• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die Entfernung der Supernova SN 1987A

Unterrichtseinheit

Auf der Grundlage von Bildern, die mit dem Hubble-Weltraumteleskop gewonnen wurden, bestimmen Schülerinnen und Schüler die Entfernung zur Supernova SN 1987A in der Großen Magellanschen Wolke. Am 23. Februar 1987 leuchtete in einer der Milchstraße benachbarten Zwerggalaxie eine Supernova auf - nach 400 Jahren war dies die erste mit bloßem Auge sichtbare Supernova und daher ein spannendes Ereignis für die Astronomie. Mehr als drei Jahre nach der Explosion des Sterns nahm das 1990 gestartete Hubble-Weltraumteleskop die Überreste der Supernova ins Visier und lieferte Bilder von Ringstrukturen, deren Entstehung noch heute zum Teil rätselhaft ist. Die Vermessung des inneren Rings mithilfe der Hubble-Bilder und die Analyse einer Lichtkurve des Rings ermöglichen mit Kenntnissen der ebenen Trigonometrie die Berechnung der Entfernung von SN 1987A. Neben den Arbeitsmaterialien und Aufgabenstellungen für die Schülerinnen und Schüler steht im Downloadbereich auch eine Handreichung für Lehrkräfte mit weiteren ausführlichen Informationen zur Verfügung. Die Unterrichtseinheit zur Supernova SN 1987A in der Große Magellanschen Wolke schafft die Grundlage für ein zweites Projekt zur Entfernungsbestimmung: Die Große Magellansche Wolke enthält nämlich viele veränderliche Sterne vom Typ Delta Cephei, deren Entfernung mithilfe der Supernova SN 1987A geeicht werden kann. Auf der Basis dieser Eichung erfolgt dann in der Unterrichtseinheit Die Entfernung der Galaxie M100 eine Entfernungsbestimmung mit einer weiteren Methode: dem Vergleich scheinbarer und absoluter Helligkeiten bei Delta-Cephei-Sternen. Die kosmische Entfernungsskala Methoden der Entfernungsbestimmung: Schülerinnen und Schüler erklimmen zwei Stufen der kosmischen Entfernungsleiter. Warum explodieren Sterne? Obwohl die Details für die Entfernungsbestimmung nicht von Bedeutung sind, soll kurz dargestellt werden, wie Supernovae entstehen. Informationen und Materialien zur Entfernungsberechnung Die Bestimmung der Entfernung der Supernova SN 1987A beruht auf einfachen geometrischen Überlegungen. Die Schülerinnen und Schüler verstehen die Geometrie des inneren Ringes um SN 1987A (Projektion des kreisförmigen Rings als Ellipse an die Himmelssphäre) und schulen dadurch ihr räumliches Vorstellungsvermögen. definieren den Maßstab des Hubblebildes der Supernova und bestimmen den Winkeldurchmesser des Ringes und seine Neigung relativ zur Himmelsebene. werten eine Lichtkurve aus, die zeigt, wie das von verschiedenen Teilen des Rings ausgesendete Licht die Erde zu verschiedenen Zeitpunkten erreicht, um die physikalischen Dimensionen des Ringes zu bestimmen. bestimmen aus dem Winkeldurchmesser und der Größe des Ringes die Entfernung von SN 1987A. Boßle, M., Wörmke, St. (1995): Entfernungsbestimmung im Weltraum, Deutsche Schülerakademie: Dokumentation Spetzgart. Bad Godesberg, Seite 58-63. Fosbury, R. (1994): HSTX - Practical exercises in astronomy using observations made with the Hubble Space Telescope, Project 1: The Distance to SN 1987A Space Telescope European Coordinating Facility, Garching. Gould, A. (1994): The Ring Around Supernova 1987A Revisited: I. Ellipticity of the Ring, Astrophysical Journal 425 (1994), Seite 51-56. Panagia, N., Gilmozzi, R., Macchetto, F. und andere (1991): Properties of the SN 1987A Circumstellar Ring and the Distance of the Large Magellanic Cloud, Astrophysical Journal 380 (1991), Seite 23-26. Für die nähere Umgebung: Radarechos und trigonometrische Parallaxe Vergleichsweise kleine Entfernungen, wie die innerhalb unseres Sonnensystems, lassen sich aus der Laufzeit von Radarechos ermitteln. Für die Sterne der näheren Sonnenumgebung ist die Methode der trigonometrischen Parallaxe anwendbar, die auf der Messung der Verschiebung dieser Sterne gegenüber sehr viel weiter entfernten Sternen beruht, wenn man sie von verschiedenen Positionen der Erdbahn aus beobachtet. Dieser Effekt ist vergleichbar mit der Erfahrung, dass man ein und dasselbe Objekt einer Landschaft aus einem fahrenden Zug heraus auf dauernd wechselnde Punkte am Horizont projiziert. Erscheint, von einem Stern aus gesehen, die große Halbachse der Erdbahn unter einem Winkel von einer Bogensekunde, so hat er eine Entfernung von einem Parsec (1 Parsec = 3,26 Lichtjahre). Bei viel weiter entfernten Objekten kommen andere Methoden zur Entfernungsbestimmung in Betracht: Vergleich der wahren (etwa in Parsec gemessenen) Größe der Objekte mit dem Winkeldurchmesser, unter dem sie dem Betrachter erscheinen. Vergleich der absoluten Helligkeit (oder Leuchtkraft) der Objekte mit der scheinbaren Helligkeit, die sie für den Beobachter haben. Beide Methoden sind dadurch gekennzeichnet, dass sie in jeweils eine relativ leicht zu bewältigende und eine schwierige Aufgabenstellung zerfallen. Scheinbare Helligkeiten und Winkeldurchmesser sind der Messung direkt zugänglich. Aussagen über die Leuchtkraft oder die wahre Größe von Himmelsobjekten sind viel schwieriger zu treffen und erfordern in der Regel ein tiefes Verständnis der physikalischen Natur dieser Objekte. Die