• Schulstufe
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
  • Klassenstufe
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
  • Schulform
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
  • Fach
    • Häkchen-Symbol
  • Materialtyp
    • Häkchen-Symbol
  • Quelle1
    zurücksetzen
    • Häkchen-Symbol
Sortierung nach Datum / Relevanz
Kacheln     Liste

Magnetismus mit Experimenten untersuchen

Unterrichtseinheit
5,99 €

In dieser Unterrichtseinheit zum Magnetismus lernen die Schülerinnen und Schüler in einfachen Experimenten die magnetische Wirkung, Magnetfelder sowie die Einsatzmöglichkeiten von Magneten im Alltag kennen. Das Thema Magnetismus kann im Physikunterricht durch diverse überraschende Experimente vermittelt werden. So erleben die Schülerinnen und Schüler mit dieser Einheit den Unterricht aktiv und lernen die Polgesetze, Magnetfeldlinien, das Magnetfeld der Erde sowie am Beispiel Kompass den Einsatz magnetischer Wirkung kennen. Sie entdecken die Kraft der Magnete im Alltag wie zum Beispiel bei der Magnetschwebebahn und sammeln in der Gruppe weitere Einsatzmöglichkeiten sowie Vorteile von Magneten. Desweiteren besprechen die Lernenden das Magnetfeld der Erde und probieren einen Kompass nach entsprechender Anleitung selbst aus, sodass sie die Grundlagen eines physikalischen Phänomens ganzheitlich erarbeiten. Ein Vorschlag für eine Leistungskontrolle als Test oder Klassenarbeit rundet die Einheit ab. Das Thema "Magnetismus mit Experimenten untersuchen" im Unterricht Das Thema Magnetismus spielt im Physikunterricht von der Grundschule bis zur Sekundarstufe eine große Rolle. Für das Verständnis der Lernenden ist es durchaus sinnvoll, grundlegende Experimente, die mit einfachen Mitteln eindrucksvoll und gut zu beobachten sind, bereits in niedrigen Klassenstufen durchzuführen. In dieser Unterrichtseinheit geht es daher zunächst im Ansatz darum, die magnetische Wirkung nachvollziehen zu können, um später auch zum Beispiel aktuelle technische Anwendungen wie die Datenspeicherung mit den Gesetzmäßigkeiten des Magnetismus erklären zu können. Didaktisch-methodische Analyse In dieser Unterrichtseinheit werden die Schülerinnen und Schüler zunächst mithilfe eines Videos in die Grundlagen des Magnetismus eingeführt, bevor sie diese dann in der anschließenden Experimentierphase vertiefen und dokumentieren. Die Ergebnisse werden in einem Handout zusammengefasst. Durch Versuche wie dem Magnetisieren einer Schere begreifen die Lernenden in der Gruppe die Elementarteilchen und ihre Ordnung. Das aktive Tun hilft im Sinne der Handlungs- und Produktionsorientierung dabei, Inhalte langfristig zu erinnern. Fachkompetenz Die Schülerinnen und Schüler experimentieren mit Magneten. lernen das Magnetfeld der Erde und den Kompass kennen. entdecken Vorteile von Magneten im Alltag und magnetisieren eine Schere. beurteilen die Anwendbarkeit eines Modells. Medienkompetenz Die Schülerinnen und Schüler entnehmen einem Video wesentliche Informationen über Magnetismus. Sozialkompetenz Die Schülerinnen und Schüler experimentieren in der Gruppe, sammeln gemeinsam Ideen und nehmen dabei Gedanken der anderen mit auf.

