissen, etwa dem menschengemachten Klimawandel, aber auch immer wieder von einzelnen Personengruppen die Legitimität abgesprochen. Ziel einer umfassenden naturwissenschaftlichen Bildung sollte es daher sein, Schülerinnen und Schüler dazu zu befähigen, die Grundlagen und Rahmenbedingungen naturwissenschaftlicher Forschung zu verstehen, bestehende Kontroversen und Grenzen zu kennen und diese differenziert bewerten zu können. So entwickeln sie die Fähigkeit, naturwissenschaftliche Erkenntnisse kritisch einzuordnen, argumentativ zu verteidigen und fundiert in gesellschaftliche Diskurse und Aushandlungsprozesse einzubringen und werden letztlich in die Lage versetzt, ihre Zukunft reflektiert und verantwortungsvoll mitzugestalten. Vorkenntnisse Es ist davon auszugehen, dass Schülerinnen und Schüler zum Ende der Sekundarstufe I bereits grundlegend mit dem Prozess der naturwissenschaftlichen Erkenntnisgewinnung vertraut sind. Je nach Bedarf stellt Material III dahingehend eine Wiederholung oder Einführung dar. Die Unterrichtseinheit ist so konzipiert, dass sich die Lernenden die notwendigen fachlichen Kenntnisse zur "Nature of Science" in der Aneignungs- und Instruktionsphase aneignen. Schülerinnen und Schüler, die in diesem Bereich bereits über Vorwissen verfügen, können die Phase schneller abschließen bzw. sich intensiver mit den weiterführenden Informationen in Material II auseinandersetzen. Didaktisch-methodische Kommentar Die Lerneinheit wurde für den Einsatz in der Grundlagenakademie der Einführungsphase entwickelt. Sie stellt eine Ergänzung zum fachgebundenen (Mathematik-, Deutsch- oder Englisch-) Vertiefungskurs nach der Ausbildungs- und Prüfungsordnung für die gymnasiale Oberstufe NRW dar, fördert gezielt fachliche und überfachliche Kompetenzen und führt die Schülerinnen und Schüler an das Konzept des Deeper Learning heran. Thematisch ist die Einheit in den naturwissenschaftlichen Fächern Biologie, Chemie und Physik verankert, wobei die Wahl der Vertiefungsthemen den Interessen und Neigungen der Schülerinnen und Schülern überlassen bleibt. Ziel ist die explizite Vermittlung von "Nature of Science" bzw. der Eigenschaften von Naturwissenschaften. Gebhard, Höttecke und Rehm (2017) stellen in ihrer "Pädagogik der Naturwissenschaften" heraus, dass die fachdidaktische Forschungslage zur Wirksamkeit der Vermittlung eindeutig ist. Dabei beziehen sie sich auch auf Khisfhe und Abd-El-Khalick (2002), die herausgearbeitet haben, dass Schülerinnen und Schülern von vielfältigen Reflexionsanlässe profitieren. Die naturwissenschaftliche Erkenntnisgewinnung bzw. die Natur der Naturwissenschaften, soll von einer Meta-Ebene aus nachvollzogen werden. Am Beispiel der weiterentwickelten Bildungsstandards in den Naturwissenschaften für das Fach Chemie (MSA) (KMK, 2024) lässt sich exemplarisch die Passung von "Nature of Science" auf die curricularen Vorgaben verdeutlichen: "Bildung in der Chemie ermöglicht Einblicke in die Arbeitsweisen der chemischen Industrie und Forschung, fördert das Wissenschaftsverständnis im Sinne von Nature of Science, trägt zur lebenslangen individuellen Kompetenzentwicklung bei und ist somit ein wichtiger Teil der Allgemeinbildung (KMK, 2024, S.6)." "Die Erkenntnisgewinnungskompetenz der Lernenden zeigt sich in der Kenntnis grundlegender naturwissenschaftlicher Denk- und Arbeitsweisen verbunden mit der Fähigkeit, diese zu beschreiben, zu erklären, für Erkenntnisprozesse systematisch zu nutzen und deren Möglichkeiten und Grenzen zu reflektieren (KMK, 2024, S.7)." Dittmer und Zabel (2019) betonen, dass naturwissenschaftliche Bildung die Rahmenbedingungen, Kontroversen und Grenzen von Wissenschaft in den Blick nehmen sollte. Der Bildungswert der Wissenschaft wird dabei unter dem Begriff "Nature of Science" diskutiert. "Nature of Sciene" steht für den didaktischen Anspruch, wissenschaftstheoretische und -historische Aspekte in den Naturwissenschaftsunterricht zu integrieren und die Vermittlung naturwissenschaftlicher Mythen durch eine rein lehrbuchorientierte