Supernova SN 1987A und die Galaxie M100 In zwei Projekten lernen die Schülerinnen und Schüler ein Beispiel für je eine der Methoden zur Bestimmung großer Entfernungen kennen. In dieser Unterrichtseinheit wird das erste Verfahren angewendet, indem die Entfernung zur Supernova SN 1987A in der Großen Magellanschen Wolke bestimmt wird (Fosbury, 1994). Zu diesem Zweck werden aus Originalaufnahmen des Hubble-Weltraumteleskops zuerst die scheinbare Größe des hellen zirkumstellaren Rings und anschließend aus der Analyse seiner Lichtkurve seine wahren Abmessungen ermittelt. In einem zweiten Projekt (siehe Unterrichtseinheit Die Entfernung der Galaxie M100 ) wird das zweite Verfahren angewendet, nämlich der Vergleich von scheinbarer und absoluter Helligkeit bei Delta-Cephei-Sternen. Zwei Stufen der kosmischen Entfernungsleiter Obwohl in den Details durchaus kompliziert, sind die geometrischen und physikalischen Prinzipien dieser Entfernungsbestimmungen einfach genug, um bereits von Schülerinnen und Schülern der Oberstufe verstanden und angewandt werden zu können. Wichtig ist dabei, dass für die Bestimmung der Entfernung zur Galaxie M100 das Ergebnis der Supernova-Messungen zugrunde gelegt wird. In der Großen Magellanschen Wolke findet man nämlich außer der Supernova SN 1987A sehr viele veränderliche Sterne vom Typ Delta Cephei, deren Entfernungsskala man mithilfe der Supernova mit bisher nicht gekannter Präzision eichen kann. So können die Schülerinnen und Schüler praktisch nachvollziehen, wie zwei Stufen der kosmischen Entfernungsleiter nacheinander erstiegen werden. Beide Projekte wurden mit Schülerinnen und Schülern erprobt und von diesen auch publiziert (Boßle, Wörmke, 1995). Wachstum eines Weißen Zwergs auf Kosten seines Begleiters Bei den Supernovae vom Typ I handelt es sich ursprünglich um relativ massearme Sterne in einem Spätstadium ihrer Entwicklung, um so genannte Weiße Zwerge, die zusammen mit einem anderen Stern ein enges Doppelsternsystem bilden. Die von dem Weißen Zwerg ausgehenden Gezeitenkräfte bewirken, dass stellares Material vom Begleiter zum Weißen Zwerg strömt, wodurch dessen Masse zunimmt. Explosion beim Überschreiten einer definierten Massengrenze Übersteigt die Masse des Sterns dabei die so genannte Chandrasekhar-Grenze von etwa 1,4 Sonnenmassen, kann er nicht mehr als Weißer Zwerg weiter existieren. Er fällt unter der Wirkung seiner eigenen Schwerkraft zusammen, wobei Temperatur und Dichte soweit zunehmen, dass Kernreaktionen zünden. Diese setzen soviel Energie frei, dass der ganze Stern explodiert. Typ-I-Supernovae als Entfernungsindikatoren Alle Supernovae vom Typ I ereignen sich demnach beim Überschreiten einer definierten Massengrenze. Dies macht sie vergleichbar und prädestiniert sie zum Entfernungsindikator. Solche müssen nämlich in ihren inneren Eigenschaften übereinstimmen, damit man äußere Unterschiede allein auf unterschiedliche Entfernungen zurückführen kann. Implosion massereicher Sterne Supernovae vom Typ II sind das Endresultat der Individualentwicklung von Sternen, die mindestens etwa achtmal massereicher sind als die Sonne. Solche Sterne durchlaufen eine Folge von Kontraktionen und Kernreaktionen, wobei immer schwerere Elemente bis zum Eisen fusioniert werden. Danach kollabiert der Eisenkern, jedoch nicht die darüber liegende Hülle, bis sich ein stabiler Neutronenstern bildet, der die Dichte von Kernmaterie hat. Die Implosion wird zur Explosion In diesem Stadium wird die Implosion des Sterns plötzlich gestoppt, wodurch eine so starke Schockwelle entsteht, dass seine Hülle abgeblasen wird. Die Implosion wird in eine Explosion verwandelt, die als Supernova erscheint und einen Neutronenstern zurücklässt. Untypischer Typ II Die Supernova, die am 23. Februar 1987 in der Großen Magellanschen Wolke beobachtet wurde (Abb. 1), ist eine Supernova vom Typ II. Sie ist jedoch kein typischer Vertreter dieser Gattung: So wurde bislang kein Neutronenstern-Überrest gefunden. Zudem war die Explosion etwa einhundertmal schwächer als andere Supernovae dieses Typs. Rätselhafte Ringe Die Berechnung der Entfernung von SN 1987A basiert auf einfachen Überlegungen zur Vermessung des vom Hubble Space Telescope gesehenen hellen inneren Rings (Abb. 2) und der Analyse von dessen Lichtkurve, die vom International Ultraviolet Explorer (IUE) aufgezeichnet wurde. Bei dem Ring handelt es sich nicht um ein Produkt der Supernova-Explosion. Sein Material wurde bereits vor langer Zeit vom Vorgängerstern der Supernova ausgestoßen und zu aktivem Leuchten erst angeregt, als es von der energiereichen UV-Strahlung der Supernova mit Lichtgeschwindigkeit eingeholt wurde. Auf die Frage nach der Entstehung der Ringe gibt es bisher keine endgültige Antwort. In den Materialien zur Unterrichtseinheit werden die geometrischen Grundlagen zur Projektion des kreisförmigen Rings von SN 1987A als Ellipse an die Himmelssphäre, die Bestimmung des scheinbaren Ringradius und die Berechnung des wahren Ringradius ausführlich dargestellt. Weitere Materialien mit Aufgaben und Zusatzinformationen finden Sie in den deutschsprachigen Materialien zur astronomischen Übungsreihe der ESA/ESO auf der Website astroex.org.