  • Physik / Astronomie
  • Sekundarstufe I, Primarstufe

Die strömende Elektrizität - ein Selbstlernkurs

Unterrichtseinheit

Die Verwendung von 3D-Animationen erhöht die Anschaulichkeit und unterstützt die Visualisierung von Aufgabenstellungen. Dies unterstützt das Verständnis der Vorgänge in dem für uns unsichtbaren Universum der Elementarteilchen.Dieser Selbstlernkurs soll den Schülerinnen und Schülern der Mittelstufe helfen, die komplexe Problematik der Elektrizität und des elektrischen Stromes schrittweise zu erkennen und den Umgang mit den physikalischen Grundgrößen Stromstärke, Spannung und Widerstand zur Problemlösung sicher zu beherrschen. Dazu werden die Vorgänge im submikroskopisch kleinen Universum der Elementarteilchen mithilfe von 3D-Animationen verdeutlicht und auf eine höhere Ebene der Anschaulichkeit gehoben. Die Arbeit mit dem Kurs ist in Abschlussklassen zur Wiederholung und selbstständigen Prüfungsvorbereitung hilfreich. Technische Hinweise Der Kurs ist in Form einer interaktiven Webseite angelegt und wird nach dem Download (siehe unten) mit der Datei "index.htm" gestartet. Um das Menü (am linken Rand) anzeigen zu können, muss Ihr Browser in der Lage sein, Flash-Dateien anzuzeigen. Die dreidimensionalen Darstellungen der Lernumgebung wurden durch die objektorientierte Programmiersprache VRML (Virtual Reality Modeling Language) umgesetzt. Das zur Nutzung der 3D-Darstellungen erforderliche Plugin blaxxun Contact kann kostenlos aus dem Internet heruntergeladen werden (siehe unten). Nach dem Installieren des Plugins können die World-Dateien (WRL), die die VRML-Inhalte enthalten, im Browser angezeigt werden. Mit einem Rechtsklick in die 3D-Darstellung öffnet sich ein Kontextmenü, über das man verschiedene Funktionen aufrufen kann. Einsatz im Unterricht Dieser Selbstlernkurs soll als klassenstufenübergreifender Kurs einerseits die Grundlagen für die Arbeit mit den physikalischen Größen Stromstärke, Spannung und Widerstand in der Orientierungsstufe legen und andererseits in den darauf folgenden Klassenstufen gemäß der Kurrikulumsspirale darauf aufbauen. Vom Verständnis des Begriffs "elektrischer Strom" bis hin zu Berechnungen und Analysen von Stromkreisen führt der Kurs die Schülerinnen und Schüler mithilfe interaktiver Übungen zum sicheren Beherrschen dieses interessanten physikalischen Phänomens. Alle Kapitel sind zum besseren Verständnis mit 3D-Animationen ausgestattet. Insbesondere wenn die Schülerinnen und Schüler den Umgang mit dem Plugin blaxxun Contact sowie mit interaktiven Arbeitsblättern noch nicht gewohnt sind, ist der Einsatz eines Beamers bei der Einführung des Kurses zu empfehlen. Themen und Materialien Stoffaufbau - Leiter und Isolatoren Die Begriffe Leiter und Isolator werden mithilfe des Teilchenmodells eingeführt und mit 3D-Animationen veranschaulicht. Elektrischer Strom, Stromstärke und elektrische Spannung Frei bewegliche Elektronen in einem metallischen Leiter werden als Grundvoraussetzung des Modells der Elektronenleitung erkannt. Knotenpunktregel und Maschenregel Schülerinnen und Schüler untersuchen das Verhalten der physikalischen Grundgrößen Stromstärke und Spannung in verschiedenen Stromkreisen. Elektrischer Widerstand, Ohmsches Gesetz und Widerstandsgesetz Das Ohmsche Gesetz wird in einem virtuellen Experiment hergeleitet. Die Formulierung des Widerstandsgesetzes bildet den Abschluss des Kurses zur Elektrizitätslehre. Fachkompetenzen beim Einsatz in Klasse 6 Die Schülerinnen und Schüler sollen im Lernbereich "Elektrische Stromkreise" einfache Modellvorstellungen des elektrischen Stroms kennen lernen. die Begriffe "Leiter" und "Isolatoren" kennen lernen. Bestandteile