• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Materialsammlung Erneuerbare Energien

Unterrichtseinheit

In dieser Materialsammlung finden Sie Unterrichtsmaterialien rund um die Erneuerbaren Energien – Wasserkraft, Windenergie und Sonnenenergie. Erneuerbare Energien aus nachhaltigen Quellen wie Wasserkraft, Windenergie, Sonnenenergie, Biomasse und Erdwärme sind zum Schlagwort schlechthin der internationalen Klimabewegung geworden. Im Gegensatz zu fossilen Energieträgern wie Erdöl, Erdgas, Stein- und Braunkohle sowie dem Uranerz verbrauchen sich diese Energiequellen nicht. Erneuerbare Energien sollen in Deutschland zukünftig den Hauptanteil der Energieversorgung übernehmen – bis zum Jahr 2050 soll ihr Anteil an der Stromversorgung mindestens 80 Prozent betragen. Im Jahr 2020 betrug ihr durchschnittlicher Anteil pro Jahr an der Nettoostromerzeugung über 50 Prozent. Die erneuerbaren Energien müssen daher kontinuierlich in das Stromversorgungssystem integriert werden, damit sie die konventionellen Energieträger mehr und mehr ersetzen können. Schon im alten Ägypten und im römischen Reich wurde die Wasserkraft als Antrieb für Arbeitsmaschinen wie Getreidemühlen genutzt. Im Mittelalter wurden Wassermühlen im europäischen Raum für Säge- und Papierwerke eingesetzt. Seit Ende des 19. Jahrhunderts wird aus Wasserkraft Strom erzeugt. Heute ist die Wasserkraft eine ausgereifte Technologie und weltweit neben der traditionellen Biomassenutzung die am meisten genutzte erneuerbare Energiequelle. Die Windenergie als Antriebsenergie hat bereits eine lange Tradition. Windmühlen wurden zum Mahlen von Getreide oder als Säge- und Ölmühle eingesetzt. Moderne Windenergieanlagen gewinnen heute Strom aus der Kraft des Windes. Sie nutzen den Auftrieb, den der Wind beim Vorbeiströmen an den Rotorblättern erzeugt – heute hat die Windenergie einen Anteil von über 25 Prozent an der deutschen Stromversorgung. Aus der Sonnenenergie kann sowohl Wärme als auch Strom gewonnen werden. Photovoltaikmodule auf dem Dach oder auf großen Freiflächen wandeln mithilfe von Halbleitern wie Silizium das Sonnenlicht in elektrische Energie um. Mit Solarkollektoren , in denen Flüssigkeit zirkuliert, wird Wärme zum Heizen und zur Warmwasserbereitung sowie für Klimakälte gewonnen. Eine dritte Technologie macht es möglich, Strom, Prozesswärme und Kälte durch die Konzentration und Verstärkung der Sonnenstrahlen zu erzeugen. Dabei wird in solarthermischen Kraftwerken das Sonnenlicht mit Reflektoren gebündelt und auf eine Trägerflüssigkeit gelenkt, die dadurch verdampft. Mit dem Dampf können dann ein Generator oder eine Wärme- und Kältemaschine betrieben werden. Biomasse ist ein vielseitiger erneuerbarer Energieträger und wird in fester, flüssiger und gasförmiger Form zur Strom- und Wärmeerzeugung und zur Herstellung von Biokraftstoffen genutzt. Pflanzliche und tierische Abfälle kommen genauso zum Einsatz wie nachwachsende Rohstoffe , zum Beispiel Energiepflanzen oder Holz . Die größte Bedeutung kommt der Bioenergie in Deutschland aktuell beim Heizen zu – aber auch für die Stromerzeugung und als Biokraftstoff kommt Biomasse zum Einsatz. Unter Geothermie (Erdwärme) versteht man die Nutzung der Erdwärme zur Gewinnung von Strom, Wärme und Kälteenergie. Die Temperaturen im Erdinneren erwärmen die oberen Erdschichten und unterirdischen Wasserreservoirs. Mithilfe von Bohrungen wird diese Energie erschlossen. Bei einer Erdwärmenutzung in bis zu 400 Metern Tiefe ("oberflächennah") nutzt eine Wärmesonde in Kombination mit einer Wärmepumpe das unterschiedliche Temperaturniveau zwischen Boden und Umgebungsluft. In tieferen Schichten wird heißes Wasser und Wasserdampf zur Stromerzeugung und für Fernwärmenetze gewonnen.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Mit Dampf voran: Die Dampfmaschine

Unterrichtseinheit

Ende des 18. Jahrhunderts trat eine Maschine, die Antriebsenergie erzeugen konnte, ihren Siegeszug an: die Dampfmaschine. Doch wie wurde sie damals genutzt?Über Jahrhunderte hinweg hatten die Menschen nur vier Energiequellen, um beispielsweise Mühlräder und Kräne anzutreiben: die eigene Muskelkraft, die Kraft von Tieren wie Pferd oder Ochse, die Windkraft und die Wasserkraft. Nachdem die Dampfmaschine zu Beginn des 18. Jahrhunderts erfunden wurde, hat sie James Watt weiterentwickelt und 1769 zum Patent angemeldet. Damals ahnte wohl noch niemand, welche fundamentalen Veränderungen sie mit sich bringen würde. Heute gilt sie im wahrsten Sinne als Motor der industriellen Revolution. Hintergründe Die Schülerinnen und Schüler sollen sich anhand animierter virtueller Modelle selbsttätig entdeckend und spielerisch mit der Funktionsweise der Dampfmaschine vertraut machen sowie deren Nutzung in den Fabriken näher kennen lernen. Fächerübergreifende Ansätze Die Sequenz eignet sich auch für den bilingualen Geschichtsunterricht. Die Schülerinnen und Schülern können die englischsprachigen Animationen leicht übersetzen, die beiden Arbeitsblätter enthalten entsprechende Übersetzungshilfen der Fachbegriffe. Weitere fächerübergreifende Ansätze bieten sich mit dem Fach Physik sowie Deutsch (Vorgangsbeschreibung) an. Fachkompetenz Die Schülerinnen und Schüler sollen die Funktionsweise der Dampfmaschine kennen lernen. ihre Kenntnisse selbsttätig überprüfen. die Anwendungsmöglichkeiten der Dampfmaschine kennen lernen. Medienkompetenz Die Schülerinnen und Schüler sollen im Internet nach Informationen recherchieren. die Möglichkeiten interaktiver Animationen kennen und auswerten lernen. Textarbeit am Bildschirm zielgerichtet erproben. Thema Mit Dampf voran: Die Dampfmaschine Autor Stefan Schuch Fach Geschichte Zielgruppe Jahrgangsstufe 8 bis 12 Zeitraum 1 bis 2 Stunden Technische Voraussetzungen je ein Computer mit Internetzugang für zwei Lernende, Flash-Player