  • Physik / Astronomie
  • Sekundarstufe II

Die Entfernung der Galaxie M100

Unterrichtseinheit

Schülerinnen und Schüler werten mithilfe von Daten des Hubble-Weltraumteleskops die Perioden und scheinbaren Helligkeiten von Cepheiden-Veränderlichen in der Galaxie M100 aus und ermitteln so deren Entfernung. Die Helligkeit der Delta-Cephei-Sterne variiert periodisch. Eine bestimmte Periodenlänge entspricht dabei einer ganz bestimmten mittleren Strahlungsleistung. Diese wiederum ergibt zusammen mit der scheinbaren Helligkeit die Entfernung. Voraussetzung dafür ist allerdings, dass die Entfernungsskala mithilfe von solchen Cepheiden geeicht wurde, deren Entfernung auf ganz unabhängige Weise ermittelt werden kann. In diesem Zusammenhang spielt die in der Unterrichtseinheit Die Entfernung der Supernova SN 1987A bestimmte Entfernung zur Supernova in der Großen Magellanschen Wolke eine Schlüsselrolle: In dieser findet man nämlich sehr viele veränderliche Sterne vom Typ Delta Cephei, deren Entfernungsskala mithilfe der Supernova mit bisher nicht gekannter Präzision geeicht werden kann. Neben den Arbeitsmaterialien und Aufgabenstellungen für die Schülerinnen und Schüler steht im Downloadbereich auch eine Handreichung für Lehrkräfte mit weiteren ausführlichen Informationen zur Verfügung. Obwohl in den Details durchaus kompliziert, sind die Prinzipien der Entfernungsbestimmungen einfach genug, um von Schülerinnen und Schülern der Oberstufe verstanden und angewandt werden zu können. Aus der Mathematik werden in dieser Unterrichtseinheit lediglich Kenntnisse über den dekadischen Logarithmus vorausgesetzt. Die kosmische Entfernungsskala Methoden der Entfernungsbestimmung: Schülerinnen und Schüler erklimmen zwei Stufen der kosmischen Entfernungsleiter. Informationen und Materialien zur Entfernungsberechnung von M100 Wie entsteht der Lichtwechsel der Cepheiden-Veränderlichen? Welche Eigenschaften machen sie zu Entfernungsindikatoren? Die Schülerinnen und Schüler verstehen die Ursachen des Lichtwechsels von Delta-Cephei-Sternen. werten Lichtkurven von Cepheiden aus und bestimmen mithilfe dieser "Standard-Kerzen" die Entfernung von M100. werden dazu angeregt, den Namensgeber der Cepheiden im Sternbild Kepheus oder andere Cepheiden selbst zu beobachten. Freedman, W.L., Madore, B.F., Mould, J.R. und andere (1994): Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids, Nature 371 (1994), Seite 757-762. Gaposhkin, S. I. (1970): The Large Magellanic Cloud: Its Topography of 1830 Variable Stars, Smithsonian Institution Astrophysical Observatory Special Report Nr. 310, Cambridge (MA) 1970. Für die nähere Umgebung: Radarechos und trigonometrische Parallaxe Vergleichsweise kleine Entfernungen, wie die innerhalb unseres Sonnensystems, lassen sich aus der Laufzeit von Radarechos ermitteln. Für die Sterne der näheren Sonnenumgebung ist die Methode der trigonometrischen Parallaxe anwendbar. Sie beruht auf der Messung der Verschiebung dieser Sterne gegenüber sehr viel weiter entfernten Sternen, wenn man sie von verschiedenen Positionen der Erdbahn aus beobachtet. Dieser Effekt ist vergleichbar mit der Erfahrung, dass man ein und dasselbe Objekt einer Landschaft aus einem fahrenden Zug heraus auf dauernd wechselnde Punkte am Horizont projiziert. Erscheint, von einem Stern aus gesehen, die große Halbachse der Erdbahn unter einem Winkel von einer Bogensekunde, so hat er eine Entfernung von einem Parsec (1 Parsec = 3,26 Lichtjahre). Bei viel weiter entfernten Objekten kommen andere Methoden zur Entfernungsbestimmung in Betracht: Vergleich der wahren (etwa in Parsec gemessenen) Größe der Objekte mit dem Winkeldurchmesser, unter dem sie dem Betrachter erscheinen. Vergleich der absoluten Helligkeit (oder Leuchtkraft) der Objekte mit der scheinbaren Helligkeit, die sie für den Beobachter haben. Beide Methoden sind dadurch gekennzeichnet, dass sie aus einer relativ leicht zu bewältigenden und einer schwierigen Aufgabenstellung bestehen. Scheinbare Helligkeiten und Winkeldurchmesser sind der Messung direkt zugänglich. Aussagen über die Leuchtkraft oder die wahre Größe von Himmelsobjekten sind viel schwieriger zu treffen und erfordern in der Regel ein tiefes Verständnis der physikalischen Natur dieser Objekte. In zwei Projekten lernen die Schülerinnen und Schüler ein Beispiel für je eine der Methoden zur Bestimmung großer Entfernungen kennen. Nachdem zuvor in der Unterrichtseinheit Die Entfernung der Supernova SN 1987A (siehe auch Fosbury, 1994) das erste Verfahren praktiziert wurde, kommt in dem hier vorgestellten Projekt die zweite Methode zum Einsatz: der Vergleich von scheinbarer und absoluter Helligkeit bei Delta-Cephei-Sternen zur Entfernungsbestimmung der Spiralgalaxie M100 im Virgo-Galaxienhaufen. Dabei hat die Durchsichtigkeit des Messprinzips gegenüber der erreichten Genauigkeit aus didaktischen Gründen den Vorrang. "Standard-Kerzen" im All Veränderliche Sterne vom Typ Delta Cephei sind sehr zuverlässige Entfernungsindikatoren, da man durch die Beobachtung ihres regelmäßigen Lichtwechsels zuerst auf ihre Leuchtkraft und dann aus dieser und der scheinbaren Helligkeit auf ihre Entfernung schließen kann. Zu jeder Lichtwechselperiode gehört nämlich eine ganz bestimmte mittlere Leuchtkraft, denn je größer ein Stern ist (je mehr Masse er hat), desto leuchtkräftiger ist er und desto länger braucht er für eine Pulsation. Der Lichtwechsel der Cepheiden mit Perioden bis zu einhundert Tagen ist durch einen raschen Anstieg zum Helligkeitsmaximum und einen vergleichsweise langsamen Abfall zum Minimum gekennzeichnet (Abb. 1). Freie Elektronen verursachen einen Strahlungsstau Cepheiden sind massereiche und leuchtekräftige Sterne, die bereits ein fortgeschrittenes Stadium ihrer Entwicklung erreicht haben, obwohl sie - absolut gesehen - noch jung sind. Ihre Atmosphären, in denen Helium ein wesentlicher Bestandteil ist, befinden sich nicht im hydrostatischen Gleichgewicht. Infolge hoher Temperaturen liegt das Helium normalerweise bereits in einfach ionisierter Form vor. Wenn die Strahlung aus dem Sterninnern den Heliumatomen auch ihr zweites Elektron entreißt, sind viele freie Elektronen vorhanden, die sich mit ihrer großen Beweglichkeit der Strahlung in den Weg stellen und einen Strahlungsstau verursachen. Expansion verschafft Abkühlung Der Strahlungsstau kann sich entladen, indem der Stern expandiert und dabei abkühlt. Bei der Abkühlung können die Heliumkerne viele Elektronen wieder einfangen, so dass die Strahlung wieder besser entweichen kann. Die Gravitation beginnt zu dominieren und veranlasst den Stern zu schrumpfen. Dann beginnt der Zyklus von neuem. Die Unterrichtseinheit basiert auf Daten des Hubble-Weltraumteleskops, das Cepheiden-Veränderliche im Sternenmeer von M100 aufstöberte und deren Zyklen dokumentierte. Abb. 2 zeigt drei zu verschiedenen Zeitpunkten aufgenommene Bilder eines Cepheiden, dessen Daten in dieser Übung verwendet werden. Der Stern befindet sich in einem Sternentstehungsgebiet in einem der Spiralarme der Galaxie im Zentrum der - auf dem großen Bild nur scheinbar leeren - Region des kleinen Kastens. Während des Projektes zur Entfernungsbestimmung bietet es sich an - soweit dies der Stand des Sternbildes Kepheus ermöglicht - den Namenspatron der Cepheiden-Veränderlichen, Delta Cephei, selbst ins Visier zu nehmen. Der 892 Lichtjahre entfernte Stern ist ein gelber Überriese und schwankt mit einer Periode von etwa 5,4 Tagen in seiner scheinbaren Helligkeit zwischen den Größenklassen +3,6 und +4,6. Schülerinnen und Schüler können mit der Argelander-Stufenschätzmethode selbst eine Lichtkurve des Sterns erstellen. Die Methode wird in der folgenden Unterrichtseinheit von Dr. Olaf Fischer aus Freiburg ausführlich vorgestellt:

