• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Bewegung auf einer vertikalen Kreisbahn mit Excel

Unterrichtseinheit

Die Schülerinnen und Schüler untersuchen interaktiv die Gesetze der reibungsfreien Bewegung eines Körpers auf einer vertikalen Kreisbahn bei unterschiedlicher Gesamtenergie - vom Fadenpendel bis zum Looping.Winkelkoordinate, -geschwindigkeit und -beschleunigung sowie die aufzuwendende Radialkraft sind in einem Excel-Diagramm als Funktion der Zeit grafisch dargestellt. Durch kontinuierliche Veränderung des Parameters E (Summe aus kinetischer und potenzieller Energie) können die Diagramme dynamisch verformt und so die verschiedenen Bewegungsarten von der harmonischen Schwingung bis zum Looping beobachtet und analysiert werden. Die numerisch nach dem Halbschrittverfahren berechneten Diagramme, die man sonst im Unterricht und in der Literatur selten zu sehen bekommt, bieten einen beziehungsreichen Zugang zu vielen Aspekten der für die Jahrgangsstufe 11 vorgesehenen Lerninhalte.Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Rechner. Zentrales Medium ist neben der Excel-Datei das bereitgestellte Arbeitsblatt mit detaillierten Arbeitsaufträgen. Diese können je nach Intention und Umfang der Unterrichtseinheit auch nur teilweise eingesetzt oder auf verschiedene Abschnitte des Lehrplans verteilt werden. Wegen der Vielfalt der angesprochenen Themen (harmonische Schwingung, Energiesatz, beschleunigte Kreisbewegung, Kräftezerlegung, Newton'sche Grundgleichung F = ma und ihre prinzipielle Bedeutung für die Berechnung von Bewegungen) eignet sich das Material besonders zur vertiefenden Wiederholung oder für ein Projekt, in dem auch das numerische Verfahren und/oder fortgeschrittene Excel-Anwendungen thematisiert werden. Theoretischer Hintergrund, Realisierung in Excel, Einsatz des Materials im Unterricht Die Darstellung der zeitlichen Abhängigkeit der oben genannten kinematischen Größen mithilfe einer Excel-Tabelle bringt eine Reihe neuer Aspekte in den Unterricht, die hier erläutert werden. Die Schülerinnen und Schüler sollen Diagramme physikalisch interpretieren und darüber sachgerecht kommunizieren. die Gesetze der Kinematik, insbesondere der harmonischen Schwingung und der Kreisbewegung, den Energiesatz und das Prinzip der Kräftezerlegung anwenden. die Grenzen analytischer Methoden und den Vorteil numerischer Lösungen erfahren. das Halbschrittverfahren analysieren (optional). fortgeschrittene Anwendungen in Excel praktizieren (optional). Thema Vom Fadenpendel bis zum Looping - Bewegung auf einer vertikalen Kreisbahn mit Excel Autor Dr. Hans-Joachim Feldhoff Fächer Physik oder fächerübergreifendes Projekt (Physik/Informatik) Zielgruppe Jahrgangsstufe 11 Zeitraum 3-6 Stunden Technische Voraussetzungen je 1 Rechner für 1-2 Lernende Software Microsoft Excel, ergänzend für die Lehrkraft: GeoGebra (kostenfreie Software) [1] Courant Vorlesungen über Differential- und Integralrechnung 1, 4. Auflage, Springer 1971 [2] Grehn/Krause Metzler Physik, 4. Auflage, Schroedel 2007 Winkelgeschwindigkeit, Winkelbeschleunigung und Radialkraft Die Bewegung eines Körpers auf einer vertikalen Kreisbahn unter dem Einfluss der Erdanziehung (zum Beispiel in einer kreisförmigen Loopingbahn oder an einem Seil) wird im Unterricht gern als Anwendung der Gesetze der Kreisbewegung und des Energiesatzes behandelt. Winkelgeschwindigkeit, Winkelbeschleunigung und Radialkraft lassen sich in Abhängigkeit von der jeweiligen Position damit leicht berechnen. Zeitlicher Verlauf der kinematischen Größen Schwieriger ist die Darstellung der zeitlichen Abhängigkeit dieser Größen: Durch Zerlegung des Gewichts in eine radiale und eine tangentiale Komponente erhält man aus der Newton'schen Grundgleichung F = ma die Differenzialgleichung phi'' = -(g/r) sin(phi) für die gegen die Vertikale gemessene Winkelkoordinate phi . Die analytische Lösung führt auf ein elliptisches Integral, das nicht durch elementare Funktionen darstellbar ist [1]. Es muss daher ein numerisches Verfahren angewendet werden, um den zeitlichen Verlauf der kinematischen Größen im Diagramm darzustellen. Dies geschieht hier mithilfe des Halbschrittverfahrens, das zum Beispiel in [2] kurz beschrieben wird. Neben der Darstellung der kinematischen Größen in Diagrammen liefert dieses Verfahren auch eine numerische Bestimmung der Periodendauer T . Zusatzmaterial für Lehrpersonen Das "klassische" Berechnungsverfahren nach [1] kann mithilfe der GeoGebra-Datei "numerische_integration.ggb" nachvollzogen werden. Diagramme Die zum Download bereit gestellte Datei "vertikale_kreisbahn.xls" enthält die beiden Tabellenblätter "Diagramme" und "Berechnung". Bei den Diagrammen befindet sich ein Schieberegler, mit dem die Gesamtenergie E kontinuierlich von 0 bis 10 mgr verändert werden kann. Dieser Wert wird in der Berechnungstabelle übernommen. Der Kreisradius r ist auf 1 gesetzt und sollte nicht verändert werden. Die Schrittweite Delta_t des Halbschrittverfahrens ist auf vier Millisekunden voreingestellt. Sie kann nach Aufhebung des Blattschutzes verändert werden, um die Genauigkeit des Verfahrens zu analysieren. Berechnungstabelle Die eigentliche Berechnungstabelle enthält die Zeit t , die Winkelkoordinate phi , die Winkelgeschwindigkeit omega , die Winkelbeschleunigung alpha und die aufzuwendende Radialkraft, hier als Seilkraft F_Seil bezeichnet, die jedoch bei positivem Vorzeichen als nach außen gerichtete Stützkraft (zum Beispiel durch eine dünne Stange) interpretiert werden muss. Zusätzlich werden zur Darstellung der Bewegung für einige ausgewählte Punkte die kartesischen Koordinaten x und y berechnet. Berechnung und Visualisierung Für die Anfangsposition phi = 0 erhält man die Winkelgeschwindigkeit omega aus der Energie. Die übrigen Größen können aus phi direkt berechnet werden. Sodann werden sukzessive nach dem Halbschrittverfahren die nächsten Werte von omega und von phi und damit dann wieder die weiteren Größen berechnet. Es werden 750 Rechenschritte durchgeführt, so dass der Bewegungsverlauf während der ersten drei Sekunden in den auf der Tabelle basierenden Diagrammen dargestellt werden kann. Dies reicht für die Diskussion völlig aus. Die interaktive Arbeit mit den Diagrammen wird durch die Arbeitsaufträge in der Datei "vertikale_kreisbewegung.pdf" strukturiert. Den wesentlichen Teil bilden die Aufgaben zum physikalischen Inhalt: Die kontinuierliche Verformung der Kurven durch die Veränderung der Gesamtenergie E lässt sehr schön erkennen, wie sich aus einer anfänglich harmonischen Pendelschwingung ( E < < mgr ) allmählich eine nicht-harmonische Schwingung mit wachsender Periodendauer T entwickelt. wie für Ausschläge über 90 Grad die erforderliche Radialkraft das Vorzeichen wechselt (bei mgr < E < 2,5 mgr ). wie die Bewegung bei E = 2 mgr aus der Schwingung in einen Looping übergeht und dann für wachsende Werte von E bei abnehmender Umlaufzeit einer gleichförmigen Kreisbewegung immer ähnlicher wird. Die Arbeitsaufträge verlangen eine detaillierte Beschreibung und Interpretation dieser Beobachtungen. Daneben sind herkömmliche Aufgaben in das Arbeitsblatt integriert (Energiesatz, Kräfte bei der Kreisbewegung, harmonische Schwingung et cetera). Optional können zusätzliche Arbeitsaufträge zum Halbschrittverfahren und zu Excel zum Einsatz kommen. Letztere setzen fortgeschrittene Kenntnisse in Excel voraus und sind gegebenenfalls in einem fächerübergreifenden Projekt (Physik/Informatik) anzusiedeln. Während im physikalischen Teil nur mit den Diagrammen gearbeitet wird, werden hier Eingriffe in die Berechnungstabelle vorgenommen. Dazu empfiehlt es sich, vorher eine Kopie der Datei "vertikale_kreisbewegung.xls" anzufertigen, für die dann der Schreibschutz aufgehoben wird. [1] Courant Vorlesungen über Differential- und Integralrechnung 1, 4. Auflage, Springer 1971 [2] Grehn/Krause Metzler Physik, 4. Auflage, Schroedel 2007