  • Geschichte / Früher & Heute
  • Sekundarstufe II, Sekundarstufe I

Die Energiewende und andere Klimaschutzmaßnahmen

Unterrichtseinheit

Durch diese fachübergreifende Unterrichtseinheit lernen die Schülerinnen und Schüler die wichtigsten Entwicklungen und Herausforderungen der deutschen und weltweiten Energiewende sowie die großen Klimaschutz-Baustellen in Landwirtschaft und Verkehr kennen. Sie analysieren die damit verbundenen Interessenskonflikte und suchen gemeinsam nach sinnvollen Lösungen. Mit der Entscheidung, aus der Atomkraft auszusteigen und die Energieversorgung auf erneuerbare Energien und Energieeffizienz umzustellen, ist Deutschland international zu einem Vorbild geworden. Noch nie hat ein Industrieland eine solche Transformation vorgenommen. Schon heute wird bei uns mehr als ein Drittel des Stroms aus Sonnen- und Windenergie, Biomasse und Wasserkraft erzeugt. Auch weltweit sind die erneuerbaren Energien auf dem Vormarsch, da sie immer billiger werden und einen wichtigen Beitrag zum Klimaschutz leisten. Oft rechnet sich der Bau eines großen Windparks für Stromproduzenten schon mehr als der eines Kraftwerks, das Strom mit fossilem Brennstoff produziert. Um einen ausufernden Klimawandel zu verhindern, reicht aber eine Stromwende nicht aus. Auch in anderen Sektoren wie Landwirtschaft und Verkehr müssen die CO 2 -Emissionen stark reduziert werden. Diese Unterrichtseinheit ermöglicht die selbstständige Auseinandersetzung der Schülerinnen und Schüler mit der Energiewende in Deutschland und weltweit, ihrer Vorteile und Herausforderungen. Dabei haben sie auch die Auswirkungen für Wirtschaft, Infrastruktur, Landwirtschaft und Umwelt im Blick. Außerdem analysieren sie die Auswirkungen der Landwirtschaft, insbesondere der industriellen Produktion von Lebensmittel und Fleisch sowie des Verkehrs auf die Erwärmung des Planeten und beschäftigen sich mit Strategien zu nachhaltiger Transformation in diesen Sektoren. Themen der Unterrichtseinheit Die Energiewende Hier geht es um die aktuelle Entwicklung und Verbreitung von erneuerbaren Energien in Deutschland und weltweit. Deutschland will bis 2050 mindestens 80 Prozent seines Stroms aus erneuerbaren Energien erzeugen. Doch das Land ist dabei nicht alleine. Mehr und mehr Länder entscheiden sich für erneuerbare Energien. Warum brauchen wir erneuerbare Energien? Welche Auswirkungen wird und soll die Energiewende auf Wirtschaft, Umwelt und Gesellschaft haben? Vor welchen Herausforderungen steht Deutschland? Mobilität und Verkehr Wie muss sich der Verkehr verändern, wenn Deutschland das während des Klimagipfels in Paris 2015 zugesagte Ziel einer Reduzierung seiner Treibhausgas-Reduktionen auf Null bis Mitte des Jahrhunderts erreichen will? Wie sieht die Energiewende im Verkehrssektor aus? Welche Auswirkungen hat der Flugverkehr? Können Elektroautos das Problem weitgehend lösen? Sollte Deutschland sein Autobahnnetz weiter verdichten? Welche Rolle spielt der internationale Warentransport? Welche Alternativen existieren und können stärker genutzt werden? Die Landwirtschaft und ihre Bedeutung für den Klimaschutz Welche Rolle spielt die Landwirtschaft für den Klimaschutz? Welche Auswirkungen hat die industrielle Produktion von Lebensmitteln und Fleisch für tropische Regenwälder in Brasilien und auf Indonesien und was hat das mit dem Klimawandel zu tun? Warum sind Palmöl und Soja ein Problem für den Klimaschutz und was kann ich in Deutschland tun? Fachkompetenz Die Schülerinnen und Schüler… lernen die wichtigsten erneuerbaren Energieträger kennen. werden für die Herausforderungen der Energiewende in Deutschland und weltweit sensibilisiert. setzen sich mit den jüngsten Entwicklungen in der weltweiten Energieversorgung und mit dem Ausbau erneuerbarer Energien auseinander. können die Auswirkungen der Landwirtschaft und Lebensmittelproduktion, inklusive Fleischproduktion, auf den Klimawandel nachvollziehen. setzen sich mit den Folgen von Flug- und Landverkehr für Erderwärmung und Klimawandel auseinander. entwerfen selbstständig Ansätze und tragen Ideen zusammen für zukunftsorientierte, klimaschützende und wirtschaftlich umsetzbare Energieversorgung. Medienkompetenz Die Schülerinnen und Schüler… recherchieren im Internet. analysieren und interpretieren Informationen, die sie im Internet recherchiert haben. bereiten digitale Präsentationen vor. Sozialkompetenz Die Schülerinnen und Schüler arbeiten in Teams zusammen. Fundamentale Wende in der Energieversorgung Der Energiesektor verursacht den größten Teil der weltweiten Treibhausgas-Emissionen, sein Anteil lag 2010 bei 35 Prozent. Durch das weltweite Wirtschafts- und Bevölkerungswachstum steigt die Nachfrage nach Energie und Strom weiter. Der Ausstoß von Treibhausgasemissionen hat sich jedoch in den vergangenen Jahren stabilisiert. Diese für viele überraschende Entwicklung deutet darauf hin, dass inzwischen nicht nur in Deutschland eine Energiewende stattfindet. Die Energiewende steht für eine fundamentale Wende in der Energieversorgung. Das bisherige Energiesystem, das auf fossilen Brennstoffen (Kohle, Öl und Gas) sowie Kernenergie beruht, wird abgelöst von einer neuen Energieversorgung durch erneuerbare Energien (Windkraft, Sonnenenergie, Wasserkraft, Biomasse und Erdwärme) sowie einer verbesserten Energieeffizienz und Energieeinsparung. Energiewende in Deutschland Deutschland hat mit der Energiewende eine radikale Transformation seines Stromsektors beschlossen. Die übergeordneten energiepolitischen Ziele der Bundesregierung im Juni 2011 umfassen den Atomausstieg bis 31.12.2022 und den Ausbau der erneuerbaren Energien. Darüber hinaus sollen die Stromnetze zügig ausgebaut und modernisiert werden sowie die Energieeffizienz insbesondere im Gebäudesektor, bei der Mobilität und beim Stromverbrauch erhöht werden. Dabei müssen die Treibhausgasemissionen um 40 Prozent bis 2020 und um 80 bis 95 Prozent bis 2050 im Vergleich zum Basisjahr 1990 reduziert werden. Erneuerbare Energien weltweit 2015 war ein Rekordjahr für Erneuerbare Energien. Zu diesem Ergebnis kommt der Statusbericht "Renewables 2016" von REN21. (...) Die Erneuerbaren decken mittlerweile 19 Prozent der globalen Energienachfrage. Einen solchen Anstieg innerhalb eines Jahres hat es noch nie gegeben. Mit 330 Milliarden US-Dollar erreichten auch die Investitionen in erneuerbare Energien in den Bereichen Verkehr, Strom und Wärme einen neuen Rekordwert. Allein beim Strom wurde 2015 doppelt so viel in Solar-, Wind- und Wasserkraft investiert (etwa 265 Milliarden Dollar) wie in neue Kohle- und Gaskraftwerke zusammen (130 Milliarden). Auch auf dem Arbeitsmarkt zeigt sich eine positive Entwicklung. Mehr als acht Millionen Menschen arbeiten mittlerweile weltweit in der Erneuerbaren-Branche. Europa: Investitionen gesunken! Europa ist die einzige Weltregion, in der die Investitionen in Erneuerbare im vergangenen Jahr deutlich gesunken sind, bedingt durch die Wirtschaftskrise und mangelnde politische Ambition. Besonders drastisch ist der Einbruch um 46 Prozent in Deutschland, dem vormals größten Markt für erneuerbare Energien. In den USA war dafür ein kräftiges Wachstum zu verzeichnen und in Japan blieben die Investitionen immerhin stabil. Der globale Süden hingegen befindet sich auf der Überholspur. Zum ersten Mal waren die Investitionen in erneuerbare Energien dort höher als in den Industrieländern. Alleine China konnte rund 36 Prozent aller globalen Investitionen in erneuerbare Energien auf sich vereinen. Aus entwicklungspolitischer Perspektive dabei besonderes beindruckend: Finanzschwächere Länder wie Marokko, Jamaika, Honduras, Jordanien, Uruguay, Nicaragua, Mauretanien oder die Kapverden haben letztes Jahr ein Prozent oder mehr ihrer Wirtschaftsleistung in den Ausbau erneuerbarer Energien investiert. In Deutschland verursacht der Verkehrssektor rund 20 Prozent der Treibhausgasemissionen. Kein anderer Sektor hat in Deutschland so wenig zur Erreichung der gesetzten Klimaziele beigetragen, wie der Verkehr. Er ist damit das größte Problemkind der Klimapolitik. Um die deutschen Klimaschutzziele nach dem Klimaabkommen von Paris zu erreichen, muss der CO 2 -Ausstoß des Verkehrs vor 2050 auf nahezu Null gesenkt werden. Wie das passieren kann, dafür hat Deutschland noch keinen Plan. Weitgehender Konsens herrscht nur dabei, dass die Effizienz der Fahrzeuge weiter gesteigert werden muss und dass der gesamte Straßen- und Schienenverkehr langfristig auf erneuerbare Antriebe (Strom, Biosprit) umgestellt werden soll. Inwiefern auch die Vermeidung von Verkehr und die Verlagerung von der Straße auf die Schiene eine Rolle spielen muss, um die Treibhausgasreduktionsziele erreichen zu können, ist noch umstritten. Zwei Trends verantwortlich Vor allem zwei Trends sind für die problematische Entwicklung im Verkehr verantwortlich. Erster Hauptfaktor ist im Personenverkehr die Tendenz zu schweren, PS-starken Autos, wodurch die Effizienzgewinne durch sparsamere Motoren wieder aufgefressen werden. Heute werden etwa ebenso viele SUVs wie Kleinwagen verkauft, und die durchschnittliche Motorleistung der Neuwagen ist alleine zwischen 2007 und 2014 von 95 auf 140 PS gestiegen. Die aktuell niedrigen Spritpreise verstärken diese Entwicklung. Zweiter Hauptfaktor ist das hohe Wachstum im Güterverkehr. So hat der Warentransport auf der Straße seit Mitte der 1990er Jahre um mehr als 60 Prozent zugenommen, und das Bundesverkehrsministerium rechnet weiterhin mit deutlichen Zunahmen. Der kurze Einbruch der Frachtmengen während der Finanz- und Wirtschaftskrise 2008/2009 ist längst vergessen. Weitere Faktoren Viele Akteure in Politik und Wirtschaft setzen in Deutschland vor allem auf das Elektroauto, um die Emissionen des Verkehrssektors zu senken. Bis 2020 – so das Ziel der Bundesregierung – sollen eine Million E-Autos über Deutschlands Straßen rollen. Doch die Verkaufszahlen bei Elektroautos bleiben vorerst sehr niedrig und die Zahl von eine Million gilt inzwischen weithin als nicht erreichbar. Seit Sommer 2016 können Käufer eines E-Autos darum eine Prämie von mehreren tausend Euro beantragen, die sie zusätzlich mit dem Kauf des Autos erhalten. Doch auch dadurch konnte der Absatz bisher nur unwesentlich angekurbelt werden. Der Güterverkehr wächst noch schneller als der Personenverkehr. Daran hat auch die seit 2005 eingeführte Lkw-Maut nichts geändert. Die absoluten CO 2 -Emissionen im Lkw-Verkehr sind von 1995 bis 2013 um 13 Prozent gestiegen. Der Güterverkehr auf der Straße hat im gleichen Zeitraum um 31 Prozent zugenommen. Die Prognosen gehen alle von einem weiter wachsenden Straßengüterverkehr aus. Auch hier gibt es bisher keine Problemlösungsstrategie. Lösungsansätze wären ein starker Ausbau des Schienengüterverkehrs und Anreize dafür, dass Güter häufiger regional gehandelt und nicht mehr durch ganz Europa gefahren werden. Das Umweltbundesamt fordert deshalb eine Einbeziehung aller Fahrzeuge von 3,5 Tonnen in die Lkw-Maut. Außerdem schlägt das UBA vor, alle Straßen mautpflichtig zu machen. Bisher sind es nur Autobahnen und ein Teil der Bundesstraßen. Fliegen ist die mit Abstand klimaschädlichste Art der Fortbewegung. In Reiseflughöhe ist die Klimawirkung der Flugzeugemissionen nach aktuellem Stand der Wissenschaft um den Faktor 2- bis 4½-mal höher, als am Boden. Das ergibt derzeit einen Anteil von ca. 7 Prozent am gesamten menschengemachten Treibhauseffekt. Doch dieser Anteil nimmt schnell zu, denn der Flugverkehr wächst weiter, selbst in Deutschland. Das liegt auch daran, dass Fliegen vom Staat stark bezuschusst wird. Unter anderem ist Kerosin von der Energiesteuer befreit, internationale Flüge von der Mehrwertsteuer. Bis 2040, schätzt die internationale Luftverkehrsorganisation ICAO, könnten sich die weltweiten Emissionen im Flugverkehr vervierfachen. Das Überschießen der globalen 2-Grad-Erwärmungsrenze wäre damit unvermeidlich. Die Landwirtschaft ist einer der wichtigsten Verursacher des Klimawandels. 2010 trug sie 10 bis 12 Prozent zu den weltweiten Treibhausgasemissionen bei. Der Agrarsektor ist dabei die größte Quelle der Treibhausgase Methan (CH 4 ) und Lachgas (N 2 O), die zum Beispiel in der Viehhaltung entstehen. Gleichzeitig ist die Landwirtschaft das größte Opfer des Klimawandels. Dürre und Überschwemmungen, Stürme, die Versalzung des Grundwassers, Austrocknung und Landdegradierung wirken sich bereits heute negativ auf Ernteerträge und Lebensmittelproduktion aus. Obwohl in einigen nördlichen Regionen die landwirtschaftliche Produktivität auch steigen könnte, sind die negativen Folgen für die weltweite Nahrungsmittelproduktion und damit die ländliche und die ärmere städtische Bevölkerung insgesamt sehr negativ. Vor allem in Afrika und Asien ist es durch den Klimawandel mit drastischen Ernteverlusten zu rechnen.

  • Politik / WiSo / SoWi / Wirtschaft / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Elektrizität im Haushalt – Beispiele, Fragen und Übungsaufgaben

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit geht es darum, die Lernenden mit den Gegebenheiten der elektrischen Stromversorgung im Haushalt bekannt zu machen. In Form von Beispielen, Fragestellungen und Übungsaufgaben werden die Funktionsweisen des Drehstrom-Systems im Haushalt und deren vielfältige Anwendungsmöglichkeiten erläutert.Nach einer kurzen – eventuell auch wiederholenden – Besprechung des Wechselstrom-Versorgungssystems in Form von Drehstrom werden den Schülerinnen und Schülern die vielfältigen Möglichkeiten der Stromzuführung zu zahlreichen häuslichen Elektrogeräten anhand der Phasenleiter L 1 ..L 3 sowie die Stromrückführung über den gemeinsamen Nullleiter vermittelt. Mit diesem Wissen können die Lernenden auch die zahlreichen Stromkabel einer Überlandleitung nachvollziehen. Am Beispiel eines Phasenprüfers zum ungefährlichen Auffinden des Phasenleiters in der Steckdose wird gezeigt, wie man feststellen kann, ob Strom an der Steckdose vorhanden ist. Als typisches Beispiel für ein in jedem Haushalt vorhandenes Elektrogerät wird der schematische Aufbau und damit die unterschiedliche Funktionsweise von Herdplatten erläutert und mit konkreten Beträgen für entsprechende Leistungen durch ausführliche Berechnungen vertieft. Das Thema "Elektrizität im Haushalt" in der Schule Elektrizität im Haushalt ist aus unserem heutigen Leben nicht mehr wegzudenken – wie sehr wir davon abhängig sind, bemerken wir immer dann, wenn der Strom einmal ausfällt. Schülerinnen und Schüler kennen Elektrizität in Form von Batterien und Akkus, die alle Geräte von den Smartphones bis zu den Taschenlampen speisen. Ebenso bekannt ist natürlich die Bedeutung der Steckdose für die Entnahme von Elektrizität – die dahinterstehende Technik dürfte allerdings für viele Lernende Neuland sein, nicht zuletzt wegen der nicht so einfach zu verstehenden Wechselstromtechnik. Vorkenntnisse Grobe Vorkenntnisse von Lernenden können dahingehend vorausgesetzt werden, dass im Unterricht der Begriff des Wechselstroms anhand des Leiterschaukel-Versuchs in Verbindung mit der Lorentzkraft bereits besprochen sein sollte. Didaktische Analyse Die auf der Wechselstrom-Technik beruhende Drehstrom-Technik ist von entscheidender Bedeutung für die großtechnische Stromerzeugung mittels Generatoren, die unter anderem durch Wasserkraft, Windkraft oder auch Kernkraft angetrieben werden. Nur mit Gleichstrom aus Batterien wären die etwa in einem Haushalt notwendigen Elektrogeräte nicht zu betreiben. Die mit Drehstrom-Technik betriebenen Elektrogeräte werden in Deutschland mit einer Spannung von 230 Volt betrieben, die daraus resultierende Lebensgefahr bei einer eventuellen Berührung eines Phasenleiters muss im Unterricht intensiv besprochen werden. Nur über Geräte wie den Phasenprüfer kann gefahrlos festgestellt werden, wo sich der Phasenleiter befindet und ob somit Strom fließen kann. Fachkompetenz Die Schülerinnen und Schüler wissen um die Bedeutung von Drehstrom für die häusliche Stromversorgung. kennen die verschiedenen Wege der Stromzuführung über die drei Phasen des Drehstroms. können Berechnungen anstellen, unter welchen Bedingungen ein Stromkreis belastet werden kann und gegebenenfalls auch überlastet wird. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbstständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern, Freundinnen und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe I