  • Physik / Astronomie
  • Sekundarstufe II

Ein Schwarzes Loch im Zentrum der Galaxie M87

Unterrichtseinheit

Schülerinnen und Schüler nutzen Aufnahmen und Spektren, die mit dem Hubble-Weltraumteleskop gewonnen wurden, um die Masse eines Schwarzen Lochs in der Galaxie M87 zu berechnen. Mithilfe des Doppler-Effekts können Schülerinnen und Schüler die Geschwindigkeit ermitteln, mit der sich Gas in einer bestimmten Entfernung um das Zentrum der Galaxie M87 bewegt. Aus diesen Daten können sie dann auf die Masse schließen. Die mit einfachen Mitteln zu erzielenden Resultate sind durchaus mit den in der Literatur publizierten Werten vergleichbar. Das vom Hubble-Weltraumteleskop aufgenommene Bild (links) zeigt den aktiven Kern der Galaxie, aus dem ein gebündelter Jet aus Elektronen und subatomaren Teilchen mit nahezu Lichtgeschwindigkeit herausschießt. Das hier vorgestellte Projekt ist eine von mehreren Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, die von der Arbeitsgruppe Fachdidaktik der Physik und Astronomie an der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität Jena entwickelt wurden (weitere Projekte: Die Entfernung der Supernova SN 1987A und Die Entfernung der Galaxie M100 ). Von den mathematisch anspruchsvollen Übungen stellt das hier vorgestellte Projekt die höchsten Anforderungen an die Schülerinnen und Schüler. Die Suche nach Schwarzen Löchern Neben der Geschwindigkeit von Sternen oder Gas im Kern der Galaxien müssen bei der Suche nach möglichen Schwarzen Löchern noch weitere Kriterien herangezogen werden. Die Schülerinnen und Schüler erklären den Verlauf der Rotationskurven von Galaxien mit und ohne Schwarzem Loch im Kern der Galaxie. bestimmen mithilfe des Doppler-Effekts die Geschwindigkeit, mit der das Gas in Abhängigkeit von der Entfernung zum Zentrum der Galaxie M87 rotiert und schließen daraus auf die Masse. beziehen die Geometrie der um das Zentrum der Galaxie rotierenden Gasscheibe (Projektion des kreisförmigen Rings als Ellipse an die Himmelssphäre) in ihre Berechnungen mit ein und schulen dadurch ihr räumliches Vorstellungsvermögen. erkennen, dass die Auflösung des Hubble-Weltraumteleskops nicht ausreicht, in der Nähe des Schwarzschildradius relativistische Geschwindigkeiten nachzuweisen zu können. lernen für das Vorhandensein eines Schwarzen Lochs im Zentrum einer Galaxie neben den charakteristischen Eigenschaften der Rotationskurve noch weitere Indizien kennen. In letzter Zeit mehren sich die Anzeichen dafür, dass Schwarze Löcher nicht nur theoretisch möglich sind, sondern tief im Innern vieler Galaxien auch wirklich existieren. Sie könnten durch dynamische Vorgänge in den Galaxienzentren, wie etwa der Akkretion von Materie aus einer Gasscheibe, entstanden sein und so die am wenigsten exotische Erklärung für die Aktivitäten von Galaxienkernen, wie zum Beispiel intensive Röntgen- und Radiostrahlung und die Aussendung von Materie-Jets, darstellen. So deuten seit Langem gleich mehrere Indizien darauf hin, dass auch die riesige elliptische Galaxie M87 (Abb. 1), die zum Virgo-Galaxienhaufen gehört, ein massereiches Schwarzes Loch beherbergt. Dem hohen Auflösungsvermögen des Hubble-Weltraumteleskops verdanken wir die Entdeckung einer rotierenden Scheibe aus ionisiertem Gas im Zentrum dieser Galaxie. Keplersch oder nicht? Die empirische Abhängigkeit der Rotationsgeschwindigkeit v vom Abstand R ist bei normalen Galaxien nicht keplersch. Die inneren Partien von Spiral- und elliptischen Galaxien rotieren nämlich wie starre Körper, das heißt, die Bahngeschwindigkeit wächst linear mit dem Abstand. Dies lässt auf eine konstante Massendichte schließen. Weiter außen bleiben dann die Bahngeschwindigkeiten über große Abstände nahezu konstant, das heißt, dort wächst die Masse linear mit dem Abstand. Enthielte das Zentrum einer Galaxie nun ein Schwarzes Loch mit der Masse von einer Milliarde Sonnen, zeigt die Rotationskurve bei enger Annäherung an dieses Zentrum einen keplerschen Verlauf, so wie die des Sonnensystems. Geschwindigkeit von Sternen oder Gas im Kern der Galaxien Damit liegt eine Strategie für die Suche nach Schwarzen Löchern in Galaxienzentren auf der Hand: Wir müssen in möglichst kleinen Abständen vom Zentrum einer Galaxie die Geschwindigkeit von Sternen oder Gas messen. Ist die Rotationskurve dann keplersch, gibt dies einen deutlichen Hinweis darauf, dass im Galaxienzentrum ein sehr massereiches, kompaktes Objekt verborgen ist. Ein beeindruckendes Beispiel dafür ist die mit dem Langspalt-Spektrographen des Hubble-Weltraumteleskops aufgenommene Rotationskurve für das Zentrum der Galaxie M84. Abb. 2 zeigt die Zentralregion der Galaxie M84 in einer Aufnahme der Weitwinkelkamera des Weltraumteleskops (links). Der rechte Bildteil zeigt die Verteilung der Geschwindigkeiten von Sternen und Gas über die von dem Rechteck im linken Bild markierten Abstände vom Zentrum. Diese Radialgeschwindigkeitskurve zeigt die auf den Beobachter zu (blau) und von ihm weg (rot) gerichteten, messbaren Komponenten der Bahngeschwindigkeit. Ihre Auswertung führt auf 300 Millionen Sonnenmassen in einer Kugel mit 26 Lichtjahren Radius! Das begrenzte Auflösungsvermögen des Hubble-Weltraumteleskops verhindert bei Weitem die für den endgültigen Nachweis eines Schwarzen Lochs nötige Annäherung an dessen Schwarzschild-Radius, wobei sich relativistische Bahngeschwindigkeiten ergeben müssten. Aber auch dann, wenn die empirische Feststellung des keplerschen Verlaufs der Rotationskurve bei Annäherung an das Zentrum bei einem bestimmten kleinsten Abstand R abbricht, können wir aus einem ( R, v )-Messpunkt auf die von der Kugel mit dem Radius R eingeschlossene Masse schließen. Anschließend müssen jedoch andere Argumente zugunsten eines Schwarzen Lochs im Zentrum von M87 als die (für noch kleinere Abstände empirisch nicht mehr vorhandene) Rotationskurve herangezogen werden, um Alternativen auszuschließen: Viel Masse auf engem Raum Ein Schwarzes Loch wird umso wahrscheinlicher, je mehr Masse in einem bestimmten Volumen enthalten ist und je mehr diese die Masse der darin leuchtenden Materie übersteigt. Mathematische Modelle Dynamische Rechnungen zeigen, dass nicht leuchtende Himmelskörper, wie zum Beispiel Braune Zwerge, Neutronensterne und stellare Schwarze Löcher, in der erforderlichen Anzahl rasch zu einem einzigen Schwarzen Loch kollabieren würden. Materie-Jet Nahezu senkrecht auf der Gasscheibe im Zentrum von M87 steht ein sogenannter Materie-Jet (Abb. 3), der radioastronomischen Beobachtungen zufolge aus einem Gebiet von höchstens sechs Lichtjahren Durchmesser austritt. Zur Erklärung dieses Phänomens wird seit Langem ein Schwarzes Loch diskutiert. Die in diesem Projekt durchgeführte Auswertung der M87-Daten drängen zu folgender Schlussfolgerung: Wenn wir die in einem relativ kleinen Volumen konzentrierte Masse nicht als die eines Schwarzen Lochs deuteten, wüssten wir nach dem heutigen Stand der Wissenschaft gar keine Erklärung dafür abzugeben. Um uns dieser Deutung noch mehr zu vergewissern, müsste die Bewegung von Sternen und Gas in noch größerer Nähe zum Zentrum der Galaxie analysiert werden. Zumindest für das Milchstraßensystem ist dies in jüngster Zeit geschehen (siehe Links und Literatur ). Eckart, A., Genzel, R. Erster schlüssiger Beweis für ein massives Schwarzes Loch?, Physikalische Blätter 54 (1998) (l) 25-30 Eckart, A., Genzel, R. Der innerste Kern des galaktischen Zentrums, Sterne und Weltraum 37 (1998) (3) 224-230 Ford, H.C., Tsvetanov, Z.I. Massive Black Holes in the Hearts of Galaxies, Sky & Telescope (1996) (6) 28-33 Ford, H.C., Harms, R.J., Tsvetanov, Z.I. et al Narrow Band HST Images of M87: Evidence for a Disk of Ionized Gas Around a Black Hole, Astrophysical Journal Letters 435 (1994) L27-30 Harms, R.J., Ford, H.C., Tsvetanov, Z.I. et al HAST FOS Spectroscopy of M87: Evidence for a Disk of Ionized Gas Around a Massive Black Hole, Astrophysical Journal Letters 435 (1994) L35-38 Lotze, K.-H. Schwarze Löcher - vom Mythos zum Unterrichtsgegenstand, Praxis der Naturwissenschaften/Physik 49 (2000) (5) 21-27 Lotze, K.-H. Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, Projekt Nr. 1: Die Entfernung der Supernova SN1987A, Der Mathematische und Naturwissenschaftliche Unterricht (MNU) 51 (1998) (4) 218-222 Lotze, K.-H. Praktische Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, Projekt Nr. 2: Die Entfernung der Galaxie M100, Der Mathematische und Naturwissenschaftliche Unterricht (MNU) 52 (1999) (2) 85-91 Rubin, V.C. Dark Matter in Spiral Galaxies, Scientific American 248 (1983) (6) 96-106

