• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Der Sternhimmel im Oktober

Fachartikel

Im Oktober präsentiert der Tierkreis mit Wassermann und Steinbock eher unauffällige Sternbilder. Zwischen den kleinen und ebenfalls lichtschwachen Konstellationen von Pfeil und Füchschen lohnt sich die Suche nach dem Hantelnebel.Der hier vorgestellte Sternhimmel entspricht dem Anblick der Himmelskugel zu den in der Tabelle (siehe unten) angegebenen Zeiten. Falls keine gemeinsame Beobachtung des realen Himmels mit den Lernenden geplant ist, können die Schülerinnen und Schüler mit der kostenfreien Planetarium-Software Stellarium oder Cartes du Ciel vorbereitet werden (Beamer-Präsentation oder Partnerarbeit in der Schule) und den Abendhimmel später selbstständig oder zusammen mit Freunden, Freundinnen oder Eltern erkunden. Als Aufsuchhilfen stehen ihnen dabei Ausdrucke der Sternkarten oder eine selbst gebastelte drehbare Sternkarte zur Verfügung (siehe Erste Schritte zur Orientierung am Sternhimmel ). Die Sternkarten aus diesem Beitrag sind in jedem Jahr vor Mitternacht zu folgenden Beobachtungszeiten gültig:

  • Geographie / Jahreszeiten / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Mars - Beobachtung einer Planetenschleife

Unterrichtseinheit

Beobachtungen unseres äußeren Nachbarplaneten lohnen sich nur während der Monate um die Oppositionen, die etwa alle zwei Jahre und zwei Monate eintreten. Die Dokumentation einer Marsschleife ist eine reizvolle Aufgabe für ein kleines Beobachtungsprojekt.Die rötliche Färbung des Planeten fällt auch ungeübten Beobachterinnen und Beobachtern sofort auf. Sie ist besonders beeindruckend, wenn Mars noch nicht allzu hoch über dem Horizont steht. Der Grund dafür ist derselbe, der auch die Sonne oder den Mond beim Auf- und Untergang rötlich erscheinen lässt - kurzwellige Lichtanteile werden durch die Atmosphäre stärker gestreut als die langwelligen. Die Marsfarbe wird durch diesen Effekt aber nur verstärkt. Der allgegenwärtige eisenoxidhaltige Staub hat dem Planeten zu Recht den Beinamen des "Roten" eingebracht - "rostiger" Planet wäre ebenso zutreffend. Die linke Abbildung zeigt eine Aufnahme des Hubble-Weltraumteleskops und ein Marsfoto, das mit einem kleinen Amateurteleskop aufgenommen wurde. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur zum Thema Mars . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden.Kaum ein Planet hat die Fantasie der Menschen so sehr in Gang gesetzt wie Mars: Die "Entdeckung" der Marskanäle ist ein schönes Beispiel aus der Wissenschaftsgeschichte dafür, dass auch die Objektivität von Naturwissenschaftlern optischen Täuschungen und einer guten Portion Autosuggestion unterliegen kann. Aber auch für eine Massenhysterie ist Mars gut: Die 1938 am Holloween-Abend über das Radio ausgestrahlte fiktive Schilderung eines Marsmenschen-Überfalls soll in den USA eine Panik ausgelöst haben. UFO-Fans und Esoteriker sahen in einer von der Raumsonde Viking I im Jahr 1976 aufgenommen Gebirgsformation, die als "Marsgesicht" Berühmtheit erlangte, einen extraterrestrischen Monumentalbau, der es bis in die Kultserien "Akte X" und "Futurama" schaffte. Mars bietet also reichlich Stoff, um das Interesse der Schülerinnen und Schüler für Astronomie und Naturwissenschaften zu wecken. Obwohl den meisten von ihnen der eine oder andere Science-Fiction-Film zum Thema Mars bekannt sein dürfte, haben nur die wenigsten den Planeten bewusst mit eigenen Augen gesehen. Nutzen Sie also die nächste Marsopposition, um zusammen mit Ihren Schülerinnen und Schülern den faszinierenden Planeten näher kennen zu lernen und zu beobachten. Historisches und Histörchen Ob Götter, Marsmenschen, Kanäle oder andere Monumentalbauten - die Raumfahrt hat Jahrtausende alte Vorstellungen sowie Fiktionen aus dem 19. und 20. Jahrhundert beendet. Erforschung des "Rostigen Planeten" Mars-Orbiter, Landegeräte und mobile Rover übermittelten nicht nur wissenschaftliche Daten, sondern auch Bilder mit faszinierenden Mars-Impressionen und Landschaften. Der Mars - Oppositionen des Exzentrikers Die Entstehung von rückläufiger Bewegungen und Schleifen der äußeren Planeten und die Besonderheiten der Marsoppositionen werden erläutert. Beobachtung des Planeten Lernende können mit einfachen Hilfsmitteln eine Marsschleife dokumentieren und versuchen, mit einem Teleskop Oberflächenstrukturen zu erkennen. Dokumentation einer Marsschleife Vorschläge für Arbeitsmaterialien und Hinweise zur Verfolgung der Bewegung des Planeten Mars in dem Zeitraum um seine Opposition Die Schülerinnen und Schüler sollen Mythologie und Science Fiction zum Thema Mars kennen lernen. die Geschichte der Erforschung des Planeten überblicken - von der "Entdeckung" der Marskanäle bis hin zur Erforschung der Oberfläche durch NASA-Rover. Mars mit eigenen Augen sehen und in dem Lichtpunkt mithilfe der NASA- und ESA-Fotos eine fremde Welt erkennen. den Planeten durch ein Teleskop beobachten (Schul- oder Volkssternwarte) und versuchen, Oberflächendetails mithilfe eines "Onlinerechners" der Webseite CalSky zu benennen. verstehen, wie eine Marsschleife entsteht. die Bahn des Planeten über einige Monate verfolgen und mit einfachen Mitteln eine "Marsschleife" aufzeichnen. Thema Marsbeobachtung Autoren Dr. André Diesel, Peter Stinner Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Klasse 5 bis Jahrgangsstufe 13 (je nach Thema und Vertiefung) Zeitraum variabel, vom einmaligen Beobachtungsabend bis hin zur Dokumentation einer Marsschleife über mehrere Monate Technische Voraussetzungen Beobachtung mit bloßem Auge oder dem Amateurteleskop; für die fotografische Dokumentation der Planetenbewegung Bildbearbeitungssoftware, zum Beispiel Fitswork (kostenloser Download); Planetarium-Software zur Vorbereitung der Beobachtung, zum Beispiel Stellarium (kostenfrei) Traditionelle Rolle als Kriegsgott Mars fasziniert die Menschen schon seit Jahrtausenden. Im Altertum war der Planet bei vielen Völkern mit dem jeweiligen Kriegsgott verknüpft - Nergal im Zweistromland, Ares bei den Griechen und eben Mars bei den Römern. Ursache dafür dürfte seine auffällig orange-rote Färbung sein - verursacht durch den auf der Marsoberfläche allgegenwärtigen Eisenoxidstaub -, die schon dem bloßen Auge nicht entgeht. Die rote Farbe ist übrigens umso kräftiger, je tiefer der Planet am Himmel steht. Hoch über dem Horizont erscheint Mars eher orange bis gelblich. Ein weiteres Charakteristikum des Planeten sind die großen Helligkeitsunterschiede während seiner Oppositionen. In einigen Jahren kann er über mehrere Wochen sehr hell werden und sogar mit der Leuchtkraft von Jupiter konkurrieren, in anderen Jahren bleibt er relativ unscheinbar und in seiner Helligkeit etwa dem Polarstern vergleichbar. Sein Aufleuchten haben unsere Vorfahren möglicherweise als Symbol für entfesselte Feuersbrünste oder das Vergießen von Blut gedeutet. Wikipedia: Nergal Gottheit der sumerisch-akkadischen und der babylonischen und assyrischen Religion Wikipedia: Ares Griechischer Gott des Krieges, des Blutbades und Massakers Wikipedia: Mars Der Kriegsgott war neben Jupiter der wichtigste Gott der Römer. Schiaparellis "Canali" Aber auch in modernen Zeiten fasziniert Mars und entfesselte Fantasien. 1877 glaubte der Leiter der Mailänder Sternwarte, Giovanni Schiaparelli (1835-1910), mit dem Teleskop Marskanäle entdeckt zu haben - ein Effekt, der einer optischen Täuschung zuzuschreiben ist. Schiaparelli hielt die "Canali" für natürliche geradlinige Senken, durch die Wasser auf der Marsoberfläche fließen könnte. Eine ungenaue Übersetzung ins Englische ("canals" statt "channels") suggerierte jedoch die Entdeckung von Artefakten auf dem Mars. Schnell verbreitete sich so der Glaube an eine hochtechnisierte Marszivilisation, die in den hundert Kilometer breiten Kanälen das Schmelzwasser der Marspole in die gemäßigten Breiten leiten sollte, um die Anbaugebiete der Marsianer im Vegetationsgürtel des Planeten zu bewässern. Wikipedia: Marskanäle Die Kanäle wurden erstmals im Jahr 1877 beschrieben. Science Fiction Der Glaube an eine Marszivilisation war auch die Grundlage zahlreicher Werke des Science-Fiction-Genres. Spektakulär soll der Effekt eines Hörspiels von Orson Wells (1915-1985) gewesen sein, das auf dem Roman "War of the Worlds" von Herbert George Wells (1866-1946) basiert. Orson Wells' fiktive Radio-Reportage über eine Invasion bösartiger Marsianer wurde im Jahr 1938 am Halloween-Abend ausgestrahlt und soll an der Ostküste der USA eine Massenpanik ausgelöst haben (ob dies tatsächlich so war, ist heute allerdings umstritten). Vielen älteren Schülerinnen und Schülern dürfte die beklemmende Verfilmung des Stoffs von Steven Spielberg aus dem Jahr 2005 bekannt sein, ebenso die skurrile filmische Aufarbeitung von Tim Burton aus dem Jahr 1996, "Mars Attacks". Keine Kanäle, weder Zivilisation noch Vegetation Auch wenn man bereits in den dreißiger Jahren begann, die "Marskanäle" für das Ergebnis optischer Täuschungen zu halten - Gewissheit bekam man erst durch die Bilder der Raumsonde Mariner 4, die im Jahr 1965 an dem Planeten vorbei flog und deren Kameras den Mars erstmals aus der Nähe betrachteten. Zwar könnte die Wahrnehmung einiger "Canali" durch geomorphologische Großstrukturen erklärt werden, von dem ausgeklügelten Bewässerungssystem der Marsmenschen fand man jedoch keine Spur. Für die bis dahin mit Besuchern vom Mars in Verbindung gebrachten "Fliegenden Untertassen" mussten UFOlogen fortan andere Erklärungen finden. Aber auch von der bis dahin teilweise noch gehegten Vorstellung, der Planet könne von Moosen und Flechten bewachsen sein (dessen Vegetationsperioden die beobachteten Veränderungen auf der Oberfläche hätten erklären können), musste man sich endgültig verabschieden - Mars scheint ein toter Planet zu sein. Das Marsgesicht Auch wenn die Raumfahrt die menschliche Fantasie weitgehend auf den Boden der Tatsachen zurückholte, bot ein Foto der Raumsonde Viking I aus dem Jahr 1976 Anlass für ganz neue Spekulationen. Aus knapp 2.000 Kilometern Höhe nahm die Sonde beim Landeanflug eine Gebirgsformation auf, die als "Marsgesicht" berühmt wurde (Abb. 1). UFO-Fans erkannten darin das monumentale Artefakt einer außerirdischen Spezies. Das Marsgesicht wurde von diversen TV- und Kinoproduktionen aufgegriffen. In der Trickfilmserie "Futurama" bildet es zum Beispiel den Eingang zur marsianischen Unterwelt, in der Aliens hausen. Aufnahmen des NASA-Orbiters Mars Global Surveyor aus dem Jahre 2001 zeigen jedoch nichts anderes als eine verwitterte Felsformation und beendeten so auch diese Illusion. Durchmesser, Tageslänge, Neigung der Rotationsachse Der Durchmesser des Planeten ist mit etwa 6.800 Kilometern doppelt so groß wie der des Mondes, aber nur halb so groß wie der unserer Erde. Ein Marstag dauert nur 40 Minuten länger als ein irdischer Tag. Dies fanden schon Christian Huygens (1629-1695) und Giovanni Domenico Cassini (1625-1712) heraus, die die Rotationsdauer durch die Beobachtung von Oberflächendetails bestimmen konnten. Die Neigung der Rotationsachse (etwa 25 Grad) entspricht ungefähr derjenigen der Erdachse (23 Grad) und beschert dem Mars Sommer und Winter. Die marsianischen Jahreszeiten dauern allerdings doppelt so lange wie die unsrigen, da Mars für eine Runde um die Sonne etwa zwei Erdenjahre benötigt. Entfernung und Jahreslänge Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Ein