  • Physik / Astronomie
  • Sekundarstufe II

Die Sinusfunktion: Schwingungen und Schwebungen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema trigonometrische Funktionen wird die Sinusfunktion fächerübergreifend als Schwingungsfunktion eingeführt. Darauf aufbauend kann die Trigonometrie als Anwendungsbereich behandelt werden.Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Das Ziel dieser Einführung ist es, ohne größeren Zeitaufwand die vorgegebenen Lernziele auf einem neuen Weg zu erreichen und dabei ein besseres Verständnis der Sinusfunktion als Schwingungsfunktion zu vermitteln.Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler verstehen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden. erhören über das physikalische Phänomen Schwebung ein Additionstheorem. Untersuchung periodischer Vorgänge Nachdem die Schülerinnen und Schüler mit der Beschreibung der Natur durch Potenzfunktionen bereits mehr oder weniger vertraut sind, sollen als neue Funktionsklasse nicht gleich die Sinusfunktionen, sondern erst einmal beliebige periodische Vorgänge untersucht werden. Direkt am Phänomen können Amplitude und Periodenlänge als wichtigste Begriffe erfahren werden (Experimentvorschläge finden Sie auf den Arbeitsblättern 1 und 2). Dabei erscheint mir das Wort Periodenlänge (und nicht Periodendauer, Periode oder Schwingungsdauer) für die Beschreibung der Periode im Mathematikunterricht als am besten geeignet. Hier legt man sich nicht schon im Voraus auf zeitliche Perioden fest. Der Frequenzbegriff ist vom mathematischen Standpunkt aus erst einmal nicht nötig. Auch auf den Begriff der Winkelgeschwindigkeit verzichte ich, auch wenn seine konsequente Verwendung durchaus denkbar ist. Phasenunterschiede sind für das Phänomen an sich primär nicht von großer Bedeutung und werden deshalb vorerst nicht behandelt. Daher wird auch nur die Sinusfunktion und nicht zusätzlich auch noch die Kosinusfunktion eingeführt. Die Sonnenaufgangskurve als nichtphysikalisches Sicherungselement Die Begriffe Amplitude und Periodenlänge sollen erst hinreichend gesichert werden, bevor sich die harmonische Schwingungsfunktion als wichtigste periodische Funktion herauskristallisiert. Dazu eignen sich insbesondere Experimente aus der Akustik. Hier kann man Amplitude und Periodenlänge direkt hören und mit dem Oszilloskop sogar sichtbar machen. Als nichtphysikalische Sicherungselemente bieten sich insbesondere tages- und jahreszeitliche Perioden an. Ich habe mich für die Änderung der Sonnenaufgangszeit im Laufe des Jahres entschieden, weil dieses Problem zum Beispiel im Herbst höchst aktuell und schülernah ist. Die Sonnenaufgangskurve weicht zwar mit zunehmender geographischer Breite von einer Sinuskurve ab, diese Abweichungen betragen in Deutschland jedoch weniger als fünf Prozent. Definition der Funktion Erst nach der beschriebenen Einführung wird die Kreisbewegung ins Spiel gebracht und es erfolgt eine Beschränkung auf die rein harmonischen Schwingungen. Das klassische Experiment dazu ist die synchrone Projektion von Federpendel und Kreisbewegung eines Stiftes. Vor der Definition von sin(x) sollen die Schülerinnen und Schüler erkennen, dass die harmonische Schwingungsfunktion keine Potenzfunktion sein kann. Das erste Mal in ihrer mathematischen Laufbahn können sie eine funktionale Abhängigkeit nicht aus den bekannten Rechenoperationen zusammenstellen. Eine neue Funktion muss definiert werden. Das hört sich einfacher an, als es ist, denn man bekommt bei einer solchen Definition sehr viele Freiheiten mit auf den Weg. Die Kurvenform ist zwar mehr oder weniger festgelegt, doch stehen die Achsenbeschriftungen noch völlig frei. Um hier zu steuern, werden