und Symbole von Schaltplänen beherrschen. Arten von Stromkreisen (einfache, verzweigte und unverzweigte) beherrschen. Fachkompetenzen beim Einsatz in Klasse 7 Die Schülerinnen und Schüler sollen im Lernbereich "Elektrische Leitungsvorgänge" die elektrische Stromstärke kennen, insbesondere die Ladungstrennung, das elektrische Leitungsmodell, die physikalische Größe der elektrischen Stromstärke, die Stromstärkemessung [Umgang mit Messgeräten], die Stromstärke in verschiedenen Stromkreisen, das Erste Kirchhoffsche Gesetz, die Knotenpunktregel. die elektrische Spannung kennen, insbesondere die physikalische Größe der elektrischen Spannung, die Spannungsmessung, die Spannung in verschiedenen Stromkreisen, das Zweite Kirchhoffsche Gesetz, die Maschenregel. Fachkompetenzen beim Einsatz in Klasse 8 Die Schülerinnen und Schüler sollen im Lernbereich "Leitungsvorgänge in Metallen" zusätzlich zu den oben beschriebenen Kompetenzen den Zusammenhang zwischen Stromstärke und Spannung kennen lernen, insbesondere das Ohmsche Gesetz, das I(U)-Diagramm von Konstantandraht und Glühlampe sowie den Begriff "Kennlinie". Leben und Werk von Georg Simon Ohm (1789-1854) kennen lernen. die physikalische Größe des elektrischen Widerstands kennen, insbesondere die Deutung mit dem elektrischen Leitungsmodell, die Berechnung von Widerständen, Spannung und Stromstärke und die Abhängigkeit des Widerstandes eines Leiters von Länge, Querschnittsfläche und Material. die Kenntnisse über den elektrischen Widerstand auf technische Sachverhalte anwenden, insbesondere auf Festwiderstände und verstellbare Widerstände (Potentiometer), Vorwiderstände (mit Berechnung) und die Wheatstonesche Brücke. Die Schülerinnen und Schüler sollen einfache Modellvorstellungen des elektrischen Stroms kennen lernen. die Begriffe Leiter und Isolatoren kennen lernen. Die Schülerinnen und Schüler sollen zusätzlich zu den oben genannten fachlichen Kompetenzen das elektrische Leitungsmodell und die Elektronenleitung kennen lernen. Vom Kugelmodell zum Atommodell Zu Beginn des Kurses "Die strömende Elektrizität" wird, aufbauend auf die Eigenschaften von Körpern, der Begriff "Stoff" näher untersucht und der Aufbau der Stoffe aus kleinsten Teilchen verdeutlicht. Die Elementarteilchen Proton und Elektron werden im Besonderen untersucht, da diese für die elektrische Leitung die entscheidende Rolle spielen. Eine 3D-Animation zeigt den Übergang vom Kugelmodell zum Atommodell nach Niels Bohr. Nach dem Start der Animation wird ein Atom zunächst als Kugel dargestellt (Abb. 1, oben; Platzhalter bitte anklicken). Über das Kontextmenü (mit rechter Maustaste in die Animation klicken und "Standorte/Naechster" wählen) rücken Sie in der Animation stufenweise vor (Abb. 1, unten). Gitterstruktur von Metallen Das Atommodell (Abb. 2, Platzhalter bitte anklicken) können Sie mit dem Mauszeiger "anfassen" und bewegen (Kontextmenü: "Bewegung/Betrachten"). Die Gitterstruktur von Metallen wird in dem Kapitel besonders hervorgehoben. Es folgen interaktive Übungen, mit denen die Schülerinnen und Schüler das Gelernte festigen und vertiefen können. Atommodelle von Leitern und Nichtleitern Das nächste Kapitel widmet sich der Unterscheidung von Leitern und Isolatoren. Als Voraussetzung für das Begreifen des Modells der Elektronenleitung wird Wert gelegt auf das Vorhandensein frei beweglicher Elektronen bei einem metallischen Leiter. 