geprägte Unterrichtspraxis zu verhindern (Dittmer & Zabel, 2019). Zentrale Fragen dabei lauten: Welche Fragen können Naturwissenschaftlerinnen und Naturwissenschaftler beantworten – und welche prinzipiell nicht? Welches Welt- und Menschenbild transportieren naturwissenschaftliche Theorien und Forschungsvorhaben? Worauf gründet sich naturwissenschaftliches Wissen, und wie haltbar und weitreichend ist es? Wie verhalten sich Naturwissenschaft und Religion zueinander? Worin unterscheidet sich die naturwissenschaftliche Sichtweise auf die Welt beispielsweise von einer künstlerischen Perspektive? (ebd.). In Phase I der Unterrichtseinheit steht das Sammeln bedeutungsvoller Lernerfahrungen im Mittelpunkt. Die Schülerinnen und Schüler erwerben ein solides Wissensfundament, das sie in Phase II gezielt vertiefen und weiterentwickeln. Die Vermittlung erfolgt über Impulse durch die Lehrkraft (z. B. Kurzvorträge) sowie durch die gemeinsame Diskussion im Plenum. Ergänzend arbeiten die Lernenden in Einzel- und Gruppenarbeitssettings an der Erschließung der "Lederman seven", wobei der Fokus auf eigenständiger Recherche liegt. Zur Unterstützung dient Material II, das als vorstrukturierte Lernhilfe konzipiert ist und Binnendifferenzierung ermöglicht. Es bündelt Informationen zum Thema "Nature of Science" für unterschiedlichen Niveaustufen - von populärwissenschaftlichen Texten über fachdidaktische Beiträge bis hin zu englischsprachigen Quellen. Darüber hinaus stehen audio-visuelle Angebote zur Verfügung, um unterschiedliche Lernzugänge zu ermöglichen und eine adressatengerechte Differenzierung zu fördern. Die zur Sicherung der Lerninhalte eingesetzte Mystery-Methode basiert auf einem problemorientierten Ansatz, bei dem die Schülerinnen und Schüler ein zunächst rätselhaftes Phänomen oder eine spannende Leitfrage bearbeiten. Im Sinne eines problemorientierten Unterrichtsansatzes gilt es, Informationen zu sammeln, zu analysieren und auf der Grundlage des in Phase I erworbenen Wissen miteinander zu verknüpfen, um das eingangs gestellte Problem bzw. die Frage zu beantworten. Das Ergebnis der Auseinandersetzung ist eine Concept-Map, die die individuellen Denkwege, Hypothesen, Ideen und Vorstellungen der Schülerinnen und Schülern sichtbar macht. Durch die kooperative Erstellung der Concept-Map werden, neben fachlichen Kompetenzen, insbesondere auch Kommunikationsfähigkeiten, Argumentationsfähigkeit und soziale Kompetenzen gezielt gefördert. In Phase II erfolgt die Erstellung der Lernprodukte. Die Schülerinnen und Schüler arbeiten kollaborativ, kreativ und während der Recherchephase auch digital. Dabei wählen sie eigenverantwortlich ihre Lerngruppe, ihren Lernweg sowie die Form des Lernprodukts nach dem Prinzip "voice & choice" und gestalten ihren Lernweg aktiv mit. Durch den selbstgesteuerten Lernweg stärken sie sowohl ihre Recherchekompetenz als auch ihr methodisches Know-how. Ein zentrales Element dieser Phase ist die kritische Auseinandersetzung mit den gesammelten Informationen, die von den Lernenden analysiert und reflektiert werden. Die Lehrkraft begleitet diesen Prozess durch formatives Feedback zu dem Arbeitsprozess sowie zu den entstehenden Lernprodukten. Zur Strukturierung der Teamarbeit stellt Material IV eine koordinierende Aufgabenübersicht in Tabellenform zur Verfügung, die als niedrigschwellige Planungs- und Organisationshilfe in Phase II dient. Ergänzend wird die Kanban-Methode (Material V) eingeführt, die die Schülerinnen und Schüler in das agile Arbeiten einführt, agile Arbeitsprozesse und die Aufgabenverteilung im Team visualisiert und als Feedbackgrundlage dient. Für Lernende, die Unterstützung bei der Themenwahl benötigen, ist eine Liste mit Themenvorschlägen beigefügt, die passende Vorschläge zur Vermittlung der "Nature of Science" enthält und fachdidaktisch erprobt ist. Die Präsentation der authentischen Lernprodukte vor der Schulgemeinschaft und ggf. einer schulexternen Öffentlichkeit in Phase III fördert sowohl die Kommunikationskompetenz als auch