• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die Erde im Radar: Mikrowellen aus dem All

Unterrichtseinheit

In dieser Unterrichtseinheit zu Radarsystemen erhalten die Lernenden mithilfe ausgewählter Radarbilder einen Überblick über die Möglichkeiten zur Erfassung von Veränderungsdynamiken an der Erdoberfläche. Diese Erkenntnisse werden mit Hintergrundwissen zu dem Thema Radarfernerkundung sowie grundlegendem Wissen über Eigenschaften von Mikrowellen ergänzt. In der modernen Beobachtung der Erdoberfläche und ihrer Veränderungsdynamik sind Radarsysteme von entscheidender Bedeutung. Sie erlauben es, großflächige Oberflächenstrukturen selektiv zu erfassen und zu klassifizieren. Mithilfe von Radarfernerkundung können Veränderungen beispielsweise von Vegetationsverteilungen oder Gletschern detektiert werden. Die Unterrichtseinheit vermittelt grundlegendes Wissen zu Radarsystemen und zeigt auf, wie man mit Fernerkundungsmethoden Oberflächenstrukturen und -veränderungen detektieren kann. Die Bereiche des elektromagnetischen Spektrums unterscheiden sich durch ihre Frequenzen und Wellenlängen. Infrarotwellen haben zum Beispiel eine tausendfach kleinere Wellenlänge als Mikrowellen. Die unterschiedliche Beschaffenheit des Geländes übt einen großen Einfluss auf die Radarbilder aus. Heutige Radarsysteme besitzen die Fähigkeit, verschiedene Arten von Mikrowellen auszusenden, die sich in ihrer Wellenlänge und Polarisation erheblich unterscheiden. So haben "kleine" Mikrowellen eine Wellenlänge von 0,2 mm, "große" Mikrowellen hingegen eine von 20 cm. Wellenlänge und Polarisation bestimmen die Eindringtiefe in das beobachtete Gelände. Zielsetzung Das Ziel der Unterrichtseinheit "Radar" ist das Verständnis grundlegender Eigenschaften elektromagnetischer Wellen und ihrer Anwendungsmöglichkeiten in Radarfernerkundungssystemen. Ferner schult die Unterrichtseinheit den Umgang mit abstrakten Darstellungen (Satellitenbilder) von bekannten Landschaftseinheiten. Zusammenarbeit mit der Universität Bonn Die Unterrichtseinheit entstand im Rahmen des Projekts Fernerkundung in Schulen (FIS) am Geographischen Institut der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. FIS wird von der Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt e.V. mit Mitteln des Bundesministeriums für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages unter dem Förderkennzeichen 50EE0932 gefördert. Inhalte und Einsatz der Unterrichtseinheit "Die Erde im Radar" im Unterricht Hier erhalten Sie Hinweise zum Aufbau der Lernumgebung. Die Abbildungen veranschaulichen die Funktionen und die interaktiven Übungen zu den Themenfeldern "Mikrowellen" und "Radarfernerkundung". Die Schülerinnen und Schüler lernen grundlegende Eigenschaften von elektromagnetischen Wellen und Radarfernerkundsystemen kennen. analysieren die Veränderungsdynamik im Braunkohle-Abbau. bekommen ein Verständnis für die Zusammenhänge zwischen Landoberfläche, Rückstreuung und Radarfernerkundungssystemen. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Computer nicht als reines Informations- und Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "Mikrowellen_aus_dem_ All.exe". Unter anderen Betriebssystemen wird die Datei "Mikrowellen_aus_dem_ All.html" in einem Webbrowser geöffnet. Hierfür wird der Adobe Flash Player benötigt. Wichtig ist in beiden Fällen, dass die heruntergeladene Ordnerstruktur erhalten bleibt. Der jeweils aktivierte Bereich wird auf der unteren Leiste der Lernumgebung eingeblendet (Abb.1). Während der erste Teil einen Einblick in die Thematik liefert und eine übergeordnete Aufgabenstellung benennt, gliedert sich der Rest des Moduls in zwei Sequenzen: Der erste Teil bietet Hintergrundinformationen zum Thema. Im zweiten Teil werden die Schülerinnen und Schüler aktiv und wenden eigenständig Bildbearbeitungsmethoden zur Lösung von entsprechenden Aufgaben an. Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. 1. Einleitung Nach dem Start des Lernmoduls sehen die Schülerinnen und Schüler einen Einführungskasten, der kurz in das Thema Radar einleitet und den Aufbau der Lernsequenz erklärt. Das Bild des Mackenzie-Flusses zeigt bereits eine Anwendungsmöglichkeit der Radarfernerkundung auf. Der erste Teil des Lernmoduls legt als Hintergrundwissen die Grundlagen für die spätere Arbeit mit den Satellitenbildern im zweiten Modulteil. Dieser Teil besteht aus zwei Rubriken. "Radarfernerkundung" (1) und "Radardaten" (2). In Kapitel 1 erfahren die Schülerinnen und Schüler zunächst Grundsätzliches über Radarsysteme und die verwendeten Wellenlängenbereiche. Mithilfe der Animation kann das Verständnis zu Wellenlängen vertieft werden. Durch Aktivieren der verschiedenen Wellenlängenbereiche erfahren die Schülerinnen und Schüler, welche Auswirkungen unterschiedliche Wellenlängen auf die Eindringtiefe der Mikrowellen haben. So werden die Wellen des eher kurzwelligen X-Bandes bereits von den Baumkronen zurückgeworfen, während die eher langwelligen Wellen des L-Bandes bis zum Waldboden durchdringen können und erst dort zurückgeworfen werden. Im zweiten Modulteil stehen den Schülerinnen und Schülern mehrere Einzelbilder zu Verfügung, die zu verschiedenen Monaten aufgenommen wurden. Die aufgenommenen Szenen zeigen das Braunkohle-Abbaugebiet Garzweiler am Niederrhein. Deutlich zu sehen sind die terrassenförmigen Abbruchkanten sowie die Bagger (weiß, im rechten Bereich des Gebietes). Die Schülerinnen und Schüler können selbstständig durch Aktivieren der verschiedenen Bilder die Veränderungen der Grube sowie der Position der Bagger detektieren. Durch Ziehen der Bilder in die Formel A - B kann die Veränderung pixelweise berechnet werden. Haben die Schülerinnen und Schüler die Veränderungsdetektion durchgeführt und die gestellten Aufgaben beantwortet, können sie durch Beantworten der Fragen im zweiten Quiz die Bearbeitung des Moduls abschließen.