Marsjahr dauert etwa 687 Tage (siderische Umlaufzeit). Alle 780 Tage wird er von der Erde überrundet (synodische Umlaufzeit). Zwischen den Marsoppositionen liegen also zwei Jahre, ein Monat und drei Wochen. "Furcht" und "Schrecken" begleiten den Kriegsgott Bei den beiden kleinen, etwas kartoffelförmigen Marsmonden handelt es sich möglicherweise um eingefangene Asteroiden. Standesgemäß wurden die Trabanten des Kriegsgotts auf die Namen Phobos und Deimos, Furcht und Schrecken, getauft. Während unser Mond groß genug ist, um die Rotationsachse der Erde zu stabilisieren (was ihrer Bewohnbarkeit sehr entgegen kommt), sind Phobos und Deimos dafür viel zu klein. Deshalb vollführt die Mars-Rotationsachse eine viel deutlichere Taumelbewegung als die der Erde. Die Marsatmosphäre besteht zu 95 Prozent aus Kohlenstoffdioxid. Der Atmosphärendruck beträgt am Boden weniger als ein Prozent des Luftdrucks der Erde. Flüssiges Wasser kann an der Oberfläche unter diesen Bedingungen - selbst oberhalb des Gefrierpunkts - nicht existieren. Die dünne Atmosphäre speichert kaum Wärme, sodass die Temperaturunterschiede zwischen Tag (bis zu 20 Grad Celsius in Äquatornähe) und Nacht (bis zu -85 Grad Celsius) beträchtlich sind. Die mittlere Temperatur liegt bei -55 Grad Celsius. Neben der gemäßigten Neigung der Rotationsachse trägt die Exzentrizität der Umlaufbahn zu einer deutlichen Ausprägung der Jahreszeiten mit dynamischen Vorgängen in der dünnen Atmosphäre bei. Im Marsfrühjahr können heftige Staubstürme große Teile des Planeten verhüllen. Durch die Verwehungen hellen Staubs in dunklere Gebiete kommt es zu jahreszeitlichen Veränderungen der Marsoberfläche, die im Teleskop beobachtet werden können. Die Veränderung der dunklen Schattierungen hielt man früher für eine mögliche Folge marsianischer Vegetationszyklen. Die Polkappen bestehen zum größten Teil aus gefrorenem Kohlenstoffdioxid, enthalten aber auch Wassereis. Sie "pulsieren" mit dem Wechsel der Jahreszeiten. Die Dicke der nördlichen Polkappe (1.000 Kilometer im Durchmesser) wird auf immerhin fünf Kilometer geschätzt. Abb. 2 zeigt eine Aufnahme des NASA-Orbiters Mars Global Surveyor. Die Suche nach Wasser Eine Hauptaufgabe der im Jahr 2008 etwas nördlich des Polarkreises gelandeten NASA-Sonde Phoenix war die Suche nach Spuren von Wasser. Fließspuren an der Oberfläche (trockene Flusstäler und Überschwemmungsgebiete) waren bereits vorher bekannt. Durch Gesteinsanalysen konnte bestätigt werden, dass der Mars einst wärmer und feuchter und somit seine Atmosphäre dichter gewesen sein muss. Abseits der Polkappen versteckt sich das Wassereis heute im Permafrostboden einige Meter unter der Marsoberfläche. In seiner nördlichen Position konnte Phoenix Wassereis jedoch schon wenige Zentimeter unter der Oberfläche nachweisen. Spuren von Leben hat man bisher nicht gefunden. Konjunktion und Opposition Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Dies ist auch die Ursache für die unterschiedliche Leuchtkraft des Planeten am Himmel während seiner Oppositionsstellung (Abb. 6). Etwa alle 15 Jahre kommt uns der Rote Planet besonders nah. Zuletzt war dies im Jahr 2003 der Fall - auf die nächste spektakuläre Marsopposition müssen wir also bis zum Jahr 2018 warten. Überholen wir Mars auf unserer Innenbahn, während er sich in seiner sonnenfernsten Position befindet (Aphel), dann bleibt er an unserem Himmel relativ unauffällig. Die maximale Oppositionsentfernung zur Erde liegt bei mehr als 100 Millionen Kilometern. Überholen wir Mars dagegen, wenn er sich in seiner sonnennächsten Position befindet (Perihel), kann sich ihm die Erde bis auf 56 Millionen Kilometer nähern. Abb. 7 (zur Vergrößerung bitte anklicken) gibt einen Überblick über die geometrischen Situationen der Marsoppositionen in den Jahren von 1999 bis 2022 sowie die jeweiligen scheinbaren Durchmesser des Marsscheibchens. Die Entfernungen Erde - Mars sind in Millionen Kilometern angegeben. Rückläufigkeit und Schleifen Um die Zeit der Opposition überholt die Erde einen äußeren Planeten "auf der Innenbahn". Beobachterinnen und Beobachter auf der Erde sehen den gleichen Effekt wie ein Läufer, der in der Stadionkurve auf der Innenbahn an einem Läufer auf der Außenbahn vorbeizieht. Während dieses Überholvorgangs bewegt sich der überholte Läufer auf der Außenbahn vom Läufer auf der Innenbahn aus gesehen vor dem Publikum auf der Kurventribüne kurzzeitig rückwärts. Übertragen auf die Bewegungen im Sonnensystem heißt dies, dass der äußere Planet sich während der Opposition von der Erde aus gesehen vor dem Fixsternhimmel rückwärts, das heißt von Ost nach West bewegt. Der Fixsternhimmel hat jetzt die Rolle des Publikums auf der Kurventribüne übernommen. Weil die Bahnebenen der Planeten geringfügig gegen die Erdbahn geneigt sind, erscheinen die Bahnen von Mars und den übrigen äußeren Planeten um die Zeit der Opposition herum als "Schleifen" an der Himmelskugel. Dies wird durch Abb. 8 und die folgenden Java-Applets veranschaulicht: Auffällige Oppositionsschleifen Weil Mars von allen äußeren Planeten der Erde am nächsten ist, fällt seine Oppositionsschleife am Sternhimmel deutlich größer aus als die von Jupiter und Saturn. Die Ausdehnung der Oppositionsschleife von Saturn erreichte zum Beispiel im Jahr 2010 nur etwa 30 Prozent derjenigen von Mars. Somit gilt als Fazit: Mars ist das ideale Objekt für die Beobachtung der Oppositionsschleife eines Planeten im Rahmen eines schulischen Projekts! Im Bereich Fachmedien finden Sie eine kurze Einführung in das einfach zu bedienende virtuelle Planetarium Stellarium . (Als ebenso hilfreich, aber etwas komplexer, erweist sich das Programm Cartes du Ciel ) Führen Sie nach dem Start von Stellarium den Mauszeiger in die linke untere Bildschirmecke. Danach öffnen sich die beiden Menüleisten links und unten (Abb. 9, zur Vergrößerung des Ausschnitts bitte anklicken). Per Mausklick auf das Uhrensymbol in der linken Leiste öffnet sich ein Dialogfenster, in das man Datum und Uhrzeit eingibt. Nach Klick auf das Lupensymbol in der linken Menüleiste gibt man den Namen "Mars" ein. Stellarium wählt jetzt den Himmelsausschnitt so, dass sich Mars genau im Zentrum befindet. Drehen am Scrollrad der Maus vergrößert oder verkleinert den dargestellten Himmelsauschnitt. So kann man leicht die Lage vom Mars relativ zum Horizont oder relativ zu markanten Sternbildern einschätzen. Was ist zu sehen? In einem 60 Millimeter Teleskop erscheint Mars lediglich als kleines, oranges Scheibchen. Ab etwa zehn Zentimetern Öffnung können unter günstigen Umständen helle und dunkle Bereiche der Oberfläche schemenhaft wahrgenommen werden. Auch Polkappen sind - je nach marsianischer Jahreszeit - zu sehen. Teleskope mit 15 bis 20 Zentimetern Öffnung lassen weitere Details erkennen. Christian Huygens beschrieb bereits im Jahr 1659 die "Große Syrte", ein dunkles, auffällig dreieckiges Wüstengebiet. Die Suche nach Oberflächendetails lohnt sich jedoch nur während weniger Monate um den Oppositionstermin herum. Abb. 10 zeigt eine Aufnahme des Planeten von Heinrich Kuypers, die im Rahmen einer Astronomie-AG mithilfe eines kleinen Amateurteleskops entstand. Dabei wurden viele Einzelbilder mit der kostenfreien Software RegiStax addiert. Das Foto zeigt Oberflächendetails somit deutlicher als der Blick durch das Okular des Teleskops. Übersichtskarte Die im Folgenden vorgestellten Arbeitsmaterialien wurden für die Dokumentation der Marsschleife im Jahr 2010 erstellt. Sie können bei künftigen Oppositionen als Anregung für die Zusammenstellung entsprechender Schülermaterialien dienen. Passende Sternkarten müssen dann für den jeweiligen Beobachtungszeitraum mit geeigneter Astronomie-Software, etwa GUIDE oder den kostenfreien Progeammen Cartes du Ciel und Stellarium , erstellt werden. Die mit der Software GUIDE 8.0 erzeugte Übersichtskarte (uebersichtskarte.jpg) zeigt den Ost- und Südhimmel mitsamt Horizont, wie er sich Beobachterinnen und Beobachtern in Deutschland am 15. Februar 2010 um 21:00 Uhr darstellte. Der aufgehellte Bereich in der rechten Bildhälfte entspricht der Milchstraße. Den Himmelsanblick einer solchen Karte findet man - bei gleicher Horizontlage - 15 Tage später schon eine Stunde früher oder 15 Tage früher erst eine Stunde später vor. Anhand des Ausdrucks einer solchen Karte können sich die Schülerinnen und Schüler grob am Sternhimmel orientieren. Wichtig ist, dass sie die Sternbilder, durch die sich Mars während des gewählten Beobachtungszeitraums bewegen wird, eindeutig identifizieren können. Negativ-Übersichtskarte Die Grafik der Datei "uebersichtskarte_negativ.jpg" ist die Negativ-Darstellung der Karte "uebersichtskarte.jpg". Der Himmelshintergrund ist weiß gehalten, die Sterne sind als schwarze Kreise dargestellt. Ihre Helligkeit wird durch die verschieden großen Kreisdurchmesser veranschaulicht. Solche Negativ-Sternkarten eignen sich gut für handschriftliche Einträge und Ergänzungen. Detailkarten Nach etwas Übung in der Orientierung am Himmel genügen den Schülerinnen und Schülern für weitere Beobachtungen dann die vergrößerten Ausschnittkarten, zum Beispiel "detailkarte.jpg" oder "detailkarte_negativ.jpg" (Abb. 12; zur Vergrößerung des Ausschnitts bitte anklicken). Letztere Karte liegt auch mit dem Gradnetz des äquatorialen Himmelskoordinatensystems vor ("detailkarte_negativ_gradnetz.jpg"). Händische Einträge in die Himmelskarten In allen Karten fehlt der am Sternhimmel nicht ortsfeste Mars. Er ist jedoch in der betrachteten Himmelsgegend bei einer "durchschnittlichen" Opposition ein auffälliges Objekt und deshalb leicht aufzufinden. Aufgabe der Schülerinnen und Schüler ist es nun, an möglichst vielen klaren Abenden während der Beobachtungsmonate (in dem hier vorgestellten Beispiel Januar bis April 2010) nach dem Planeten Mars Ausschau zu halten, ihn am Himmel aufzufinden, seine Position relativ zu den umgebenden Sternen nach Augenmaß zu ermitteln, um diese Marspositionen dann nebst Datum in der Detailkarte (Negativdarstellung) festzuhalten. Durch Einbeziehen des Koordinatenrasters in der Detailkarte kann eine ordentliche Genauigkeit bei der Bestimmung der Positionen erzielt werden. Brauchbares Wetter vorausgesetzt, sollte man im Laufe einiger Wochen viele unterschiedliche Marspositionen beobachten und dokumentieren können. Man wird zuerst die retrograde (rückläufige) Bewegung erkennen, dann den scheinbaren Stillstand, dem danach die normale prograde Bewegung von Westen nach Osten folgt. Abb. 13 (Grafik zur Vergrößerung des Ausschnitts bitte anklicken) zeigt den mit der Software GUIDE 8.0 erzeugten Verlauf der Marsbewegung um dessen Opposition (Beobachtungsbeispiel Oktober 2009 bis Mai 2010). Technikbegeisterte Schülerinnen und Schüler werden eher an der fotografischen Dokumentation der Marsbewegung interessiert sein. Unter Verwendung der kostenlosen Software Fitswork kann man aus Fotografien einfacher Digitalkameras Planetenbahnen am Sternhimmel rekonstruieren und nebenbei Grundlagen der digitalen Bildbearbeitung erlernen. Das dieser Technik zugrunde liegende Vorgehen wird ausführlich beschrieben in dem Beitrag zur Allgemeine Hinweise zur Planetenbeobachtung . Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse, deren Begleitumstände sowie über die Sichtbarkeiten der Planeten: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Messung der Eigenbewegung von Teegarden's Star