Energieversorgung

Unterrichtseinheit

Für die deutschen Gaskunden begann das Jahr mit einem Paukenschlag. Nachdem die Preise bereits in den letzten Jahren kräftig gestiegen waren, sorgte die Zuspitzung des so genannten Gaskonflikts zwischen Russland und der Ukraine in den ersten Januartagen des Jahres 2006 für ein kurzzeitiges Absacken der russischen Gaslieferungen.Obwohl die deutschen Energieversorger beteuerten, dass genug Reserven vorhanden seien, zeigten sich die Endverbraucher verunsichert und befürchteten eine neue Preisspirale nach oben. Glücklicherweise konnten sich die Ukraine und Russland nach wenigen Tagen einigen und die Lieferungen nach Deutschland und Westeuropa normalisierten sich. Allerdings hat dieser Konflikt Verbrauchern und Politikern deutlich vor Augen geführt, dass Deutschland - wie auch andere europäische Länder - nicht nur von den Öllieferungen aus aller Welt abhängig ist, auch andere Rohstoffe müssen die heimischen Energieversorger teuer importieren.Die Schülerinnen und Schüler sollen sich mit den globalen Zusammenhängen der Energieversorgung auseinandersetzen. verschiedene Daten über Energiequellen kennen lernen und den Energieverbrauch reflektieren. Unterschiede zwischen fossilen Brennstoffen und regenerativen Energiequellen herausarbeiten. Entwicklungen für die Zukunft beschreiben und alternative Energieträger vorstellen. politische Abhängigkeiten anhand von Energieimporten und -exporten weltweit und für die EU darstellen. Begrifflichkeiten definieren und statistische Erhebungen interpretieren. Informationen über das Internet recherchieren und Texte bearbeiten. Thema Energieversorgung Autor Michael Bornkessel Fach Politik, Sozialwissenschaften Zielgruppe Sek I und II, ab Klasse 9 Zeitaufwand je nach Intensität und Schwerpunktsetzung 2-6 Stunden Medien je ein Computer mit Internetnutzung für 2 Schülerinnen und Schüler Auf den folgenden Unterseiten werden globale und nationale Zusammenhänge der Energieversorgung dargestellt. Die einzelnen Energiequellen werden statistisch beleuchtet und die Entwicklungen für eine alternative Energieversorgung dargestellt. Die Unterseiten enthalten jeweils Recherchelinks zu den Themenbereichen. Globale Zusammenhänge und Abhängigkeiten Die globalen Zusammenhänge von Energieversorgung und Energiepolitik sind sehr komplex. Sie müssen für die Klasse reduziert dargestellt werden. Daten zu den Energiequellen Informationen und Zahlen zu den einzelnen Energiequellen helfen bei der Einordnung derzeitig globaler Abhängigkeiten und zukünftiger Entwicklungen. Energiezufuhr und -verbrauch in Deutschland Da Deutschland nur über wenige Ressourcen verfügt, müssen wir einen Großteil unseres Energieverbrauchs über Rohstoffimporte decken. Energiepolitische Tendenzen Der Staat steuert mit Investitionen und Gesetzen die Entwicklungen für die Energieversorgung der Zukunft. Engere Kooperation in Energiefragen Die Europäische Union reagierte auf den "Gaskonflikt" und die Energieminister diskutierten über mögliche Konsequenzen. Am Ende einigte man sich, dass die EU in Energiefragen künftig enger kooperieren will. Die Kommission will ein so genanntes Grünbuch erarbeiten, in dem sie die wichtigen Fragen identifiziert und damit auf europäischer Ebene eine Debatte über die grundlegenden politischen Ziele im Bereich der Energiepolitik in Gang setzen will. "Die EU braucht eine klare und gemeinsame Politik für die Energieversorgung", bilanzierte der für die Energiepolitik zuständige EU-Kommissar Andris Piebalgs. Energieimporte der EU am Beispiel Erdöl Denn fast alle EU-Länder sind von Energie-/Rohstoffimporten abhängig. Am Beispiel Erdöl, dem nach Angaben des "World Energy Council" (WEC) weltweit wichtigsten Energieträger, zeigt sich das besonders deutlich: lediglich Norwegen, Großbritannien, die Niederlande und Dänemark verfügen über ausreichend Erdölvorräte in der Nordsee, so dass sie das "Schwarze Gold" exportieren können - auch nach Deutschland. Die Bundesrepublik kann den eigenen Jahresbedarf an Rohöl nur zu drei Prozent, das sind rund 3,7 Mio. Tonnen Erdöl, aus eigenen Vorkommen gewinnen - den Rest müssen wir in aller Welt einkaufen. Entwicklungen der letzten Jahre Dabei hat sich der Anstieg des Weltenergieverbrauchs in den letzten Jahren verlangsamt. Er stieg nach Angaben des WEC zwischen 1970 und 1980 um 32,5 Prozent (2,9 Prozent/Jahr), zwischen 1980 und 1990 um 22,6 Prozent (2,1 Prozent/Jahr) und von 1990 bis 2004 um 25,9 Prozent (1,7 Prozent/Jahr). Allerdings muss man dabei berücksichtigen, dass nach dem Fall des Eisernen Vorhangs (1989) in den Ländern des ehemaligen Ostblocks aufgrund des wirtschaftlichen Umbruchs ein starker Rückgang des Energieverbrauchs zu verzeichnen war. Wohlstand = hoher Energieverbrauch Grundsätzlich nehme in den reichen Regionen der Energieverbrauch nur noch schwach zu. Als Gründe nennt der WEC, dass die Bevölkerung hier kaum noch wachse, Bedürfnisse mit hohem Energieaufwand, etwa Mobilität und Heizwärme, weitgehend gesättigt seien und energieintensive Industrien gegenüber der Dienstleistungsbranche an Gewicht verlieren. Ganz anders sehe es dagegen in den Schwellen- und Entwicklungsländern aus. Sie sind "energiehungrig", da sie beim Wohlstand nur durch rasch wachsenden Energieverbrauch aufholen können. Zukünftige Entwicklungen und Folgen für die EU Der Energieverbrauch werde in den kommenden Jahrzehnten weltweit weiter wachsen. Im Jahr 2030 benötigten die Menschen rund 50 Prozent mehr Energie, vor allem Öl, Gas und Kohle, prognostiziert die Internationale Energie Agentur (IEA) in ihrer Studie "Welt-Energie-Ausblick 2005". Zwar werde es keinen Mangel an fossilen Brennstoffen geben, doch die Abhängigkeit von den großen Erdöl- und Erdgas-Produzenten, das heißt den OPEC-Staaten und Russland, werde sich noch verschärfen. Die Europäische Union (EU) müsse 2030 voraussichtlich doppelt so viel Energie importieren wie heute. Regenerative Energien noch nicht bedeutsam Grundsätzlich muss man zwischen den verschiedenen Energieträgern unterscheiden. Derzeit wird der überwiegende Teil der benötigten Energie aus den so genannten fossilen Brennstoffen, also Erdöl, Kohle und Gas, gewonnen. Nach Angaben des WEC entfielen 88 Prozent der kommerziellen Weltenergieerzeugung im Jahr 2004 auf diese drei Rohstoffe. Rund sechs Prozent stellt die Kernenergie, die verschiedenen regenerativen Energieträger erreichen ebenfalls etwa sechs Prozent. Endliche Vorräte Der ständig steigende Energiebedarf wird derzeit also fast vollständig durch die Verbrennung der fossilen Brennstoffe gedeckt. Allerdings sind diese Ressourcen endlich, das heißt irgendwann werden wir die Vorräte verbraucht haben. Wann dies der Fall sein wird, ist unter den Experten allerdings heftig umstritten. Umgekehrte Vorzeichen Im Jahr 2004 wurden weltweit fast 3,9 Mrd. Tonnen Erdöl gefördert, bilanziert das österreichische Nationalkomitee des WEC auf seiner Internetseite. Erdöl ist der wichtigste Energieträger, allerdings sind die Vorkommen ungleich verteilt. Während der Verbrauch in Europa, Nordamerika sowie den Industrieländern Asiens um einiges höher ist als die Förderung, sieht es im Nahen Osten, in Südamerika und in Afrika genau umgekehrt aus. Verteilung auf die Kontinente Saudi Arabien ist der wichtigste Erdölförderstaat. Das Land am Persischen Golf hat 2004 rund 506 Mio. Tonnen Erdöl aus dem Boden gepumpt, das entspricht einem Anteil von 13,1 Prozent an der weltweiten Förderung. Russland folgt mit knapp 459 Mio. (11,9 Prozent). Insgesamt entfielen 2004 auf den Nahen Osten 30,7 Prozent der weltweiten Ölförderung, auf Europa (einschließlich der GUS-Staaten) 22,0 Prozent, auf Nordamerika 17,3 Prozent, auf Afrika 11,4 Prozent, auf Asien 9,8 Prozent sowie auf Mittel- und Südamerika 8,8 Prozent. Primärenergieverbrauch - was ist das? Die Weltförderung betrug 2004 rund 2,7 Mrd. Tonnen Öleinheiten (OE). Die Kohle kommt beim weltweiten Primärenergieverbrauch an zweiter Stelle. Im Jahr 2004 hatte sie einen Anteil von 27,2 Prozent. Bei der Stromerzeugung war Kohle mit einem Anteil von 38 Prozent sogar der wichtigste Rohstoff, so das WEC. Der Primärenergieverbrauch zeigt, wie viel Energie eine Volkswirtschaft in einer bestimmten Zeiteinspanne, meist ein Jahr, insgesamt verbraucht und gelagert hat. Weltweite Kohlelieferanten Die wichtigsten Kohleproduzenten waren 2004 China mit 989,8 Mio. Tonnen OE und die USA mit 567,2 Mio. Tonnen OE, gefolgt von Australien, Indien, Südafrika und Russland. Diese sechs Länder erzeugten 2004 nach Angaben des WEC etwas über 80 Prozent der Welt-Kohleförderung. Das WEC hat errechnet, dass die weltweiten Kohlereserven noch rund 164 Jahre reichen - wenn sich der Verbrauch auf dem Niveau von 2004 stabilisiert. Erdgasförderung weltweit Erdgas erfreut sich in den letzten Jahren stetig wachsender Beliebtheit und so stieg die weltweite Fördermenge im Jahr 2004 auf den historisch höchsten Wert von 2.691,6 Mrd. Kubikmeter. Auch hier spielt Russland eine wichtige Rolle. Mit 589,1 Mrd. Kubikmeter nimmt es, knapp gefolgt von den USA (542,9 Mrd. Kubikmeter), die Spitzenposition ein. Insgesamt entfielen im Jahr 2004 auf Europa und die GUS-Staaten 39,1 Prozent der weltweiten Erdgasförderung, auf Nordamerika 28,3 Prozent, auf Asien 12,0 Prozent, auf den Nahen Osten 10,4 Prozent, auf Afrika 5,4 Prozent sowie auf Mittel- und Südamerika 4,8 Prozent, fasst das WEC zusammen. Reserven bis 2019 aufgebraucht? Allerdings hat die massiv steigende Förderung zur Folge, dass bis heute insgesamt rund 70.000 Mrd. Kubikmeter Erdgas gewonnen wurden, das entspricht 30 Prozent der bisher entdeckten Reserven weltweit. Das WEC hat errechnet, dass die Gasvorräte noch rund 67 Jahre reichen. Allerdings wird im Jahr 2019 die Hälfte der bisher entdeckten Welt-Reserven vernichtet sein, setzt man eine gleichbleibende Jahresförderung, keine Entdeckung von neuen Lagerstätten und keine verbesserten Produktionsmethoden/-technologien voraus, warnt das WEC. Hohe Abbaukosten Auch für die Energiegewinnung durch Atomkraft benötigt man einen nur begrenzt vorhandenen Rohstoff: Uran. Die derzeit bekannten Reserven, bei denen die Abbaukosten bis zu 80 US-Dollar je Kilogramm Uran (80 Dollar/kg U) betragen, belaufen sich nach Angaben des WEC auf 3,54 Mio. Tonnen. Die Lagerstätten, die mit Kosten von bis zu 130 Dollar je Kilogramm Uran (130 $/kg U) abgebaut werden können, beziffert das WEC mit 4,59 Mio. Tonnen. Starke Konzentration der Reserven Die Reserven dürften rund 120 Jahre ausreichen, um die Atommeiler weltweit mit Uran zu versorgen. Insgesamt haben die Kernkraftkraftwerke eine Gesamtleistung von 362 Gigawatt (GW) produziert und dabei 56.108 Tonnen Uran verbraucht. 39.311 Tonnen stammten dabei aus der Bergwerksproduktion, so das WEC. Auch die Uranvorkommen sind nur auf wenige Ländern konzentriert. Die bis 80 Dollar/kg U abbaubaren Reserven liegen zu etwa 93 Prozent in zehn Ländern. Die Spitzengruppe bildet Australien (28 Prozent), gefolgt von Kasachstan (18 Prozent), Kanada (12 Prozent) und Südafrika (8 Prozent) - allein hier sind also etwa zwei Drittel der weltweiten Reserven konzentriert. Strom aus Wasserkraft Die Wasserkraft, so der WCE, ist die mit Abstand wichtigste regenerative Energiequelle. Das theoretische Wasserkraftpotenzial der Erde wird mit 39.608 Terawattstunden pro Jahr (TWh/a) geschätzt, davon stuft das WCE 14.356 TWh/a als "technisch nutzbares Potenzial" ein. Im Jahr 2004 wurden in Wasserkraftwerken mit einer Leistung von insgesamt 750 GW rund 2.809 TWh elektrische Energie erzeugt, mehr als 50 Prozent produzierten Anlagen in Kanada, den USA, Brasilien, China und Russland. An der Welt-Primärenergieversorgung hatte die Wasserkraft im Jahr 2004 einen Anteil von 6,2 Prozent. Bei der Erzeugung von Strom nimmt sie weltweit mit etwa 20 Prozent sogar die dritte Stelle nach Kohle und Öl/Gas ein. Wind und Sonne birgt Potenziale Windenergie spielt im Vergleich zur Wasserkraft weltweit betrachtet noch keine besonders große Rolle; allerdings ist dies ein Bereich, wo Europa in den letzten Jahren massiv investiert hat und bei der Nutzung eine Führungsposition erreichen konnte. Nach Angaben des WCE waren Ende 2004 weltweit etwa 47.317 Megawatt (MW) in Windkraftanlagen installiert. Allein etwa 34.205 MW, etwa 72 Prozent, entfielen dabei auf EU-Länder. Innerhalb der Europäischen Union waren Ende 2004 allein 16.629 MW in Deutschland installiert, gefolgt von Spanien (8.263 MW) und Dänemark (3.117 MW). Die anderen erneuerbaren Energien, etwa Solarenergie, sind derzeit noch von geringerer Bedeutung, wenngleich große Perspektiven und Entwicklungspotenziale vorausgesagt werden. Der deutsche Erdölbedarf, vor allem für Strom und Treibstoffe, wurde im Jahr 2004 nach Angaben des Bundesministeriums für Wirtschaft und Technologie (BMWi) zu 33,7 Prozent (ca. 37,1 Mio. Tonnen) aus Russland gedeckt - es ist damit mit Abstand der größte Lieferant in Erdöl-Bereich. Dahinter folgt Norwegen mit 19,8 Prozent (ca. 21,8 Mio. Tonnen), Großbritannien mit 11,8 Prozent (ca. 12,9 Mio. Tonnen) und Libyen mit 11,6 Prozent (ca.12,9 Mio. Tonnen). Diese Zahlen zeigen, dass Deutschland einen Großteil seines Bedarfs am "Schwarzen Gold" aus der näheren Umgebung speist, nur 7,8 Prozent des Bedarfs (ca. 8,6 Mio. Tonnen) kam aus dem Nahen Osten. Insgesamt importierte Deutschland rund 110 Mio. Tonnen Rohöl im Jahr 2004. Der Anteil am Primarenergieverbrauch betrug damit im Jahr 2004 36,4 Prozent. Beim fossilen Brennstoff Steinkohle sah es noch bis Anfang der 1990er Jahre etwas anders aus. Im Jahr 1990 wurden in Deutschland insgesamt rund 85,7 Mio. Tonnen Steinkohle verbraucht, 66,5 Mio. Tonnen konnten im Inland gefördert und nur ein kleiner Teil musste importiert werden. Heute hat sich die Lage gewandelt. Im Jahr 2004 mussten wir fast 39,3 Mio. Tonnen Steinkohle aus anderen Ländern einkaufen, in Deutschland wurden lediglich rund 25,9 Mio. Tonnen abgebaut. Den Bedarf an Braunkohle kann Deutschland allerdings fast vollständig aus eigenen Vorkommen befriedigen. 2004 betrug die Förderung an Rohbraunkohle fast 182 Mio. Tonnen, lediglich 17.000 Tonnen wurden importiert, so das BMWi. Am Primärenergieverbrauch im Jahr 2004 hat damit die Steinkohle einen Anteil von 13,5 Prozent, die Braunkohle kommt auf 11,4 Prozent. Beim Erdgas war Deutschland, ähnlich wie beim Erdöl, schon immer von Importen abhängig, allerdings ist diese Abhängigkeit in den letzten Jahren stetig gewachsen. Während 1990 Gas für rund 573 Mrd. Kilowattstunden (k/Wh) im Ausland eingekauft wurde, stieg das Volumen im Jahr 2004 auf circa 942 Mrd. k/Wh, so das BMWi. Damit wurden rund 84 Prozent des Aufkommens nach Angaben des Bundesverbands der deutschen Gas- und Wasserwirtschaft im Jahr 2004 importiert. Besonders wichtiger Lieferant ist Russland. Größere Erdgaslieferanten sind außerdem Norwegen mit 24 Prozent und die Niederlande mit 19 Prozent Anteil am deutschen Verbrauch. Auf Großbritannien, Dänemark und weitere Länder entfallen sechs Prozent. Aus dem Inland stammen 16 Prozent des Erdgases, das vor allem in Niedersachsen gefördert wird. Erdgas war zu 22,4 Prozent am Primärenergieverbrauch im Jahr 2004 beteiligt. Die verschiedenen deutschen Atomkraftwerke erzeugten im Jahr 2004 insgesamt 167,1 Mrd. Kilowattstunden (KWh). Das entspricht einem Anteil von 27,5 Prozent an der deutschen Stromerzeugung und 12,6 Prozent am Primärenergieverbrauch. Die verschiedenen regenerativen Energien können den deutschen Bedarf derzeit nur zu einem verschwindend geringen Teil decken. Im Jahr 2004 hatten alle erneuerbaren Energieträger einen Anteil von 3,6 Prozent am gesamten Primärenergieverbrauch. Allerdings betrug dieser Anteil im Jahr 1990 gerade einmal 1,9 Prozent, wie die Statistik des BMWi aufzeigt. Bundesministerium für Wirtschaft und Technologie Die "Energiedaten" sind eine Sammlung aktueller Daten zur Energieversorgung aus zuverlässigen heimischen und internationalen Quellen. Alternatvie zu fossilen Brennstoffen In den letzten Jahren setzte sich in Politik und Wirtschaft langsam die Erkenntnis durch, dass die fossilen Brennstoffe irgendwann verbraucht sind und fossile Energieträger aufgrund der stetig steigenden Nachfrage immer teurer werden. Daher hat die neue Bundesregierung im Koalitionsvertrag unter anderem das Ziel festgeschrieben, den Anteil der erneuerbaren Energien am deutschen Primärenergieverbrauch bis zum Jahr 2010 auf 4,2 Prozent und bis 2020 auf zehn Prozent zu erhöhen. Ihr Anteil am Stromverbrauch soll bis 2010 auf 12,5 Prozent und bis 2020 auf mindestens 20 Prozent steigen. Gesetzliche Grundlagen Dazu hatte bereits die alte Regierung, neben der Vergütung von ins Netz eingespeistem Strom aus erneuerbaren Energien nach dem Erneuerbare-Energien-Gesetz (EEG), verschiedene Förderprogramme ins Leben gerufen. Zwar will die schwarz-rote Bundesregierung das EEG in seiner Grundstruktur fortführen, zugleich aber die wirtschaftliche Effizienz der einzelnen Vergütungen bis 2007 überprüfen. Vom Stand-by-Gerät bis zur Industrieanlage In der Steigerung der Energieeffizienz von Gebäuden, Geräten, Fahrzeugen, Kraftwerken und Industrieanlagen sieht die Bundesregierung ein "riesiges Potenzial" zur wirtschaftlichen Energieeinsparung. Sie will daher unter anderem die Energieeffizienz der Volkswirtschaft konsequent steigern, um bis 2020 eine Verdopplung der Energieproduktivität gegenüber 1990 zu erreichen. Förderprogramme und Forschungsinvestitionen Im Rahmen einer Innovationsinitiative "Energie für Deutschland" will die Regierung die Ausgaben für die Energieforschung schrittweise verstärken. Davon sollen erneuerbare Energien und Biomasse, Effizienztechnologien bei der Nachfrage, zentrale und dezentrale Effizienztechnologien bei der Energieerzeugung und ein nationales Innovationsprogramm zu Wasserstofftechnologien (einschließlich Brennstoffzellen) gefördert werden. Doch um den von Rot-Grün beschlossenen Ausstieg aus der Atomkraft scheint sich ein grundlegender Konflikt anzubahnen. Angesichts des steigenden Energiebedarfs und der immer höheren Energiekosten wurden in der Union Stimmen laut, die ein "Umdenken" der Sozialdemokraten und eine Verlängerung der Laufzeiten von Atomkraftwerken fordern.