das Selbstwirksamkeitserleben der Schülerinnen und Schüler. Sie erleben, dass sie komplexe naturwissenschaftliche Inhalte adressatengerecht vermitteln können und sie aktiv zu gesellschaftlich relevanten Diskussionen über die Eigenschaften von Naturwissenschaften beitragen können. In die Bewertung der Lernleistung durch die Lehrkraft werden dabei mehrere Komponenten einbezogen: Berücksichtigt werden vor allem die individuellen Lernprozesse, die Qualität der Lernprodukte, die Teamarbeit sowie die Präsentationsleistung vor der Schulgemeinschaft. Den Abschluss der Einheit bildet die Retrospektive im jeweiligen Team, in deren Rahmen die Schülerinnen und Schüler reflektieren, welche neuen fachlichen, methodischen und sozialen Kompetenzen sie in der Deeper Learning-Einheit entwickelt haben. Diese Reflexionsphase dient nicht nur der individuellen Auseinandersetzung der Lernenden mit dem eigenen Lernprozess, sondern liefert auch der Lehrkraft wertvolle Impulse zur Weiterentwicklung der Unterrichtseinheit. Fachbezogene Kompetenzen Die Schülerinnen und Schüler erläutern das Konzept der „Nature of Science“, kennen die Möglichkeiten und Grenzen naturwissenschaftlicher Erkenntnisgewinnung und können die zentralen Kriterien, Bedingungen und Eigenschaften wissenschaftlicher Wissensproduktion beschreiben. stellen die wissenschaftlichen Grundlagen fachwissenschaftlicher Probleme dar und ordnen diese in fachliche, historische und gesellschaftspolitische Kontexte ein. beurteilen Quellen in Bezug auf spezifische Interessenlagen. begründen die eigene Meinung kriteriengeleitet anhand von Sachinformationen, bewerten die persönliche und gesellschaftliche Tragweite und Bedeutsamkeit einzelner Forschungsprojekte im Kontext von „Nature of Science“. Medienkompetenz Die Schülerinnen und Schüler führen zielgerichtete Informationsrecherchen durch und wenden dabei Suchstrategien an (Medienkompetenzrahmen NRW 2.1.). filtern und strukturieren themenrelevante Informationen und Daten aus Medienangeboten, wandeln diese um und arbeiten sie auf (Medienkompetenzrahmen NRW 2.2). präsentieren Lern- und Arbeitsergebnisse sach-, adressaten- und situationsgerecht unter Einsatz geeigneter analoger und digitaler Medien, belegen verwendete Quellen, kennzeichnen Zitate und tauschen sich mit anderen konstruktiv über naturwissenschaftliche Sachverhalte auch in digitalen kollaborativen Arbeitssituationen aus. 21st Century Skills Die Schülerinnen und Schüler arbeiten ko-konstruktiv und ko-kreativ bei der Erstellung ihrer Lernprodukte. hinterfragen die von ihnen bearbeiteten Materialien kritisch und bewerten die Qualität von Informationen. kommunizieren ihre Arbeitsergebnisse sach- und adressatengerecht in ihren Gruppen und vor der Schulgemeinschaft. Beigel, J., Klopsch, B. & Sliwka, A. (2023). Deeper Learning gestalten. Ein Workbook für Lehrkräfte. Weinheim: Beltz. Open access: https://www.telekom-stiftung.de/sites/default/files/files/media/publications/deeper-learning-gestalten-workbook.pdf Deeper Learning Initiative: https://hse-heidelberg.de/hsedigital/hse-digital-teaching-and-learning-lab/deeper-learning-initiative/deeper-learning Dittmer, A. & Zabel, J. (2019) . Das Wesen der Biologie verstehen; Impulse für den wissenschaftspropädeutischen Biologieunterricht. In Groß, J. et al. (Hrsg.), Biologiedidaktische Forschung: Erträge für die Praxis. Berlin: SpringerSpektrum. Heering, P. & Kremer, K. (2018). Nature of Science. In: Krüger, D. et al. (Hrsg.), Theorien in der naturwissenschaftlichen Forschung. Berlin: SpringerSpektrum. Gebhard, U., Höttecke, D. & Rehm, M. (2017). Pädagogik der Naturwissenschaften. Ein Studienbuch. Berlin: SpringerSpektrum. Forum Bildung Digitalisierung: Community Call: Digitaltag 2023 mit Deeper Learning: Entdecken. Verstehen. Gestalten.: https://www.youtube.com/watch?v=DV387Otll_M&t=22s Kultusministerkonferenz. (o. D.). Medienbildungskompetenz - Rahmenlehrplan für die Sekundarstufe I .: https://www.schulministerium.nrw/sites/default/files/documents/Medienkompetenzrahmen_NRW.pdf