Unterrichtseinheit

Die als Fixsterne bezeichneten Himmelsobjekte erweisen sich bei näherem Hinsehen durchaus nicht als ortsfest, sondern zeigen eine "Eigenbewegung". Für sonnennahe Sterne lässt sich diese Bewegung mit einfachen astrometrischen Methoden erfassen. Auch Astronomie-Neulinge können mit den hier zur Verfügung gestellten Materialien motivierende Ergebnisse erzielen.Zunächst werden einige Grundlagen zu den Themen sonnennahe Sterne, Himmelskoordinaten, Sternhelligkeiten und zum Begriff der Parallaxe erläutert. Diese sind notwendig zum Verständnis der darauf folgenden praktischen Übung: CCD-Bilder von Teegarden's Star, die im Abstand von einem Jahr aufgenommenen wurden, werden mit der kostenlosen Software Fitswork bearbeitet. Anschließend wird aus den Bildern die Positionsänderung des betrachteten Sterns ermittelt.Andreas Gerhardus und Steffen Straub haben das hier vorgestellte Verfahren zur Bestimmung der Eigenbewegung von Sternen während ihres Schülerpraktikums am Argelander-Institut für Astronomie der Universität Bonn unter Anleitung von Dr. Michael Geffert erlernt. Sie praktizierten die Methode am Beispiel von Teegarden's Star und erzielten gute und leicht nachvollziehbare Ergebnisse. Aus diesem Grund stellen wir hier das Projekt "Messung der Eigenbewegung von Teegarden's Star" astronomisch interessierten Lehrerinnen und Lehrern als Anregung für den eigenen Unterricht oder für die Bearbeitung in der Astronomie-AG vor. Die dafür benötigten CCD-Bilder wurden uns freundlicherweise von Dr. Michael Geffert zur Verfügung gestellt. Fachliche Voraussetzungen Zu Beginn der Unterrichtseinheit werden einige elementare astronomische Begriffe eingeführt, die im weiteren Verlauf hilfreich oder erforderlich sind. Bezugssystem und Positionsberechnung Der Berechnung der Eigenbewegung von Teegardens' Star auf der Grundlage von CCD-Bildern geht die Positionsbestimmung "unbewegter" Sterne eines Bezugssystems voraus. Darstellung der Ergebnisse und Fehlerbetrachtung Die Rektaszensions- und Deklinationskoordinaten von Teegarden's Star und eines Vergleichssterns ohne messbare Eigenbewegung werden in Diagrammen dargestellt. Die Schülerinnen und Schüler sollen verschiedene sonnennahe Sterne kennen lernen. die Begriffe Parallaxe und Eigenbewegung verstehen. aus CCD-Aufnahmen die Koordinaten von Sternen ermitteln. die Eigenbewegung von Teegarden's Star aus vorhandenen CCD-Aufnahmen bestimmen. Diagramme erstellen, in denen die ermittelte Eigenbewegung veranschaulicht wird. Um die Positionsbestimmung am Himmel zu ermöglichen, ist die Himmelskugel genauso wie die Erde in ein Gradnetz unterteilt (Abb. 1). Dieses Gradnetz ist fest mit der Himmelskugel verbunden, es rotiert also scheinbar. Den Längenkreisen auf der Erde entsprechen die Rektaszensionskreise am Himmel, den Breitenkreisen die Deklinationskreise. Erste Schritte zur Orientierung am Sternhimmel In diesem Artikel finden Sie weitere Informationen, Anregungen und Materialien zur Orientierung am Himmel. Deklination Die Deklination (DE) wird in Winkelgraden von -90 Grad bis +90 Grad gemessen. Weil bei der Bestimmung der Eigenbewegung von Sternen sehr kleine Winkel betrachtet werden, müssen die Schülerinnen und Schülern auch die Begriffe "Bogenminute" (1 Bogenminute = 1/60 Grad) und "Bogensekunde" (1 Bogensekunde = 1/60 Bogenminute) kennen. Rektaszension Die Rektaszension (RA) wird traditionell nicht in Grad sondern in Stunden, Minuten und Sekunden angegeben. Dabei entsprechen 360 Grad den 24 Stunden eines Tages und somit 15 Grad einer Stunde. Eine Minute in Rektaszension entspricht damit (15/60) = 0,25 Grad. Eine Sekunde in Rektaszension ist gleichbedeutend mit (15/3.600) = (1/240) Grad. Die Umrechnung der Rektaszension (RA = hh.mm.ss) in Winkelgrad erfolgt gemäß der Formel: Winkel (in Grad) = 15 [hh+(1/60)**mm+(1/3.600) ss] Hierbei stehen hh für Stunden, mm für Minuten und ss für Sekunden. Diese sind nicht mit Bogenminuten beziehungsweise Bogensekunden zu verwechseln. Die Bewegung der Erde um die Sonne hat zur Folge, dass ein erdnaher Stern im Verlauf eines Jahres seine scheinbare Position vor dem Hintergrund weit entfernter Fixsterne verändert. Dabei ist die Parallaxe des erdnahen Sterns definiert als halber Öffnungswinkel des Kegels, dessen Mantel der Sehstrahl von der Erde zum nahen Stern in einem Jahr festlegt. Abb.2 veranschaulicht die Verschiebung der scheinbaren Sternposition innerhalb eines halben Jahres. Aus der Parallaxe eines Sterns, die man mithilfe von Fotos bestimmt, die im Abstand von einem halben Jahr aufgenommen werden, lässt sich mit trigonometrischen Verfahren unter Kenntnis des Abstands Sonne-Erde die Entfernung des Sterns zur Sonne beziehungsweise zur Erde berechnen. Das Phänomen der Parallaxe kann man Schülerinnen und Schülern mit einem einfachen Experiment sehr gut veranschaulichen: Hält man einen Daumen in Augenhöhe und schließt abwechselnd das linke und das rechte Auge, so scheint der Daumen seine Position vor dem Hintergrund zu verändern. Dabei nimmt die Parallaxe mit zunehmender Entfernung des Daumens vom Auge ab. Im Gegensatz zur Parallaxe hat die Eigenbewegung eines Sterns ihre Ursache in einer tatsächlichen Veränderung des Sternenortes. Weil der Effekt der Eigenbewegung sehr klein ist, wird sie in Deklination und Rektaszension in Bogensekunden angegeben. Die Messung der Eigenbewegung von Sternen erfolgt mithilfe von Fotografien, die im Abstand von ganzzahligen Vielfachen eines Jahres aufgenommen werden. Abb. 3 zeigt ein Beispiel: Die beiden Bilder wurden im Abstand mehrerer Jahre aufgenommen. Deutlich ist die Positionsänderung des markierten Sterns vor dem Hintergrund zu erkennen. Die Erde befindet sich nach einem Jahr wieder am selben Ort. Deshalb wird das Ergebnis nicht durch die parallaxenbedingte Bewegung verfälscht. Scheinbare Helligkeit ( m ) Die scheinbare Helligkeit eines Sterns ist diejenige, die ein Beobachter auf der Erde registriert. Sie wird in Größenklassen oder Magnituden angegeben (Symbol: hochgestellter Kleinbuchstabe m). Dabei leuchten die Sterne umso schwächer, je höher ihre Größenklasse ist. Die Magnitudenskala ist logarithmisch eingeteilt: Ein Stern erster Größenklasse ist definitionsgemäß 100-mal lichtstärker als einer der sechsten Klasse. Weil nun 100 = 2,512 5 gilt, bedeutet eine Größenklasse Unterschied also ein Helligkeitsverhältnis von 2,512. Die scheinbare Helligkeit kann auch Werte annehmen, die kleiner als Null sind. Der Nullpunkt der Magnitudenskala entspricht der Helligkeit von Alpha Centauri, dem sonnennächsten Stern. Das menschliche Auge kann maximal Objekte bis zu einer scheinbaren Helligkeit der sechsten Größenklasse erkennen. Es ist zu beachten, dass die Lichtintensität der Sterne mit der Entfernung natürlich abnimmt. Absolute Helligkeit ( M ) Um Sternhelligkeiten besser vergleichen zu können, wurde die absolute Helligkeit eingeführt (Symbol: hochgestellter Großbuchstabe M). Darunter versteht man die Helligkeit eines Sterns, die auf der Erde wahrgenommen würde, wenn er sich in einer genormten Entfernung von 10 Parsec befände (1 Parsec = 3,3 Lichtjahre). Die folgende Formel beschreibt den Zusammenhang zwischen scheinbarer Helligkeit m und absoluter Helligkeit M sowie der Entfernung r (in Parsec): m - M = -5 + 5 lg(r) Die Erarbeitung von Informationen zum Thema "Sonnennahe Sterne" eignet sich sehr gut zur selbstständigen Schülertätigkeit in Form einer Internet-Recherche. Dabei sollen Informationen über verschiedene sonnennahe Sterne zusammengetragen werden. Es ist empfehlenswert, den Lernenden unter anderem die drei sonnennächsten Sterne als Ziel der Recherche vorzugeben: Alpha Centauri Barnards Pfeilstern Wolf 359 Sirius und Teegarden's Star Weitere wichtige sonnennahe Sterne sind der bekannte Sirius (Fixstern mit der größten scheinbaren Helligkeit) auf Platz 6 und Teegarden's Star auf Platz 23 in der Entfernungsskala. Im Idealfall finden die Schülerinnen und Schüler auch heraus, warum Teegarden's Star bei seiner Entdeckung im Jahr 2003 für großes Aufsehen sorgte: Seine Entfernung wurde zunächst fälschlicherweise auf 7,5 Lichtjahre geschätzt, womit er der Stern mit der drittgeringsten Entfernung zur Sonne gewesen wäre. Die wichtigsten "Eckdaten" sonnennaher Sterne haben wir in dem Dokument "sonnennahe_sterne.pdf" zusammengestellt. Bei ihren Recherchen nach sonnennahen Sternen werden die Schülerinnen und Schüler häufig auf den Begriff "Roter Zwerg" stoßen. Dieser Begriff kann auch direkt als Rechercheziel vorgegeben werden. Lernende kann dieses Thema motivieren, sich auch über die Unterrichtseinheit hinaus mit der Astronomie zu beschäftigen. Die Größe von Roten Zwergen im Vergleich zu anderer Sternentypen veranschaulicht Abb. 4. Rote Zwerge zeichnen sich durch die folgenden Eigenschaften aus: Rote Zwerge sind sehr kleine Sterne. Die Kernfusion in ihrem Inneren ist nur schwach. Die rote Farbe entsteht, weil ihr Strahlungsmaximum im roten Spektralbereich liegt (Spektralklasse M). Die Oberflächentemperatur ist gering (2.200-3.800 Grad Kelvin; die Oberflächentemperatur der Sonne beträgt etwa 5.800 Grad Kelvin). Rote Zwerge haben eine enorme Lebensdauer von bis zu 13 Milliarden Jahren. Etwa 70 Prozent der Sterne in der Milchstraße sind Rote Zwerge. Notwendigkeit eines Bezugssystems Zum prinzipiellen Nachweis der Eigenbewegung von Teegarden's Star ist zunächst die Festlegung eines Bezugssystems aus Sternen erforderlich, welche bekanntermaßen (Literaturangaben) eine zu vernachlässigende Eigenbewegung aufweisen. Dann ist zu entscheiden, ob Teegarden's Star sich relativ zu den Sternen des Bezugssystems messbar bewegt. Zum Ausschluss systematischer Fehler im Auswerteverfahren wird die an Teegarden's Star durchgeführte Prozedur zur Messung der Eigenbewegung zusätzlich an einem Vergleichsstern wiederholt, der gemäß der Literatur keine Eigenbewegung zeigen sollte. CCD-Bilder und Bildbearbeitung Die hier zum Download zur Verfügung gestellten CCD-Bilder ("einzelbilder.zip") sind - sortiert nach den Aufnahmezeitpunkten - auf vier Ordner verteilt. Alle Bilder sind bereits bezüglich Dunkelbildsubtraktion und Flat-Field korrigiert. Sie haben die in der Astronomie übliche Orientierung: Norden ist oben, Westen ist rechts. Die im Folgenden beschriebene Bildbearbeitungs- und Auswerteprozedur wird von den Lernenden für alle Bilder aus jedem der vier Ordner separat durchgeführt. Sämtliche Schritte der Bildbearbeitung erfolgen mit der kostenlosen Software Fitswork. Zur Rauschminderung und zum Ausgleich von Bildungenauigkeiten durch Luftunruhen werden alle Bilder eines Ordners aus "einzelbilder.zip", also alle Aufnahmen eines bestimmten Aufnahmedatums, addiert und zu einem Summenbild gemittelt. Dabei geht man wie folgt vor: Nach dem Start des Programms öffnet man die ersten beiden Bilder eines Ordners. Diese werden nun addiert: Dazu sucht man sich zwei gut erkennbare Sterne, die auf beiden Bilder vorhanden sind. Man markiert nun nacheinander in beiden Bildern den ersten Stern, indem man bei gedrückter linker Maustaste einen kleinen rechteckigen Rahmen um den Stern zieht. Beide Rahmen erscheinen in derselben Farbe. Man wiederholt die Prozedur in beiden Bildern für den zweiten Stern. Beide Sterne sollten möglichst weit auseinander liegen, denn sie dienen der punktgenauen Anpassung und Überlagerung beider Bilder. Abb. 5 (Platzhalter bitte anklicken) zeigt den