  • Physik / Astronomie
  • Sekundarstufe II

Mars - Beobachtung einer Planetenschleife

Unterrichtseinheit

Beobachtungen unseres äußeren Nachbarplaneten lohnen sich nur während der Monate um die Oppositionen, die etwa alle zwei Jahre und zwei Monate eintreten. Die Dokumentation einer Marsschleife ist eine reizvolle Aufgabe für ein kleines Beobachtungsprojekt.Die rötliche Färbung des Planeten fällt auch ungeübten Beobachterinnen und Beobachtern sofort auf. Sie ist besonders beeindruckend, wenn Mars noch nicht allzu hoch über dem Horizont steht. Der Grund dafür ist derselbe, der auch die Sonne oder den Mond beim Auf- und Untergang rötlich erscheinen lässt - kurzwellige Lichtanteile werden durch die Atmosphäre stärker gestreut als die langwelligen. Die Marsfarbe wird durch diesen Effekt aber nur verstärkt. Der allgegenwärtige eisenoxidhaltige Staub hat dem Planeten zu Recht den Beinamen des "Roten" eingebracht - "rostiger" Planet wäre ebenso zutreffend. Die linke Abbildung zeigt eine Aufnahme des Hubble-Weltraumteleskops und ein Marsfoto, das mit einem kleinen Amateurteleskop aufgenommen wurde. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur zum Thema Mars . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden.Kaum ein Planet hat die Fantasie der Menschen so sehr in Gang gesetzt wie Mars: Die "Entdeckung" der Marskanäle ist ein schönes Beispiel aus der Wissenschaftsgeschichte dafür, dass auch die Objektivität von Naturwissenschaftlern optischen Täuschungen und einer guten Portion Autosuggestion unterliegen kann. Aber auch für eine Massenhysterie ist Mars gut: Die 1938 am Holloween-Abend über das Radio ausgestrahlte fiktive Schilderung eines Marsmenschen-Überfalls soll in den USA eine Panik ausgelöst haben. UFO-Fans und Esoteriker sahen in einer von der Raumsonde Viking I im Jahr 1976 aufgenommen Gebirgsformation, die als "Marsgesicht" Berühmtheit erlangte, einen extraterrestrischen Monumentalbau, der es bis in die Kultserien "Akte X" und "Futurama" schaffte. Mars bietet also reichlich Stoff, um das Interesse der Schülerinnen und Schüler für Astronomie und Naturwissenschaften zu wecken. Obwohl den meisten von ihnen der eine oder andere Science-Fiction-Film zum Thema Mars bekannt sein dürfte, haben nur die wenigsten den Planeten bewusst mit eigenen Augen gesehen. Nutzen Sie also die nächste Marsopposition, um zusammen mit Ihren Schülerinnen und Schülern den faszinierenden Planeten näher kennen zu lernen und zu beobachten. Historisches und Histörchen Ob Götter, Marsmenschen, Kanäle oder andere Monumentalbauten - die Raumfahrt hat Jahrtausende alte Vorstellungen sowie Fiktionen aus dem 19. und 20. Jahrhundert beendet. Erforschung des "Rostigen Planeten" Mars-Orbiter, Landegeräte und mobile Rover übermittelten nicht nur wissenschaftliche Daten, sondern auch Bilder mit faszinierenden Mars-Impressionen und Landschaften. Der Mars - Oppositionen des Exzentrikers Die Entstehung von rückläufiger Bewegungen und Schleifen der äußeren Planeten und die Besonderheiten der Marsoppositionen werden erläutert. Beobachtung des Planeten Lernende können mit einfachen Hilfsmitteln eine Marsschleife dokumentieren und versuchen, mit einem Teleskop Oberflächenstrukturen zu erkennen. Dokumentation einer Marsschleife Vorschläge für Arbeitsmaterialien und Hinweise zur Verfolgung der Bewegung des Planeten Mars in dem Zeitraum um seine Opposition Die Schülerinnen und Schüler sollen Mythologie und Science Fiction zum Thema Mars kennen lernen. die Geschichte der Erforschung des Planeten überblicken - von der "Entdeckung" der Marskanäle bis hin zur Erforschung der Oberfläche durch NASA-Rover. Mars mit eigenen Augen sehen und in dem Lichtpunkt mithilfe der NASA- und ESA-Fotos eine fremde Welt erkennen. den Planeten durch ein Teleskop beobachten (Schul- oder Volkssternwarte) und versuchen, Oberflächendetails mithilfe eines "Onlinerechners" der Webseite CalSky zu benennen. verstehen, wie eine Marsschleife entsteht. die Bahn des Planeten über einige Monate verfolgen und mit einfachen Mitteln eine "Marsschleife" aufzeichnen. Thema Marsbeobachtung Autoren Dr. André Diesel, Peter Stinner Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Klasse 5 bis Jahrgangsstufe 13 (je nach Thema und Vertiefung) Zeitraum variabel, vom einmaligen Beobachtungsabend bis hin zur Dokumentation einer Marsschleife über mehrere Monate Technische Voraussetzungen Beobachtung mit bloßem Auge oder dem Amateurteleskop; für die fotografische Dokumentation der Planetenbewegung Bildbearbeitungssoftware, zum Beispiel Fitswork (kostenloser Download); Planetarium-Software zur Vorbereitung der Beobachtung, zum Beispiel Stellarium (kostenfrei) Traditionelle Rolle als Kriegsgott Mars fasziniert die Menschen schon seit Jahrtausenden. Im Altertum war der Planet bei vielen Völkern mit dem jeweiligen Kriegsgott verknüpft - Nergal im Zweistromland, Ares bei den Griechen und eben Mars bei den Römern. Ursache dafür dürfte seine auffällig orange-rote Färbung sein - verursacht durch den auf der Marsoberfläche allgegenwärtigen Eisenoxidstaub -, die schon dem bloßen Auge nicht entgeht. Die rote Farbe ist übrigens umso kräftiger, je tiefer der Planet am Himmel steht. Hoch über dem Horizont erscheint Mars eher orange bis gelblich. Ein weiteres Charakteristikum des Planeten sind die großen Helligkeitsunterschiede während seiner Oppositionen. In einigen Jahren kann er über mehrere Wochen sehr hell werden und sogar mit der Leuchtkraft von Jupiter konkurrieren, in anderen Jahren bleibt er relativ unscheinbar und in seiner Helligkeit etwa dem Polarstern vergleichbar. Sein Aufleuchten haben unsere Vorfahren möglicherweise als Symbol für entfesselte Feuersbrünste oder das Vergießen von Blut gedeutet. Wikipedia: Nergal Gottheit der sumerisch-akkadischen und der babylonischen und assyrischen Religion Wikipedia: Ares Griechischer Gott des Krieges, des Blutbades und Massakers Wikipedia: Mars Der Kriegsgott war neben Jupiter der wichtigste Gott der Römer. Schiaparellis "Canali" Aber auch in modernen Zeiten fasziniert Mars und entfesselte Fantasien. 