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Interaktives Begleitmaterial: Aufbau und Funktion des Mikroskops

Interaktives

Entdecken Sie interaktive Übungen für Ihren Unterricht! Dieses Arbeitsmaterial gehört zu der Unterrichtseinheit "Aufbau und Funktion des Mikroskops". Die interaktiven Übungen konzentrieren sich auf den Aufbau und die Funktion der einzelnen Teile des Mikroskops. Abgerundet wird die Unterrichtseinheit mit einem abwechslungsreichen Quiz. Über eine Begriffssuche steigt die Klasse der dazu gehörigen Unterrichtseinheit " Aufbau und Funktion des Mikroskops " in das Thema ein. Dazu stehen die Schülerinnen und Schüler am Platz. Die Lehrkraft blendet mit einer Präsentation nach und nach Begriffe ein, die das Mikroskop beschreiben. Schülerinnen und Schüler, die eine Idee haben, was gesucht ist, setzen sich lautlos hin. Die Klasse informiert sich selbstgesteuert durch ein H5P Image Hotspot über den Aufbau eines Mikroskops. Anschließend übertragen sie die Bestandteile direkt in das AB und verbessern diese selbstständig mithilfe eines H5P Drag and Drop-Quiz . Als optionale Übung kann ein H5P Suchsel durchgeführt werden, in dem sich einige Fachbegriffe zum Mikroskop versteckt haben. Desto besser die Fachbegriffe eingeübt werden, desto sicherer können sich die Schülerinnen und Schüler in diesem Thema ausdrücken und mit dem Arbeitsgerät umgehen. In einer Gruppenarbeit informiert sich die Klasse über die jeweiligen Funktionen der Bestandteile. An eigenen Mikroskopen identifiziert die Gruppe den zugewiesenen Bestandteil und präsentiert bzw. erklärt diesen in einer abschließenden Kurzpräsentation vor der Klasse. Auf dem AB verbinden die Schülerinnen und Schüler direkt den Bestandteil mit der zugehörigen Funktion und festigen die erarbeiteten Inhalte durch ein H5P Memory , bei dem sie jedem Bestandteil die passende Funktion zuordnen müssen. Im nächsten Teil erarbeiten die Schülerinnen und Schüler die Technik zum richtigen Mikroskopieren. Ein interaktives Video (Stummfilm) führt die Gruppen mit ihrem eigenen Mikroskop durch die Schritte des Mikroskopierens. Die Schülerinnen und Schüler arbeiten Schritt für Schritt nach, was im Video demonstriert wird. Dazu werden sie direkt im Video aufgefordert, müssen demnach nicht selbstständig pausieren. Sie mikroskopieren erste Objekte (Trockenpräparate), z. B. Haare, Staub oder auch Fertigpräparate. Als Sicherung wird ein H5P Lückentext bearbeitet und die Lösungen auf das AB übertragen. In einem weiteren Video lernen die Schülerinnen und Schüler das Anfertigen eines Feuchtpräparates am Beispiel der Zwiebelhaut. Hier bietet es sich an, dass die Lernenden das Präparat durch das Okular abfotografieren, z. B. mit dem Smartphone/Tablet. Für die ersten mikroskopischen Zeichnungen ist es von Vorteil, das Foto digital einzufügen und nachzuzeichnen. Auf dem AB zeichnen die Schülerinnen und Schüler ihr erstes mikroskopisches Bild möglichst genau. Bei Bedarf kann das Anfärben von Präparaten am Beispiel von menschlichen Mundschleimhautzellen durchgeführt werden. Dazu entnehmen die Schülerinnen und Schüler mithilfe einer Textanleitung Schleimhautzellen aus dem Mund und lernen Demonstrationsvideos, wie man diese anfärbt, um sie unter dem Mikroskop sichtbar zu machen. Auch hier bietet es sich an, die Zellen zu fotografieren und zu zeichnen. Als Gesamtzusammenfassung lösen die Lernenden ein H5P-Quiz . Fachkompetenz Die Schülerinnen und Schüler benennen die Bestandteile und erklären die Funktionen des Mikroskops. zählen die Schritte des korrekten Mikroskopierens auf. fertigen Trocken- und Feuchtpräparate an. Medienkompetenz Die Schülerinnen und Schüler vergleichen digitale Informationen mit dem Original. fertigen mikroskopische Fotos an. Sozialkompetenz Die Schülerinnen und Schüler mikroskopieren in der Gruppe. bearbeiten kooperativ Arbeitsaufträge und präsentieren Informationen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I
Titelbild Klimazonen der Erde