3D-Animationen und interaktive Übungen helfen dabei, das Gelernt zu verstehen und umzusetzen. Abb. 3 (Platzhalter bitte anklicken) zeigt einen Screenshot der VRML-Animation zum Aufbau eines typischen Leiters (Aluminiumatom). Die Schülerinnen und Schüler in Klasse 7 sollen im Rahmen des Themas "Elektrische Leitungsvorgänge" die elektrische Stromstärke kennen, insbesondere die Ladungstrennung, das elektrische Leitungsmodell, die physikalische Größe der elektrischen Stromstärke, die Stromstärkemessung (Umgang mit Messgeräten) und die Stromstärke in verschiedenen Stromkreisen. die elektrische Spannung kennen, insbesondere de physikalische Größe der elektrischen Spannung, die Spannungsmessung und die Spannung in verschiedenen Stromkreisen. Stromloser und stromführender Leiter Die beiden ersten 3D-Animationen zeigen den Übergang vom stromlosen Leiter zum stromführenden Leiter. Durch unterschiedliche Betrachtungsweisen (Kontextmenü "Bewegung/Betrachten") kann die Bewegung der Elektronen sehr gut erkannt werden. Das Atomgitter wird durch rote Kugeln, die Elektronen werden durch kleine grüne Kugeln dargestellt (Abb. 4, Platzhalter bitte anklicken). Stromkreis Weitere Animationen zeigen einen einfachen Stromkreis, in dem die Bewegung der Elektronen durch Heranzoomen an den Leiter genau beobachtet werden kann (im Kontextmenü "Standorte/Standard Tour" wählen; Abb. 5, Platzhalter bitte anklicken). So wird der Zusammenhang zwischen geöffnetem Stromkreis und Unterbrechen des Stromflusses gezeigt. Mit interaktiven Übungen (Lückentext, Zuordnung, Schüttelsatz) kann das Gelernte überprüft und geübt werden. Definition der physikalischen Grundgrößen Der nächst Schwerpunkt des Kurses ist die Definition der physikalischen Grundgrößen Stromstärke und Spannung. Neben den Merksätzen werden der Anschluss der Messgeräte erklärt und somit die Begriffe "in Reihe" und "parallel zu" wiederholt und gefestigt. Eine Flash-Animation verdeutlicht den Zusammenhang zwischen dem Anlegen einer äußeren Spannung an den metallischen Leiter und der Bewegung seiner freien Elektronen. Dabei kann zwischen keiner und verschieden großen Spannungen gewählt werden. Abb. 6 zeigt einen Screenshot der Animation. Die Schülerinnen und Schüler in Klasse 7 sollen im Rahmen des Themas "Elektrische Leitungsvorgänge" die elektrische Stromstärke kennen, insbesondere das elektrische Leitungsmodell, die physikalische Größe der elektrischen Stromstärke, die Stromstärkemessung (Umgang mit Messgeräten), die Stromstärke in verschiedenen Stromkreisen und das Erste Kirchhoffsche Gesetz (Knotenpunktregel). die physikalische Größe der elektrischen Spannung, die Spannungsmessung, die Spannung in verschiedenen Stromkreisen, und das Zweite Kirchhoffsche Gesetz (Maschenregel) kennen lernen. Das Erste Kirchhoffsche Gesetz Das Verhalten der physikalischen Grundgrößen Stromstärke und Spannung in Stromkreisen wird ausführlich untersucht. Ziel dabei ist auch das Auffinden von formelmäßigen Zusammenhängen. Viel wichtiger ist aber das Begreifen der inneren Zusammenhänge - und die werden durch die Kirchhoffschen Gesetze bestens erklärt. Auch wenn weder die Knotenpunktregel noch die Maschenregel vom Lehrplan ausdrücklich verlangt werden, hat sich im Unterricht gezeigt, dass die Schülerinnen und Schüler das Thema so besser verstehen als durch bloßes "Formelwissen". Zu Anfang werden die Formeln für die Stromstärke im unverzweigten und verzweigten Stromkreis hergeleitet. Der allgemeingültige Zusammenhang in Form der Knotenpunktregel als Erstes Kirchhoffsches Gesetz bildet die Grundlage für die Analyse aufwändigerer Stromkreise. Online-Materialien In animierten Stromkreisen wird das Maß der elektrischen Stromstärke durch die Dicke der Animationslinie anschaulich dargestellt. So ist klar erkennbar, wo viel Strom fließt und wo weniger. In einer daran anschließend betrachteten 3D-Animation wird nun der Kreis zur Bewegung der Elektronen