1877 glaubte der Leiter der Mailänder Sternwarte, Giovanni Schiaparelli (1835-1910), mit dem Teleskop Marskanäle entdeckt zu haben - ein Effekt, der einer optischen Täuschung zuzuschreiben ist. Schiaparelli hielt die "Canali" für natürliche geradlinige Senken, durch die Wasser auf der Marsoberfläche fließen könnte. Eine ungenaue Übersetzung ins Englische ("canals" statt "channels") suggerierte jedoch die Entdeckung von Artefakten auf dem Mars. Schnell verbreitete sich so der Glaube an eine hochtechnisierte Marszivilisation, die in den hundert Kilometer breiten Kanälen das Schmelzwasser der Marspole in die gemäßigten Breiten leiten sollte, um die Anbaugebiete der Marsianer im Vegetationsgürtel des Planeten zu bewässern. Wikipedia: Marskanäle Die Kanäle wurden erstmals im Jahr 1877 beschrieben. Science Fiction Der Glaube an eine Marszivilisation war auch die Grundlage zahlreicher Werke des Science-Fiction-Genres. Spektakulär soll der Effekt eines Hörspiels von Orson Wells (1915-1985) gewesen sein, das auf dem Roman "War of the Worlds" von Herbert George Wells (1866-1946) basiert. Orson Wells' fiktive Radio-Reportage über eine Invasion bösartiger Marsianer wurde im Jahr 1938 am Halloween-Abend ausgestrahlt und soll an der Ostküste der USA eine Massenpanik ausgelöst haben (ob dies tatsächlich so war, ist heute allerdings umstritten). Vielen älteren Schülerinnen und Schülern dürfte die beklemmende Verfilmung des Stoffs von Steven Spielberg aus dem Jahr 2005 bekannt sein, ebenso die skurrile filmische Aufarbeitung von Tim Burton aus dem Jahr 1996, "Mars Attacks". Keine Kanäle, weder Zivilisation noch Vegetation Auch wenn man bereits in den dreißiger Jahren begann, die "Marskanäle" für das Ergebnis optischer Täuschungen zu halten - Gewissheit bekam man erst durch die Bilder der Raumsonde Mariner 4, die im Jahr 1965 an dem Planeten vorbei flog und deren Kameras den Mars erstmals aus der Nähe betrachteten. Zwar könnte die Wahrnehmung einiger "Canali" durch geomorphologische Großstrukturen erklärt werden, von dem ausgeklügelten Bewässerungssystem der Marsmenschen fand man jedoch keine Spur. Für die bis dahin mit Besuchern vom Mars in Verbindung gebrachten "Fliegenden Untertassen" mussten UFOlogen fortan andere Erklärungen finden. Aber auch von der bis dahin teilweise noch gehegten Vorstellung, der Planet könne von Moosen und Flechten bewachsen sein (dessen Vegetationsperioden die beobachteten Veränderungen auf der Oberfläche hätten erklären können), musste man sich endgültig verabschieden - Mars scheint ein toter Planet zu sein. Das Marsgesicht Auch wenn die Raumfahrt die menschliche Fantasie weitgehend auf den Boden der Tatsachen zurückholte, bot ein Foto der Raumsonde Viking I aus dem Jahr 1976 Anlass für ganz neue Spekulationen. Aus knapp 2.000 Kilometern Höhe nahm die Sonde beim Landeanflug eine Gebirgsformation auf, die als "Marsgesicht" berühmt wurde (Abb. 1). UFO-Fans erkannten darin das monumentale Artefakt einer außerirdischen Spezies. Das Marsgesicht wurde von diversen TV- und Kinoproduktionen aufgegriffen. In der Trickfilmserie "Futurama" bildet es zum Beispiel den Eingang zur marsianischen Unterwelt, in der Aliens hausen. Aufnahmen des NASA-Orbiters Mars Global Surveyor aus dem Jahre 2001 zeigen jedoch nichts anderes als eine verwitterte Felsformation und beendeten so auch diese Illusion. Durchmesser, Tageslänge, Neigung der Rotationsachse Der Durchmesser des Planeten ist mit etwa 6.800 Kilometern doppelt so groß wie der des Mondes, aber nur halb so groß wie der unserer Erde. Ein Marstag dauert nur 40 Minuten länger als ein irdischer Tag. Dies fanden schon Christian Huygens (1629-1695) und Giovanni Domenico Cassini (1625-1712) heraus, die die Rotationsdauer durch die Beobachtung von Oberflächendetails bestimmen konnten. Die Neigung der Rotationsachse (etwa 25 Grad) entspricht ungefähr derjenigen der Erdachse (23 Grad) und beschert dem Mars Sommer und Winter. Die marsianischen Jahreszeiten dauern allerdings doppelt so lange wie die unsrigen, da Mars für eine Runde um die Sonne etwa zwei Erdenjahre benötigt. Entfernung und Jahreslänge Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Ein Marsjahr dauert etwa 687 Tage (siderische Umlaufzeit). Alle 780 Tage wird er von der Erde überrundet (synodische Umlaufzeit). Zwischen den Marsoppositionen liegen also zwei Jahre, ein Monat und drei Wochen. "Furcht" und "Schrecken" begleiten den Kriegsgott Bei den beiden kleinen, etwas kartoffelförmigen Marsmonden handelt es sich möglicherweise um eingefangene Asteroiden. Standesgemäß wurden die Trabanten des Kriegsgotts auf die Namen Phobos und Deimos, Furcht und Schrecken, getauft. Während unser Mond groß genug ist, um die Rotationsachse der Erde zu stabilisieren (was ihrer Bewohnbarkeit sehr entgegen kommt), sind Phobos und Deimos dafür viel zu klein. Deshalb vollführt die Mars-Rotationsachse eine viel deutlichere Taumelbewegung als die der Erde. Die Marsatmosphäre besteht zu 95 Prozent aus Kohlenstoffdioxid. Der Atmosphärendruck beträgt am Boden weniger als ein Prozent des Luftdrucks der Erde. Flüssiges Wasser kann an der Oberfläche unter diesen Bedingungen - selbst oberhalb des Gefrierpunkts - nicht existieren. Die dünne Atmosphäre speichert kaum Wärme, sodass die Temperaturunterschiede zwischen Tag (bis zu 20 Grad Celsius in Äquatornähe) und Nacht (bis zu -85 Grad Celsius) beträchtlich sind. Die mittlere Temperatur liegt bei -55 Grad Celsius. Neben der gemäßigten Neigung der Rotationsachse trägt die Exzentrizität der Umlaufbahn zu einer deutlichen Ausprägung der Jahreszeiten mit dynamischen Vorgängen in der dünnen Atmosphäre bei. Im Marsfrühjahr können heftige Staubstürme große Teile des Planeten verhüllen. Durch die Verwehungen hellen Staubs in dunklere Gebiete kommt es zu jahreszeitlichen Veränderungen der Marsoberfläche, die im Teleskop beobachtet werden können. Die Veränderung der dunklen Schattierungen hielt man früher für eine mögliche Folge marsianischer Vegetationszyklen. Die Polkappen bestehen zum größten Teil aus gefrorenem Kohlenstoffdioxid, enthalten aber auch Wassereis. Sie "pulsieren" mit dem Wechsel der Jahreszeiten. Die Dicke der nördlichen Polkappe (1.000 Kilometer im Durchmesser) wird auf immerhin fünf Kilometer geschätzt. Abb. 2 zeigt eine Aufnahme des NASA-Orbiters Mars Global Surveyor. Die Suche nach Wasser Eine Hauptaufgabe der im Jahr 2008 etwas nördlich des Polarkreises gelandeten NASA-Sonde Phoenix war die Suche nach Spuren von Wasser. Fließspuren an der Oberfläche (trockene Flusstäler und Überschwemmungsgebiete) waren bereits vorher bekannt. Durch Gesteinsanalysen konnte bestätigt werden, dass der Mars einst wärmer und feuchter und somit seine Atmosphäre dichter gewesen sein muss. Abseits der Polkappen versteckt sich das Wassereis heute im Permafrostboden einige Meter unter der Marsoberfläche. In seiner nördlichen