  • Politik / WiSo / SoWi / Wirtschaft
  • Sekundarstufe II, Sekundarstufe I

Energie mit Erik und Tina entdecken

Unterrichtseinheit

Die Schülerinnen und Schüler lernen Erik und Tina kennen und entdecken mit ihnen gemeinsam typische Arbeitsaufgaben eines Elektronikers und einer Elektronikerin. Dabei setzen sie sich auch spielerisch und entdeckend mit aktuellen Fragen zu erneuerbaren Energien und Nachhaltigkeit auseinander. Das Unterrichtsmaterial vermittelt Schülerinnen und Schülern mithilfe der Figuren Erik und Tina grundlegendes Wissen zu den Aufgaben, dem Arbeitsalltag und den Arbeitsmitteln von Elektroniker/-innen. Dabei geht es auch um die Themen Elektromobilität und Energiegewinnung. Einen Schwerpunkt bildet hier auch die altersgerechte Auseinandersetzung mit erneuerbaren Energien. Neben Erik und Tina als Identifikationsfiguren sorgen Lückentexte, Bildergeschichten, Zuordnungsaufgaben oder ein Memory für die spielerische und zugleich handlungsorientierte Auseinandersetzung. Durch wechselnde Sozialformen wird darüber hinaus der Kompetenzaufbau gefördert. Die vorliegende Unterrichtseinheit "Energie mit Erik und Tina entdecken" richtet sich an Schülerinnen und Schüler der Grundschule, insbesondere an die Klassenstufen 3 und 4. Sie baut auf der Unterrichtseinheit "Erik und Tina, die Elektroniker" auf, kann aber auch unabhängig von dieser genutzt werden. Die Lernenden erarbeiten sich grundlegende Informationen zum Beruf des Elektronikers/der Elektronikerin. Als Identifikationsfiguren dienen Erik und Tina. Mit ihrer Hilfe erfahren die Lernenden, wie der Arbeitsalltag der beiden Elektroniker/-innen aussieht und welche typischen Aufgaben sie haben. Darüber hinaus erfahren die Schülerinnen und Schüler, wie Strom gewonnen wird. Im Mittelpunkt stehen dabei vor allem nachhaltige Möglichkeiten wie Windkraft, Sonnenenergie, Erdwärme, Wasserkraft oder mithilfe einer Wärmepumpe. Auf dieser Grundlage setzen sie sich im gemeinsamen Austausch mit dem Begriff und den Merkmalen "erneuerbare Energie" auseinander. Ziel ist es, dass sie erkennen, dass erneuerbare Energien vor dem Hintergrund des menschlichen Zeithorizonts nahezu unerschöpflich zur Verfügung stehen oder sich verhältnismäßig schnell erneuern. Verschiedene didaktische Angebote, wie Lückentexte, Bildergeschichten, Zuordnungsaufgaben oder ein Memory ermöglichen den Schülerinnen und Schülern einen abwechslungsreichen und handlungsorientierten Einstieg. Sie können in Einzel- oder Gruppenarbeit, aber auch im Plenum bearbeitet werden. Vertiefende Aufgaben dienen der Differenzierung. Lehrplanbezug Die Themen Elektrizität und Energie sind elementare Lehrplanbestandteile des Unterrichts in der Grundschule aller deutschen Bundesländer. Hier werden den Kindern erste Grundkenntnisse im Fach Sachkunde/Sachunterricht/Heimat- und Sachkunde vermittelt. Diese Vorgaben greift die Unterrichtseinheit auf. Sie vermittelt sowohl Sachinformationen regt aber auch zum handlungsorientierten, entdeckenden Lernen an und fördert durch Diskussionsanregungen die Reflexionsfähigkeit. Einsatzmöglichkeiten Ganz gleich, ob Präsenzunterricht oder hybrides Lernen: "Energie mit Erik und Tina entdecken" eignet sich besonders für den Sachkundeunterricht. In Abhängigkeit der zur Verfügung stehenden Zeit können sowohl einzelne Aspekte der Unterrichtseinheit als auch alle Themen der Unterrichtseinheit behandelt werden. Darüber hinaus bieten auch Projektwochen Einsatzmöglichkeiten. Fachkompetenz Die Schülerinnen und Schüler erkennen, wie Strom entsteht und wie man sich sicher im Umgang mit Strom verhält. kennen Möglichkeiten der nachhaltigen Stromgewinnung diskutieren Vorteile einer Stromgewinnung mithilfe erneuerbarer Energien. erfahren, dass Haushalte nicht nur Strom konsumieren, sondern auch selbst produzieren können. tragen zusammen, wie man sich bei einem Stromausfall verhält. erkennen, dass Menschen unterschiedliche Fähigkeiten und Interessen haben. lernen den Beruf des Elektronikers/der Elektronikerin kennen. erkennen, dass auch Mädchen eine Ausbildung als Elektronikerin ergreifen und in diesem Beruf arbeiten können. setzen sich altersangemessen mit dem Arbeitsalltag und den typischen Aufgaben von Elektroniker/-innen auseinander. Medienkompetenz Die Schülerinnen und Schüler analysieren Texte zielgerichtet entsprechend einer Aufgabenstellung. lernen, Medien zur Informationsbeschaffung zu nutzen. üben sich darin, wichtige von unwichtigen Informationen zu unterscheiden und wichtige Inhalte aus einem Medienbeitrag zu extrahieren. erkennen die Interdependenz von Bild- und Textinformationen. Sozialkompetenz Die Schülerinnen und Schüler trainieren im Rahmen von Partner- beziehungsweise Gruppenarbeit ihre Zusammenarbeit mit anderen Personen. lernen das strukturierte Erfassen von Informationen aus Sachtexten. lernen Diskussionen argumentativ und rational zu führen. schulen im Rahmen von Diskussionen die eigene Ausdrucksfähigkeit und aktives Zuhören. stärken ihr Gemeinschaftsgefühl in der Klasse.

  • Fächerübergreifend / Technik / Sache & Technik / Ich und meine Welt / Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Primarstufe

Memory: Werkzeuge von Elektronikerinnen und Elektronikern

Interaktives

Mithilfe dieses Memorys lernen die Schülerinnen und Schüler typische Werkzeuge von Elektronikerinnen und Elektronikern kennen. Einfach auf die Kärtchen klicken und die Bilder typischer Werkzeuge eines Elektronikers / einer Elektronikerin der passenden Bezeichnung zuordnen. Spielzüge und Zeit werden automatisch mitgezählt. Die interaktive Anwendung ist Teil der Unterrichtseinheit "Energie mit Erik und Tina entdecken" . Die Lernenden erarbeiten sich der Unterrichtseinheit "Energie mit Erik und Tina entdecken" grundlegende Informationen zum Beruf des Elektronikers/der Elektronikerin. Als Identifikationsfiguren dienen Erik und Tina. Mit ihrer Hilfe erfahren die Lernenden, wie der Arbeitsalltag der beiden Elektroniker/-innen aussieht und welche typischen Aufgaben sie haben. Darüber hinaus erfahren die Schülerinnen und Schüler, wie Strom gewonnen wird. Im Mittelpunkt stehen dabei vor allem nachhaltige Möglichkeiten wie Windkraft, Sonnenenergie, Erdwärme, Wasserkraft oder mithilfe einer Wärmepumpe. Auf dieser Grundlage setzen sie sich im gemeinsamen Austausch mit dem Begriff und den Merkmalen "erneuerbare Energie" auseinander. Ziel ist es, dass sie erkennen, dass erneuerbare Energien vor dem Hintergrund des menschlichen Zeithorizonts nahezu unerschöpflich zur Verfügung stehen oder sich verhältnismäßig schnell erneuern. Verschiedene didaktische Angebote, wie Lückentexte, Bildergeschichten, Zuordnungsaufgaben oder das oben aufgeführte Memory ermöglichen den Schülerinnen und Schülern einen abwechslungsreichen und handlungsorientierten Einstieg. Sie können in Einzel- oder Gruppenarbeit, aber auch im Plenum bearbeitet werden. Vertiefende Aufgaben dienen der Differenzierung. Die Unterrichtseinheit "Energie mit Erik und Tina entdecken" eignet sich besonders für den Sachkundeunterricht. In Abhängigkeit der zur Verfügung stehenden Zeit können sowohl einzelne Aspekte der Unterrichtseinheit als auch alle Themen der Unterrichtseinheit behandelt werden. Darüber hinaus bieten auch Projektwochen Einsatzmöglichkeiten.

  • Technik / Sache & Technik / Ich und meine Welt / Fächerübergreifend
  • Primarstufe

Zukunft nachhaltig gestalten: SHK-Handwerk

Fachartikel

Dieser Fachartikel thematisiert einen handwerklichen Bereich, der für Schülerinnen und Schüler, die sich für Nachhaltigkeit, Klimawandel und zukunftsorientierte Gesellschaftsaufgaben begeistern, besonders interessant sein kann: das Sanitär-Heizung-Klima-Handwerk (kurz: SHK). Schülerinnen und Schüler kennen dies, denn alle, die schon einmal einen langen Spaziergang im Winter gemacht haben, wissen: Irgendwann hilft auch der wärmste Wintermantel nicht mehr, man fröstelt und freut sich auf ein geheiztes Zuhause. Kaum vorstellbar, wie ungemütlich es wäre, wenn man plötzlich in eine kalte Wohnung käme. Die Heizung ist ausgefallen und man hat auch kein warmes Wasser mehr. Genau hier kommen dann die Fachkräfte wie Anlagenmechaniker/-innen für SHK, Ofen- und Luftheizungsbauer/-innen ins Spiel. Sie gehören alle der sogenannten SHK-Branche an und sind im Falle einer kaputten Heizung der Ansprechpartner der Wahl. Serviceorientierung ist dabei wie in vielen anderen Berufen innerhalb und außerhalb des Handwerks auch im SHK-Handwerk essenziell. Man stelle sich nur einmal vor, man müsste bei einer defekten Heizung in einer kalten Wohnung sitzen oder kein warmes Wasser käme aus der Leitung. Aber nicht nur für ein warmes Zuhause im Winter sind diese Fachkräfte von hoher Bedeutung. Sie leisten ebenso einen großen Beitrag zur deutschlandweiten Energiewende, indem sie beispielsweise private Heizanlagen auf- beziehungsweise umrüsten mit nachhaltigeren, klimafreundlicheren Anlagen. Denn eine zeitnahe Umstellung auf eine nachhaltige Wärmeversorgung ist besonders wichtig, um die Ziele der energetischen Umstrukturierung zu erreichen. Für Schülerinnen und Schüler, die sich besonders für ein nachhaltiges Leben auf unserem Planeten interessieren, kann dieser Beruf attraktiv sein, können sie doch aktiv die Energiewende mitgestalten und sich für mehr Nachhaltigkeit einsetzen. Noch heute gehören fossile Energiequellen wie Braun- oder Steinkohle, Erdgas oder Erdöl zu den am meisten verwendeten Energieträgern. Sie dienen nicht nur der Nutzung von Fahrzeugen, sondern sind auch Quellen für Strom- und Heizenergie. Vermehrt sollen diese durch erneuerbare Energien aus Photovoltaikanlagen und Windrädern, Wasserkraft oder Biomasse ersetzt werden. Diese sind im Vergleich zu den fossilen Brennstoffen regenerativ. Das heißt, sie stehen in einem unendlichen Maß zur Verfügung oder wachsen in verhältnismäßig kurzer Zeit nach. Allerdings sieht es in der Realität leider noch ganz anders aus. Von insgesamt etwa 21 Millionen privater Heizungen, die die deutsche Bevölkerung mit Wärme und Warmwasser versorgen, sind 12 Millionen Heizkessel wahre "Energieschleudern" (Zentralverband Sanitär Heizung Klima 2020:5). In diesem Fall werden fossile Brennstoffe wie Heizöl, Kohle und Erdgas, genutzt, um Heizwärme zu erzeugen. Problematisch ist hier nicht nur ein ineffizienter Verbrauch an Energie, sondern auch ein erhöhter Ausstoß an Kohlenstoffdioxid.

  • Politik / SoWi
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Unterrichtsmaterial zum Lernspiel "Katis Strom-O-Mat"

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema erneuerbare Energien und Wetter basiert auf dem digitalen Lernspiel "Katis Strom-O-Mat". Die Unterrichtseinheit kann gut durch reale Experimente ergänzt werden.Erneuerbare Energien tragen in immer größerem Umfang zu unserer Stromversorgung bei. Auf vielen Hausdächern finden sich Solarmodule, und wer übers Land reist, sieht häufig Windkrafträder. Gerade bei den Windrädern ist es gut zu sehen: Sie produzieren nur Strom, wenn der Wind weht. Sonst stehen sie still. Dass erneuerbare Energien vom Wetter abhängig sind, ist das Kernthema des Online-Spiels "Katis Strom-O-Mat". Die Kinder müssen die Solarmodule nach dem Sonnenstand und das Windrad entsprechend der Windrichtung ausrichten. Bei ruhigem Wetter ist das kein Problem. Aber an manchen Tagen kann einem schon schwindelig werden, so schnell ändert sich das Wetter.Erneuerbare Energien sind in zunehmendem Maße im Alltag der Kinder präsent. Daher knüpft die Unterrichtseinheit in vielen Punkten an Begegnungen und Erfahrungen der kindlichen Lebenswelt an. Nach einem einführenden Gespräch rund um das Thema "Erneuerbare Energien" können die Kinder das Lernspiel "Katis Strom-O-Mat" ausprobieren. Es macht den Kindern grundlegende Aspekte erneuerbarer Energien begreiflich und animiert sie, das Thema anhand realer Versuche abseits des Computers zu vertiefen. Arbeit mit dem Lernspiel: Virtuelle Stromerzeugung Die Kinder bedienen Katis Stromerzeugungsmaschine und sorgen dadurch für den Betrieb von Radio, Lampe, Fön und Backofen. Erneuerbare Energien erforschen abseits des Computers Das virtuelle Ausprobieren kann gut mit Forschungsaktivitäten abseits des Computers kombiniert werden. Pädagogische Leitlinien der Stiftung Begleiten und unterstützen Sie die Kinder in ihrer natürlichen Neugier an Phänomenen aus ihrem Alltag. Fachkompetenz Die Schülerinnen und Schüler wissen, dass man mit Sonne, Wind und Wasser Strom erzeugen kann. erfahren, dass die Stromerzeugung vom Wetter abhängt. erfahren, dass verschiedene Verbraucher unterschiedlich viel Strom benötigen. lernen, dass Energie umgewandelt werden kann. Sozialkompetenz Die Schülerinnen und Schüler treffen Vereinbarungen über die Nutzung der zur Verfügung stehenden Computer. Da erneuerbare Energien in zunehmendem Maß auch im Alltag präsent sind, kann gut an das Vorwissen der Kinder angeknüpft werden. Dabei sollte auf regionale Gegebenheiten Rücksicht genommen werden. Steht in der Nähe eine Windkraftanlage? Oder gibt es eine Staumauer in erreichbarer Nähe? Vielleicht gibt es ja Kinder, auf deren Zuhause Solarzellen montiert sind? Was wissen die Kinder bereits darüber? Wie würden die Kinder eine Stromerzeugungsmaschine bauen? Zugang Das Lernspiel "Katis Strom-O-Mat" ist integriert in einen interaktiven Forschergarten, der die Kinder zu eigenständigen Entdeckungsreisen animiert. Die Figuren Juli und Tim begleiten sie dabei. Zum Spiel gelangt man über verschiedene Zugänge: über das Icon mit Kati an ihrem "Strom-O-Mat" haben Sie direkten Zugang zum Spiel (Abbildung 1, zum Vergrößern bitte anklicken). Wenn Sie im Gartenkompass (Menüpunkt am unteren Rand des Bildschirms) auf "Ausprobieren" klicken, gelangen Sie zu einer Übersicht über alle Lernspiele der Seite. Dort gibt es auch einen Link zu Katis Strom-O-Mat. Technische Hinweise Für die Nutzung der Lernspiele auf der Kinder-Website muss der kostenlose Adobe Flash Player installiert sein. Aufgrund der grafischen Benutzeroberfläche kann es beim erstmaligen Öffnen der Seite zu einer längeren Ladezeit kommen. Die Dauer hängt von Ihrer Internetverbindung ab. Ist die Seite einmal geladen, ist die Navigation einfach und schnell möglich. Einführende Geschichte Wie jedes Lernspiel in der Forscherwelt, so beginnt auch Katis Strom-O-Mat mit einer Geschichte. Der Inhalt der Geschichte wird im Spiel selbst aufgegriffen und weitergeführt. Das Intro kann auch übersprungen werden. Tutorial erläutert die Bedienung Das Spiel selbst beginnt mit einem Tutorial, das Schritt für Schritt die Bedienelemente erläutert. Für die Bedienung des Strom-O-Mats stehen punktförmige Klickflächen zur Verfügung. Die Solarzellen und die Windkraftanlage können so ausgerichtet werden. Das Wasserkraftwerk lässt sich mit einem entsprechenden Klickpunkt einschalten. Angezeigt werden zudem der Sonnenstand, der sich entsprechend der Tageszeit ändert, und das Wetter in Form von ziehenden Wolken, aus denen es auch mal regnen kann. Das Wetter ändert sich ständig Nach einem einführenden Tutorial stehen den Kindern vier verschiedene Schwierigkeitsstufen zur Verfügung. Je nach Stufe ändert sich einerseits die Häufigkeit der Wetterwechsel, andererseits aber auch das Maß des benötigten Stroms. Die Kinder lernen also, dass die Stromerzeugung aus erneuerbaren Energien von den Wetterverhältnissen abhängt. Sie lernen auch, dass unterschiedliche Stromverbraucher (Lampe, Radio, Fön und Herd) unterschiedlich viel Strom verbrauchen. Dokumente zum Ausdrucken Wer mag, kann sich nach Abschluss von Schwierigkeitsstufe vier eine Urkunde ausdrucken und damit belegen, dass sie oder er Katis Strom-O-Mat erfolgreich beendet hat. Meinung der Kinder Sprechen Sie mit den Kindern über Katis Strom-O-Mat. Hat er so funktioniert, wie sie es erwartet haben? Was war anders? Kennt jemand Unterschiede zu echten Solarzellen, Windkraftanlagen oder Wasserkraftwerken? Welche sind das? Reduziertes Abbild der Realität Natürlich kann das Spiel die Realität nicht eins zu eins abbilden. Folgende Aspekte sollten im Anschluss thematisiert werden: Solarzellen In der Praxis gibt es nur sehr wenige Solaranlagen, die der Sonne nachgeführt werden. Dementsprechend schwankt die Stromausbeute mit dem Tagesverlauf stark. Und bei schlechtem Wetter liefern echte Solarzellen nur sehr wenig Strom. Das ist im Spiel anders, damit die Kinder leichter ihr Ziel erreichen können. Windkraftanlage Echte Windkraftanlagen richten sich automatisch in Windrichtung aus. Sie müssen also nicht von Hand nachgestellt werden, wie das im Spiel der Fall ist. Wasserkraft Natürlich kann man Wasserkraft nur nutzen, wenn es vorher geregnet hat. Aber in der Praxis ist der räumliche und zeitliche Zusammenhang nicht so eng, dass man eine Anlage einschaltet wenn es regnet. Der Niederschlag kann schon vor langer Zeit in einer ganz anderen Region gefallen sein. Zum Beispiel wenn mit einer Staumauer das Wasser gespeichert wird, das zu Beginn des Winters als Schnee in den Bergen fiel. Wetter Der Monat April ist berühmt für seine Wetter-Eskapaden. Das ist aber noch gar nichts gegen Level 4 bei Katis Strom-O-Mat, wo sich stündlich die Windrichtung und Bewölkung ändert. So wird das Spiel anspruchsvoller. Realistisch sind diese Wetterwechsel natürlich nicht. Speicherung Das Stromangebot aus erneuerbaren Energien hängt vom Wetter ab und passt nicht unbedingt zum Bedarf der Verbraucher. Wohin also mit dem Strom aus Windkraftanlagen einer windigen Nacht? Wie kann der Strom gespeichert werden? Dies ist derzeit das größte Problem beim Ausbau der erneuerbaren Energien. Pumpspeicherkraftwerke können dieses Ungleichgewicht nur zu einem kleinen Teil abpuffern. Hilfreiche Texte Im Rahmen der Nachbesprechung können folgende Texte, die sich auch in der Forscherwelt befinden, hilfreich sein. Für besonders wissbegierige Kinder stehen auf der Kinder-Website weiterführende Lesetexte zur Verfügung. Sie sind aus dem Spiel über den Link "Mehr erfahren" zugänglich. Oder über den Knopf "Gartenkompass" am unteren Rand des Bildschirms. Die Kraft der Sonne sichtbar machen Es gibt verschiedene Möglichkeiten, die Kraft der Sonne spürbar oder sichtbar zu machen. Am einfachsten geht es mit Solarspielzeug, bei dem der Strom der integrierten Solarzellen einen Motor antreibt. Je nachdem, was der Motor antreibt, dreht sich zum Beispiel der Rotor eines Spielzeughubschraubers oder fährt ein kleines Auto los. Muss die Solarzelle direkt auf die pralle Sonne gerichtet sein? Was passiert, wenn die Ausrichtung zur Sonne geändert wird? Und funktioniert die Solarzelle auch mit künstlichem Licht? Der Steh-auf-Luftballon Sie brauchen eine große leere Flasche. Die Flasche muss zu Beginn möglichst kalt sein. Lassen Sie die Kinder einen Luftballon über die Öffnung stülpen. So ausgestattet muss die Flasche nun in die Sonne gelegt oder gestellt werden. Die Sonnenstrahlen erwärmen die Luft in der Flasche. Dadurch dehnt sich die Luft aus. Da sich die Flasche nicht oder nur sehr gering ausdehnt, strömt die Luft in den Ballon und beginnt, ihn aufzupusten. Überlegen Sie mit den Kindern, wie dieser Effekt verstärkt werden kann. Wie kann möglichst viel Wärme eingefangen werden? Lassen Sie die Kinder mit weißem und schwarzem Papier experimentieren. Vielleicht wird jemand von selbst auf die Idee kommen, schwarzes Papier in die Flasche zu legen. Spielt die Größe der Flasche eine Rolle? Lassen Sie es die Kinder ausprobieren. Der Solar-Bräter Kleiden Sie mit den Kindern das Innere eines Brotkorbs mit Alufolie aus, stechen Sie einen langen Nagel von hinten durch die Mitte, auf den Sie dann zum Beispiel ein Stück Käse oder einen Marshmallow stecken. Richten Sie den "Solar-Bräter" nach der Sonne aus und warten Sie, bis es brutzelt. Wenn genügend Sonnenstrahlung vorhanden ist und die Ausrichtung passt, kann man zuschauen wie sich das "Bratgut" verändert. Spätestens, wenn die Kinder Katis Strom-O-Mat bedient haben, wissen sie, dass man mit Windrädern Strom erzeugen kann. Das ist bereits eine erste Lernerfahrung. Die Funktionsweise ist für Kinder im Grundschulalter allerdings sehr abstrakt. Anhand eines einfachen Modells, das die Kinder selbst basteln können, lässt sich praktische Forschung betreiben. Dadurch ergeben sich zusätzliche Lernerfahrungen: Nicht nur der Wind kann Dinge bewegen, auch das Wasser kann etwas in Bewegung setzen. Wasserräder und Wassermühlen drehen sich aufgrund der Kraft des fließenden Wassers. Dabei wird die geradlinige Bewegung des Wassers in eine Drehbewegung übersetzt. Über einen Generator kann diese Drehbewegung in Strom umgewandelt werden. Für Juli, Tim und die anderen Kinder in der virtuellen Forscherwelt ist ein Stromausfall der Anlass zur Beschäftigung mit Katis Strom-O-Mat. Auch in der Realität bietet ein Tag ohne Strom zahlreiche Gesprächs- und Handlungsanlässe. Es gibt kein elektrisches Licht, es können keine elektrischen Geräte benutzt werden und die Heizung bleibt kalt. Am eindrucksvollsten ist es, wenn für diesen Tag tatsächlich die entsprechenden Sicherungen ausgeschaltet werden - so können die Mädchen und Jungen durch eigenes Ausprobieren direkt überprüfen, welche Geräte Strom benötigen und welche nicht, und auch ein Schummeln ist ausgeschlossen. Auch wenn ein gewisser Aufwand damit verbunden ist, der Besuch von echten Anlagen zur Gewinnung erneuerbarer Energien lohnt sich. Sicherlich steigt dadurch die Motivation zur Beschäftigung mit dem Thema. Und die Kinder bekommen eine Vorstellung von den Dimensionen echter Anlagen. Vielleicht gibt es ja auch Eltern, die eine Solaranlage auf dem eigenen Dach haben und diese gern zeigen und erläutern. Oder sie wenden sich an den regionalen Stromversorger. Viele Stadtwerke engagieren sich im Bildungsbereich und bieten Führungen an. Naturwissenschaftliche und technische Phänomene sind Teil der Erfahrungswelt von Kindern: Morgens klingelt der Wecker, die Zahncreme schäumt beim Zähneputzen, das Radio spielt Musik, der heiße Kakao dampft in der Tasse, auf dem Weg zur Schule werden blühende Blumen beobachtet, die gestern noch geschlossen waren. Kinder wollen ihre Welt im wahrsten Sinne des Wortes "begreifen" und mehr über Naturphänomene erfahren. Diese vielfältigen Anlässe im Alltag der Kinder lassen sich auch für die pädagogische Arbeit nutzen. Die Fragen der Kinder spielen deshalb beim Forschen und Experimentieren eine zentrale Rolle. Die Bildungsinitiative "Haus der kleinen Forscher" möchte vor allem Lernfreude und Problemlösekompetenzen fördern. Dabei sollen Kinder gerade nicht nach Erwachsenenverständnis "richtige" Erklärungen für bestimmte Phänomene lernen und diese auf Abruf wiedergeben können. Vielmehr möchte die Stiftung Pädagoginnen und Pädagogen Möglichkeiten an die Hand geben, um die Kinder bei einem forschenden Entdeckungsprozess zu begleiten. Dazu gehören unter anderem das Beobachten, Vergleichen und Kategorisieren, das sich Kinder zunutze machen, um die Welt um sich herum zu erkunden. Die Stiftung "Haus der kleinen Forscher" hat folgendes Bild vom Kind. Es prägt das pädagogische Handeln und beinhaltet die Vorstellung darüber, auf welche Weise Kinder lernen: Kinder sind reich an Vorwissen und Kompetenzen. Kinder wollen von sich aus lernen. Kinder gestalten ihre Bildung und Entwicklung aktiv mit. Jedes Kind unterscheidet sich durch seine Persönlichkeit und Individualität von anderen Kindern. Kinder haben Rechte. Bildung als sozialer Prozess Bildung ist ein sozialer Prozess. Kinder lernen im Austausch mit und von anderen, durch Anregung, durch individuelle Erkundung und durch gemeinsame Reflexion. Kinder lernen nicht nur von Erwachsenen, sondern auch mit und durch Zusammenarbeit mit anderen Kindern. Der pädagogische Ansatz der Stiftung ist von den zwei pädagogischen Leitlinien Ko-Konstruktion und Metakognition geprägt. Ko-Konstruktion Ko-Konstruktion bedeutet, dass Kinder durch die Zusammenarbeit mit anderen lernen. Lernprozesse sollten grundsätzlich von Kindern und pädagogischen Fachkräften gemeinsam "konstruiert" werden. Metakognition Während der gemeinsamen Gestaltung von Bildungsprozessen kann mit den Kindern thematisiert werden, dass sie lernen, was sie lernen und wie sie lernen. Dies geschieht über die Auseinandersetzung mit den eigenen kognitiven Prozessen (Gedanken, Meinungen, Einstellungen und so weiter), also das Wissen einer lernenden Person über ihr Wissen, ihre neugewonnenen Erkenntnisse und den Weg dorthin. An das Vorwissen der Kinder anknüpfen Die pädagogischen Fachkräfte bekommen eine Vorstellung von den Vorerfahrungen und Gedankengängen der Kinder, wenn sie ihnen genau zuhören, sie beobachten und nach ihren eigenen Vermutungen fragen. Mit den Kindern sprechen Die pädagogischen Fachkräfte unterstützen die Kinder durch Dialoge, den nächsten geistigen Entwicklungsschritt zu machen. Nicht erklären, sondern (hinter-)fragen! Die Kinder zum Nachdenken anregen Wenn Kinder einmal vermeintlich "falsche" Konzepte heranziehen, zum Beispiel "Der Strom ist schwarz", dann wird daraus ersichtlich, wo das Kind gerade steht. Aufgabe ist es, Kinder bei geeigneter Gelegenheit darauf aufmerksam zu machen, dass es zum Beispiel auch weiße Kabel gibt. Die pädagogische Fachkraft bringt die Kinder auf diese Weise dazu, selbst eine neue Theorie zu entwickeln. Kindern (Frei-)Raum zum Forschen geben Auf der Internetseite der Stiftung finden Sie unter "Forschen - Pädagogik - Pädagogischer Ansatz" Tipps zur Gestaltung von Forscherräumen in der Kita, welche auch auf Grundschulen übertragbar sind. Die gemeinnützige Stiftung "Haus der kleinen Forscher" unterstützt seit 2006 pädagogische Fachkräfte dabei, den Forschergeist von Mädchen und Jungen qualifiziert zu begleiten. Die Bildungsinitiative startete zunächst mit dem Fokus auf Kindern im Kindergartenalter. Seit 2011 können auch Horte und Grundschulen beim "Haus der kleinen Forscher" mitmachen. Die pädagogischen Leitlinien gelten für beide Zielgruppen. Die Themen und Phänomene, die die Kinder interessieren, bleiben ähnlich oder dieselben - egal ob Kita-Kind, Grundschul-Kind oder große Forscherin. Allerdings nimmt die Komplexität der Inhalte zu, um sie an die Kompetenzen und das höhere Vorwissen der sechs- bis zehnjährigen Kinder anzupassen. Ältere Kinder haben eine andere Verständnisebene - aus Staunen soll Verstehen werden.

  • Technik / Sache & Technik / Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Primarstufe, Sekundarstufe I, Sekundarstufe II, Spezieller Förderbedarf, Berufliche Bildung

Windenergie: Windkraft im Aufwind

Unterrichtseinheit

Die Nutzung regenerativer Energiequellen hat in den vergangenen Jahren stark zugenommen. Neben Wasserkraft, Fotovoltaik und Geothermie spielt die Windkraft eine zunehmende Rolle bei der Stromversorgung. In dieser Unterrichtseinheit erarbeiten sich Schülerinnen und Schüler die Grundlagen der Windenergie. Wind gibt es überall. Nicht immer weht er gleichmäßig und nicht überall gleich stark, aber er ist vorhanden und grundsätzlich nutzbar. Das wird auch gemacht, wie unschwer an der Zunahme von Windparks im Landschaftsbild in den letzten 15 Jahren zu erkennen ist. Allerdings ist festzustellen, dass die Anzahl solcher Anlagen in der nördlichen Hälfte Deutschlands bedeutend höher ist als in der südlichen. Das liegt vor allem am Nord-Süd-Gefälle des ?Windangebots?. Ist die durchschnittliche Windgeschwindigkeit zu gering, ist der Betrieb von Windenergieanlagen nach heutigen Maßstäben und beim derzeitigen Stand der Technik unwirtschaftlich. In dieser Unterrichtseinheit betätigen sich die Schülerinnen und Schüler sozusagen als "Windscouts" und erkunden geeignete Regionen für die Errichtung von Windenergieanlagen. Ein Ziel dieser Unterrichtseinheit ist, dass sich die Schülerinnen und Schüler die Bedeutung, die regenerative Energiequellen für die Stromversorgung mittlerweile haben, erarbeiten. Ein weiteres Ziel liegt darin, herauszufinden, worin die räumlich unterschiedliche Nutzung der Windenergie begründet ist. Die Lernenden entwickeln und begründen Vorschläge für Regionen, die für den Betrieb von Windenergieanlagen in Deutschland bevorzugt genutzt werden können, und vergleichen ihre Vorschläge mit den aktuellen Schwerpunktregionen der Windenergienutzung. Sie führen dazu Informationen aus unterschiedlichen Quellen zusammen. Die Unterrichtseinheit kann in Einzel- oder auch in Gruppenarbeit durchgeführt werden. Ablauf der Unterrichtseinheit Die Schülerinnen und Schüler erarbeiten sich die natürlichen Grundlagen und die Bedeutung der Nutzung der Windenergie mithilfe vorgegebener Internetadressen. Fachkompetenz Die Schülerinnen und Schüler sollen Grundwissen zu Funktion und Betrieb von Windenergieanlagen erwerben. Gründe erarbeiten für die räumlich ungleichmäßige Nutzung der Windkraft und für die Bestrebungen, vermehrt Windenergie im Offshore-Bereich zu gewinnen. Medienkompetenz Die Schülerinnen und Schüler sollen unterschiedliche Informationen verknüpfen und bewerten und sich mit mit grafischen Darstellungsformen auseinander setzen. Sozialkompetenz Die Schülerinnen und Schüler sollen lernen, ihren Mitschülerinnen und Mitschülern gegenüber ihre Ansicht zu verschiedenen Sachverhalten zu vertreten und mit ihnen mit verständlichen und nachvollziehbaren Argumenten zu diskutieren. lernen, sich der Kritik der anderen Lernenden zu stellen, mit Kritik umzugehen und damit ihre Kritikfähigkeit zu steigern. Thema Eine windige Angelegenheit: Die Nutzung der Energie des Windes Autor Dr. Gunnar Meyenburg Fach Geographie, Technik Zielgruppe Klasse 5 und 6 aller Schulformen, empfohlen für Gymnasium und Gesamtschule Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Rechner mit Internetzugang für Einzel- und Gruppenarbeit Selbst gesteuertes Lernen Wesentlicher Bestandteil der Unterrichtseinheit ist das selbst gesteuerte Lernen unter Nutzung ausgewählter Fachinformationen und eines Filmbeitrags im Web. Der Filmbeitrag vermittelt grundlegende Informationen über Windenergieanlagen und deren Betrieb und liefert damit eine Einführung in die Thematik. Im Fokus dieser Lerneinheit steht die Erarbeitung von elementarem Wissen über die Nutzung und Bedeutung der Windenergie für die Energieversorgung Deutschlands. Die Schülerinnen und Schüler recherchieren eigenständig anhand vorgegebener Webadressen die für die Bearbeitung der Aufgabenstellungen erforderlichen Informationen. Arbeitsinhalte Am Beispiel Deutschlands wird anhand von Quellen im Web die Suche nach besonders geeigneten Regionen für die Nutzung der Windenergie recherchiert. Die Schülerinnen und Schüler nutzen Kartenmaterial, um Teilregionen zu erkunden und hinsichtlich ihres Windpotenzials zu bewerten. Sie werden feststellen, dass es erhebliche regionale Unterschiede bei den durchschnittlichen Windgeschwindigkeiten gibt. Diese spiegeln sich schon jetzt deutlich in entsprechenden Unterschieden in der Intensität der Windenergienutzung wider. Sie werden sich weiterhin mit wichtigen, die Windgeschwindigkeit beeinflussenden Faktoren befassen. Auf diese Weise sollen Erkenntnisse gewonnen werden, die zu einem Verständnis für aktuelle Bemühungen führen, verstärkt Offshore-Windenergieanlagen zu bauen. Zur Einführung und zur Vermittlung elementarer Grundlagen der Nutzung der Windenergie sehen sich die Schülerinnen und Schüler einen kurzen Filmbeitrag im Web an. planet-schule.de: Strom aus Strömung Dieser 15-minütige Film des SWR demonstriert verschiedene Möglichkeiten, die Strömung von Wind und Wasser zur Stromerzeugung zu nutzen. Aufgabe Recherchiert zu folgender Frage: Warum wird mit dem Bau von Windenergieanlagen eine - wie viele meinen - "Verunstaltung" der Landschaft in Kauf genommen? Die Schülerinnen und Schüler werden mit den Herausforderungen Klimawandel und Endlichkeit fossiler und radioaktiver Energieträger konfrontiert. Sie befassen sich mit der Bedeutung regenerativer Energieträger für die Stromversorgung und setzen diese mit dem Anteil in Beziehung, die mit herkömmlichen Kraftwerken gewonnen wird. Dabei sollte eher die Relation zu einzelnen Energieträgern hervorgehoben werden als die zum Gesamtanteil an der Stromerzeugung. Weiterhin soll den Schülerinnen und Schülern insbesondere die Bedeutung der Windenergie vermittelt werden, auch im Vergleich zu anderen regenerativen Energieträgern. Materialien Grafiken zum Energieverbrauch und zur Energieerzeugung in Deutschland: wind-energie.de: Grafik "Anzahl der Windenergieanlagen in Deutschland" Die Website bietet zu allen Aspekten der Windenergienutzung Informationen in Form von Text, Statistiken und Bild. Auch zum Thema Offshore-Windparks werden Infos geboten. Aufgabe Erkundet die Windverhältnisse in Deutschland und findet Regionen mit Windverhältnissen, die sich für den Aufbau von Windparks eignen. Herangehensweise Die Schülerinnen und Schüler lokalisieren Regionen mit hoher durchschnittlicher Windgeschwindigkeit und versuchen, ihre Beobachtungen mit Faktoren wie Relief, Höhenlage und/oder Küstennähe in Beziehung zu setzen. Letztendlich schlagen sie Regionen vor, in denen der Betrieb von Windkraftanlagen aus ihrer Sicht besonders wirtschaftlich wäre, und vergleichen ihre Vorschläge mit den Standorten bestehender Anlagen oder Windparks. Materialien Grafiken zur räumlichen Verteilung der Windgeschwindigkeit, zu Standorten von Windparks und zum Relief: Karte Mittlere Windgeschwindigkeit in Westeuropa Die Website bietet zu allen Aspekten der Windenergienutzung Informationen in Form von Text, Statistiken und Bild. Auch zum Thema Offshore-Windparks werden Infos geboten. wikipedia.org: Topographische Karte Deutschlands Die Online-Enzyklopädie bietet eine topographische Karte von Deutschland an. wikipedia.org: Karte Windkraftanlagen in Deutschland Die Online-Enzyklopädie liefert auf ihrer Seite zur Windenergie vielfältige Informationen über Wind und Windenergienutzung. Aufgabe Warum werden derzeit Planungen zum Bau von Offshore-Windkraftanlagen stark vorangetrieben? Herangehensweise Die Schülerinnen und Schüler diskutieren zunächst darüber, warum Windkraftanlagen in Norddeutschland sehr viel häufiger anzutreffen sind als im Süden. Über die Erkenntnis, dass die topographischen Gegebenheiten einen starken Einfluss auf die Windgeschwindigkeit haben, arbeiten sie sich an die Thematik der Windenergienutzung im Offshore-Bereich heran. Grund für den derzeitigen Forschungs- und Entwicklungsaufwand ist, dass im der Küste vorgelagerten Bereich die Windgeschwindigkeiten höher und die Windverhältnisse insgesamt beständiger sind als an Land. Materialien Die folgenden Grafiken und Karten können zum Einsatz kommen: dewi.de: Folie "Status der Windenergienutzung in Deutschland" - Stand 30.06.2009 (PDF) Die Website des Instituts bietet Informationen über den Status der Windenergienutzung in Deutschland, über Forschung und Entwicklung, auch zum Thema Offshore-Windkraft. wind-energie.de: Windprofil Die Website bietet zu allen Aspekten der Windenergienutzung Informationen in Form von Text, Statistiken und Bild. Auch zum Thema Offshore-Windparks werden Infos geboten.

  • Geographie / Jahreszeiten
  • Sekundarstufe I

Brennstoffzellen - "saubere" Energie für Auto, Handy & Co?

Unterrichtseinheit

Mit Unterrichtsmaterialien der Max-Planck-Gesellschaft erarbeiten Schülerinnen und Schüler, wie Brennstoffzellen funktionieren und welche technischen Herausforderungen sie an die Forschung stellen. Auch die Frage, ob Brennstoffzellen-Autos automatisch umweltfreundlich sind, wird untersucht. An Bord eines Raumschiffs ist Platz Mangelware - und so stattete die NASA schon in der Mitte des vergangenen Jahrhunderts ihre Raumfahrzeuge mit kompakt gebauten und energieeffizienten Brennstoffzellen aus. Die "leise Knallgasreaktion" von Wasserstoff und Sauerstoff liefert Astronauten nicht nur Energie, sondern als einziges "Abfallprodukt" auch noch das lebenswichtige Wasser. Aber auch im Alltag wären Brennstoffzellen nützlich, da sie eine deutlich längere Lebensdauer als Batterien oder Akkus haben. In Laptops, Handys und MP3-Playern könnten sie Batterien und Akkus ersetzen. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) testet derzeit wasserstoffbetriebene Membran-Brennstoffzellen zur Notstromversorgung in Flugzeugen. Eine positive Umweltbilanz haben Brennstoffzellen aber nur, wenn der Wasserstoff umweltfreundlich erzeugt wird, zum Beispiel durch die Elektrolyse von Wasser mit Sonnenergie. Wenn Sie Theorie und Praxis miteinander verbinden möchten: Einige Schülerlabore bieten Experimente mit Brennstoffzellen an (siehe Links zum Thema ). Die Thematik bietet viele Anknüpfungspunkte an Lehrpläne (Redox- und Elektrochemie, Fähigkeit zur Beteiligung an gesellschaftlichen Diskursen über Naturwissenschaft und Technik) und eignet sich für einen fächerübergreifenden Unterricht. Die Materialien der Unterrichtseinheit werden durch Beiträge aus der GDCh-Wochenschau-Artikel zum Thema (Gesellschaft Deutscher Chemiker e.V.) ergänzt. Diese bieten weitere Details zur technischen Entwicklung und der möglichen zukünftigen Bedeutung von Brennstoffzellen. Themen der Unterrichtseinheit Laptops oder Handys, die von winzigen Brennstoffzellen gespeist werden, Kleinkraftwerke auf Wasserstoffbasis, die Wohnhäuser mit Energie und Wärme versorgen und umweltfreundliche "Wasserstoffautos" - Forscherinnen und Forscher entwickeln zurzeit immer neue Ideen, wie Brennstoffzellen im Alltag genutzt werden können. Allerdings sind die meisten Brennstoffzellen-Typen von der Serienreife noch weit entfernt. Zum einen fehlt es an den technischen Möglichkeiten zur umweltfreundlichen Herstellung von Wasserstoff. Das Ausweichen auf Methanol als Brennstoff könnte dabei helfen, die Technologie zu einer Alternative zu fossilen Brennstoffen werden zu lassen. Auf der Suche nach den perfekten Werkstoffen für die Brennstoffzelle von Morgen ist man zwar auf einem guten Weg - auch mithilfe der Nanochemie - aber eben noch nicht am Ziel. Bezug zur Nanotechnologie Damit die "kalte Verbrennung" von Wasserstoff funktioniert, müssen beide Elektroden der Brennstoffzelle mit einem Katalysator beschichtet sein. Am Max-Planck-Institut für Kohlenstoffforschung in Mühlheim an der Ruhr werden dafür Metall-Nanopartikel entwickelt, die für eine große katalytisch aktive Oberfläche sorgen. Die Metalloxid-Nanoteilchen werden zunächst auf einem Trägermaterial - das können feine Rußkörnchen sein - fixiert, danach zu einer porösen Elektrode zusammengepresst und anschließend zum Metall reduziert. Materialien der Max-Planck-Gesellschaft Die Materialien der Unterrichtseinheit sind ein Angebot der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Auf der Webseite max-wissen.de finden Sie weitere Materialien für den Unterricht und Hintergrundinformationen zu aktuellen Forschungsthemen aus Physik, Chemie, Biologie und Erdkunde. An allen max-wissen-Beiträgen sind Fachwissenschaftlerinnen und -wissenschaftler der Max-Planck-Gesellschaft beteiligt: Aktualität und fachliche Richtigkeit sind somit gewährleistet. Unterrichtsverlauf und Materialien Der Verlauf der Doppelstunde und die Anbindung des Themas an die Lehrpläne werden kurz skizziert. Hier finden Sie auch eine Übersicht der Materialien. GDCh-Wochenschau-Artikel zum Thema Die hier zusammengestellten Artikel (PDF-Download) bieten weitere Details zur technischen Entwicklung und der möglichen zukünftigen Bedeutung von Brennstoffzellen. Die Schülerinnen und Schüler sollen: Brennstoffzellen als alternative Energiequellen für Fahrzeuge oder Mobilfunkgeräte kennen lernen. die Umweltfreundlichkeit von Brennstoffzellen realistisch einschätzen können. das Funktionsprinzip einer Brennstoffzelle erarbeiten und erklären können. erkennen, welche Probleme Forscherinnen und Forscher auf dem Weg zum serienreifen Produkt noch überwinden müssen. Fast alle Schülerinnen und Schüler besitzen einen tragbaren Computer, ein Handy oder eine Digitalkamera. Mit der Meldung "Akku fast leer - bitte laden" sind sie daher vertraut. Das unerwünschte Phänomen wird als Einstieg in die Thematik genutzt: "Damit diese ärgerliche Meldung bald seltener wird, arbeiten Forscherinnen und Forscher intensiv an der Entwicklung von Brennstoffzellen." Der Unterrichtseinstieg schafft einen konkreten Bezug zur Lebenswelt der Schülerinnen und Schüler und sorgt so für (hoffentlich) großes Interesse. Er zeigt zudem, dass Forschung kein Selbstzweck ist, sondern auch einen konkreten Anwendungsbezug hat und das Leben der Menschen erleichtern kann. Selbsttätige Aneignung von Wissen Im Rahmen der ersten Erarbeitungsphase steht die selbstständige Informationsaneignung im Mittelpunkt des Unterrichts. Die Schülerinnen und Schüler sollen dabei nicht nur Text- und Bildmaterialien auswerten und Inhalte zusammenfassen, sie müssen die erarbeiteten Ergebnisse auch auf ein komplexes grafisches Schema übertragen. Um die selbsttätige Aneignung von Wissen zu forcieren, erledigen die Lernenden die Aufgaben in Kleingruppen (drei bis vier Personen). In der Diskussion mit den anderen Teammitgliedern sollen dabei mögliche Unklarheiten und Verständnisschwierigkeiten besprochen und beseitigt werden. Blick hinter die "Kulissen" der Forschung Da die Möglichkeiten des unmittelbaren Lernens beim Thema Brennstoffzellen eingeschränkt sind, sollen die Schülerinnen und Schüler im zweiten Teil der Unterrichtseinheit zumindest anhand eines Arbeitsblatts einen Blick in die spannende Welt der Brennstoffzellenforschung werfen. Anhand des Themas "Neue Membranen für bessere Brennstoffzellen" lernen sie, wie die noch vorhandenen Mängel der Brennstoffzellen beseitigt werden könnten, um zu einem besseren Produkt zu gelangen. Sie werden aber auch dafür sensibilisiert, dass noch viel Grundlagenforschung zu leisten ist, bis Brennstoffzellen zu einer wirklichen technischen Lösung im Alltag werden können. Die Lehrpläne der Bundesländer für das Fach Chemie bieten vielfältige Anknüpfungspunkte für den Einsatz der Materialien in der Sekundarstufe II. Hier einige Beispiele: Bedeutung der Chemie für die Gesellschaft und für die Bewältigung der aktuellen und zukünftigen Herausforderungen (Nordrhein-Westfalen) Von der Wasserelektrolyse über die Knallgasreaktion zur Brennstoffzelle (Nordrhein-Westfalen) Entwicklung der Fähigkeit, am gesellschaftlichen Diskurs über Naturwissenschaft und Technik teilzunehmen (Sachsen) Redoxreaktionen und deren Bedeutung für die Herstellung ortsunabhängiger Spannungsquellen (Bayern) Unter dem Leitgedanken "Erneuerbare Energien - Klimaretter oder teure Prestigeobjekte?" könnte ein fächerübergreifendes Unterrichtskonzept stehen, zu dem die hier vorgestellte Brennstoffzelleneinheit gut passen würde: Chemie Grundlegende Aspekte zu Brennstoffzellen und anderen erneuerbaren Energien, wie zum Beispiel Biokraftstoffe oder Biomasse, werden vorgestellt. Physik Hier steht neben Solarenergie und Strom aus Wasserkraft oder Windkraftanlagen vor allem die Kernfusion im Focus: Grundlagen und Schwierigkeiten der Umsetzung werden thematisiert. Biologie Hier werden ökologische Probleme untersucht, die sich aus der Nutzung erneuerbarer Energien ergeben, zum Beispiel die Auswirkungen von Windanlagen auf den Vogelzug oder die Folgen von Staudämmen für Flussökosysteme. Geographie, Wirtschaft Im Erdkundeunterricht nimmt das Thema Klima einen breiten Raum ein: anthropogene Ursachen für den Treibhauseffekt und die globale Erwärmung werden diskutiert. Auch die Abhängigkeit der Weltwirtschaft von fossilen Brennstoffen sollte thematisiert werden. Politik Die Lernenden beschäftigen sich mit dem Streit um die Ökosteuer und den Problemen bei der Durchsetzung einer nationalen oder weltweiten Energiewende. Auch das Erneuerbare-Energien-Gesetz in Deutschland und die Möglichkeiten und Grenzen internationaler Abkommen zum Schutz der Atmosphäre werden beleuchtet. Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Einige für diese Unterrichtseinheit relevante Artikel stellen wir hier kurz vor. Die vollständigen Beiträge stehen als PDF-Download zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Der Übersichtsartikel fasst die Argumente von Befürwortern und Kritikern einer Wasserstoff-Wirtschaft zusammen: Zwar ermöglicht die Wasserelektrolyse eine energieeffiziente Erzeugung von Wasserstoff aus dem reichlich vorhandenen Rohstoff. Einer realisierbaren Wasserstoff-Wirtschaft stehen jedoch noch ungelöste Probleme beim Transport und bei der Lagerung des Brennstoffs im Weg. Zu den Sicherheits- und Verteilungsproblemen kommt im Vergleich zu herkömmlichen Energieträgern noch die niedrige Energiedichte pro Volumeneinheit als Nachteil hinzu. Wie der Disput bis zum Anbruch eines regenerativen Energiezeitalters verlaufen wird, ist offen. Energie aus der Brennstoff-Oxidation ohne thermisch-mechanische Umwege Was als Vorteil der Brennstoffzelle erscheint - die Erzeugung elektrischer Energie direkt aus der Oxidation eines Brenngases ohne Umweg über eine Flamme, eine Gas- oder Dampfturbine und einen Generator - entpuppt sich bei der Realisierung als große Hürde. Die aggressiven chemischen Bedingungen um den Verbrennungsvorgang herrschen nämlich in der Brennstoffzelle auch dort, wo elektrischer Strom über korrosionsanfällige Kontakte zwischen verschiedenen Materialien fließen muss. Ohne High-Tech keine Brennstoffzelle Nur High-Tech-Werkstoffe, die dementsprechend teuer sind, halten den Anforderungen des Brennstoffzellen-Betriebs stand. Die damit verbundenen Kosten sind zur Zeit mit einem wirtschaftlich konkurrenzfähigen Produkt noch nicht vereinbar. Die Hochtemperatur-Brennstoffzelle Neben dem allgemeinen Aufbau und der Funktionsweise von Brennstoffzellen werden die Vorteile einer Hochtemperatur-Brennstoffzelle dargestellt. Sie kann ihre eigene Abwärme dazu nutzen, den Wasserstoff, den sie "verzehrt", aus Erdgas ohne zusätzlichen Energieaufwand freizusetzen und erzeugt weniger Kohlenstoffdioxid als vergleichbare konventionelle Blockheizkraftwerke. Ihre prinzipielle Funktionsfähigkeit wurde bereits gezeigt. Bis zur Entwicklung marktgerechter Lösungen müssen aber noch viele Herausforderungen bewältigt werden. Kryospeicherung und Drucktanks erscheinen nicht praktikabel Transport und Speicherung von Wasserstoff bringen bei der Nutzung von Brennstoffzellen Probleme mit sich, die bis heute nicht gelöst werden konnten. Die Verflüssigung von Wasserstoff in Vorratstanks an Tankstellen und in Tanklastwagen ist mit einem erheblichen Verlust an nutzbarer Energie verbunden. Eine kryogene Speicherung in den kleinen Tanks der Endverbraucher ist nicht praktikabel: Trotz extrem aufwendiger Isolierungen käme es bereits nach einigen Tagen zu Abdampfverlusten. Eine physikalische Speicheralternative sind Drucktanks. Aber auch hier geht Energie verloren. Zudem steigen mit dem Druck in den Tanks auch die Sicherheitsanforderungen. Chemische Alternativen Eine kurze Übersicht zeigt, dass es einerseits eine Vielzahl von Ansätzen zur Entwicklung von Wasserstoff-Speichermaterialien gibt, dass andererseits aber noch kein System gefunden werden konnte, bei dem sich ein realistisches Potential für den Einsatz in Autos abzeichnet. Auf diesem Gebiet werden noch enorme Anstrengungen erforderlich sein, wenn man in der Zukunft nicht von Kryo- oder Hochdruckspeichersystemen abhängig sein will. Der Beitrag skizziert folgende Speichermöglichkeiten: Benzin und Diesel Die Wasserstoffspeicherung mit Kohlenwasserstoffen wie Benzin und Diesel hätte den großen Vorteil, dass es keinerlei Infrastrukturprobleme gäbe, ist jedoch für den Antrieb von Autos aus technischen Gründen nicht praktikabel (hohe Temperaturen, aufwendige Gasreinigung). Methanol Trotz ähnlicher Probleme (Gasreinigung) wurden mit Methanol betankte Prototypen erfolgreich getestet. Allerdings ist die Einrichtung einer Methanol-Infrastruktur parallel zur existierenden Infrastruktur für Diesel und Benzin wirtschaftlich unattraktiv. Hydride und Imide Wesentlich attraktiver erscheinen Hydride, die reversibel Wasserstoff aufnehmen oder abgeben können. Trotz vielversprechender Ansätze ist ein großer Teil der komplexen Hydride bisher wenig oder kaum untersucht. Es besteht daher durchaus Hoffnung, dass auf diesem Gebiet noch technisch relevante Systeme entdeckt werden könnten. Metal-Organic-Frameworks (MOFs) Die hochporösen metallorganischen Gerüstverbindungen zeigen in einigen Versuchen sehr hohe Speicherkapazitäten. Inwieweit diese Systeme die geweckten Erwartungen einlösen können, wird die Zukunft zeigen. Dreidimensionale Netzwerke lagern kleine Moleküle ein In den letzten Jahren fanden bemerkenswerte Entwicklungen im Bereich der porösen Materialien statt. Durch den modularen Aufbau metallorganischer Gerüstverbindungen lässt sich die Porengröße sogar maßgeschneidert an die Größe kleiner Moleküle wie Wasserstoff oder Methan anpassen. Damit gelten MOFs als aussichtsreiche Kandidaten für die Speicherung von gasförmigen Energieträgern. Hohe Methandichten bei Raumtemperatur Während Wasserstoff in MOFs nur bei niedrigen Temperaturen gespeichert werden kann, ist die Lage im Fall von Erdgas wesentlich günstiger. Methan (Hauptbestandteil von Erdgas) wird von MOFs bereits bei Raumtemperatur aufgenommen und auch wieder reversibel abgegeben. Es erreicht in den MOF-Poren nahezu die Dichte einer Flüssigkeit. Durch diese Technologie kann man den zur Speicherung einer bestimmten Methanmenge notwendigen Druck deutlich senken, was die Sicherheit erhöht. Die Verwendung von porösen Materialien als Speichermedien befindet sich jedoch noch in der Erprobungsphase. Der Beitrag skizziert verschiedene Wege zur Herstellung von Wasserstoff. Elektrolysetechnologien und deren Betriebsbedingungen werden vorgestellt. Am Beispiel der Niedertemperatur-Elektrolyse bei Standardbedingungen werden Wirkungsgrade und Zellspannungen betrachtet. Zudem wird über eine Versuchsanlage in Saudi Arabien zur Erzeugung "Solaren Wasserstoffs" mit Strom aus einem Solarfeld berichtet, an dessen Bau das Deutsche Zentrum für Luft- und Raumfahrt beteiligt war. Mit der Anlage konnte gezeigt werden, dass Wasserstoff per Elektrolyse mit einem Wirkungsgrad von etwa 70 Prozent regenerativ hergestellt werden kann. Als Brennstoffzelle für den kleinen Leistungsbereich wird in der Regel die Membranbrennstoffzelle verwendet, da ein Systemstart bei Raumtemperatur möglich ist. In Kombination mit einem Speicher für die Energieträger Wasserstoff oder Methanol sind kleine Brennstoffzellen eine Konkurrenz für Batterien und Notstromaggregate. Während Batterien - insbesondere die Lithium-Batterie - aber richtige "Kraftpakete" sind, sind Brennstoffzellensysteme eher "Energiepakete". Der Artikel stellt ihre Funktionsweise sowie Vor- und Nachteile der Brennstoffe Wasserstoff und Methanol vor. So lange die regenerative Wasserstoffgewinnung, zum Beispiel über riesige Solaranlagen, noch nicht serienreif realisiert ist, schlägt Erdgas die Brücke zur Wasserstoffwirtschaft. Ein Vorteil von Erdgas ist seine heute schon nahezu flächendeckende Verfügbarkeit in den Haushalten. Somit können Brennstoffzellen-Heizgeräte nahtlos in bestehende Heizsysteme integriert werden. Feldtests sollen den Markt für die neue Technologie sondieren und vorbereiten. Dieter Lohmann ist ausgebildet für das Lehramt an Gymnasien und arbeit als Redakteur beim Online-Magazin Scinexx .

  • Chemie / Natur & Umwelt
  • Sekundarstufe II
ANZEIGE