geschlossen (Abb. 7, Platzhalter bitte anklicken). So kann die Bewegung der Elektronen am Knotenpunkt genau "unter die Lupe" genommen werden. Interaktive Übungen dienen der Kontrolle und Festigung des Gelernten. Das Zweite Kirchhoffsche Gesetz Das Verhalten der physikalischen Grundgrößen Spannung in den verschiedenen Stromkreisen ist das Thema dieses Kapitels. Auch hier werden zuerst die Formeln für die Spannung im unverzweigten und im verzweigten Stromkreis hergeleitet. GIF-Animationen erklären dann den Begriff der Masche im Stromkreis aus physikalischer Sicht. Es folgt die Verallgemeinerung der Formeln für die Spannung zur Maschenregel - dem Zweiten Kirchhoffschen Gesetz. Eine interaktive Flash-Animation zeigt den Zusammenhang zwischen den unterschiedlichen Maschen und der Summe der Einzelspannungen in diesen Maschen. Zum Schluss wird die Maschenregel auf Teilstromkreise übertragen. Online-Materialien Auch in diesem Kapitel dienen interaktive Übungen der Kontrolle und Festigung des Gelernten. Abb. 8 (Platzhalter bitte anklicken) zeigt einen Screenshot (Ausschnitt) aus dem interaktiven Arbeitsblatt von Übung 5. Die Schülerinnen und Schüler in Klasse 8 sollen im Rahmen des Themas "Leitungsvorgänge in Metallen" den Zusammenhang zwischen Stromstärke und Spannung kennen. sich mit Leben und Werk von Georg Simon Ohm (1789-1854) beschäftigen. das Ohmsche Gesetz, das I(U)-Diagramm von Konstantandraht und Glühlampe sowie den Begriff "Kennlinie" kennen. die physikalische Größe des elektrischen Widerstands kennen, insbesondere die Deutung mit dem elektrischen Leitungsmodell, die Berechnung von Widerständen, Spannung und Stromstärke sowie die Abhängigkeit des Widerstands eines Leiters von Länge, Querschnittsfläche und Material. Kenntnisse über den elektrischen Widerstand auf technische Sachverhalte anwenden, insbesondere auf Festwiderstände und verstellbare Widerstände (Potentiometer), Vorwiderstände (mit Berechnung) und die Wheatstonesche Brücke. Geltungsbereich des Ohmschen Gesetzes Das Ohmsche Gesetz wird in einem virtuellen Experiment hergeleitet. Durch die Nutzung verschiedener "Standorte" (Kontextmenü dazu per rechtem Mausklick aufrufen) in der 3D-Visualisierung ist es möglich, zeitgleich die Spannung zu wählen (Abb. 9, Platzhalter bitte anklicken) und dann die Auswirkung auf die frei beweglichen Elektronen zu beobachten und die Stromstärke abzulesen. Der Schritt zum Ohmschen Gesetz als Ergebnis der Untersuchungen ist dann reine Formsache. Es folgt der gleiche Versuch mit einer Glühlampe an Stelle des Ohmschen Widerstandes. Durch die zuvor untersuchte Abhängigkeit der Teilchenbewegung von der Temperatur wird der Geltungsbereich des Ohmschen Gesetzes auf nahezu konstante Temperatur eingeschränkt. Nach der Formulierung des Ohmschen Gesetzes wird die physikalische Größe des elektrischen Widerstands definiert. Online-Materialien Nach der Bearbeitung des Kapitels folgen interaktive Übungen zur Prüfung und Festigung des Gelernten. Informationen und Animationen Das Ohmsche Gesetz und der elektrische Widerstand Übungsaufgaben zum Ohmschen Gesetz Interaktive Übungen, Aufgaben von Dieter Welz, Leben und Werk von Georg Simon Ohm Einfluss von Querschnitt und Länge des Leiters Die Formulierung des Widerstandsgesetzes bildet den Abschluss dieses Kurses. Die Abhängigkeit des elektrischen Widerstands von Querschnitt (Abb. 10, Platzhalter bitte anklicken) und Länge des Leiters wird in einer Folge von virtuellen Experimenten untersucht. Danach folgt die Herleitung des eigentlichen Widerstandsgesetzes. Die Einteilung der Stoffe in Leiter, Halbleiter und Nichtleiter ist dann die logische Folgerung, mit der der Kurs abschließt.