  • Physik / Astronomie
  • Sekundarstufe II

Schwarze Löcher – rätselhafte Phänomene in den Tiefen des Universums

Unterrichtseinheit

Mit der Verleihung des Physik-Nobelpreises 2020 für den Nachweis der Existenz des supermassereichen Schwarzen Loches Sagittarius A* im Zentrum der Milchstraße an Reinhard Genzel, Andrea Ghez und Roger Penrose rückte die extrem aufwendige Erforschung des Universums einmal mehr in den Fokus der Öffentlichkeit. Die vorliegende Unterrichtseinheit hat zum Ziel, Schülerinnen und Schülern der gymnasialen Oberstufe ein schwieriges und sehr komplexes Thema – ohne die im Detail dafür notwendige, aber im Schulunterricht nicht mögliche höhere Mathematik – näherzubringen. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Erkenntnisse von Albert Einstein, die er mit seiner Allgemeinen Relativitätstheorie (ART) im Jahr 1915 veröffentlichte, hatten die Existenz Schwarzer Löcher als natürliche Konsequenz der Raum-Zeit-Krümmung prognostiziert. Der laut der Königlich Schwedischen Akademie der Wissenschaften bisher überzeugendste Beweis für ein superschweres Schwarzes Loch mit einer Masse von rund vier Millionen Sonnenmassen im Zentrum der Milchstraße war die Bestätigung für jahrzehntelange akribische Forschung und Auswertung immenser Datenmengen mit den heute den Astrophysikern zur Verfügung stehenden technischen Möglichkeiten. Der im Laufe von Milliarden von Jahren entstandene heute bekannte Kosmos hat aufgrund seiner ständig fortschreitenden Ausdehnung eine Größe von 1023 km überschritten und enthält Milliarden von Galaxien und Sternen. Den Lernenden wird zunächst mithilfe von Animationen, erläuternden Videos und Schaubildern die Entwicklung von Sternen und deren weiterer Verlauf in ihrem Lebenszyklus vorgestellt. So anschaulich wie möglich werden dann die Vorgänge besprochen, die ein Riesenstern auf seinem Weg über eine Supernova hin zum Schwarzen Loch nimmt. Die nur eingeschränkt zu verstehenden Fakten der ART Einsteins werden mithilfe von Videos und Animationen verständlich gemacht, bevor mit den Möglichkeiten der gymnasialen Oberstufenmathematik Begriffe wie Ereignishorizont und Schwarzschild-Radius eingeführt und hergeleitet werden. Der Nachweis von Schwarzen Löchern am Beispiel von Sagittarius A* wird anhand von Schaubildern im Arbeitsblatt 2 vorgestellt, erläutert und durch Berechnungen (Übungsaufgaben) verfestigt. Zudem wird die Bedeutung von Gravitationswellen und deren Messung als weiterer Nachweis für Schwarze Löcher besprochen. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier Die Forschung der Nobelpreisträger im Unterricht . Schwarze Löcher – rätselhafte Phänomene in den Tiefen des Universums Schwarze Löcher gehören noch immer zu den größten Rätseln des Universums, wenngleich ihre Existenz mit weltweit verbundenen Teleskopen immer besser nachgewiesen werden kann – wie etwa im Jahr 2019 durch eine radioteleskopische Aufnahme des mit 6,6 Milliarden Sonnenmassen gigantischen Schwarzen Loches M87* im Zentrum der Galaxie M87. Man weiß heute, dass Schwarze Löcher aus dem Tod eines Riesensterns entstehen können. Man vermutet Milliarden davon im Universum und es stellen sich Fragen: Was passiert genau in den Schwarzen Löchern? Wieviel Materie können Schwarze Löcher verschlingen? Wird unser Universum eines Tages komplett von Schwarzen Löchern verschlungen? Haben Schwarze Löcher Auswirkungen auf unser irdisches Leben? Wie verändern Schwarze Löcher das Universum? Handelt es sich bei allen dunklen Himmelskörpern um Schwarze Löcher? Neue Theorien tauchen auf, die mit naturwissenschaftlichen Methoden untersucht werden müssen, ob sie denn schlüssig sind und somit einen weiteren Schritt nach vorne bedeuten oder wieder verworfen werden müssen. Undurchschaubare Schwarze Löcher und ihre Wirkungen auf Raum und Zeit werden noch lange Ansporn sein für kreative Wissenschaftlerinnen und Wissenschaftler und ihren Forschungsdrang! Vorkenntnisse Wichtig für ein grobes Verständnis sind das Newton'sche Gravitationsgesetz sowie die Kepler'schen Gesetze. Beide sollten im Rahmen des gymnasialen Physikunterrichts hinreichend besprochen sein, damit zum einen die mathematisch gut nachvollziehbaren Berechnungen zum Ereignishorizont und dem Schwarzschild-Radius durchgeführt werden können und zum anderen die daraus resultierenden Berechnungen zur Größe und Masse von Schwarzen Löchern. Didaktische und methodische Analyse Schwarze Löcher waren bis in die späten 1960er Jahre nur für Mathematikerinnen und Mathematiker sowie theoretische Physikerinnen und Physiker von Bedeutung, weil kein Weg zu ihrer Beobachtung vorstellbar schien. Zudem hielt man es für unwahrscheinlich, dass es Objekte mit einer derart unvorstellbar großen Dichte geben könnte. Auch der Name "black hole" oder "Schwarzes Loch" wurde erst Ende der 1960er Jahre geprägt. Zu einem Umdenken kam es, als erste astronomische Objekte im Röntgenlicht sowie ein extremer Strahlungsausstoß sogenannter Quasare nachgewiesen werden konnte. Der britische Physiker Stephen Hawking (1942–2018) konnte in den 1980er Jahren zeigen, dass in der Umgebung verschiedener Schwarzer Löcher physikalische Effekte auftreten konnten, bei denen Strahlung nach außen abgegeben werden kann – völlig widersprüchlich zum ursprünglichen Bild des Schwarzen Loches. Bis in die 1990er Jahre konnten einige Kandidaten für stellare Schwarze Löcher von nur wenigen Sonnenmassen in Doppelsternsystemen gefunden werden – ein Nachweis für supermassive Schwarze Löcher im Zentrum vieler Galaxien stand noch aus. Dies war der Auslöser für den Astrophysiker Reinhard Genzel und die Astrophysikerin Andrea Ghez, das Zentrum unserer Milchstraße genau zu untersuchen. In jahrelangen Forschungen fanden sie – übereinstimmend – die Bahnen mehrerer Sterne, die sich auf elliptischen Bahnen um ein Zentrum drehen. Als besonders interessant stellte sich der innerste Stern, mit S2 bezeichnet, heraus. Er brauchte nur 16 Jahre für einen Umlauf; die von den Forschenden beobachteten Bahnparameter ließen nur einen Schluss zu – im Zentrum unserer Milchstraße muss sich ein supermassereiches Schwarzes Loch (Sagittarius A*) mit einer Masse von rund vier Millionen Sonnenmassen befinden. Der mithilfe von weltweit zusammengeschlossenen riesigen Teleskopen gefundene Nachweis ist ein Meilenstein der Astrophysik und hat durch die Verleihung des Nobelpreises für Physik im Jahr 2020 für weltweites Aufsehen gesorgt. Noch nicht völlig eindeutig ist, welche Rolle die Schwarzen Löcher in der Kosmologie einnehmen. Ein großes Problem ist, wie Schwarze Löcher so schnell entstehen und in so kurzer Zeit solche gigantischen Materiemengen ansammeln konnten. Sind die supermassereichen Schwarzen Löcher vielleicht die "Geburtshelfer" für Galaxien? Viele Fragen, die auf Antworten warten. Die hinter all diesen Fragen und bisherigen Erkenntnissen steckende Physik ist aufgrund der dafür notwendigen Mathematik äußerst kompliziert und im gymnasialen Unterricht nicht anwendbar. Dennoch ist die Allgemeine Relativitätstheorie eine Theorie der klassischen Physik und macht es möglich, mit Gesetzmäßigkeiten wie dem Gravitationsgesetz von Newton und den Kepler'schen Gesetzen Berechnungen durchzuführen und damit ein grobes, aber ausreichendes Verständnis für den Aufbau und die Funktion Schwarzer Löcher zu erhalten. Zudem können durch relativ einfache Gleichungen die Schwarzschild-Radien für die Sonne und die Erde berechnen werden – die geringen Beträge zeigen uns, welche unvorstellbaren Kräfte herrschen müssten, damit auch diese beiden Himmelskörper zu Schwarzen Löchern zusammengekrümmt würden. Am Beispiel von Sagittarius A* kann man schließlich nachvollziehen, welche Größen und Massen sich für Schwarze Löcher ergeben können, wenn man das Sonnensystem verlässt und in das 26.000 Lichtjahre entfernte Zentrum der Milchstraße vorstößt. Die genannten Beispiele und Berechnungen zeigen den Lernenden unter anderem, um welche Größenordnungen es geht, wenn man vom Universum spricht. Schülerinnen und Schüler sollen mit dieser Unterrichtseinheit zu Schwarzen Löchern auch animiert werden, darüber nachzudenken, welche Rolle wir Menschen auf unserer Erde in diesem gigantischen Kosmos spielen. Fachkompetenz Die Schülerinnen und Schüler können Entstehung, Aufbau und Wirkungsweise von Schwarzen Löchern beschreiben. kennen die Forschungsarbeit der beteiligten Astrophysiker, die zum Nachweis eines Schwarzen Loches geführt haben. können die physikalischen Gesetzmäßigkeiten Schwarzer Löcher herleiten und entsprechende Berechnungen ausführen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbstständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Apps auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern, Freundinnen und Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Veränderliche Sterne - Lichtkurven selbst gemacht

Unterrichtseinheit

Auf der Basis digitalisierter Fotoplatten aus der Sammlung der Sternwarte Sonneberg (Thüringen) erstellen und interpretieren die Schülerinnen und Schüler Lichtkurven veränderlicher Sterne. Und natürlich werden Veränderliche auch im Original beobachtet.Die bereits 1926 gestartete "Sonneberger Himmelsüberwachung" (Sky Patrol) beruht auf der Idee des deutschen Astronoms Paul Guthnick (1879-1947), den gesamten nördlichen Sternenhimmel per Astrofotografie zu überwachen. Nach mehr als 80 Jahren fotografischer Überwachung des Himmels lagern mehr als 275.000 Fotoplatten im Sonneberger Archiv - der zweitgrößten Sammlung der Welt - die die Geschichte des Lichtwechsels der bei etwa 50 Grad nördlicher Breite sichtbaren Himmelsobjekte (bis zur 14. Größenklasse) dokumentieren. Diese ?Chronik des Sternenhimmels? ist ein einmaliger Datenschatz, der noch viele Geheimnisse in sich birgt. Auf seiner Basis erstellen Schülerinnen und Schüler Lichtkurven eines veränderlichen Sterns vom Mira-Typ. Sie vergleichen diese mit Daten von Amateurastronomen aus dem Internet und planen eigene Beobachtungen von Mira und Algol. Das eigene Tun, die Arbeit mit Originaldaten und das Erfolgserlebnis sollen die Motivation und das Interesse an den Naturwissenschaften und der Mathematik fördern.Die an der Sternwarte Sonneberg seit 2004 durchgeführte Digitalisierung von Fotoplatten der Sonneberger Himmelsüberwachung eröffnet die Möglichkeit, Himmelsaufnahmen an jedem Computer "in die Hand zu nehmen" und Veränderlichenforschung in jeder Schule zu betreiben. Für das hier vorgestellte Projekt stellte die Sternwarte eine Auswahl der Plattenscans zur Verfügung. Das Projekt basiert auf didaktischen Materialien, die im Rahmen des Projektes Wissenschaft in die Schulen! entwickelt wurden. Der Einsatz der Argelander Stufenschätzmethode wurde im Rahmen eines Astronomiekurses der deutschen Schülerakademie (Thema: "Lichtsignale aus dem All - Veränderliche Sterne", Marburg 2005) und bei Lehrerfortbildungen (Sonneberg 2004, MNU Karlsruhe 2006) erfolgreich getestet. Methoden, Fertigkeiten und Computereinsatz Im Rahmen des Projektes wird die Nutzung des Computers als nützliches Werkzeug auf vielfältige Art gefördert. In der Astronomie beginnt (fast alles) mit der Beobachtung Mit Sternkarten oder Planetariumsprogrammen werden Positionen und Sichtbarkeiten von Veränderlichen bestimmt. Der Lichtwechsel von Veränderlichen Lichtkurvendiagramme und Ursachen der Veränderlichkeit von Sternen werden vorgestellt und mithilfe einfacher Modelle erklärt. Der fotografierte Himmel Original-Fotoplatten aus dem Sonneberger Archiv werden untersucht. Ein Veränderlicher wird aufgespürt und Helligkeitsschätzungen werden vorbereitet. Die Argelander Stufenschätzmethode Aus 23 Stufenschätzungen erstellen die Schülerinnen und Schüler eine beispielhafte Lichtkurve des Veränderlichen R Cassiopeia. Der Veränderliche R Cassiopeia Auf der Basis von 83 Schätzfeldern werden das Stufenwert-Helligkeit-Diagramm und die Lichtkurve von R Cas dargestellt (Millimeterpapier oder Tabellenkalkulation). Was uns die Lichtkurve verrät Lichtkurven von R Cassiopeia werden interpretiert und verglichen. Details zu den Mira-Sternen und den Ursachen ihres Lichtwechsels werden berichtet. Rückkehr zur Beobachtung: Mira und Algol Die Schülerinnen und Schüler planen die Beobachtung der Veränderlichen Sterne Mira und Algol. Die Schülerinnen und Schüler sollen basierend auf digitalisierten Fotoplatten der Sternwarte Sonneberg die Lichtkurve eines veränderlichen Sterns erstellen und dabei die Argelander Stufenschätzmethode anwenden. eine wissenschaftliche Arbeitsweise erleben, die über Jahrzehnte im Zentrum der Forschungsarbeit vieler Sternwarten stand. sich mit der Messfehlerproblematik auseinandersetzen. die Typen Veränderlicher Sterne kennen lernen und die Ursachen der Veränderlichkeit verstehen. Veränderliche Sterne beobachten. Schätzmethode und Messfehlerproblematik Das hier vorgestellte Projekt knüpft an verschiedene "Wissensbereiche" an und trainiert vielfältige Fähigkeiten und Fertigkeiten der Schülerinnen und Schüler. Ein zentraler Punkt ist die Vermittlung einer grundlegenden Methode zur Helligkeitsbestimmung von Sternen - der Argelander Stufenschätzmethode. Hierbei wird das Prinzip der Relativmessung angewandt und verdeutlicht. Die Funktion des Auges als "Messinstrument" rückt ins Bewusstsein der Schülerinnen und Schüler. Die Subjektivität des Augenmaßes ist gut geeignet, die Messfehlerproblematik (subjektive Fehler) zu belegen. Physikalisch-mathematische Denkweisen Die Frage nach den Ursachen des Lichtwechsels der Sterne bedarf physikalischer und mathematischer Denkweisen. Das Projektergebnis ist eine Lichtkurve, die den zeitlichen Verlauf der Sternhelligkeit präsentiert. Diese Kurve gilt es zu interpretieren, wobei grundlegende Begriffe wie Periode und Amplitude genutzt werden müssen. Mustererkennung und Datenauthentizität Es sei auch erwähnt, dass die Arbeit mit Bildern von Sternfeldern die Fähigkeit der Mustererkennung schult. Der Umgang mit wissenschaftlichen Originaldaten vermittelt Authentizität, die wichtig für die "Anerkennung" des in der Schule Gelernten ist, und ist zudem ein Motivationsfaktor für die Schülerinnen und Schüler. Der Computereinsatz spielt in dem Projekt eine zentrale Rolle. Die zu untersuchenden Sternfelder liegen als Bilddateien vor, wobei die Helligkeitsstufen der Sterne am Bildschirm geschätzt werden können. Weitere Daten können über das Internet (Sternwarte Sonneberg) abgerufen werden. Die Datenauswertung kann durch Excel oder andere Tabellenkalkulationsprogramme unterstützt werden. Zur Interpretation der Ergebnisse kann auf so genannte Lichtkurvengeneratoren zurückgegriffen werde, die aus Daten von verschiedenen Amateurbeobachtern Lichtkurven für viele Veränderliche erstellen. Zur Veranschaulichung der Ursachen der Veränderlichkeit eignen sich Animationen. Zur