Position konnte Phoenix Wassereis jedoch schon wenige Zentimeter unter der Oberfläche nachweisen. Spuren von Leben hat man bisher nicht gefunden. Konjunktion und Opposition Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Dies ist auch die Ursache für die unterschiedliche Leuchtkraft des Planeten am Himmel während seiner Oppositionsstellung (Abb. 6). Etwa alle 15 Jahre kommt uns der Rote Planet besonders nah. Zuletzt war dies im Jahr 2003 der Fall - auf die nächste spektakuläre Marsopposition müssen wir also bis zum Jahr 2018 warten. Überholen wir Mars auf unserer Innenbahn, während er sich in seiner sonnenfernsten Position befindet (Aphel), dann bleibt er an unserem Himmel relativ unauffällig. Die maximale Oppositionsentfernung zur Erde liegt bei mehr als 100 Millionen Kilometern. Überholen wir Mars dagegen, wenn er sich in seiner sonnennächsten Position befindet (Perihel), kann sich ihm die Erde bis auf 56 Millionen Kilometer nähern. Abb. 7 (zur Vergrößerung bitte anklicken) gibt einen Überblick über die geometrischen Situationen der Marsoppositionen in den Jahren von 1999 bis 2022 sowie die jeweiligen scheinbaren Durchmesser des Marsscheibchens. Die Entfernungen Erde - Mars sind in Millionen Kilometern angegeben. Rückläufigkeit und Schleifen Um die Zeit der Opposition überholt die Erde einen äußeren Planeten "auf der Innenbahn". Beobachterinnen und Beobachter auf der Erde sehen den gleichen Effekt wie ein Läufer, der in der Stadionkurve auf der Innenbahn an einem Läufer auf der Außenbahn vorbeizieht. Während dieses Überholvorgangs bewegt sich der überholte Läufer auf der Außenbahn vom Läufer auf der Innenbahn aus gesehen vor dem Publikum auf der Kurventribüne kurzzeitig rückwärts. Übertragen auf die Bewegungen im Sonnensystem heißt dies, dass der äußere Planet sich während der Opposition von der Erde aus gesehen vor dem Fixsternhimmel rückwärts, das heißt von Ost nach West bewegt. Der Fixsternhimmel hat jetzt die Rolle des Publikums auf der Kurventribüne übernommen. Weil die Bahnebenen der Planeten geringfügig gegen die Erdbahn geneigt sind, erscheinen die Bahnen von Mars und den übrigen äußeren Planeten um die Zeit der Opposition herum als "Schleifen" an der Himmelskugel. Dies wird durch Abb. 8 und die folgenden Java-Applets veranschaulicht: Auffällige Oppositionsschleifen Weil Mars von allen äußeren Planeten der Erde am nächsten ist, fällt seine Oppositionsschleife am Sternhimmel deutlich größer aus als die von Jupiter und Saturn. Die Ausdehnung der Oppositionsschleife von Saturn erreichte zum Beispiel im Jahr 2010 nur etwa 30 Prozent derjenigen von Mars. Somit gilt als Fazit: Mars ist das ideale Objekt für die Beobachtung der Oppositionsschleife eines Planeten im Rahmen eines schulischen Projekts! Im Bereich Fachmedien finden Sie eine kurze Einführung in das einfach zu bedienende virtuelle Planetarium Stellarium . (Als ebenso hilfreich, aber etwas komplexer, erweist sich das Programm Cartes du Ciel ) Führen Sie nach dem Start von Stellarium den Mauszeiger in die linke untere Bildschirmecke. Danach öffnen sich die beiden Menüleisten links und unten (Abb. 9, zur Vergrößerung des Ausschnitts bitte anklicken). Per Mausklick auf das Uhrensymbol in der linken Leiste öffnet sich ein Dialogfenster, in das man Datum und Uhrzeit eingibt. Nach Klick auf das Lupensymbol in der linken Menüleiste gibt man den Namen "Mars" ein. Stellarium wählt jetzt den Himmelsausschnitt so, dass sich Mars genau im Zentrum befindet. Drehen am Scrollrad der Maus vergrößert oder verkleinert den dargestellten Himmelsauschnitt. So kann man leicht die Lage vom Mars relativ zum Horizont oder relativ zu markanten Sternbildern einschätzen. Was ist zu sehen? In einem 60 Millimeter Teleskop erscheint Mars lediglich als kleines, oranges Scheibchen. Ab etwa zehn Zentimetern Öffnung können unter günstigen Umständen helle und dunkle Bereiche der Oberfläche schemenhaft wahrgenommen werden. Auch Polkappen sind - je nach marsianischer Jahreszeit - zu sehen. Teleskope mit 15 bis 20 Zentimetern Öffnung lassen weitere Details erkennen. Christian Huygens beschrieb bereits im Jahr 1659 die "Große Syrte", ein dunkles, auffällig dreieckiges Wüstengebiet. Die Suche nach Oberflächendetails lohnt sich jedoch nur während weniger Monate um den Oppositionstermin herum. Abb. 10 zeigt eine Aufnahme des Planeten von Heinrich Kuypers, die im Rahmen einer Astronomie-AG mithilfe eines kleinen Amateurteleskops entstand. Dabei wurden viele Einzelbilder mit der kostenfreien Software RegiStax addiert. Das Foto zeigt Oberflächendetails somit deutlicher als der Blick durch das Okular des Teleskops. Übersichtskarte Die im Folgenden vorgestellten Arbeitsmaterialien wurden für die Dokumentation der Marsschleife im Jahr 2010 erstellt. Sie können bei künftigen Oppositionen als Anregung für die Zusammenstellung entsprechender Schülermaterialien dienen. Passende Sternkarten müssen dann für den jeweiligen Beobachtungszeitraum mit geeigneter Astronomie-Software, etwa GUIDE oder den kostenfreien Progeammen Cartes du Ciel und Stellarium , erstellt werden. Die mit der Software GUIDE 8.0 erzeugte Übersichtskarte (uebersichtskarte.jpg) zeigt den Ost- und Südhimmel mitsamt Horizont, wie er sich Beobachterinnen und Beobachtern in Deutschland am 15. Februar 2010 um 21:00 Uhr darstellte. Der aufgehellte Bereich in der rechten Bildhälfte entspricht der Milchstraße. Den Himmelsanblick einer solchen Karte findet man - bei gleicher Horizontlage - 15 Tage später schon eine Stunde früher oder 15 Tage früher erst eine Stunde später vor. Anhand des Ausdrucks einer solchen Karte können sich die Schülerinnen und Schüler grob am Sternhimmel orientieren. Wichtig ist, dass sie die Sternbilder, durch die sich Mars während des gewählten Beobachtungszeitraums bewegen wird, eindeutig identifizieren können. Negativ-Übersichtskarte Die Grafik der Datei "uebersichtskarte_negativ.jpg" ist die Negativ-Darstellung der Karte "uebersichtskarte.jpg". Der Himmelshintergrund ist weiß gehalten, die Sterne sind als schwarze Kreise dargestellt. Ihre Helligkeit wird durch die verschieden großen Kreisdurchmesser veranschaulicht. Solche Negativ-Sternkarten eignen sich gut für handschriftliche Einträge und Ergänzungen. Detailkarten Nach etwas Übung in der Orientierung am Himmel genügen den Schülerinnen und Schülern für weitere Beobachtungen dann die vergrößerten Ausschnittkarten, zum Beispiel "detailkarte.jpg" oder "detailkarte_negativ.jpg" (Abb. 12; zur