  • Physik / Astronomie
  • Sekundarstufe I

Neutrinos – die Geister des Herrn Pauli

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Neutrinos erarbeiten die Schülerinnen und Schüler grundlegende physikalische Eigenschaften des Betazerfalls, erfahren, welche Rolle das Neutrino dabei spielt und welche Eigenschaften dieses Elementarteilchen besitzt. Die Arbeitsblätter nehmen dabei Bezug auf ein Erklärvideo zum Thema Neutrinos. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Schülerinnen und Schüler lernen anhand dieses Materials, dass die experimentell bestimmte Energie der Betateilchen nicht mit der theoretisch zu erwartenden Energie übereinstimmt. Diese sollte nämlich monoenergetischen Charakter haben, während das Experiment eine kontinuierliche Energieverteilung liefert. Sie erfahren, wie der Physiker Wolfgang Pauli das Rätsel durch die Postulierung eines "Geisterteilchens", dem Neutrino, lösen konnte und welche Eigenschaften dieses exotische Teilchen aufweist. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Einordung in den Unterricht und didaktische Analyse Der Betazerfall gehört zu den Standardthemen des Physikunterrichts in der Oberstufe – im Grund- wie auch im Leistungskurs. Die wissenschaftshistorischen Aspekte bei der Postulierung und dem Nachweis der Neutrinos sowie eine Erarbeitung ihrer Eigenschaften werden im Physikunterricht allerdings oft nur am Rande thematisiert. Das Video "Neutrinos (2016)" eignet sich daher besonders, diese Lücke zu schließen, da die wesentlichen Gesichtspunkte des Themas übersichtlich und zusammengefasst dargestellt werden. Die Arbeitsblätter, die sich in Teilen auf das Video beziehen, wurden so konzipiert, dass sie im Grund- wie auch im Leistungskurs eingesetzt werden können. Tipp-Karten sollen vor allem im Grundkursbereich bei der Umsetzung eines differenzierenden Unterrichts helfen. Als konkretes Beispiel für die Berechnung und die experimentelle Bestimmung der Energien beim Betazerfall wurde das Isotop Tritium gewählt, weil die Energien der Elektronen hier noch gerade in einem Bereich liegen, in dem klassisch gerechnet werden darf. Dies ist bei anderen Betazerfällen nicht mehr der Fall. Die Verwendung der relativistischen Formeln würde aber eine nicht unerhebliche Hürde darstellen, die das eigentliche Thema, nämlich die Notwendigkeit der Neutrinos zur Rettung des Energiesatzes, ungünstig überdecken würde. Die Tatsache, dass es sich beim Betaminus-Zerfall um Antineutrinos handelt, wird in den Arbeitsblättern nicht thematisiert, da dies für das Thema zunächst nicht relevant ist und die physikalischen Hintergründe der Elementarteilchenphysik den Lernenden nicht bekannt sind. Methodische Analyse Ein zentrales Ziel der Unterrichtseinheit besteht darin, dass die Lernenden nachvollziehen können, warum die Physiker vor 1930 größte Probleme bei der physikalischen Erklärung des Betazerfalls hatten und warum die Postulierung eines weiteren Teilchens zur Rettung des Energiesatzes führte. Daher sind die Arbeitsblätter so aufgebaut, dass die Diskrepanz zwischen theoretischem Ansatz (Potentialtopfmodell) und den experimentellen Ergebnissen herausgearbeitet wird und die Leistung Wolfgang Paulis mithilfe des Erklärvideos deutlich und nachvollziehbar wird. Die Tatsache, dass es gut 26 Jahre gedauert hat, bis man das geforderte Teilchen tatsächlich nachweisen konnte, zeigt, welch hervorragenden Spürsinn und Mut für unkonventionelle Lösungen Pauli besaß. Auch dies wird im Video deutlich, wie auch die erheblichen Anstrengungen, bestimmte Eigenschaften des Neutrinos experimentell zu ermitteln. Vorkenntnisse Für die Bearbeitung des ersten Arbeitsblattes zu Neutrinos ist es günstig, wenn das Thema "Massendefekt" beziehungsweise "Bindungsenergie" bereits behandelt wurde. Es reicht aber unter Umständen auch der Hinweis auf die entsprechende Tipp-Karte (Arbeitsblatt 4). Die Energie, die der Tritiumkern abgibt, erscheint nämlich als kinetische Energie des ausgesendeten Teilchens, also des Elektrons. Diese Energieabgabe führt aus Gründen der Energieerhaltung (Massenerhaltung) zu einem Masseverlust des Gesamtsystems, wobei Masse und Energie über E = mc² miteinander verknüpft sind. Für das zweite Arbeitsblatt sind Grundkenntnisse der Bewegung von geladenen Teilchen in Magnetfeldern erforderlich. Diese sollte in der Regel in den Halbjahren zuvor behandelt worden sein. Im dritten Arbeitsblatt geht es vor allem um die Eigenschaften, den Nachweis und die wissenschaftliche Bedeutung der Neutrinos. Obwohl im Video wie auch im Text (Brief von Wolfgang Pauli) Begriffe und Inhalte auftauchen, die im Unterricht noch nicht behandelt wurden oder gar nicht zum Schulstoff gehören, sollten sich die Aufgaben problemlos bewältigen lassen. An der einen oder anderen Stelle kann die Lehrkraft erklärend Hilfestellung geben, aber grundsätzlich ist es nicht schlimm, wenn bestimmte Aspekte des Themas nicht erschöpfend behandelt werden können. Sollte das Interesse bei den Lernenden für bestimmte Inhalte besonders groß sein, kann dies aber durchaus in Form von Referaten oder besonderen Lernleistungen in den Unterricht integriert werden. Fachkompetenz Die Schülerinnen und Schüler berechnen an einem konkreten Beispiel die Energie von Betateilchen mithilfe einer Massenbilanz. erklären ein Experiment zur Bestimmung der Elektronengeschwindigkeit. wenden Fachwissen aus der Elektrodynamik an, um eine Formel für die Elektronenenergie herzuleiten. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit. diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Physik / Astronomie
  • Sekundarstufe II