die Schülerinnen und Schüler vorher in einem Arbeitsblatt die harmonische Schwingungskurve für eine Projektion eines Punktes auf einer Kreisbahn mit festem Radius genau zeichnen (Arbeitsblatt 4). Dadurch liegt es nahe, die neue Funktion im Bogenmaß zu definieren, nur der Radius sollte noch normiert werden. Argumente im Winkelmaß führte ich erst später ein. Um schnell von der Kreisbewegung zum Graphen der Sinusfunktion zu gelangen, bietet sich das Applet von Walter Fendt an (siehe externe Links auf der Startseite dieser Unterrichtseinheit). Wer etwas mehr Zeit hat, kann seine Schülerinnen und Schüler natürlich auch auf die herkömmliche Art und Weise die Projektion des Einheitskreises mithilfe des oben genannten Arbeitsblattes durchführen lassen, diesmal allerdings vor dem Hintergrund einer echten Bewegung. Kartierung der Funktion Nach der Definition wird die Funktion zu Hause punktweise kartiert und erst anschließend mit der Taschenrechnertaste "sin" in Verbindung gebracht und als Ganzes möglichst genau gezeichnet. Damit die Schülerinnen und Schüler wirklich das Gefühl einer eigenen Definition haben, soll die Namensgebung sehr offen gestaltet werden. Ein weiterer Vorteil eines vorerst anderen Namens besteht darin, dass die Lernenden bei der Kartierung der Funktion nicht zum "Mogeln" mit dem Taschenrechner gedrängt werden. Einsatz des Computers Die "nackte" Sinusfunktion reicht zur Beschreibung der harmonischen Schwingungen noch nicht aus, sie muss verschoben, gestreckt und gestaucht werden. Dabei sollen die Schülerinnen und Schüler lernen, zu vorgegebenen Funktionen der Art f(x) = A sin(B x) + C den zugehörigen Funktionsgraphen skizzieren zu können und umgekehrt zu festen Periodenlängen, Amplituden und Verschiebungen die zugehörige Funktion nennen zu können. Phasenverschiebungen werden aus den genannten Gründen nur kurz behandelt. Bei dieser Vorgehensweise bietet es sich außerdem an, auch die Überlagerung von Schwingungen und damit das Additionstheorem am Phänomen der Schwebung zu erfahren. Die Lernenden sollen das Additionstheorem hören (langsame Amplitudenschwankungen bei ähnlicher Frequenz wie die Grundtöne) und dann mithilfe eines CAS, eines Funktionenplotters oder eines geeigneten Java-Applets den Funktionsgraphen ermitteln. Abb. 1 (Platzhalter bitte anklicken) zeigt die Darstellung einer Schwebung mit dem CAS Derive, die durch Addition von sin(12x) und sin(13x) entsteht (verwendbare Online-Materialien wie zum Beispiel Java-Applets finden Sie unter den externen Links auf der Startseite dieser Unterrichtseinheit). Dabei werden die Begriffe Amplitude und Periodenlänge nochmals gesichert und gefestigt. Der Unterricht zur Trigonometrie basiert im Wesentlichen auf Aufgaben, bei dem es um Eigenschaften von Dreiecken geht. Die Einführung der Sinusfunktion bleibt ein Anhängsel. Erst in neuerer Zeit werden in Schulbüchern die periodischen Funktionen in diesem Zusammenhang besprochen. In dieser Unterrichteinheit soll der Spieß umgedreht werden: Die Sinusfunktion wird vor der Trigonometrie als logische Konsequenz aus der Untersuchung von Schwingungen eingeführt, die Trigonometrie folgt als praktische Anwendung. Dabei entstehen völlig neue Aufgabentypen, die die Vielfalt der Aufgabenkultur bereichern. In dieser Einheit sind dies einerseits komplexe Arbeitsblätter mit offenen Fragestellungen unter Einbeziehung des Computers, andererseits kleine Erkennungsaufgaben, wie man sie von den Parabeln kennt. Mathematik und Physik werden meist nur von Physiklehrkräften fächerübergreifend vermittelt. Damit vergeben die Mathematikerinnen und Mathematiker eine große Chance, Anschauliches mit rein Mathematischem zu verknüpfen. Mit dieser Unterrichtseinheit soll auch Nichtphysikern die Möglichkeit gegeben werden, fächerübergreifend zu arbeiten.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe I
ANZEIGE