Vergrößerung des Ausschnitts bitte anklicken). Letztere Karte liegt auch mit dem Gradnetz des äquatorialen Himmelskoordinatensystems vor ("detailkarte_negativ_gradnetz.jpg"). Händische Einträge in die Himmelskarten In allen Karten fehlt der am Sternhimmel nicht ortsfeste Mars. Er ist jedoch in der betrachteten Himmelsgegend bei einer "durchschnittlichen" Opposition ein auffälliges Objekt und deshalb leicht aufzufinden. Aufgabe der Schülerinnen und Schüler ist es nun, an möglichst vielen klaren Abenden während der Beobachtungsmonate (in dem hier vorgestellten Beispiel Januar bis April 2010) nach dem Planeten Mars Ausschau zu halten, ihn am Himmel aufzufinden, seine Position relativ zu den umgebenden Sternen nach Augenmaß zu ermitteln, um diese Marspositionen dann nebst Datum in der Detailkarte (Negativdarstellung) festzuhalten. Durch Einbeziehen des Koordinatenrasters in der Detailkarte kann eine ordentliche Genauigkeit bei der Bestimmung der Positionen erzielt werden. Brauchbares Wetter vorausgesetzt, sollte man im Laufe einiger Wochen viele unterschiedliche Marspositionen beobachten und dokumentieren können. Man wird zuerst die retrograde (rückläufige) Bewegung erkennen, dann den scheinbaren Stillstand, dem danach die normale prograde Bewegung von Westen nach Osten folgt. Abb. 13 (Grafik zur Vergrößerung des Ausschnitts bitte anklicken) zeigt den mit der Software GUIDE 8.0 erzeugten Verlauf der Marsbewegung um dessen Opposition (Beobachtungsbeispiel Oktober 2009 bis Mai 2010). Technikbegeisterte Schülerinnen und Schüler werden eher an der fotografischen Dokumentation der Marsbewegung interessiert sein. Unter Verwendung der kostenlosen Software Fitswork kann man aus Fotografien einfacher Digitalkameras Planetenbahnen am Sternhimmel rekonstruieren und nebenbei Grundlagen der digitalen Bildbearbeitung erlernen. Das dieser Technik zugrunde liegende Vorgehen wird ausführlich beschrieben in dem Beitrag zur Allgemeine Hinweise zur Planetenbeobachtung . Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse, deren Begleitumstände sowie über die Sichtbarkeiten der Planeten: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Dünnschichtchromatographie - Farbstoffe, Schmerztabletten

Unterrichtseinheit

Die hier vorgestellten spielerischen Versuche zur Auftrennung gängiger Faserstift-Farben und die folgende wissenschaftlich exakte Identifizierung von Inhaltsstoffen gängiger Schmerztabletten mithilfe von Referenzsubstanzen sind der Garant für eine hohe Motivation der Lernenden. Modellierungen mit Excel veranschaulichen den Begriff des multiplikativen Gleichgewichts bei der Chromatographie.Die Experimente zur Chromatographie verdeutlichen die Bedeutung der Trennmethode und geben Denkanstöße zu anderen Themenbereichen - bis hin zur DNA-Analyse oder dem Nachweis von toxischen Verunreinigungen oder Fremdsubstanzen in Modedrogen. Vor den praktischen Übungen werden mit einem Tabellenkalkulationsprogramm (hier Excel) die Verteilungsvorgänge bei der Dünnschichtchromatographie (Austauschvorgänge zwischen mobiler und fester Phase) mathematisch modelliert und grafisch dargestellt. Die Lernenden verstehen die Verteilungsvorgänge mithilfe des Computers als ?Zeichen- und Rechenknecht?. In der Unterrichtseinheit verbinden sich somit am Computer entwickelte Modellvorstellungen mit greifbaren Versuchsergebnissen. 1. Stunde: Chromatographie - eine revolutionäre Technik Allgemeine Hinweise zur Dünnschichtchromatographie 2. Stunde: Mathematische Simulation der multiplikativen Verteilung Mit Excel-Dateien wird die multiplikative Verteilung von zwei zu trennenden Stoffen berechnet und in Diagrammform dargestellt. 3. Stunde: Chromatographie von Farbstoffgemischen Einstieg in die Chromatographie-Praxis: Hier finden Sie Hinweise zur Durchführung, Ergebnisbeispiele und eine ausführliche Versuchsanleitung für die Lernenden. 4. Stunde: Chromatographie von Schmerzmitteln Die Schülerinnen und Schüler analysieren die Bestandteile eines Schmerzmittels und nutzen das Internet, um die Medikamenten-Marke zu bestimmen. Weitere Versuchsvorschläge und Anregungen Experimente zur Trennung von Pflanzenfarbstoffen Die Schülerinnen und Schüler sollen die Verteilung von Farbstoffen mithilfe einer vorgegebenen Excel-Datei bei unterschiedlichen Verteilungskoeffizienten simulieren und die Auswirkungen an der Excel-Grafik ablesen. an einigen Beispielen die zugrunde liegende Excel-Rechenanweisungen zur Konzentrationsberechnung nachvollziehen. experimentell sauber arbeiten und Versuchsprotokolle führen können. in einem Versuch zur Trennung von Farbstoffgemischen erleben, dass die Dünnschichtchromatographie überraschende Ergebnisse liefert. in einem Versuch zur Trennung von Schmerzmitteln die Komponenten einer Schmerztablette identifizieren und mithilfe von Internetrecherchen einem Markennamen zuordnen oder die Auswahl der in Frage kommenden Produkte eingrenzen. weitere Versuche durchführen (Trennung von Paprika-, Curry- und Blattfarbstoffen). Das Wort "Chromatographie" (aus dem Griechischen) bedeutet "mit Farbe schreiben" (chroma = Farbe, graphein = schreiben). In der Chemie fasst man unter diesem Begriff keine Maltechnik, sondern eine Reihe von Techniken zur analytischen Trennung von Stoffen zusammen: Papier-, Dünnschicht-, Gaschromatographie und noch weitere moderne Methoden. Die Chromatographie war und ist für die Naturstoff- und Biochemie von sehr großer Bedeutung, da man mit ihr Stoffgemische sehr leicht trennen und die Bestandteile identifizieren kann. Erwin Chargaff hat zum Beispiel mithilfe chromatographischer Techniken einen wesentlichen Beitrag zur Strukturaufklärung der DNA geleistet. In modernen Labors werden Chromatographien automatisiert durchgeführt und per Computer ausgewertet. Feste Phase Bei der Dünnschicht-Chromatographie benutzt man eine feste Phase auf einem Trägermaterial (Alufolie, Plastikfolie oder Glasplatte), an der die zu untersuchenden Stoffe getrennt werden. Die feste Phase kann zum Beispiel Cellulose, Aluminiumoxid oder Kieselgel sein. Sie ist sehr fein und gleichmäßig auf dem Trägermaterial verteilt. Mobile Phase: Das Laufmittel Die flüssige Phase bewegt sich durch Kapillarkräfte durch die feste Phase und transportiert dabei die Stoffe des Substanzgemisches. Auftragung der Substanzproben Auf die Dünnschichtchromatographie-Folie trägt man mithilfe einer Kapillare die Proben punktförmig entlang einer Startlinie auf und lässt sie eintrocknen. Nach dem Auftragen der Proben