Planung der Beobachtung von Veränderlichen werden Planetariumsprogramme, Datumsrechner (Umrechnung zwischen Julianischem und Gregorianischem Datum) und verschiedene Informationsseiten (zum Beispiel vorausberechnete Maxima und Minima von bestimmten Veränderlichen) aus dem Internet genutzt. Einstieg und Motivation Die Lernenden sind mit der Definition eines Stern und den Sternbild- und Sternbezeichnungen bereits vertraut. Sie erfahren, dass es im Sternbild Walfisch einen Stern mit dem Namen Mira gibt, was "Die Wunderbare" bedeutet. Per Beamer oder Overheadfolie wird eine historische Karte des Sternbildes gezeigt und gefragt, warum der Stern so heißen könnte. Recherche Die Jugendlichen recherchieren Informationen zu Mira im Internet oder nutzen ausgelegte Printmaterialien (Bücher, Artikel). Sie lernen, dass bestimmte Sterne ihre Helligkeit auch in kurzen Zeiträumen ändern und können diese Zeiträume von langfristigen Änderungen, die mit der Sternentwicklung zusammen hängen, abgrenzen. Erste Bekanntschaft mit den Veränderlichen Die Schülerinnen und Schüler suchen mithilfe detaillierter Sternkarten oder eines Planetariumsprogramms die Positionen der Veränderlichen Sterne Omikron Ceti (Mira), Beta Persei, Delta Cephei, Alpha Orionis und Beta Lyrae auf und tragen diese in die unbeschriftete Sternkarte des Arbeitsblattes ein (sternkarte_veraenderliche.pdf). Sie bestimmen die Jahreszeiten, in denen diese Sterne am Abendhimmel gut zu beobachten sind. Dies kann wiederum mit einem Planetariumsprogramm oder mit einer einfachen drehbaren Sternkarte erfolgen. Die Jugendlichen werden aufgefordert, die zum Zeitpunkt des Projektes beobachtbaren "Originale" auch am Abendhimmel - einzeln oder mit der Gruppe - aufzusuchen. Definition der Veränderlichen Veränderliche Sterne ändern ihre Helligkeit im Laufe der Zeit (Millisekunden bis Jahrhunderte). Die Amplituden liegen zwischen 0,001 und 20 Größenordnungen (mag = magnitudo, Scheinbare Helligkeit). In diesem Sinne ist auch unsere Sonne ein Veränderlicher Stern (11 Jahre, 0,004 mag = 0,4 Prozent). Historisches Der erste Veränderliche wurde im Jahre 1596 durch den in Ostfriesland lebenden Pfarrer David Fabricius entdeckt. Er beobachtete im Sternbild Cetus (Walfisch) einen Stern, den er Monate später nicht mehr und nach weiteren Monaten wieder deutlich sehen konnte. Er nannte diesen Stern Mira (lateinisch "Die Wunderbare"). Bis zur Mitte des 19. Jahrhunderts wurden lediglich 16 weitere Veränderliche gefunden. Erst nachdem man begann, den Himmel zu durchmustern um Sternkataloge zu erstellen, stieg die Zahl der zufälligen Entdeckungen von veränderlichen Sternen. Nach der Einführung der Fotografie in die astronomische Beobachtung hatte man eine Methode zur systematischen Veränderlichensuche, bei der sich in Deutschland die Sonneberger Sternwarte besondere Verdienste erwarb. Die Zahl der bekannten Veränderlichen stieg sprunghaft an. Bis 1968 wurden etwa 10.000 Objekte entdeckt (bis heute etwa 11.000). Printmedien zum Thema "Veränderliche Sterne" für die Recherche (alternativ oder zusätzlich zur Internetrecherche) alternativ zum Planetariumsprogramm eine detaillierte Sternkarte eine drehbare Sternkarte Mira und die Veränderlichen - Ergebnissicherung Die Ergebnisse der Vorstunde (Position von Veränderlichen auf der Sternkarte und ihre Beobachtbarkeit) werden per Schülerdemonstration kurz vorgestellt (vergleiche Ergebnisblatt "sternkarte_veraenderliche_ergebnisse.pdf"; Präsentation per Beamer oder Overhead-Folie). Nach der Zusammenfassung der "Eckdaten" der Mira-Veränderlichkeit (die Helligkeit von Mira schwankt mit einer Periode von etwa 331 Tagen zwischen der 2. und der 9. Größenklasse) führt das Unterrichtsgespräch zu der Forderung nach einem Hilfsmittel zur Vorhersage. In einem Lehrervortrag werden die Größe "Scheinbare Helligkeit", die Julianische Tageszählung und Lichtkurven vorgestellt. Einzelne Schülerinnen und Schüler zeichnen Lichtkurven an die Tafel, die die zeitlichen Verläufe der scheinbaren Helligkeiten folgender Objekte wiedergeben: Stern mit konstanter Helligkeit Mondbedeckung eines Sterns "Sinkender Stern" (Lichtschwächung durch die Atmosphäre) Typen Veränderlicher Sterne Animationen von verschiedenen Veränderlichen (Cepheiden, Algol-Veränderliche, Eruptive Veränderliche) werden per Beamer präsentiert und Lichtkurven an der Tafel vorgegeben. Die Lernenden ordnen diesen Lichtkurven die in den Animationen dargestellten Typen veränderlicher Sterne zu. In einem Lehrervortrag wird mithilfe von Vergleichen und Analogien ein grobes Bild der physikalischen Hintergründe des Lichtwechsels vermittelt. Variable stjerner: Animationen Animationen und Informationen von Erling Poulsen auf der Website des Rundetaarn-Observatoriums in Dänemark. Veränderlichentypen und die Ursache des Lichtwechsels Die Aufzeichnung des Lichtwechsels der Veränderlichen zeigt, dass es verschiedene Gruppen von Sternen mit ähnlichem Verlauf der Lichtkurve gibt. Heute kennt man viele verschiedene Typen veränderlicher Sterne, die sich entsprechend der Hauptursache ihrer Veränderlichkeit drei Familien zuordnen lassen: den pulsierenden Veränderlichen (zum Beispiel Mira-Sterne, Cepheiden), den eruptiven Veränderlichen (zum Beispiel Novae und Supernovae) und den Bedeckungsveränderlichen (zum Beispiel Algol-Sterne). Pulsationssterne "Normale" Sterne verhalten sich wie eine Schaukel auf einem Spielplatz, die nur einmal angeschoben wurde - ihre Schwingung endet schnell infolge der Dämpfung. Pulsationssterne haben einen "Ventilmechanismus", der dafür sorgt, dass die Schwingung durch regelmäßige Energiezufuhr (Strahlungsenergie) aufrechterhalten wird. Eruptive Veränderliche Ursache sind schnelle Fusionsreaktionen (lokal oder global), etwa vergleichbar mit einem gleichmäßig brennenden Feuer, in das schnell entzündlicher Brennstoff gegeben wird oder das eine Temperatur erreicht hat, bei der ein bestimmter Stoff plötzlich zu