Atomphysik – Kernumwandlungen

Unterrichtseinheit

Mithilfe von interaktiven Arbeitsblättern und Animationen setzen sich Schülerinnen und Schüler mit dem Lernbereich "Kernumwandlungen – Nutzen und Gefahren" in Einzel- oder Partnerarbeit auseinander.Beim Einstieg in die Thematik wird auf die Entwicklung der wichtigsten Atommodelle eingegangen. Die Bildung von Ionen und Isotopen spielt dabei als Grundlage für die folgenden Themen eine wichtige Rolle. Den zweiten Schwerpunkt bilden der Spontanzerfall und die Freisetzung von radioaktiver Strahlung. Die künstlichen Kernumwandlungen werden mittels Computeranimationen erklärt. Zum Abschluss werden Kenntnisse zur gesteuerten und ungesteuerten Kettenreaktion vermittelt. Dieser Zusammenhang kann ebenfalls in Form von Computeranimationen veranschaulicht und interaktiv bearbeitet werden. Einsatz im Unterricht Der Einsatz der Sammlung von interaktiven Übungen und 3D-Animationen zur Atomphysik sollte unterrichtsbegleitend erfolgen. Nach der Behandlung des jeweiligen Themas im Unterricht (Arbeitsblätter als Word-Dokumente im Download-Paket "atomphysik_materialien.zip") können Übungsphasen im Computerkabinett den Unterricht lebendiger gestalten und zur Binnendifferenzierung genutzt werden. Die Verwendung der 3D-Animationen soll dabei die Anschaulichkeit erhöhen und die Visualisierung der Aufgabenstellung gerade bei den "unsichtbaren" Sachverhalten im submikroskopischen Bereich vereinfachen. Hinweise zur Nutzung der interaktiven Arbeitsblätter In der Klassenstufe 9 hat sich der Einsatz des Beamers bewährt, wenn die Schülerinnen und Schüler die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt waren. Für die Eingaben in die Formularfelder der interaktiven Übungen sollte ein Hinweis auf die Notwendigkeit einer korrekten Schreibweise erfolgen. Dies führt zu erhöhter Konzentration und weniger Frusterlebnissen, wenn Fragen inhaltlich richtig, aber infolge falscher Rechtschreibung als falsch beantwortet wurden. Auch Partnerarbeit von Lernenden mit guten Deutschkenntnissen zusammen mit Schülerinnen und Schülern, welchen die deutsche Sprache schwer fällt (Integrationskinder), ist hier gut möglich. Technische Hinweise Um die 3D-Modelle öffnen zu können, ist ein VRML-Plugin nötig. Alle animierten GIFs und interaktiven 3D-Animationen der verwendeten Übungen wurden vom Autor der Unterrichtseinheit mithilfe des 3D-CAD-Programmes FluxStudio erzeugt. Dieses Programm ist für die pädagogische Arbeit als Freeware verfügbar.Die Schülerinnen und Schüler sollen Atommodelle kennen. die alpha-, beta und gamma-Strahlung kennen. künstliche Kernumwandlungen kennen. das Aufstellen von Zerfallsgleichungen beherrschen. erkennen, dass der Unterschied zwischen gesteuerter und ungesteuerter Kettenreaktion für die Nutzung der Kernenergie immens wichtig ist.

  • Physik / Astronomie
  • Sekundarstufe I
ANZEIGE
Zum Link