stellt man die Folie aufrecht in einen Chromatographie-Tank, der gerade soviel von der mobilen (flüssigen) Phase enthält, dass die Startlinie mit den aufgetragenen Proben einen halben Zentimeter oberhalb des Flüssigkeitsspiegels liegt. Durch Kapillarkräfte beginnt die mobile Phase durch die feste Phase zu wandern und zieht dabei die Substanzproben mit sich. Während der Chromatographie stellt sich entlang der Laufstrecke ständig ein neues Gleichgewicht ein zwischen der Lösung des Stoffes (in der mobilen Phase) und der Adsorption des Stoffes (an die stationäre Phase). Nimmt man die Folie aus dem Gefäß und trocknet sie, so befindet sich der "Fleck" jeder Komponente der Probe auf einer ganz bestimmten Höhe des Chromatogramms (wobei sich die Farbstoffmengen der mobilen und der stationären Phase nach der Trocknung der Folie an jedem Ort jeweils addieren). Die Trennung kommt dadurch zustande, dass sich die Substanzen verschieden gut in der mobilen Phase lösen und weitertransportiert werden. verschieden fest an die feste Phase angelagern (Adsorption). Der Rf-Wert Je besser sich eine Substanz im wandernden Lösungsmittel löst und je kleiner ihre Affinität zum Trägermaterial ist, desto schneller und weiter wird sie mit dem Lösungsmittel wandern. Daraus ergibt sich als eine charakteristische Größe der Rf-Wert ("Ratio of front") der Substanz (Wanderungsstrecke der Substanz / gesamte Wanderungsstrecke des Lösungsmittels). Der maximale Rf-Wert beträgt somit 1, meist liegt er deutlich darunter. Er hängt von der chemischen Struktur der Substanz, vom Trägermaterial und vom Lösungsmittelgemisch ab (Kammmersättigung und konstante Versuchstemperatur werden vorausgesetzt). Jonas Hostettler vom Departement Chemie der Universität Basel hat ein kleines Simulationsprogramm entwickelt und für die Veröffentlichung zur Verfügung gestellt. Es eignet sich sehr gut als Ergänzung zu den eher trockenen Erklärungen der Vorgänge bei der multiplen Verteilung (Beamerpräsentation, Nutzung am heimischen Rechner oder im Computerraum). In dem ZIP-Ordner "dc_simulation_verteilung" (siehe unten) finden Sie die Datei "Verteilung.htm", mit der Sie das Programm per Mausklick starten (Abb. 1, Platzhalter bitte anklicken). Weisen Sie Ihre Schülerinnen und Schülern darauf hin, dass in den Reagenzgläsern die untere (grüne) Phase der stationären Phase, die obere (blaugrüne) Phase der mobilen Phase, also dem Fließ- oder Laufmittel, entspricht. Um die Simulation starten zu können, müssen für die beiden zu trennenden Stoffe Verteilungskoeffizienten (v) Werte eintragen werden. Mit dem Wert für "i" geben Sie die Zahl der im ersten Schritt zu simulierenden Trennschritte vor. Durch den Klick auf "Rechne!" wird dann das multiplikative Gleichgewicht für eine entsprechende Zahl von Reagenzgläsern berechnet. Die Konzentrationen der Stoffe werden als Balkendiagramme dargestellt. Dabei werden leider nur die Konzentrationen in der mobilen Phase (grün) berücksichtigt. Durch Klick auf "i+1" wird jeweils ein weiterer Trennschritt berechnet. (Aus programmiertechnischen Gründen startet die Software bei i-Werten, die größer sind als eins, jeweils beim "letzten" Trennschritt.) Die Excel-Dateien können zur Unterstützung des Unterrichtsgespräches eingesetzt werden. Dazu sind lediglich ein Präsentationsrechner und ein Beamer erforderlich. Machen Sie sich mit den Simulationen vor der Verwendung im Unterricht vertraut. Verwenden Sie am besten die Verteilungskoeffizienten 0,5 für den roten und blauen Farbstoff - hier werden die Zahlenreihen am verständlichsten. Die Funktionen und Eigenschaften der beiden Excel-Simulationen werden in den folgenden Abschnitten dargestellt. Darstellung der multiplikativen Verteilung Mit der Datei "1_multiplikative_verteilung_5_schritte.xls" (Abb. 2, Platzhalter bitte anklicken) wird eine Stofftrennung (rechnerisch) mit nur fünf Trennschritten simuliert: Die Konzentrationen eines roten und eines blauen Farbstoffs in der mobilen und der stationären Phase werden rechnerisch und grafisch dargestellt. Die Konzentrationen und die Verteilungskoeffizienten der Stoffe (rote Zahlen = roter Farbstoff, blaue Zahlen = blauer Farbstoff) lassen sich ändern. Die Ergebnisse werden jeweils in einer Grafik ("Multiple Verteilung - stationäre und mobile Phase") dargestellt, die sich den eingegeben Werten automatisch anpasst. In der Spalte B steht "GG" für die Einstellung des Gleichgewichtes, der nach rechts gerichtete Pfeil für das "Vorrücken" der Fließmittelfront. Variation der Verteilungskoeffizienten In den Feldern L2 und L4 (siehe Abb. 3) können die Verteilungskoeffizienten geändert werden (Werte zwischen 0 und 1). Experimentieren Sie mit verschiedenen Werten. Diese Felder geben an, zu welchen Anteilen die beiden Stoffe in die mobile Phase übergehen: In Feld D6 steht dann der Anteil roten Farbstoffs, der in die mobile Phase übergeht (0,25 entspricht 25 Prozent), im Feld G6 der Anteil roten Farbstoffs, den die stationäre Phase in dem jeweiligen Schritt absorbiert (1 - 0,25 = 0,75; also 75 Prozent). Um den Inhalt der Felder D6 und G6 brauchen Sie sich nicht zu kümmern - ihre Werte richten sich nach der Eingabe in L2 und L4 (Vorgabe der Verteilungskoeffizienten). Stoffmengen In den Feldern E2 und E4 (Abb. 3) können die Stoffmengen variiert werden. Werte unter zehn liefern im Graphen zu flache Kurven und werden nicht angenommen. Wie werden die Berechnungen durchgeführt? Die gelb unterlegten Felder (siehe Abb. 4 und Abb. 5) enthalten die Stoffmengen der mobilen Phase, die blau unterlegten enthalten die absorbierten Anteile der stationären Phase. Vor dem Weiterwandern der mobilen Phase, also hinter der Fließmittelfront, findet eine Gleichgewichtseinstellung statt (Abb. 4). Nach der Gleichgewichtseinstellung wandert die mobile Phase weiter - zunächst ohne erneute Gleichgewichtseinstellung (Abb. 5). Danach findet wieder eine Gleichgewichtseinstellung statt und das Fließmittel wandert wieder eine Zelle weiter - und so geht es weiter, bis fünf Trennschritte simuliert sind. Ganz unten in der Tabelle (Zeile 48 und 49, siehe Abb. 2) werden die Stoffmengen der stationären und der mobilen Phase für jeden Farbstoff und jede Zelle addiert. Diese Werte erscheinen in der Grafik. Natürlich sind fünf Trennschritte noch zu wenig, um eine scharfe Trennung der Farbstoffe zu simulieren. Dies ist mit der zweiten Excel-Datei möglich (2_multiplikative_verteilung_stat _mobil_10_schritte.xls), die zehn Trennschritte simuliert (Abb. 