entsprechenden Screenshot: Die beiden als Fixpunkte der Bildausrichtung gewählten Sterne sind durch farbige Rechtecke markiert. Dann wählt man im Menüpunkt "Bearbeiten" den Unterpunkt "Bild addieren (mit Verschiebung)". Das jetzt angezeigte Bild ist die Summe der ersten beiden Bilder. Zu diesem Summenbild addiert man schrittweise alle weiteren Bilder des jeweiligen Ordners. Auf beschriebene Weise gewinnt man aus jedem der vier Ordner ein Summenbild. Nur auf diesen vier Summenbildern basiert die weitere Auswertung. Wer die Prozedur des Addierens auslassen möchte, findet die fertigen Summenbilder im Downloadpaket "summenbilder.zip". Die Aufnahmezeitpunkte der Bilder sind an den jeweiligen Dateinamen erkennbar. Koordinaten der Bezugssterne Nach der Bildaddition gilt es nun, die Positionen von Teegarden's Star und des Vergleichssterns im System der Bezugssterne zu bestimmen. Die Koordinaten der Bezugssterne 1 bis 6 (grüne Ziffern in Abb. 6) sind in den Tabellen des Dokuments "bezuggssterne_positionsbestimmung.pdf" zu finden. Orientierung der Bilder Alle Bilder der Downloadmaterialien sind so orientiert, dass die langen, horizontalen Seiten parallel zu den Deklinationskreisen am Himmel liegen. Die kurzen, vertikalen Seiten sind entsprechend parallel zu den Rektaszensionskreisen. In allen Bildern nimmt die Rektaszension von rechts nach links, also von West nach Ost, zu. Orientierung des Koordinatensystems bei Fitswork Damit die im Folgenden beschriebene Positionsberechnung für Teegarden's Star überschaubar wird, weist man jedem in die Berechnung eingehenden Stern zunächst die Pixelkoordinaten X und Y zu. Bei Fitswork hat das (X/Y)-Koordinatensystem seinen Ursprung in der linken oberen Bildecke. Die X-Achse ist nach rechts, die Y-Achse nach unten orientiert. Ermittlung der Pixelkoordinaten eines Sterns Die Ermittlung der Pixelkoordinaten eines Sterns verläuft in Fitswork wie folgt: Man bewegt den Cursor, der in Abb. 7 (Platzhalter bitte anklicken) als gelbes Kreuz dargestellt ist, im auszuwertenden Bild auf den betrachteten Stern. In diesem Fall ist "Vergleichsstern 6" aus Abb. 6 markiert. Am rechten Bildrand erscheint oben eine Vergrößerung des Bildausschnitts um die Cursorposition. Darunter werden die Intensitätsverteilungen dieses Ausschnitts in X- und Y-Richtung dargestellt. Im Textfeld darunter steht bei "max" die größte Pixelhelligkeit im Bild des betrachteten Sterns. Am unteren Rand des Fitswork-Fensters erscheinen ganz links die X- und Y-Koordinaten der aktuellen Cursorposition, sowie die Helligkeit des Pixels am Ort des Cursors. Man bewegt den Cursor vorsichtig innerhalb des Sterns, bis der in der rechten Leiste angegebene maximale Intensitätswert angezeigt wird. Die zugehörigen Cursorkoordinaten X und Y sind die Pixelkoordinaten des Sterns, die in die weitere Auswertung eingehen. Koordinatenbestimmung In zwei zu unterschiedlichen Zeitpunkten aufgenommen Fotos werden die Positionen von Teegarden's Star im System unserer Bezugssterne bestimmt. Aus den unterschiedlichen Orten von Teegarden's Star schließt man dann auf die Geschwindigkeit seiner Eigenbewegung. Die Koordinaten von Teegarden's Star und von zwei Bezugssternen (siehe Abb. 7) werden im (X/Y)-Koordinatensystem der Software Fitswork - wie oben beschrieben - ermittelt. In Verbindung mit den Daten aus Tabelle 2 (siehe Datei "bezugssterne_positionsbestimmung.pdf") können dann die Koordinaten von Teegarden's Star im Rektaszension/Deklination-System berechnet werden. Der Vergleich der letzteren Koordinaten in beiden Bildern liefert in Verbindung mit dem Zeitintervall zwischen den beiden Aufnahmezeitpunkten für die Bilder die Geschwindigkeit der Eigenbewegung von Teegarden's Star. Auswertungsbeispiel Bei den Downloadmaterialien finden Sie ein detailliertes Auswertungsbeispiel (auswertung_beispiel.pdf). Die dargestellte Rechnung basiert auf den Summenbildern vom August der Jahre 2005 und 2007 und verwendet als Bezugssterne die Sterne 2 und 6 aus Abb. 6. Der so gewonnene Wert der Eigenbewegung (etwa 9 Bogensekunden pro Jahr) ist größer als der Literaturwert von 5,1 Bogensekunden pro Jahr. Auf diese Abweichung wird im Rahmen der "Fehlerbetrachtung" eingegangen. Vergleichsstern ohne Eigenbewegung Nach dem gleichen Verfahren bestimmt man die Positionen eines Vergleichssterns für die beiden relevanten Zeitpunkte. Wir schlagen dafür den in Abb. 6 entsprechend gekennzeichneten Stern vor. Er hat, wie alle Sterne im Bildfeld (außer Teegarden's Star), im Rahmen unserer Messgenauigkeit keine Eigenbewegung. Wenn sich für den Vergleichsstern aus beiden CCD-Bildern, die ja zu unterschiedlichen Zeiten aufgenommen wurden, mehr oder weniger die selben Koordinaten in Rektaszension und Deklination ergeben, ist davon auszugehen, dass das Auswerteverfahren fehlerfrei praktiziert wurde. Aufbau der Diagramme Damit man die ermittelte Eigenbewegung von Sternen direkt erkennen kann, werden die gemessenen Wertepaare (Messzeitpunkt/Rektaszension beziehungsweise Messzeitpunkt/Deklination) für Teegarden's Star und den Vergleichsstern in getrennten Diagrammen (für Rektaszension und für Deklination) aufgetragen. In jedem der Diagramme erscheinen vier Messpunkte für die vier verschiedenen Aufnahmezeiten (August 2005, August 2006, August 2007, Oktober 2007). Auf der X-Achse wird der Zeitraum von August 2005 bis Oktober 2007, und auf der Y-Achse jeweils die Rektaszension beziehungsweise Deklination in geeigneten Intervallen aufgetragen. Eigenbewegung von Teegarden's Star Die ersten drei Messpunkte für Teegarden's Star (Abb. 8) liegen in beiden Diagrammen nahezu auf einer Geraden. Das bedeutet, dass der Stern seine Position mit konstanter Geschwindigkeit verändert. Der vierte Messpunkt muss in den Diagrammen von dem erhaltenen linearen Graphen abweichen: Weil die ihm zugrunde liegenden Bilder statt im August im Oktober aufgenommen wurden, werden die Messwerte hier durch den Parallaxeneffekt verfälscht. Vergleichsstern ohne Eigenbewegung Beim Vergleichsstern (Abb. 9) liegen alle Messpunkte in beiden Diagrammen auf nahezu waagerechten Geraden. Der gewählte Vergleichsstern besitzt keine messbare Eigenbewegung. Dies gilt auch für den jeweils vierten Messpunkt, weil sich der Effekt der Parallaxe aufgrund der großen Entfernung des Sterns nicht bemerkbar macht. Während unseres Praktikums im Argelander-Institut für Astronomie in Bonn hatten wir genug Zeit für die Auswertung einer wesentlich größeren Datenmenge. Pro Aufnahmezeitpunkt mittelten wir bis zu 50 Einzelaufnahmen. Die Berechnungen der Koordinaten für Teegarden's Star wurden für jedes Summenbild auf der Basis mehrerer Paare von Bezugssternen durchgeführt. Bei sechs Bezugssternen gibt es für jeden Aufnahmezeitpunkt "sechs über zwei", also 15 Möglichkeiten. Wir verwendeten dazu die leider nicht kostenfreie Software Astroart. Als Mittelwert zahlreicher Einzelrechnungen ermittelten wir für die Eigenbewegung von Teegarden's Star einen Wert von 5 Bogensekunden pro Jahr. Dieser Wert kommt dem Literaturwert von 5,1 Bogensekunden pro Jahr recht nahe. Er ist durchaus mit den oben genannten 9 Bogensekunden pro Jahr verträglich, wenn man bedenkt, dass dieses Ergebnis nur auf einer von etwa 45 möglichen Auswertungen beruht. Um zuverlässigere Werte für die Eigenbewegung zu erhalten, ist also eine Vielzahl von Einzelrechnungen nach dem oben beschriebenen Verfahren durchzuführen. Die Ergebnisse der Einzelrechnungen sind dann zu mitteln. Hier setzt der erforderliche Zeitaufwand im Unterricht natürlich Grenzen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Allgemeine Hinweise zur Planetenbeobachtung

Unterrichtseinheit

Mit bloßem Auge (visuell) und mit fotografischen Mitteln lassen sich Planetenbewegungen am Fixsternhimmel beobachten, dokumentieren und verstehen. Wertvolle Dienste leisten dabei Planetarium- und Bildbearbeitungssoftware.Schülerinnen und Schüler aller Altersstufen können bei der visuellen und fotografischen Beobachtung der Planeten unseres Sonnensystems "Himmelsmechanik live" erleben und dokumentieren. Informationen zur Sichtbarkeit der Planeten am Abendhimmel finden Sie unter Links und Literatur. Zur Vorbereitung der Beobachtungen können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Die linke Abbildung zeigt den Saturn, aufgenommen von einer Schülergruppe am Observatorium Hoher List in der Eifel. Visuelle Beobachtungen sind mit der Planetarium-Software Stellarium planbar, nachvollziehbar und vertiefbar. Die kostenlose Bildbearbeitungssoftware Fitswork erlaubt die Rekonstruktion von Planetenbahnen am Sternenhimmel aus Fotos, die Lernende mit einfachen Digitalkameras anfertigen können.Im Unterricht sollen den Schülerinnen und Schülern Medien, Materialien und Kenntnisse an die Hand gegeben werden, die sie zur eigenständigen Himmelsbeobachtung anregen und befähigen. Die Resultate solcher Beobachtungen werden im Unterricht zusammengetragen, ausgewertet und diskutiert. Fachliche Voraussetzungen Was sind Ekliptik, rückläufige Bewegungen und Planetenschleifen? Warum haben nur Merkur und Venus Phasen wie der Mond? Allgemeine Hinweise zum Auffinden von Planeten Mit der kostenfreien Software Stellarium können Sie den Sternhimmel mit den Positionen der Planeten zu jeder Zeit an Ihrem Standort darstellen. Materialien für die Beobachtung - Beispiel 2010 Die Himmelskarten aus dem Jahr 2010 sind natürlich nicht mehr verwendbar. Sie sollen jedoch als Anregung für die Erstellung aktueller eigener Materialien dienen. Rekonstruktion von Planetenbahnen aus Fotografien Zu verschiedenen Zeitpunkten aufgenommene Himmelsfotos werden mit der kostenfreien Software Fitswork addiert. Die Bewegung eines Planeten wird dabei als "Spur" deutlich. Die Schülerinnen und Schüler verstehen, warum und wie sich die Planeten am Himmel in unmittelbarer Nähe der Ekliptik bewegen. simulieren Planetenbewegungen mit Planetarium-Software. finden die Planeten Venus, Mars, Jupiter und Saturn am Nachthimmel auf. dokumentieren den Lauf der Planeten Venus, Jupiter und Saturn, basierend auf eigenen Beobachtungen. lernen einfache Verfahren der digitalen Bildbearbeitung kennen und wenden diese an. Erdrotation und die Bewegung der Fixsterne Die Erde rotiert um eine Achse, die durch ihre beiden geographischen Pole führt. Die Erdrotation erfolgt von Westen nach Osten, also - von Norden auf die Erde gesehen - gegen den Uhrzeigersinn. Die Folge davon ist, dass der Sternenhimmel damit alle Himmelsobjekte für einen irdischen Beobachter einmal in etwa 24 Stunden auf einem Kreis von Osten nach Westen rotieren. Die Mittelpunkte aller dieser Kreise liegen auf der ins Weltall verlängerten Erdachse. Die Positionen der Sterne relativ zueinander ändern sich während eines Menschenlebens so gut wie nicht erkennbar. Deshalb heißen Sterne auch "Fixsterne": Sie scheinen an der rotierenden Himmelskugel ihren festen Platz zu haben. Entstehung des Sonnensystems Um die Bewegung der Planeten am Himmel verstehen zu können, sind einige grundlegende Kenntnisse über die Struktur des Sonnensystems erforderlich. Unser Sonnensystem entstand vor etwa vier Milliarden Jahren aus einer rotierenden, flachen Gas- und Staubscheibe. Aus der protoplanetaren Scheibe entstanden die Körper unseres Sonnensystems. Abb. 1 zeigt dies in einer künstlerischen Darstellung der NASA (Grafik zur Vergrößerung bitte anklicken). Planeten übernehmen den Drehimpuls der Staubscheibe