Klimazonen der Erde – Geographie-Arbeitsblätter

Kopiervorlage
14,99 €

Diese Arbeitsblätter für die Klassen 5 bis 8 behandeln anschaulich die Klimazonen der Erde. Mit interaktiven Aufgaben, Gruppenpuzzle und digitalen Impulsen fördern sie das Verständnis für klimatische Zusammenhänge, den Umgang mit Klimadiagrammen und den Einfluss von Breitengrad und Kontinenten auf das Klima. Die Arbeitsblätter "Klimazonen der Erde – Geographie-Arbeitsblätter für Klassen 5 bis 8“ umfassen mehr als 15 Seiten mit altersgerechten Kopiervorlagen. Enthalten sind ein fachdidaktischer Einleitungstext zu den Grundlagen der Klimazonen (zum Beispiel äquatoriale, tropische, subtropische, gemäßigte und polare Zonen), ein Gruppenpuzzle, in dem Kleingruppen verschiedene Klimazonen kartieren und charakterisieren, sowie interaktive Aufgaben, die Schülerinnen und Schüler Klimadiagramme interpretieren und die Faktoren für Temperatur- und Niederschlagsverteilung erkunden lassen. Eine zusammenfassende Darstellung der wichtigsten Begriffe (zum Beispiel Klimadiagramm, Jahresgang, Meeresströmungen) und Reflexionsfragen unterstützen das vertiefte Nachdenken. Der Single-Choice-Test überprüft das erarbeitete Wissen zu Klimatypen, Einflussgrößen und geographischen Zusammenhängen. Das Glossar erläutert Fachbegriffe wie Trockenklima, Monsun, Tropopausen und Klimastatus. Die didaktische Handreichung bietet Lehrkräften methodische Hinweise zu Partner- und Gruppenarbeit, Reflexionsübungen und digitalen Impulsen (zum Beispiel Einsatz interaktiver Karten-Apps), die sowohl für Präsenz- als auch Distanzunterricht geeignet sind. Durch kooperative Lernformen und entdeckendes Lernen entwickeln die Schülerinnen und Schüler ein tieferes Verständnis für globale Klimaphänomene und deren Wechselwirkung mit menschlichen Lebensräumen.

  • Geographie / Jahreszeiten
  • Sekundarstufe I

Unterrichtsmaterial und News für den Fachbereich MINT: Mathematik, Informatik, Naturwissenschaften, Technik

In diesem Fachbereich finden Lehrkräfte der Sekundarstufen I und II kostenlose und kostenpflichtige Arbeitsblätter, Unterrichtsmaterialien und interaktive Übungen mit Lösungsvorschlägen zum Download und für den direkten Einsatz im MINT-Unterricht oder in Vertretungsstunden. Ob für das Fach Chemie, Physik, Mathematik, Informatik, Astronomie, Biologie, Technik oder Geographie: Dieser Fachbereich bietet Lehrerinnen und Lehrern jede Menge Unterrichtsideen, Bildungsnachrichten sowie Tipps zu Apps und Tools für ihren Fach-Unterricht. 

Nutzen Sie unsere Suche mit ihren zahlreichen Filterfunktionen, um einfach und schnell lehrplanrelevante Arbeitsmaterialien für Ihren Unterricht zu finden.

ANZEIGE

Aktuelle News für den Fachbereich Naturwissenschaften