6, Platzhalter bitte anklicken). Dabei werden die Verteilungen in der stationären und mobilen Phase - im Unterschied zur ersten Simulation - zusammengefasst. Dies ist im Vergleich zur ersten Simulation ein Vorteil: dort müssen bei der Betrachtung der Trennschritte die Stoffmengen der mobilen und der stationären Phase jeweils addiert werden. Wieder gilt: Rote Zahlen gelten für den roten, blaue für den blauen Farbstoff. Wie funktioniert diese "Zusammenfassung" der Stoffmengen in der stationären und mobilen Phase? Betrachten wir in Abb. 7 das oval markierte Feld E14. Wir wollen gerade die Teilchenmengen berechnen, die im dritten Trennschritt anfallen. E14 wird mit zwei Teilchenmengen "versorgt": Von der Zelle davor kommt der Anteil an Substanz hinzu, der in ihr in die mobile Phase übergegangen ist ("C12*D6", also das Produkt der Werte aus den Zellen C12 und D6) und weitertransportiert wird (grüner Pfeil). Zusätzlich kommt der Inhalt der Zelle hinzu, der von der stationären Phase festgehalten (E12*G6) und nicht weiter transportiert wird (roter Pfeil). Für eine detaillierte und mehr schrittweise Betrachtung der Einzelvorgänge ist die Excel-Datei mit den fünf Schritten geeigneter - besonders für jüngere Lernende. Erfahrungsgemäß verstehen Schülerinnen und Schüler des Gymnasiums (ab Klasse 10) die gekoppelten Vorgänge in der Excel-Simulation mit zehn Schritten gut - zumal das zweite Excel-Arbeitblatt auch noch eine Grafik zeigt, die nur fünf Trennschritte darstellt (in Abb. 6 nicht dargestellt): man erkennt im Vergleich mit dem oberen Diagramm (zehn Trennschritte) deutlich den Unterschied, der sich mit der steigenden Zahl der Trennschritte einstellt. Hier noch zwei wichtige Hinweise: Sie können sich bei geöffneter Excel-Datei die verwendeten Formeln anzeigen lassen. Klicken Sie auf "Extras", "Formelüberwachung", "Formelüberwachungsmodus". Der "Klick-Rückweg" führt zur normalen Tabellendarstellung zurück. Beim Schließen der Excel-Datei sollten die vorgenommenen Änderungen nicht gespeichert werden (Abb. 8). So bleibt der Originalzustand der Simulationen erhalten. Im Rahmen einer Projektarbeit können die Schülerinnen und Schüler - je nach Interesse und Fähigkeiten - in selbständiger Arbeit das mathematische Modell zur multiplikativen Verteilung mit einer objekt-orientierten Programmiersprache wir zum Beispiel Visual Basic "automatisieren". So lassen sich über Hundert Trennschritte in einer "Schleife" berechnen. Die Diagramme der Auftrennung werden so erheblich klarer und aussagekräftiger. Mit der Dünnschichtchromatographie kann man Farbstoffgemische auftrennen und zeigen, dass eine scheinbar einfarbige Lösung oder die Farbe eines Faserschreibers oft aus vielen Einzelkomponenten unterschiedlicher Farbe besteht. Die Auftrennung verschiedenfarbiger Faserschreiber liefert - abhängig von der Herstellerfirma und der Farbe - optisch eindrucksvolle Resultate. Dabei kann zum Beispiel untersucht werden, welcher Herstellerfirma ein Faserschreiber zuzuordnen ist. Abb. 9 zeigt einige Ergebnisse aus Schülerversuchen. Die Betrachtung der getrockneten Chromatogramme unter langwelligem UV-Licht (UV-Lampe nicht auf die Augen richten beziehungsweise in die Lampe hineinsehen, im Idealfall Schutzbrillen verwenden!) zeigt - je nach Fabrikat und Farbe - schwach fluoreszierende Zusatzstoffe, die im Tageslicht die Brillanz der Farben erhöhen. Bereitgestellt werden müssen die Dünnschichtchromatographie-Folien (siehe "dc_versuch_1_farbstoffe.pdf"), Trennkammern mit Deckeln, eine Flasche mit vorbereitetem Fließmittel, ein Trichter, weiche Bleistifte (zur Markierung der Folien) und eventuell eine UV-Lampe mit umschaltbarem Wellenlängenbereich. Das verwendete Laufmittel enthält Acetonitril (siehe "dc_versuch_1_farbstoffe.pdf"). Es liefert in kurzer Zeit sehr gute Trennerfolge und ist für Schülerversuche noch zugelassen. Führen Sie den Versuch nur in einem gut ziehenden Abzug durch. Nach der Chromatographie wird Fließmittel aus den Gefäßen durch einen Trichter ins Vorratsgefäß zurückgegeben. Die Filter werden seitlich an die Gefäße gestellt und unter dem Abzug getrocknet. Achten Sie bei längerer Lagerung des Laufmittels auf den pH-Wert - er sollte bei etwa 7,0 liegen. Farbstifte bringen die Schülerinnen und Schüler mit. Achten Sie jedoch darauf, dass keine Permanentstifte verwendet werden. Als Lehrkräfte müssen wir bei den weiteren Versuchen dieser Unterrichtseinheit immer wieder auf die exakten Vorbereitungen zurückgreifen und uns darauf verlassen können, dass die Schülerinnen und Schüler selbstständig die Folien vorbereiten, die Stoffe auftragen und die Trennung sorgfältig durchführen können. Achten Sie bei diesem ersten Versuch daher besonders auf folgende Punkte: Sind alle Folien ordnungsgemäß vorbereitet? Sind auf den Folien Farbe und Fabrikat der Farbstifte vermerkt? Sind die Folien mit dem Namen der Arbeitsgruppe beschriftet? Weiß jede Arbeitsgruppe, welches Gefäß und welche Folie zu ihr gehört? Werden die Farbtupfer nicht zu dick aufgebracht? Zu viel Farbstoff führt zu verschmierten Flecken, daher gilt: Weniger ist mehr! Beim Auftragen der Proben lieber mehrmals tüpfeln - Proben dabei zwischendurch trocknen lassen. Lassen die Schülerinnen und Schüler die Folie einfach in die Chromatographiekammer fallen? Tauchen die Farbtupfer nicht in das Fließmittel ein? Vergleichen die Lernenden die Trennergebnisse mit anderen Arbeitsgruppen? Nach dem spielerischen Einsteig wird nun eine anspruchsvollere Aufgabe wissenschaftlich exakt bearbeitet. Die Datei "dc_versuch 2_schmerzmittel.pdf" (siehe unten) liefert neben einer Liste mit den benötigten Materialien eine genaue Versuchsvorschrift - von der Vorbereitung der Folie bis hin zur Auswertung der Ergebnisse unter UV-Licht (Abb. 10). Zeigen Sie den Schülerinnen und Schülern vor Versuchsbeginn die weißen Substanzen in Reinform (Acetylsalicylsäure, Coffein, Paracetamol; Sie benötigen diese Stoffe bei der Chromatoghraphie auch als Referenzsubstanzen). Sie werden gleich die Problematik erkennen, dass weiße (oder farblose) Stoffe auf dem weißen Folienbelag bei Tageslicht nicht sichtbar sind. Bei der Frage nach Möglichkeiten zum Nachweis "unsichtbarer" Substanzen können die Schülerinnen und Schüler - spätestens nach dem Hinweis auf die Geldscheinprüfung - die Begriffe UV-Licht oder Fluoreszenz ins Spiel bringen. Bitte halten Sie die vorgegebenen Stoff- und Lösungsmittelmengen ein - sie sind erprobt (siehe "dc_versuch 2_schmerzmittel.pdf"). Aspirin (Acetylsalicylsäure) in methanolischer Lösung sollte nicht zu lange aufbewahrt werden oder gar mit Luftfeuchtigkeit in Kontakt kommen. Es findet eine langsame Hydrolyse beziehungsweise Umesterung statt. Die entstehende Salicylsäure erzeugt im Chromatogramm oberhalb des Aspirins einen diffusen, blau fluoreszierenden Fleck, der sehr störend ist. Verwenden Sie daher nur frisch zubereitete Aspirinlösungen. Verwenden Sie als Analysenprobe möglichst Schmerztabletten, die entweder alle drei Vergleichssubstanzen oder mindestens zwei davon enthalten. Führen Sie den Versuch nur unter einem gut ziehenden Abzug durch und beachten Sie die Brennbarkeit der Lösungsmittel! Die Markierung der Lösungsmittelfront muss sofort nach der Entnahme der Folie aus dem Chromatographiegefäß erfolgen, sonst ist sie nicht mehr eindeutig erkennbar. Betrachten Sie nur völlig trockene Folien unter UV-Licht. Richten Sie die Lampe nie auf Augen. Weisen Sie die Schülerinnen und Schüler dauf hin, nie in die Lampe zu blicken (im Idealfall Schutzbrillen verwenden). Bei der Betrachtung der Folien unter UV-Licht (254 nm) fluoresziert die weiße Trägersubstanz durch ihren Fluoreszensfarbstoff grünlich. Farblose Substanzen, die nicht fluoreszieren, schwächen die Fluoreszens des Trägermaterials und machen sich als "dunkle Flecken" bemerkbar. Die Schülerinnen und Schüler umfahren diese Flecken der aufgetrennten Substanzen vorsichtig mit einem weichen Bleistift. Besonders intensive Flecke werden schraffiert. Dabei ist darauf zu achten, dass die weiße Schicht der Folie nicht beschädigt wird. Achten Sie auch darauf, dass die Gruppen ihre Markierungen bei Tageslicht kontrollieren und noch einmal mit dem Erscheinungsbild unter UV-Licht vergleichen, bevor sie die Lampe verlassen: Wurde auch kein Fleck vergessen? Wurden besonders intensive Flecken schraffiert? Dies sind die Voraussetzung für klare Aussagen: Was sind die Rf-Werte für die Referenzsubstanzen Aspirin, Coffein und Paracetamol? Welche "Flecke" mit gleichem Rf-Wert sieht man bei der Schmerzmittelprobe? Abb. 11 zeigt das Ergebnis der Auswertung eines Schülerversuchs (a: Ergebnis unter UV-Licht; b: beschriftete Originalfolie). Die Schülerinnen und Schüler zeigen sich überrascht, wenn zum Beispiel bei einer Gruppe ein "Fleck" auftaucht, der keiner Referenzsubstanz zugeordnet werden kann. Eine "heimliche" Zugabe von 100 mg Ibuprofen zur Lösung der Analysenprobe liefert einen solchen "Rätselfleck", der zu weiterführenden Überlegungen anregen und die Bedeutung der Chromatographie als einfache Methode zum Aufspüren von Verunreinigungen verdeutlichen soll: Um welchen Stoff (welche Verunreinigung) kann es sich handeln? Welche wirksamen (rezeptfreien) Substanzen zur Schmerzbekämpfung gibt es sonst noch? Wie könnte man die unbekannte Substanz identifizieren? Die Schülerinnen und Schüler können die Aufgabe erhalten, die Zusammensetzung gängiger Schmerztabletten im Internet zu recherchieren und zumindest eine Auswahl der für die Zuordnung ihrer Probe in Frage kommenden Präparate zu erstellen. Erfahrungsgemäß erweisen sie sich dabei als sehr findig! Die Schülerinnen und Schüler sollen nun auf der Basis ihrer experimentellen Erfahrungen die benötigten Geräte selbst zusammenstellen (Hilfestellung durch die Lehrkraft), die Chemikalien und Proben besorgen und den Versuch eigenverantwortlich durchführen und auswerten. Die Anleitungen zu den folgenden drei Experimenten (Trennung von Paprika-, Curry- und Blattfarbstoffen) sind daher nicht mehr so ausführlich. Gegebenenfalls können die Lernenden auch noch weitere Anleitungen recherchieren und Experimente durchführen. Beachten Sie bei den hier vorgeschlagenen Pflanzenfarbstoff-Chromatographien folgende Punkte: Frische Ausgangsmaterialien Besonders beim Paprikapulver ist darauf zu achten, dass es frisch ist und nicht längere Zeit Luft und Licht ausgesetzt wurde. Feuergefährliches Fließmittel Besondere Vorsicht ist bei der Entwicklung der Chromatogramme geboten. Dies sollte nur im gut ziehenden Abzug erfolgen. Verwenden Sie hier keine offenen Flammen, keine heißen Gegenstände und keine Handys (Fotoblitz)! Um die Entzündung feuergefährlicher Lösungsmittel auszuschließen, fotografieren Sie die Chromatogramme nie unter dem Abzug. Lichtempfindliche Substanzen Die Entwicklung der Chromatogramme findet sowieso im Abzug statt - daher dürfte Licht- oder gar Sonneneinstrahlung dabei kein Thema sein. Nach dem Trocknen sollten die Chromatogramme lichtgeschützt aufbewahrt werden. Paprikafarbstoffe Abb. 12 zeigt ein Chromatogramm von Paprika-Farbstoffen. Je nach Paprikasorte können auch weniger Banden erzielt werden. Die hier verwendeten Paprika-Früchte stammten aus Ungarn. Curry- beziehungsweise Curcuma-Farbstoffe Bei der chromatographischen Analyse von Curcuma sollten sich fünf Flecke ergeben: drei gelbe (Rf-Werte 0,17, 0,29 und 0,46) und zwei blau fluoreszierende (Rf-Werte 0,25 und 0,54). Bei Currypulver erhält man mindestens einen intensiv orangefarbigen Fleck und drei gelbe Flecke mit kleineren Rf-Werten. Die aufgetrennten Blattfarbstoffe (Abb. 13) unterscheiden sich farblich teilweise nur durch Nuancen: Carotine (goldgelb) Phaeophytin (olivgrün) Chlorophyll a (blaugrün) Chlorophyll b (gelbgrün) Lutein (graugelb) Violaxanthin (gelb) Neoxanthin (gelb) Im Unterricht kann die Dünnschichtchromatographie auch als Möglichkeit zum Nachweis von Verunreinigungen beziehungsweise Fremdsubstanzen bei illegalen Modedrogen wie Exstacy oder Speed thematisiert werden - mit dem ausdrücklichen Hinweis, dass diese toxischen Fremdsubstanzen oft einen beträchtlichen Anteil der Droge ausmachen, teils absichtlich zugegeben werden und andere bei der Herstellung unvermeidbar als Nebenprodukte entstehen, die weder bekannt noch toxikologisch geprüft sind. Die Abnehmerinnen und Konsumenten der Drogen sind daher Versuchskaninchen, um deren Gesundheit und die Spätfolgen (Krebs, cerebrale Effekte, persönlichkeitsverändernde Wirkungen) sich niemand kümmert. Die Vermeidung oder Beseitigung gesundheitsschädlicher Nebenprodukte hätte Zeit-, Substanz- und damit Einnahmeverluste der "Produzenten", Dealerinnen und Dealer zur Folge. "Cash" ist deren Maxime, das erhebliche gesundheitliche und psychische "Restrisiko" tragen allein die Abnehmer und Konsumentinnen. Dieser Aspekt ist als Übergang oder Anknüpfungspunkt zu einer fachübergreifenden Unterrichtseinheit zum Thema "Suchtstoffe und Drogen" gut geeignet.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE