Wann "zündet" die Idee der Kernfusionstechnologie?
Unterrichtseinheit
Schülerinnen und Schüler lernen den Unterschied zwischen der in der Sonne ablaufenden und der technisch kontrollierten Kernfusion sowie die damit verbundenen verschiedenen Reaktortypen kennen. Vorgänge auf der Teilchenebene werden anhand einer Flash-Animation des Max-Planck Instituts für Plasmaphysik visualisiert. Auf der Grundlage der im Physikunterricht erworbenen Kenntnisse über Atomkerne sollen sich die Schülerinnen und Schüler ein Bild von der Kernfusion machen. Sie lernen die Chancen und Risiken dieser Technologie kennen und erfahren, welche Hindernisse Wissenschaftlerinnen und Wissenschaftler überwinden müssen, damit die verlockende Vision der Kernfusion Realität und zum "global player" im Energie-Mix der Zukunft wird. Das Thema knüpft unmittelbar an die Alltagswelt der Schülerinnen und Schüler an (Ölpreissteigerungen, Störfälle in Atomkraftwerken). Die Unterrichtseinheit bietet einen ersten Einblick in eine vielversprechende und innovative Methode der Energieerzeugung und verdeutlicht die Bedeutung und Notwendigkeit der Grundlagenforschung. Die Materialien der Unterrichtseinheit werden durch einen ITER - der Weg zu neuer, sauberer Energie ergänzt. Er informiert über die experimentelle Fusionsforschungsanlage der großen Industrienationen. Bis zum Jahr 2020 soll ITER im südfranzösischen Cadarache seinen Dienst aufnehmen. Die Materialien der Unterrichtseinheit sind ein Angebot der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Auf der Webseite max-wissen.de finden Sie weitere Materialien für den Unterricht und Hintergrundinformationen zu aktuellen Forschungsthemen aus Physik, Chemie, Biologie und Erdkunde. An allen max-wissen-Beiträgen sind Fachwissenschaftlerinnen und -wissenschaftler der Max-Planck-Gesellschaft beteiligt: Aktualität und fachliche Richtigkeit sind somit gewährleistet. Ein weiteres Angebot der Gesellschaft ist das Fragen-Portal : Lernende und Lehrpersonen können hier Fragen an Forscherinnen und Forscher stellen. Unterrichtsverlauf und Materialien Fachliche Voraussetzungen, Einbettung des Themas in den Unterricht und der Verlauf der Doppelstunde werden hier skizziert. ITER - der Weg zu neuer, sauberer Energie Für die Fortführung des Themas im Unterricht finden Sie hier weitere Informationen, Grafiken und Links zur internationalen Fusionsforschungsanlage. Die Schülerinnen und Schüler sollen die Vorgänge bei der Fusionsreaktion von Deuterium und Tritium sowie das Ergebnis beschreiben können. das Funktionsprinzip des Magnetfeldkäfigs zum Einschließen des heißen Plasmas am Beispiel der beiden grundlegenden Reaktortypen Stellarator und Tokamak kennenlernen und erklären können. die Gefahren bei der Nutzung der Kernfusion erarbeiten und im Vergleich mit anderen Formen der Energieerzeugung bewerten. die Kernfusion als potenzielle, nahezu unerschöpfliche Energiequelle der Zukunft erkennen. Thema Wann "zündet" die Idee der Kernfusionstechnologie? Autorinnen und Autor Roland Wengenmayr, Dieter Lohmann, Sabina Griffith Fach Physik Zielgruppe Sekundarstufe II, nach didaktischer Reduktion auch Klasse 9 und 10 Zeitraum 2 Stunden Technische Voraussetzungen Rechner mit Internetanschluss in ausreichender Anzahl (Arbeit in Kleingruppen), Flash-Player (kostenfreier Download) Planung Tabellarischer Verlaufsplan Fachliche Voraussetzungen Bevor die Unterrichtseinheit durchgeführt werden kann, müssen die Schülerinnen und Schüler bereits grundlegende Kenntnisse über den Aufbau von Atomkernen erworben und die Sonne als Ort für natürlich ablaufende Kernfusionsreaktionen kennengelernt haben. Auch die dort dominierende "Proton-Proton-Reaktion 1" sollte bereits bekannt sein. Für einen schnellen Wissenszugewinn wäre es zudem hilfreich, wenn die Lernenden Vorwissen über andere Formen der Energiegewinnung - erneuerbare Energien, Kernkraft oder fossile Brennstoffe - besitzen. Einsatz (nicht nur) in der Oberstufe Die Unterrichtseinheit ist in erster Linie für den Physik- und Technikunterricht der Sekundarstufe II an Gymnasien und Gesamtschulen konzipiert. Nach einer Anpassung der Arbeitsblätter (Erklärung von Fachbegriffen, geringerer Schwierigkeitsgrad der Arbeitsaufträge) ist auch eine Nutzung in den Jahrgangsstufen 9 und 10 an Gymnasien, Realschulen oder Gesamtschulen möglich. Anbindung an Lehrpläne In (fast) allen Bundesländern bieten die Lehrpläne und Richtlinien Einsatzmöglichkeiten für die hier vorgestellte Unterrichtseinheit. Ausführliche Informationen dazu und Vorschläge für einen fächerübergreifenden Unterricht zum Thema Kernfusion finden Sie auf der Webseite max-wissen.de (siehe "Links zum Thema"). Natürliche und technisch kontrollierte Kernfusion Um das bereits erworbene Grundlagenwissen aufzufrischen und zu festigen, beginnt die Doppelstunde mit einer Sicherungsphase, in der die Schülerinnen und Schüler das Prinzip der Kernfusion in der Sonne ausführlich beschreiben und erklären. Danach zeigt die Lehrperson das Bild eines geplanten Fusionsreaktors. Die Schülerinnen und Schüler sollen möglichst selbstständig einen Zusammenhang zwischen den Motiven herstellen und die "künstliche", also technisch kontrollierte, Kernfusion als Thema der Doppelstunde benennen. Unterrichtsimpulse per Beamer oder Tageslichtprojektor Schon hier wird von den Lernenden erwartet, einfache Hypothesen zur Funktionsweise von "künstlichen" Reaktoren auf der Basis ihres Vorwissens aufzustellen. Diese Vorschläge sollen dann in der Diskussion mit anderen Lernenden gegebenenfalls präzisiert, korrigiert oder widerrufen werden. Je nach Leistungsstand des Kurses kann die Lehrerin oder der Lehrer in dieser Phase zusätzliche Unterrichtsimpulse (Folien mit Grafiken oder Bildern, Texte) bereithalten, damit ein schneller und motivierender Lernforschritt gelingt. Um die Erarbeitungsphase effektiv zu gestalten und Schülerinnen und Schüler zu motivieren, werden alt bewährte Medien (Arbeitsblätter mit Texten und Abbildungen) mit digitalen Medien kombiniert. Eine Flash-Animation vom Max-Planck Institut für Plasmaphysik verbildlicht abstrakte Inhalte wie die Deuterium-Tritium-Kernfusionsreaktion und liefert zusätzliche Informationen. Schülerinnen und Schüler können dabei auch die Zündungsbedingungen für die Fusionsreaktion experimentell erkunden. Zeiteinteilung Der Zeitbedarf der Unterrichtseinheit beträgt 90 Minuten. Bietet der Stundenplan nur kürzere Einheiten, kann der Unterricht nach der ersten Erarbeitungsphase, dem Zusammentragen der Resultate, der Ergebnissicherung sowie der zweiten Problemfindungsphase beendet werden (siehe Verlaufsplan). Das Arbeitsblatt 2 und die dazugehörigen Begleitinformationen ("Ein Käfig für das heiße Plasma") können dann im Rahmen der Hausaufgabe zum Einsatz kommen. Thema der folgenden Unterrichtsstunde wäre dann "Kernfusion und Radioaktivität" (Arbeitsblatt 3). Die Fusionsforschungsanlage ITER Nach der Doppelstunde kann das vollständige Schema eines zukünftigen Fusionskraftwerks erarbeitet werden (siehe MAX-Heft "Die Sonne im Tank"). Eine ausführliche Auseinandersetzung mit der in Planung befindlichen internationalen Fusionsforschungsanlage ITER (International Thermonuclear Experimental Reactor) kann das Wissen der Schülerinnen und Schüler weiter ausbauen. Bis zum Jahr 2020 soll ITER im südfranzösischen Cadarache seinen Dienst aufnehmen. Wenn alles klappt, könnten in der Mitte des 21. Jahrhunderts erste kommerzielle Fusionsanlagen mit der Produktion von Strom und Wärme beginnen. Besuch eines außerschulischen Lernorts Wenn möglich, sollte die Unterrichtsreihe durch den Besuch einer Forschungseinrichtung abgerundet werden. Als Exkursionsorte kommen folgende Ziele in Frage: Garching: ASDEX Upgrade Der Tokamak ging 1991 in Betrieb. Die Anlage untersucht Kernfragen der Fusionsforschung unter kraftwerksähnlichen Bedingungen. Greifswald: Wendelstein 7-X Der Stellarator, der gegenwärtig im IPP-Teilinstitut entsteht, wird ein optimiertes Magnetfeld testen, das die Probleme früherer Stellarator-Konzepte überwinden soll. Karlsruhe:Tritiumlabor, Institut für Technische Physik (ITEP) Der Arbeitsschwerpunkt des Labors liegt auf der Fusionsforschung für ITER und dem Karlsruher Tritium Neutrino Experiment (KATRIN). Energieversorgung der Zukunft Der globale Energieverbrauch wird sich bis zum Ende dieses Jahrhunderts verdreifachen, schätzen die Experten. Gleichzeitig schwinden unsere Vorräte an fossilen Brennstoffen und die ökologischen Folgen ihrer Nutzung belasten die Umwelt gravierend. Damit drängen sich zwei Fragen auf: Wie werden wir in Zukunft die Energieversorgung der Menschen gewährleisten? Und wie können wir dies tun, ohne dabei klimaschädliche Treibhausgase freizusetzen? Nationales Handeln ist unzureichend "Angsichts der Dimension dieser Herausforderung ist nationales Handeln allein völlig unzureichend", sagte der Generalsekretär der Vereinten Nationen, Ban Ki-Moon, im September 2007 in seiner Rede zur Klimapolitik. "Keine Nation kann diese Aufgabe alleine meistern. Keine Region kann sich von den Folgen des Klimawandels abkapseln." Mit der Unterzeichnung des ITER-Vertrages haben sich die großen Industrienationen, darunter China, Europa, Indien, Japan, Korea, Russland und die USA, zusammengeschlossen, um gemeinsam nach einer Lösung zu suchen. ITER (lateinisch "der Weg") soll demonstrieren, dass sich durch Kernfusion Energie in großem Maßstab erzeugen lässt. Russische Pionierarbeit ITER basiert auf dem Tokamak-Prinzip, das im Jahr 1952 von den sowjetischen Physikern Andrei Sacharow (1921-1989) und Igor Jewgenjewitsch Tamm (1895-1971) am Kurtschatow-Institut in Moskau entwickelt wurde. In einem Tokamak-Reaktor schließen zwei sich überlagernde Magnetfelder das Plasma ein: erstens ein toroidales Feld, das durch äußere Spulen erzeugt wird, und zweitens das Feld eines im Plasma fließenden Kreisstroms. In dem aus den beiden Feldern kombinierten Magnetfeld laufen die Feldlinien dann schraubenförmig um. Die größte Fusionsmaschine Zusätzlich benötigt der Tokamak noch ein drittes, vertikales Feld, das die Lage des Stroms im Plasmagefäß fixiert und den Plasmarand formt. Abb. 2 und Abb. 3 (zur Vergrößerung der Ausschnitte bitte anklicken) zeigen Schemata des Reaktors. Das heiße Plasma ist in Abb. 2 pinkfarben dargestellt. Aus den Grafiken wird durch die eingezeichneten Menschen die Dimension der Anlage deutlich. Die Bilder können Sie hier in höherer Auflösung herunterladen. Viele weitere Grafiken, Fotos und Informationen finden Sie auf der englischsprachigen ITER-Homepage . ITER ist eine experimentelle Anlage Viele Fusionsreaktoren sind seit den ersten Pioniertagen gebaut worden und haben bewiesen, dass die Kernfusion - die Reaktion, die Sonne und Sterne erstrahlen lässt - auch auf der Erde möglich ist. ITER, die bis heute größte jemals gebaute Fusionsmaschine, soll nun beweisen, dass Kernfusion eine Alternative zur Lösung des weltweiten Energie- wie des Umweltproblems ist. Auch wenn ITER selber noch keinen Strom produzieren wird, so werden doch im Rahmen dieses Projekts die Technologie und die Materialien auf ihre Serienreife hin getestet, sodass der nächste Schritt hin zu einem kommerziellen Fusionskraftwerk nicht mehr weit ist. Sommer 2010 - Baubeginn in Frankreich Standort von ITER ist Cadarache in Südfrankreich. Im Sommer 2010 beginnen der Bau der ersten Gebäude und die Aushebung des Tokamak-Fundaments. Währenddessen sind Wissenschaftlerinnen und Wissenschaftler weltweit mit weiteren Vorarbeiten beschäftigt. So wird zum Beispiel in Karlsruhe an Prototypen für die Vakuumpumpen gearbeitet, während in Hefei (China) die riesigen toroidalen Magnetfeldspulen für ITER gebogen werden (Abb. 4, zur Vergrößerung bitte anklicken).
-
Physik / Astronomie
-
Sekundarstufe I,
Sekundarstufe II