Beinahe die gesamte Masse dieser Staubscheibe konzentrierte sich in der Sonne, in deren Innerem die enormen Gravitationskräfte die Bedingungen für den Ablauf von Kernfusionen herstellen. In den äußeren Bereichen der Staubscheibe "verklumpte" die dort ursprünglich vorhandene Materie zu den als Planeten, Kleinplaneten und Kleinkörpern des Sonnensystems bekannten Objekten. Die Planeten tragen den Großteil des Drehimpulses der ursprünglichen Staubscheibe und bewegen sich deshalb mit gleichem Umlaufsinn mehr oder weniger in derselben Ebene. Ihre Bahnen sind Ellipsen mit der Sonne in einem der Brennpunkte. Die Formen dieser Ellipsenbahnen weichen nur geringfügig von der Kreisform ab. Sonne, Mond und Planeten bewegen sich auf der Ekliptik Die Bahn, die die Sonne im Verlauf eines Jahres an der "Himmelskugel" beschreibt, wird Ekliptik genannt. Damit kann man die Ekliptik auch auffassen als Schnittkreis der Himmelskugel mit der Ebene, in der die Erde die Sonne umrundet. Durch die Entstehung der Planeten und der Sonne aus der flachen Staubscheibe unterscheiden sich die Bahnebenen der Planeten nicht allzu sehr von einander. Betrachtet man von der Erde aus andere Planeten (oder unseren Mond), dann müssen sie sich also - mehr oder weniger - auf oder nahe der Ekliptik bewegen. In unseren nördlichen Breiten stellt sich die Ekliptik als Bogen am südlichen Himmel dar, der von Osten kommend nach Süden ansteigt, um dann zum Westhorizont abzufallen. Bewohnerinnen und Bewohner der Südhalbkugel müssen sich nach Norden richten, um einen Blick auf die Ekliptik zu werfen. Die Zeit um die "Opposition" ist die günstigste Beobachtungszeit Wie wir auf der Erde die Bewegung eines Planeten in der Nähe der Ekliptik wahrnehmen, hängt davon ab, welchen Planeten wir betrachten. Am einfachsten sind die Bewegungen der außerhalb der Erdbahn liegenden Planeten Mars, Jupiter, Saturn, Uranus und Neptun zu verstehen. Wir sehen, wie sich diese Planeten vor dem Fixsternhimmel nahe der Ekliptik von West nach Ost beziehungsweise von "rechts nach links" bewegen. Wenn einer dieser Planeten seine Opposition erreicht (Abb. 2), ist er der Erde am nächsten und am hellsten. Er ist dann die ganze Nacht über am Himmel zu beobachten. Im Zeitraum um die Konjunktion herum befinden sich die Planeten am Taghimmel und sind nicht zu sehen. Rückläufigkeit und Schleifen Wenn ein äußerer Planet seine Opposition erreicht und auf der "Innenbahn von der Erde überholt" wird, ändert er für einige Zeit die Bewegungsrichtung relativ zum Fixsternhimmel und wird "rückläufig". Bedingt durch die Geometrie der Konstellationen beschreiben die Bahnen von Mars und der äußeren Planeten um die Zeit der Opposition herum "Schleifen" an der Himmelskugel. Dies wird durch einige Animationen im Internet sehr gut veranschaulicht: Untere und Obere Konjunktion Die innerhalb der Erdbahn kreisenden Planeten Merkur und Venus "pendeln" von uns aus gesehen zwischen der größten westlichen und der größten östlichen Elongation hin und her (Abb. 3). Im Gegensatz zu Mars und den äußeren Planeten ist bei Venus und Merkur zwischen der unteren und der oberen Konjunktion zu unterscheiden. In den Zeiten um beide Konjunktionen befinden sich die Planeten nahe bei der Sonne am Taghimmel und sind nicht zu beobachten (ähnlich der "Neumondsituation"). Planetentransite Wenn sich Merkur oder Venus zum Zeitpunkt der unteren Konjunktion genau zwischen Erde und Sonne befinden, ist ein sogenannter Transit zu beobachten: Der Planet wandert als schwarzes Scheibchen über die Sonnenscheibe. Aufgrund der nicht ganz identischen Bahnebenen der Planeten geschieht dies jedoch nur selten (aus demselben Grund haben wir auch nicht bei jedem Neumond eine Sonnenfinsternis). Abb. 4 zeigt den Venustransit von 2004, aufgenommen von einer Schülergruppe am Gymnasium Isernhagen (Niedersachsen). Der nächste Venustransit am 6. Juni 2012 ist, wenn die Sonne in Mitteleuropa aufgeht, schon fast beendet. Der nächste Merkurtransit am 09. Mai 2016 kann dagegen vollständig beobachtet werden. Phasen der Venus Im Gegensatz zu den anderen Planeten zeigen Venus und Merkur aufgrund ihrer Bewegung innerhalb der Erdbahn - wie der Mond - Phasen: Während der größten östlichen Elongation (siehe Abb. 3) ist eine "abnehmende Halbvenus" als auffälliger Abendstern zu beobachten. Zum Zeitpunkt der größten westlichen Elongation ist eine "zunehmende Halbvenus" als Morgenstern zu sehen. Vor oder nach der unteren Konjunktion erscheint Venus (kurz nach Sonnenuntergang beziehungsweise kurz vor Sonnenaufgang) als große, aber sehr schmale und wegen der geringen Leuchtkraft am noch hellen Himmel nicht ganz einfach zu findende Sichel (die Sichelform ist dann bereits in einem guten Feldstecher erkennbar). Um die obere Konjunktion herum erscheint das Planetenscheibchen dagegen voll beleuchtet, aber sehr klein (und ist dadurch ebenfalls in der Dämmerung nicht sehr auffällig). Durch das Zusammenspiel der Parameter Entfernung und Beleuchtung (Phase) des Planeten kommen die großen Helligkeitsschwankungen der Venus zustande. An einem bestimmten Punkt zwischen unterer und oberer Konjunktion erstrahlt Venus in ihrem "höchsten Glanz". Abb. 5 zeigt die Entwicklung der abnehmenden Venus bis hin zur scharfen Sichelform. Die Aufnahmen stammen von Jens Hackmann. Weitere Fotos finden Sie auf seiner Homepage: Schwer zu beobachten: Merkur Der flinke, uns auf seiner "Innenbahn" schnell überholende Merkur (wegen seiner Schnelligkeit hervorragend als "Götterbote" geeignet) zeigt die gleichen Phasen wie Venus, ist aber seltener und schwieriger zu beobachten: Er "ertrinkt" oft im Dunst der horizontnahen Luftschichten. Mit bloßem Auge sichtbar: Merkur, Venus, Mars, Jupiter und Saturn Neulinge tun sich häufig schwer damit, einen bestimmten Planeten am Himmel überhaupt zu finden und eindeutig zu erkennen. Es gibt jedoch gute Hilfsmittel, um dies auch unerfahrenen Beobachtern zu ermöglichen. Informationen zur Sichtbarkeit der Planeten am Abendhimmel finden Sie unter Links und Literatur. Zur Vorbereitung der Beobachtungen können mithilfe kostenfreier Planetarium-Software ( Stellarium , Cartes du Ciel ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Die schon im Altertum bekannten Planeten Merkur, Venus, Mars, Jupiter und Saturn sind mit bloßem Auge gut sichtbar. Die Beobachtung von Uranus und Neptun erfordert ein Fernrohr und den geübten Beobachter. Planeten halten sich nahe der Ekliptik auf und "flackern" nicht Planeten sucht man aus den bereits beschriebenen Gründen in der Nähe der Ekliptik, die als Bahn von Sonne und Mond am Himmel leicht auszumachen ist. Wenn man dann noch beachtet, dass Fixsterne funkeln, Planeten aber in einem ganz ruhigen Licht erscheinen und recht hell sind, sollte die letzte Hürde auf dem Weg zum Auffinden von Planeten leicht zu überwinden sein. Die Suchprozedur kann mit einer drehbaren Sternkarte unterstützt werden. Stellarium - vielseitig und einfach zu bedienen Die Himmelsrotation und die ihr überlagerten Planetenbewegungen lassen sich mit der Software Stellarium hervorragend simulieren und veranschaulichen. Stellarium ist ein kostenloses und einfach zu bedienendes Planetarium-Programm. Nach dem Programmstart gibt man Beobachtungsort und Beobachtungszeit ein (erster und zweiter Button der linken Menüleiste, die aufgeht, wenn man den Mauszeiger an den linken Bildschirmrand bewegt). Die Software zeigt dann den entsprechenden Himmelsanblick im Süden. Neben den Fixsternen werden auch die Planeten und wahlweise andere Objekte (Galaxien, Gasnebel, Sternhaufen) angezeigt. Um in andere Richtungen oder höhere Regionen über dem Horizont zu "blicken", bewegt man die Maus bei gedrückter linker Taste in die entsprechende Richtung. Drehen am Scrollrad der Maus vergrößert oder verkleinert die Himmelsdarstellung. Aufsuchkarten selbst erstellen und ausdrucken Zur Vorbereitung einer Planetenbeobachtung gibt man in Stellarium die geplante Beobachtungszeit ein, steuert mit der Maus wie beschrieben den gewünschten Himmelsausschnitt an und erzeugt per Screenshot einen Sternkartenausdruck, der den gewünschten Planeten mit seiner Fixsternumgebung zeigt. Ein solcher Ausdruck ist für wenig erfahrene Himmelsbeobachter die optimale Aufsuchhilfe für Planeten. Stellarium - ein virtuelles Planetarium für die Schule Die kostenfreie Planetarium-Software ermöglicht eine sehr realistische Darstellung der Himmelskugel. Beobachtungsort und -zeit können nach Wunsch festgelegt werden. Cartes du Ciel - Download Auch mit dieser freien Software lassen sich ausdruckbare Sternkarten erzeugen und durch vielfältige Einstellungsmöglichkeiten astronomische Beobachtungen vorbereiten. Planetensichtbarkeiten Für viele Schülerinnen und Schüler werden das Auffinden und die visuelle Beobachtung von Planeten schon eigenständige, neue Erfahrungen sein. Es liegt nahe, die dazu erworbenen Fertigkeiten zu einer vertieften Beschäftigung mit Planeten und dabei insbesondere mit deren Bahnen relativ zum Fixsternhimmel fruchtbar zu machen. Neben den von der Natur vorgegebenen Beobachtungsmöglichkeiten schränken schulische Rahmenbedingungen die Planetenauswahl und mögliche Beobachtungszeiträume ein. Lässt man nur Beobachtungen am nicht zu späten Abend zu, dann ergeben sich aus der Tabelle "Planetensichtbarkeit im Jahr 2010" (tabelle_planetensichtbarkeit_2010.pdf) fünf mit unterschiedlichen Farben hervorgehobene Projektmöglichkeiten: Merkur kann in den Tagen um den 4. April herum am Abendhimmel beobachtet werden (dunkelrot). Venus bietet im Zeitraum März bis September eine nur mäßige Abendsichtbarkeit (blau). Mars kann von Januar bis Mai gut verfolgt werden (orange). Jupiter bietet eine gute Abendsichtbarkeit von August bis Dezember (rot). Saturn lässt sich von Februar bis Juni beobachten (grün). Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Die diesjährige Abendsichtbarkeitsperiode der Venus ist wenig spektakulär. Gezielte abendliche Beobachtungsaufträge für Schülerinnen und Schüler ergeben sich im Jahr 2010 nicht, denn die Beobachtungsmöglichkeit ist im Wesentlichen auf die Zeit der späten Dämmerung beschränkt. Eine Stunde nach Sonnenuntergang erreicht die Venus auch im Zeitraum um die größte östliche Elongation Höhen von nur wenig mehr als 10 Grad über dem West- beziehungsweise Westnordwesthorizont. Ursache dafür ist der Umstand, dass im Frühjahr und Frühsommer der Winkel zwischen Ekliptik und Westhorizont sehr gering ist. Die scheinbare Bahn der Venus am Himmel liegt sehr flach und gewinnt deshalb während der kurzen Abendsichtbarkeit des Planeten kaum Höhe über dem Horizont. Weitere Informationen zur Venus finden Sie in dem Beitrag Venus - Beobachtung der Phasen unseres Nachbarn . Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Der Rote Planet ist in den ersten Monaten des Jahres 2010 eindeutig der "Star" am Abendhimmel. Die für schulische Beobachtungsprojekte günstige Zeit um die Marsopposition am 29. Januar 2010 reicht vom Jahresbeginn bis in den April/Mai. Ein großer Teil seiner diesjährigen Oppositionsschleife und seine Rückläufigkeit im Sternbild Krebs sind für irdische Beobachterinnen und Beobachter zur "Primetime" in den ersten Nachtstunden bequem zu verfolgen. Bis Ende März (Umstellung von der Winterzeit auf die Sommerzeit) können wegen des noch zeitigen Beginns der Dunkelheit auch jüngere Schülerinnen und Schüler in die Marsbeobachtung eingebunden werden. Abb. 8 (zur Vergrößerung bitte anklicken) zeigt die Bahn des Roten Planeten im Zeitraum Oktober 2009 bis Mai 2010. Weitere Hinweise zur Marsbeobachtung finden Sie auch in dem Artikel Mars - Beobachtung einer Planetenschleife . Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Pünktlich zum neuen Schuljahr und zum früheren Nachtbeginn wird Jupiter ab August/September für den Rest des Jahres zum dominierenden Objekt am Abendhimmel. Seine Opposition ist am 21. September, Rückläufigkeit und Oppositionsschleife im Sternbild Fische sind am frühen Abend leicht mit bloßem Auge zu beobachten. Beinahe zeitgleich mit Jupiter durchläuft im Jahr 2010 der Planet Uranus seine Opposition im selben Himmelsbereich. Um den 22. September nähern sich Jupiter und Uranus bis auf 0,8 Grad, also auf weniger als zwei Monddurchmesser! Auch unerfahrene Beobachterinnen und Beobachter können Uranus dann mit einfachsten Ferngläsern zweifelsfrei identifizieren. Allgemeine Tipps zur Beobachtung des Gasriesen finden Sie auch in dem Artikel Jupiter und der Tanz der Galileischen Monde . Allgemeine Hinweise zur Beobachtung des Planeten im Jahr 2010 Von Februar bis Juni ist Saturn am Abendhimmel vertreten. Während dieses Zeitraums beschreibt er den rückläufigen Teil seiner Oppositionsschleife im Sternbild Jungfrau. Die Schleife hat eine Ausdehnung von nur etwa 6 Grad, was verglichen mit den gut 20 Grad bei der Marsschleife nicht sehr üppig ist. Daneben gewinnt Saturn zu den besten Abendzeiten mit etwa 20 bis 30 Grad keine wirklich großen Höhen über dem Horizont. Anregungen zur Beobachtung von Saturn finden Sie auch in dem Artikel Saturn - ein Blick auf den Ringplaneten vergisst man nicht . Die Planetenbahnen für das gesamte Jahr 2010 befinden sich in den entsprechenden Grafiken alle komplett über dem Horizont. Die Planetenbahnen in den mit der Software GUIDE 8.0 erstellten Grafiken (Merkur, Venus, Mars, Jupiter und Saturn) wurden nachträglich etwas stärker hervorgehoben. Den GUIDE-Karten liegen entsprechend gewählte Beobachtungszeiten zugrunde, welche man den Legenden links unten in den Abbildungen entnimmt. Genau denselben Himmelsausschnitt findet man über dem Horizont, wenn man 15 Tage später schon eine Stunde früher oder 15 Tage früher erst eine Stunde später beobachtet. Um für beliebige Daten und Uhrzeiten beurteilen zu können, ob ein bestimmter Planet hinreichend hoch über dem Horizont stehen wird, bedient man sich am einfachsten der kostenfreien Software Stellarium. Hinweise liefern die folgenden Beiträge: Erste Schritte zur Orientierung am Sternhimmel Mithilfe der Software Stellarium "experimentieren" Lernende am Rechner mit dem Sternhimmel, bevor sie eine drehbare Sternkarte basteln und erproben (Klasse 5-10). Mit Stellarium wird eine Sternkarte des Bereichs erzeugt, in dem sich der betrachtete Planet während der gesamten Beobachtungszeit aufhalten wird. In einem hinreichend großen Ausdruck der Sternkarte tragen die Schülerinnen und Schüler dann in geeigneten Zeitabständen die von ihnen per Augenschein bestimmten Positionen des beobachteten Planeten händisch ein. Die Sternkarte darf zu diesem Zweck natürlich nur Fixsterne und keine Planeten enthalten. Dazu entfernt man vor dem Ausdruck im Himmels- und Anzeige-Optionsfenster (dritter Button von oben in der linken Symbolleiste) die Häkchen in den entsprechenden Kontrollkästchen. Wenn man die mit Stellarium per Screenshot erstellten Sternkarten mit Bildbearbeitungssoftware invertiert, das heißt in eine Negativ-Darstellung umwandelt, erhält man Toner sparende Ausdrucke, in deren weißen Himmelshintergründen händische Ergänzungen leicht vorgenommen werden können. Die Positionen eines Planeten am Fixsternhimmel können zu verschiedenen Zeitpunkten fotografisch festgehalten werden. Nach dem Beobachtungszeitraum werden aus den Einzelbildern dann die Bahnen der Planeten am Himmel rekonstruiert. Anhaltspunkte für die Wahl der Aufnahmezeitpunkte können Sie für das Jahr 2010 den in diesem Beitrag zur Verfügung gestellten Himmelskarten entnehmen (siehe oben). Belichtungszeit, Blendenöffnung und Sensor-Empfindlichkeit Für das Fotografieren eignen sich insbesondere Digitalkameras, die manuell einstellbare Belichtungszeiten von einigen Sekunden erlauben. Man montiert die Kamera auf ein Stativ und wählt für erste Versuche eine möglichst kurze Brennweite (Weitwinkel). Dann belichtet man bei hoher Empfindlichkeit und größtmöglicher Blendenöffnung (also bei kleinster Blendenzahl) für etwa 10 Sekunden. Am besten stellt man den Selbstauslöser ein, damit die Kamera beim manuellen Auslösen nicht wackelt. Auf diese Art gewonnene Fotos zeigen schon deutlich mehr Sterne, als mit bloßem Auge sichtbar sind. Sternbilder sind für den Anfänger wegen der Vielzahl der Sterne auf solchen Bilder kaum zu erkennen. Da Digitalfotos sofort beurteilt werden können, können nach kurzer Probierphase Belichtungszeit, Blendenöffnung und Sensor-Empfindlichkeit so gewählt werden, dass nur die hellsten in den Sternkarten vorhandenen Sterne abgebildet werden. Brennweite und Bildausschnitt Man wählt für die (eventuell über Monate) geplante Aufnahmeserie durch Brennweitenvariation den Bildausschnitt so, dass der beobachtete Planet den "abgelichteten" Himmelsausschnitt im Beobachtungszeitraum nicht verlässt. Bei der Festlegung des sinnvollen Ausschnittes hilft wiederum Planetarium-Software. Alle Fotos einer Aufnahmeserie sollten mit ungefähr gleicher Brennweite aufgenommen werden. Die nach dem beschrieben Verfahren erhaltenen Fotos werden ungefähr so aussehen wie die Bilder in Abb. 9 (Platzhalter bitte anklicken). Die drei Darstellungen zeigen Saturn im Sternbild Löwe am 2. Februar, 23. April und 23. Mai 2009 (jeweils um 22 Uhr MEZ). Es handelt sich dabei um Screenshots aus dem Programm Stellarium. Saturn ist jeweils mit einem gelben "S" markiert. Solche Bilder - egal ob Screenshots oder Fotos - lassen sich im Prinzip mit jeder Bildbearbeitungssoftware durch Addition weitgehend passgenau übereinander legen. Sämtliche Fixsterne in den Bildern fallen bei der Addition zusammen. Der beobachtete Planet dagegen ändert mit jeder Aufnahme seine Position. Im Summenbild der drei Teilabbildungen aus Abb. 9 erscheinen daher die drei Planetenbilder als eine "Spur", mit der die Planetenbahn leicht zu rekonstruieren ist (siehe Abb. 10). Fitswork ist eine kostenlose Software, die speziell für die Bearbeitung astronomischer Aufnahmen entwickelt wurde und eine große Vielfalt an Bearbeitungs- und Auswertemöglichkeiten bietet. Bei der Überlagerung von Sternfeldaufnahmen mit Planeten geht man wie folgt vor: Man öffnet zwei der zu addieren Bilddateien. Dann identifiziert man zwei Sterne, die in beiden Bildern zu finden und eindeutig Bilder derselben Sterne sind. Die gewählten Sterne sollten nicht zu dicht beieinander liegen, da anhand ihrer Position beide Fotos vor der Addition so verschoben, gedreht, gestreckt oder gestaucht werden, dass alle Fixsterne möglichst passgenau übereinander liegen. Eventuelle Verzerrungen in den Bildern wegen unterschiedlicher Aufnahmebrennweiten werden dabei weitgehend ausgeglichen. Mit der linken Maustaste klickt man beide Sterne in beiden Bildern in derselben Reihenfolge an. Dabei ist es sinnvoll, die Vergrößerung der Bildschirmdarstellung zu erhöhen, um den Schwerpunkt eines Sternbilds gut zu treffen (Rechtsklick auf "Zoom" links unten im aktiven Bildfenster). Die Sterne werden bei dieser Markierung mit verschieden farbigen Kreuzen gekennzeichnet. Anschließend bringt man dasjenige Bild in den Vordergrund, dessen Format (Größe und Ausrichtung) man beibehalten möchte, und klickt dann im Menü "Bearbeiten" die Funktion "Bild addieren (mit Verschiebung)" an. Das entstehende Summenbild wird gespeichert. Um das nächste Bild zu addieren, wiederholt man einfach die Prozedur und speichert das neue Summenbild wieder ab. Prinzipiell lassen sich so beliebig viele Bilder überlagern. Abb. 10 (Platzhalter bitte anklicken) zeigt das Ergebnis der Überlagerung der Einzelbilder aus Abb. 9. Dabei wurde ein brauchbarer Ausschnitt mit dem kompletten Sternbild Löwe gewählt, der Bildkontrast bearbeitet und die Saturnpositionen mit den Ziffern 1 bis 3 versehen, die die Reihenfolge der Aufnahmen wiedergeben. Mehrfachbilder von Sternen im Randbereich der Abbildung sind auf verzerrt dargestellte Himmelsausschnitte durch die Software Stellarium zurückzuführen. Den Gestaltungsmöglichkeiten der Summenbilder (zum Beispiel Aufnahmedaten in die Beschriftung einbringen, Planetenbahnen einfügen) sind kaum Grenzen gesetzt. Mithilfe der Bilder im Ordner "saturn_addition.zip" (Bildbeispiele aus Abb. 9 und Abb. 10) können Sie oder Ihre Schülerinnen und Schüler die Prozedur der Bildaddition schon einmal als "Trockenübung" durchführen. Der Ordner enthält drei mit Stellarium erzeugte Screenshots, die den Planeten Saturn zu verschiedenen Zeitpunkten im Sternbild Löwe zeigen (1_saturn_02_feb_2009_22h.jpg, 2_saturn_23_apr_2009_22h.jpg, 3_saturn_23_mai_2009_22h.jpg). Außerdem enthält der Ordner das Ergebnis der ersten (12_addition_saturn.jpg) und der zweiten Bildaddition (123_addition_saturn.jpg) sowie ein mögliches Endergebnis: einen Bildausschnitt mit dem Sternbild Löwe und drei Positionen des Saturn. Aus einer genügend großen Anzahl von Einzelaufnahmen lässt sich so die Spur des Planeten durch das Sternbild rekonstruieren. Bei der Betrachtung aufgezeichneter Planetenbahnen wird man in jedem Fall erkennen, dass sich die Planeten am Fixsternhimmel nicht immer gleich schnell und nicht auf regelmäßigen Bögen bewegen. Von den für Bahnbeobachtungen gut geeigneten Planeten ist die Geschwindigkeit der Venus am größten. Aufnahmen im Abstand weniger Tage lassen Positionsänderungen bereits gut erkennen.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Veränderliche Sterne - Lichtkurven selbst gemacht

Unterrichtseinheit

Auf der Basis digitalisierter Fotoplatten aus der Sammlung der Sternwarte Sonneberg (Thüringen) erstellen und interpretieren die Schülerinnen und Schüler Lichtkurven veränderlicher Sterne. Und natürlich werden Veränderliche auch im Original beobachtet.Die bereits 1926 gestartete "Sonneberger Himmelsüberwachung" (Sky Patrol) beruht auf der Idee des deutschen Astronoms Paul Guthnick (1879-1947), den gesamten nördlichen Sternenhimmel per Astrofotografie zu überwachen. Nach mehr als 80 Jahren fotografischer Überwachung des Himmels lagern mehr als 275.000 Fotoplatten im Sonneberger Archiv - der zweitgrößten Sammlung der Welt - die die Geschichte des Lichtwechsels der bei etwa 50 Grad nördlicher Breite sichtbaren Himmelsobjekte (bis zur 14. Größenklasse) dokumentieren. Diese ?Chronik des Sternenhimmels? ist ein einmaliger Datenschatz, der noch viele Geheimnisse in sich birgt. Auf seiner Basis erstellen Schülerinnen und Schüler Lichtkurven eines veränderlichen Sterns vom Mira-Typ. Sie vergleichen diese mit Daten von Amateurastronomen aus dem Internet und planen eigene Beobachtungen von Mira und Algol. Das eigene Tun, die Arbeit mit Originaldaten und das Erfolgserlebnis sollen die Motivation und das Interesse an den Naturwissenschaften und der Mathematik fördern.Die an der Sternwarte Sonneberg seit 2004 durchgeführte Digitalisierung von Fotoplatten der Sonneberger Himmelsüberwachung eröffnet die Möglichkeit, Himmelsaufnahmen an jedem Computer "in die Hand zu nehmen" und Veränderlichenforschung in jeder Schule zu betreiben. Für das hier vorgestellte Projekt stellte die Sternwarte eine Auswahl der Plattenscans zur Verfügung. Das Projekt basiert auf didaktischen Materialien, die im Rahmen des Projektes Wissenschaft in die Schulen! entwickelt wurden. Der Einsatz der Argelander Stufenschätzmethode wurde im Rahmen eines Astronomiekurses der deutschen Schülerakademie (Thema: "Lichtsignale aus dem All - Veränderliche Sterne", Marburg 2005) und bei Lehrerfortbildungen (Sonneberg 2004, MNU Karlsruhe 2006) erfolgreich getestet. Methoden, Fertigkeiten und Computereinsatz Im Rahmen des Projektes wird die Nutzung des Computers als nützliches Werkzeug auf vielfältige Art gefördert. In der Astronomie beginnt (fast alles) mit der Beobachtung Mit Sternkarten oder Planetariumsprogrammen werden Positionen und Sichtbarkeiten von Veränderlichen bestimmt. Der Lichtwechsel von Veränderlichen Lichtkurvendiagramme und Ursachen der Veränderlichkeit von Sternen werden vorgestellt und mithilfe einfacher Modelle erklärt. Der fotografierte Himmel Original-Fotoplatten aus dem Sonneberger Archiv werden untersucht. Ein Veränderlicher wird aufgespürt und Helligkeitsschätzungen werden vorbereitet. Die Argelander Stufenschätzmethode Aus 23 Stufenschätzungen erstellen die Schülerinnen und Schüler eine beispielhafte Lichtkurve des Veränderlichen R Cassiopeia. Der Veränderliche R Cassiopeia Auf der Basis von 83 Schätzfeldern werden das Stufenwert-Helligkeit-Diagramm und die Lichtkurve von R Cas dargestellt (Millimeterpapier oder Tabellenkalkulation). Was uns die Lichtkurve verrät Lichtkurven von R Cassiopeia werden interpretiert und verglichen. Details zu den Mira-Sternen und den Ursachen ihres Lichtwechsels werden berichtet. Rückkehr zur Beobachtung: Mira und Algol Die Schülerinnen und Schüler planen die Beobachtung der Veränderlichen Sterne Mira und Algol. Die Schülerinnen und Schüler sollen basierend auf digitalisierten Fotoplatten der Sternwarte Sonneberg die Lichtkurve eines veränderlichen Sterns erstellen und dabei die Argelander Stufenschätzmethode anwenden. eine wissenschaftliche Arbeitsweise erleben, die über Jahrzehnte im Zentrum der Forschungsarbeit vieler Sternwarten stand. sich mit der Messfehlerproblematik auseinandersetzen. die Typen Veränderlicher Sterne kennen lernen und die Ursachen der Veränderlichkeit verstehen. Veränderliche Sterne beobachten. Schätzmethode und Messfehlerproblematik Das hier vorgestellte Projekt knüpft an verschiedene "Wissensbereiche" an und trainiert vielfältige Fähigkeiten und Fertigkeiten der Schülerinnen und Schüler. Ein zentraler Punkt ist die Vermittlung einer grundlegenden Methode zur Helligkeitsbestimmung von Sternen - der Argelander Stufenschätzmethode. Hierbei wird das Prinzip der Relativmessung angewandt und verdeutlicht. Die Funktion des Auges als "Messinstrument" rückt ins Bewusstsein der Schülerinnen und Schüler. Die Subjektivität des Augenmaßes ist gut geeignet, die Messfehlerproblematik (subjektive Fehler) zu belegen. Physikalisch-mathematische Denkweisen Die Frage nach den Ursachen des Lichtwechsels der Sterne bedarf physikalischer und mathematischer Denkweisen. Das Projektergebnis ist eine Lichtkurve, die den zeitlichen Verlauf der Sternhelligkeit präsentiert. Diese Kurve gilt es zu interpretieren, wobei grundlegende Begriffe wie Periode und Amplitude genutzt werden müssen. Mustererkennung und Datenauthentizität Es sei auch erwähnt, dass die Arbeit mit Bildern von Sternfeldern die Fähigkeit der Mustererkennung schult. Der Umgang mit wissenschaftlichen Originaldaten vermittelt Authentizität, die wichtig für die "Anerkennung" des in der Schule Gelernten ist, und ist zudem ein Motivationsfaktor für die Schülerinnen und Schüler. Der Computereinsatz spielt in dem Projekt eine zentrale Rolle. Die zu untersuchenden Sternfelder liegen als Bilddateien vor, wobei die Helligkeitsstufen der Sterne am Bildschirm geschätzt werden können. Weitere Daten können über das Internet (Sternwarte Sonneberg) abgerufen werden. Die Datenauswertung kann durch Excel oder andere Tabellenkalkulationsprogramme unterstützt werden. Zur Interpretation der Ergebnisse kann auf so genannte Lichtkurvengeneratoren zurückgegriffen werde, die aus Daten von verschiedenen Amateurbeobachtern Lichtkurven für viele Veränderliche erstellen. Zur Veranschaulichung der Ursachen der Veränderlichkeit eignen sich Animationen. Zur Planung der Beobachtung von Veränderlichen werden Planetariumsprogramme, Datumsrechner (Umrechnung zwischen Julianischem und Gregorianischem Datum) und verschiedene Informationsseiten (zum Beispiel vorausberechnete Maxima und Minima von bestimmten Veränderlichen) aus dem Internet genutzt. Einstieg und Motivation Die Lernenden sind mit der Definition eines Stern und den Sternbild- und Sternbezeichnungen bereits vertraut. Sie erfahren, dass es im Sternbild Walfisch einen Stern mit dem Namen Mira gibt, was "Die Wunderbare" bedeutet. Per Beamer oder Overheadfolie wird eine historische Karte des Sternbildes gezeigt und gefragt, warum der Stern so heißen könnte. Recherche Die Jugendlichen recherchieren Informationen zu Mira im Internet oder nutzen ausgelegte Printmaterialien (Bücher, Artikel). Sie lernen, dass bestimmte Sterne ihre Helligkeit auch in kurzen Zeiträumen ändern und können diese Zeiträume von langfristigen Änderungen, die mit der Sternentwicklung zusammen hängen, abgrenzen. Erste Bekanntschaft mit den Veränderlichen Die Schülerinnen und Schüler suchen mithilfe detaillierter Sternkarten oder eines Planetariumsprogramms die Positionen der Veränderlichen Sterne Omikron Ceti (Mira), Beta Persei, Delta Cephei, Alpha Orionis und Beta Lyrae auf und tragen diese in die unbeschriftete Sternkarte des Arbeitsblattes ein (sternkarte_veraenderliche.pdf). Sie bestimmen die Jahreszeiten, in denen diese Sterne am Abendhimmel gut zu beobachten sind. Dies kann wiederum mit einem Planetariumsprogramm oder mit einer einfachen drehbaren Sternkarte erfolgen. Die Jugendlichen werden aufgefordert, die zum Zeitpunkt des Projektes beobachtbaren "Originale" auch am Abendhimmel - einzeln oder mit der Gruppe - aufzusuchen. Definition der Veränderlichen Veränderliche Sterne ändern ihre Helligkeit im Laufe der Zeit (Millisekunden bis Jahrhunderte). Die Amplituden liegen zwischen 0,001 und 20 Größenordnungen (mag = magnitudo, Scheinbare Helligkeit). In diesem Sinne ist auch unsere Sonne ein Veränderlicher Stern (11 Jahre, 0,004 mag = 0,4 Prozent). Historisches Der erste Veränderliche wurde im Jahre 1596 durch den in Ostfriesland lebenden Pfarrer David Fabricius entdeckt. Er beobachtete im Sternbild Cetus (Walfisch) einen Stern, den er Monate später nicht mehr und nach weiteren Monaten wieder deutlich sehen konnte. Er nannte diesen Stern Mira (lateinisch "Die Wunderbare"). Bis zur Mitte des 19. Jahrhunderts wurden lediglich 16 weitere Veränderliche gefunden. Erst nachdem man begann, den Himmel zu durchmustern um Sternkataloge zu erstellen, stieg die Zahl der zufälligen Entdeckungen von veränderlichen Sternen. Nach der Einführung der Fotografie in die astronomische Beobachtung hatte man eine Methode zur systematischen Veränderlichensuche, bei der sich in Deutschland die Sonneberger Sternwarte besondere Verdienste erwarb. Die Zahl der bekannten Veränderlichen stieg sprunghaft an. Bis 1968 wurden etwa 10.000 Objekte entdeckt (bis heute etwa 11.000). Printmedien zum Thema "Veränderliche Sterne" für die Recherche (alternativ oder zusätzlich zur Internetrecherche) alternativ zum Planetariumsprogramm eine detaillierte Sternkarte eine drehbare Sternkarte Mira und die Veränderlichen - Ergebnissicherung Die Ergebnisse der Vorstunde (Position von Veränderlichen auf der Sternkarte und ihre Beobachtbarkeit) werden per Schülerdemonstration kurz vorgestellt (vergleiche Ergebnisblatt "sternkarte_veraenderliche_ergebnisse.pdf"; Präsentation per Beamer oder Overhead-Folie). Nach der Zusammenfassung der "Eckdaten" der Mira-Veränderlichkeit (die Helligkeit von Mira schwankt mit einer Periode von etwa 331 Tagen zwischen der 2. und der 9. Größenklasse) führt das Unterrichtsgespräch zu der Forderung nach einem Hilfsmittel zur Vorhersage. In einem Lehrervortrag werden die Größe "Scheinbare Helligkeit", die Julianische Tageszählung und Lichtkurven vorgestellt. Einzelne Schülerinnen und Schüler zeichnen Lichtkurven an die Tafel, die die zeitlichen Verläufe der scheinbaren Helligkeiten folgender Objekte wiedergeben: Stern mit konstanter Helligkeit Mondbedeckung eines Sterns "Sinkender Stern" (Lichtschwächung durch die Atmosphäre) Typen Veränderlicher Sterne Animationen von verschiedenen Veränderlichen (Cepheiden, Algol-Veränderliche, Eruptive Veränderliche) werden per Beamer präsentiert und Lichtkurven an der Tafel vorgegeben. Die Lernenden ordnen diesen Lichtkurven die in den Animationen dargestellten Typen veränderlicher Sterne zu. In einem Lehrervortrag wird mithilfe von Vergleichen und Analogien ein grobes Bild der physikalischen Hintergründe des Lichtwechsels vermittelt. Variable stjerner: Animationen Animationen und Informationen von Erling Poulsen auf der Website des Rundetaarn-Observatoriums in Dänemark. Veränderlichentypen und die Ursache des Lichtwechsels Die Aufzeichnung des Lichtwechsels der Veränderlichen zeigt, dass es verschiedene Gruppen von Sternen mit ähnlichem Verlauf der Lichtkurve gibt. Heute kennt man viele verschiedene Typen veränderlicher Sterne, die sich entsprechend der Hauptursache ihrer Veränderlichkeit drei Familien zuordnen lassen: den pulsierenden Veränderlichen (zum Beispiel Mira-Sterne, Cepheiden), den eruptiven Veränderlichen (zum Beispiel Novae und Supernovae) und den Bedeckungsveränderlichen (zum Beispiel Algol-Sterne). Pulsationssterne "Normale" Sterne verhalten sich wie eine Schaukel auf einem Spielplatz, die nur einmal angeschoben wurde - ihre Schwingung endet schnell infolge der Dämpfung. Pulsationssterne haben einen "Ventilmechanismus", der dafür sorgt, dass die Schwingung durch regelmäßige Energiezufuhr (Strahlungsenergie) aufrechterhalten wird. Eruptive Veränderliche Ursache sind schnelle Fusionsreaktionen (lokal oder global), etwa vergleichbar mit einem gleichmäßig brennenden Feuer, in das schnell entzündlicher Brennstoff gegeben wird oder das eine Temperatur erreicht hat, bei der ein bestimmter Stoff plötzlich zu brennen anfängt. Bedeckungsveränderliche Bedeckt der kleinere Stern eines Doppelsternsystems einen Teil des größeren oder helleren Sterns des Systems, ergibt sich ein schmales Minimum in der Lichtkurve. Wenn der kleinere hinter den größeren Stern gerät, beobachtet man ein weiteres, weniger tiefes Minimum der Leuchtkraft. Die Leuchtkraft der beiden Sterne selbst ist konstant. Der "Mechanismus" entspricht dem Prinzip einer Sonnenfinsternis. Die im Unterricht gezeigten Animationen zu den Veränderlichentypen finden Sie auf der Seite zu den Variable stjerner des Rundetaarn-Observatoriums in Dänemark. Vorkenntnisse Die Schülerinnen und Schüler sind mit der Betrachtung und Bearbeitung digitaler Bilder und im Umgang mit der verwendeten Bildbearbeitungs-Software vertraut. Untersuchung einer Fotoplatte Den Lernenden wird der digitalen Scann der "Platte 300300" aus dem Sonneberger Plattenarchiv aus dem Jahr 1966 vorgestellt (Präsentation per Beamer). Diese Platte zeigt unter anderem das Sternbild Cassiopeia. Die Jugendlichen verbinden am Rechner in Partnerarbeit die hellsten Sterne dieses Sternbildes miteinander (Abb. 1, Platzhalter bitte anklicken) und vergleichen das Sternbild mit einer Darstellung auf einer Sternenkarte. Bevor die Arbeit mit den Sternfeldaufnahmen beginnt, müssen die Schülerinnen und Schüler für die "Bildprobleme" sensibilisiert werden. Auch die Orientierung auf der Himmelsaufnahme stellt eine Herausforderung dar. In Partnerarbeit und im Unterrichtsgespräch werden folgende Fragen beantwortet: Woraus kann auf die Sternhelligkeiten geschlossen werden? (Größe und Schwärzung der Scheibchen) Die Schwärzungsscheibchen der Sterne verändern ihr Aussehen mit zunehmendem Abstand vom Plattenzentrum. Wie verändern sie sich und wie lässt sich das erklären? (beste Abbildung auf optischer Achse; mit größer werdendem Abstand wird insbesondere der Astigmatismus wirksam) Untersuchung von "Platte 300308": Wann wurde diese Platte aufgenommen? Was fällt auf dieser Fotoplatte auf? (14. Oktober 1966; die Fotoplatte zeigt einen kleinen Kometen, siehe Abb. 2) Die Ergebnisse werden an der Tafel oder auf einer Folie gesichert. Den Jugendlichen soll bewusst werden, dass ein Archiv von Himmelsaufnahmen eine "Chronik der Geschichte des Sternhimmels" darstellt und dass Sternfeldaufnahmen als Grundlage für die Bestimmung von Lichtkurven genutzt werden können. Aufspüren des Veränderlichen R Cassiopeia Die Lernenden erleben, dass durch den Wechsel zwischen verschiedenen Aufnahmen ein und desselben Sternfeldes Helligkeitsänderungen "ins Auge springen". Zur Erleichterung der Arbeit wird dafür das interessierende Sternfeld (Schätzfeld) aus der digitalen Fotoplatte am Computer ausgeschnitten. Die resultierenden Bilder werden dann mit geeigneter Software "zum Laufen" gebracht (zum Beispiel mit einem GIF-Animator oder durch den schnellen Bildwechsel mit dem Windows Bildbetrachter Image Viewer). Das Ergebnis ist eine kleine Animation, mit deren Hilfe der Veränderliche "R Cas" (ein Mira-Stern), aufgespürt wird (siehe "r_cas_neg.mov"). Vorbereitung der Helligkeitsschätzung Die Schülerinnen und Schüler schneiden aus der Aufnahme "fotoplatte_300308.jpg" den im Bild "fotoplatte_300296_teil.jpg" gezeigten Bildausschnitt um R Cas herum aus und beschriften den Veränderlichen sowie die Vergleichssterne A, B, und C. Abb. 3 (Platzhalter bitte anklicken) zeigt die Schätzfelder aus "fotoplatte_300296_teil.jpg" (oben) und "fotoplatte_300307_teil.jpg" (unten). Es handelt sich um zwei Aufnahmen, die in geringem zeitlichen Abstand aufgenommen wurden. Der Helligkeitswechsel von R Cassiopeia (R) ist deutlich zu erkennen. Historischer Einstieg Im Rahmen eines kurzen Lehrervortrags wird berichtet, dass Mitte des 19. Jahrhunderts Friedrich Wilhelm Argelander (1799-1875) seine Methode zur Helligkeitsbestimmung von Sternen entwickelte, die eine systematische Katalogisierung der Sternhelligkeiten ermöglichte. Damit versetzte er auch die Amateurastronomen in die Lage, Helligkeitsänderungen bei Sternen festzustellen und sich in die astronomische Forschungsarbeit einzubringen. Erstellung der Lichtkurve Die Argelander Stufenschätzmethode wird vorgeführt und dann gleich anhand projizierter Sternfeldbilder (siehe Abb. 4 und "stufenschaetzmethode_einfuehrung.pdf") in Zweiergruppen geübt. Die Lehrkraft führt die Präsentation "stufenschaetzmethode_einfuehrung.pdf" per Beamer vor und die Schülerinnen und Schüler schätzen und notieren die Ergebnisse in einer Tabelle (tabelle_r_cas_stufenschaetzung_leer.pdf). Ziel der beiden Unterrichtsstunden ist die beispielhafte Erstellung einer Lichtkurve aus 23 Stufenschätzungen des Veränderlichen R Cassiopeia (R Cas). Es soll noch keine Interpretation der Ergebnisse vorgenommen werden. Die verwendeten Daten werden im folgenden Abschnitt des Projektes, ergänzt durch viele neue Daten, erneut vorkommen. Die Schülerinnen und Schüler sollen dann bewusst diese Sternfelder noch einmal schätzen, um zu erleben, dass subjektive Fehler mit Erfahrung, Tagesform und vielen anderen Faktoren zu tun haben. Schätzungsfelder - Auswertung mit oder ohne Computer Den Schülerinnen und Schülern stehen 83 Schätzfelder des Gebietes um den Stern R Cassiopeia zur Verfügung. Im Rahmen der Auswertung dieser "Rohdaten" können die Fertigkeiten der Schülerinnen und Schüler bei der Nutzung des Computers als Werkzeug intensiv geschult werden. So bietet sich beim Schätzen der Helligkeiten am Bildschirm der Windows Bildbetrachter Image Viewer als Instrument an, das es sehr einfach macht, von einem Schätzungsfeld zum nächsten zu wechseln. Die Schätzungsfelder werden dabei stets auf Bildschirmgröße geweitet. Die Stufenschätzung kann - bei Mangel an Computern - wie beim Einstieg in die Argelander Methode (4. und 5. Stunde) auch frontal am Projektionsbild im gut verdunkelten Raum durchgeführt werden. Alternativ können die Helligkeiten auch auf Ausdrucken der Plattenausschnitte geschätzt werden. Auswertung der Daten per Tabellenkalkulation Excel oder andere Tabellenkalkulations-Software erlauben das praktische Einfügen von Datenkolonnen per "Copy" und "Paste". Sie ermöglichen auch eine automatisierte Berechnung der Helligkeiten aus den Stufenwerten (siehe "mappe_auswertung.xls"). Hierbei kann die zuvor mit Excel bestimmte Formel der Regressionsgeraden im Stufenwert-Helligkeit-Diagramm genutzt werden. Abb. 5 zeigt die von den Schülerinnen und Schülern ermittelte Lichtkurve des Veränderlichen R Cas. 7. Stunde Die Jugendlichen praktizieren die Argelander Stufenschätzmethode am Computerbildschirm oder anhand von Ausdrucken der Schätzungsfelder. 8. Stunde Die Schülerinnen und Schüler bestimmen Stufendifferenzen, berechnen Mittelwerte, korrigieren die Stufenwerte und ermitteln endgültige Stufenwerte. 9. Stunde Die Lernenden ermitteln Stufenwerte für die Vergleichssterne, zeichnen das Stufenwert-Helligkeit-Diagramm (Millimeterpapier oder Tabellenkalkulation) und bestimmen mit diesem aus den Stufenwerten die Helligkeiten. Sie zeichnen die Lichtkurve auf Millimeterpapier oder mithilfe eines Tabellekalkulations-Programms. Alternativ zur Auswertung mit Excel oder einem anderen Tabellenkalkulationsprogramm können auch Taschenrechner und Millimeterpapier zum Einsatz kommen. Die folgenden Begriffe und Phänomene müssen den Schülerinnen und Schülern bereits bekannt sein, um die physikalischen Hintergründe des Pulsationsmechanismus von Mira-Sternen zu verstehen: gedämpfte, ungedämpfte und erzwungene Schwingungen Kompression und Expansion von Gas Wärme und Wärmeenergie Ionisation und Ionisationsenergie Energietransport durch Strahlung Absorption Interpretation der Lichtkurve von R Cas Die Jugendlichen zeichnen eine Ausgleichskurve durch ihre Datenpunkte, beschreiben den Kurvenverlauf, ermitteln die Periodendauer von R Cas (etwa 430,5 Tage) und bestimmen anhand der Lichtkurve den Variablentyp (Mira-Stern). Sie erzeugen mithilfe eines Online-Lichtkurvengenarators eine Vergleichslichtkurve auf der Basis der Daten von geübten Amateurbeobachtern. Die Übereinstimmung wirkt sehr motivierend. Gemeinsamkeiten, aber auch Unterschiede werden beschrieben und erörtert: Die Verläufe sind sehr ähnlich, die Helligkeitsbereiche unterscheiden sich jedoch. Dies liegt daran, dass die Sonneberger Daten fotografisch gewonnen wurden, die Amateurdaten aber auf Augenbeobachtungen basieren. Die Empfindlichkeit der fotografischen Emulsion über der Wellenlänge ist etwas anders als die des Auges. Mira-Sterne und ihr Lichtwechsel Der die Stunde abschließende Lehrervortrag zu Mira-Sternen und dem Zustandekommen ihrer Pulsationen erfordert die oben genannten physikalischen Vorkenntnisse. Mira ist ein Roter Riese vom Spektraltyp M. Mira selbst hat einen mittleren Durchmesser von etwa 550 Millionen Kilometern. Der Stern würde damit das Sonnensystem bis hin zum Planetoidengürtel ausfüllen. Die wahre mittlere Sterngröße ist jedoch kleiner, denn eine den Stern umgebende Wolke aus Molekülen täuscht ein größeres Ausmaß vor. "Die Wunderbare" im Walfisch repräsentiert das Endstadium eines Sterns von der Masse unserer Sonne. Der Pulsationsmechanismus von Mira Die Pulsation ist mit einer ungedämpften Schwingung vergleichbar. Dieser Mechanismus funktioniert nur, wenn Energie im richtigen Schwingungszustand (in der richtigen Phase) zugeführt wird. Ein anschauliches Bild dafür bietet eine Spielplatz-Schaukel: Die Schwingung der Schaukel bleibt erhalten, wenn man sie bei der "Auswärtsbewegung" anschiebt. So muss auch der Hülle eines schwingenden Sterns Energie zugeführt werden, wenn sie expandiert. (Wärme-)Energie kann im Stern nur durch Strahlung zugeführt werden. Dazu ist es erforderlich, dass der Stern bei Kompression "undurchsichtiger" wird, das heißt, Strahlungswärme "tankt", die dann bei der Expansion treibend (entdämpfend) frei werden kann. In "normalen" (nicht veränderlichen) Sternen sind die Verhältnisse gerade umgekehrt, so dass Schwingungen schnell ausgedämpft werden. In Riesensternen kann dieser Fall aber in der richtigen Tiefe eintreten. Weitere Details In Mira sind die Bedingungen für die Ionisation von Wasserstoff (Temperatur und Druck) in genau der Tiefe gegeben, die für die Aufrechterhaltung des Pulsationsmechanismus erforderlich ist. Da die Sternmaterie größtenteils aus Wasserstoff besteht (im Zentrum eines Sterns ist in der Endphase seines "Lebens" zwar nur noch Helium oder Kohlenstoff vorhanden, aber rundherum bleibt viel Wasserstoff übrig, der nicht zum Fusionieren kommt) und dessen Ionisationsenergie hoch ist, wird dabei viel Energie gespeichert, die bei der Expansion massiv frei wird. Mira-Sterne pulsieren weitaus stärker als Cepheiden. Ihre starke Helligkeitsänderung beruht auch auf der periodischen Entstehung von absorbierenden Molekülen im Außenbereich. Allgemeine Hinweise Mira soll nun gezielt mit bloßem Auge gesichtet werden (Beobachtungszeit: Herbst und Winter). Dazu ist es wichtig, die Zeit des Maximums und Minimums zu kennen. Diese Zeiten können im Internet recherchiert werden. Mit der Kenntnis des Lichtkurvenverlaufs (hier wird der Einfachheit halber eine Lichtkurve von R Cas zu Grunde gelegt) können die Jugendlichen nun auch den Zeitraum abschätzen, innerhalb dessen die Helligkeit von Mira unterhalb der 6. Größenklasse liegt (Wissenstransfer). Das Julianische Datum findet nochmals Anwendung, indem es ins bürgerliche (gregorianische) Datum umgerechnet werden muss. Ein anderes Beobachtungsprojekt betrifft den Bedeckungsveränderlichen Algol im Sternbild Perseus. Dieser Stern bietet die Möglichkeit, den Helligkeitsabfall innerhalb einiger Stunden mit bloßem Auge zu verfolgen. Dies können die Schülerinnen und Schüler auch an der Lichtkurve ersehen. Damit man das Minimum optimal beobachten kann, müssen einige Voraussetzungen erfüllt sein: möglichst kein Mondlicht während des Minimums möglichst große Höhe über dem Horizont günstige Abendzeit Zusammen mit astronomischen Grundkenntnissen sind hier die planerischen Fähigkeiten der Schülerinnen und Schüler gefordert. Ausblickend lässt sich das für R Cas gegebene Sternfeld (27 Grad mal 27 Grad) nach weiteren Veränderlichen durchforsten. Die Plattendaten können beim Autor dieses Artikels, Dr. Olaf Fischer, angefragt werden. Es besteht auch die Möglichkeit einer Verlängerung der Messreihe für R Cas durch weitere Daten. Hier sollte eventuell entstandenes Schülerinteresse weitere Nahrung finden können.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II
ANZEIGE
Premium-Banner