brennen anfängt. Bedeckungsveränderliche Bedeckt der kleinere Stern eines Doppelsternsystems einen Teil des größeren oder helleren Sterns des Systems, ergibt sich ein schmales Minimum in der Lichtkurve. Wenn der kleinere hinter den größeren Stern gerät, beobachtet man ein weiteres, weniger tiefes Minimum der Leuchtkraft. Die Leuchtkraft der beiden Sterne selbst ist konstant. Der "Mechanismus" entspricht dem Prinzip einer Sonnenfinsternis. Die im Unterricht gezeigten Animationen zu den Veränderlichentypen finden Sie auf der Seite zu den Variable stjerner des Rundetaarn-Observatoriums in Dänemark. Vorkenntnisse Die Schülerinnen und Schüler sind mit der Betrachtung und Bearbeitung digitaler Bilder und im Umgang mit der verwendeten Bildbearbeitungs-Software vertraut. Untersuchung einer Fotoplatte Den Lernenden wird der digitalen Scann der "Platte 300300" aus dem Sonneberger Plattenarchiv aus dem Jahr 1966 vorgestellt (Präsentation per Beamer). Diese Platte zeigt unter anderem das Sternbild Cassiopeia. Die Jugendlichen verbinden am Rechner in Partnerarbeit die hellsten Sterne dieses Sternbildes miteinander (Abb. 1, Platzhalter bitte anklicken) und vergleichen das Sternbild mit einer Darstellung auf einer Sternenkarte. Bevor die Arbeit mit den Sternfeldaufnahmen beginnt, müssen die Schülerinnen und Schüler für die "Bildprobleme" sensibilisiert werden. Auch die Orientierung auf der Himmelsaufnahme stellt eine Herausforderung dar. In Partnerarbeit und im Unterrichtsgespräch werden folgende Fragen beantwortet: Woraus kann auf die Sternhelligkeiten geschlossen werden? (Größe und Schwärzung der Scheibchen) Die Schwärzungsscheibchen der Sterne verändern ihr Aussehen mit zunehmendem Abstand vom Plattenzentrum. Wie verändern sie sich und wie lässt sich das erklären? (beste Abbildung auf optischer Achse; mit größer werdendem Abstand wird insbesondere der Astigmatismus wirksam) Untersuchung von "Platte 300308": Wann wurde diese Platte aufgenommen? Was fällt auf dieser Fotoplatte auf? (14. Oktober 1966; die Fotoplatte zeigt einen kleinen Kometen, siehe Abb. 2) Die Ergebnisse werden an der Tafel oder auf einer Folie gesichert. Den Jugendlichen soll bewusst werden, dass ein Archiv von Himmelsaufnahmen eine "Chronik der Geschichte des Sternhimmels" darstellt und dass Sternfeldaufnahmen als Grundlage für die Bestimmung von Lichtkurven genutzt werden können. Aufspüren des Veränderlichen R Cassiopeia Die Lernenden erleben, dass durch den Wechsel zwischen verschiedenen Aufnahmen ein und desselben Sternfeldes Helligkeitsänderungen "ins Auge springen". Zur Erleichterung der Arbeit wird dafür das interessierende Sternfeld (Schätzfeld) aus der digitalen Fotoplatte am Computer ausgeschnitten. Die resultierenden Bilder werden dann mit geeigneter Software "zum Laufen" gebracht (zum Beispiel mit einem GIF-Animator oder durch den schnellen Bildwechsel mit dem Windows Bildbetrachter Image Viewer). Das Ergebnis ist eine kleine Animation, mit deren Hilfe der Veränderliche "R Cas" (ein Mira-Stern), aufgespürt wird (siehe "r_cas_neg.mov"). Vorbereitung der Helligkeitsschätzung Die Schülerinnen und Schüler schneiden aus der Aufnahme "fotoplatte_300308.jpg" den im Bild "fotoplatte_300296_teil.jpg" gezeigten Bildausschnitt um R Cas herum aus und beschriften den Veränderlichen sowie die Vergleichssterne A, B, und C. Abb. 3 (Platzhalter bitte anklicken) zeigt die Schätzfelder aus "fotoplatte_300296_teil.jpg" (oben) und "fotoplatte_300307_teil.jpg" (unten). Es handelt sich um zwei Aufnahmen, die in geringem zeitlichen Abstand aufgenommen wurden. Der Helligkeitswechsel von R Cassiopeia (R) ist deutlich zu erkennen. Historischer Einstieg Im Rahmen eines kurzen Lehrervortrags wird berichtet, dass Mitte des 19. Jahrhunderts Friedrich Wilhelm Argelander (1799-1875) seine Methode zur Helligkeitsbestimmung von Sternen entwickelte, die eine systematische Katalogisierung der Sternhelligkeiten ermöglichte. Damit versetzte er auch die Amateurastronomen in die Lage, Helligkeitsänderungen bei Sternen festzustellen und sich in die astronomische Forschungsarbeit einzubringen. Erstellung der Lichtkurve Die Argelander Stufenschätzmethode wird vorgeführt und dann gleich anhand projizierter Sternfeldbilder (siehe Abb. 4 und "stufenschaetzmethode_einfuehrung.pdf") in Zweiergruppen geübt. Die Lehrkraft führt die Präsentation "stufenschaetzmethode_einfuehrung.pdf" per Beamer vor und die Schülerinnen und Schüler schätzen und notieren die Ergebnisse in einer Tabelle (tabelle_r_cas_stufenschaetzung_leer.pdf). Ziel der beiden Unterrichtsstunden ist die beispielhafte Erstellung einer Lichtkurve aus 23 Stufenschätzungen des Veränderlichen R Cassiopeia (R Cas). Es soll noch keine Interpretation der Ergebnisse vorgenommen werden. Die verwendeten Daten werden im folgenden Abschnitt des Projektes, ergänzt durch viele neue Daten, erneut vorkommen. Die Schülerinnen und Schüler sollen dann bewusst diese Sternfelder noch einmal schätzen, um zu erleben, dass subjektive Fehler mit Erfahrung, Tagesform und vielen anderen Faktoren zu tun haben. Schätzungsfelder - Auswertung mit oder ohne Computer Den Schülerinnen und Schülern stehen 83 Schätzfelder des Gebietes um den Stern R Cassiopeia zur Verfügung. Im Rahmen der Auswertung dieser "Rohdaten" können die Fertigkeiten der Schülerinnen und Schüler bei der Nutzung des Computers als Werkzeug intensiv geschult werden. So bietet sich beim Schätzen der Helligkeiten am Bildschirm der Windows Bildbetrachter Image Viewer als Instrument an, das es sehr einfach macht, von einem Schätzungsfeld zum nächsten zu wechseln. Die Schätzungsfelder werden dabei stets auf Bildschirmgröße geweitet. Die Stufenschätzung kann - bei Mangel an Computern - wie beim Einstieg in die Argelander Methode (4. und 5. Stunde) auch frontal am Projektionsbild im gut verdunkelten Raum durchgeführt werden. Alternativ können die Helligkeiten auch auf Ausdrucken der Plattenausschnitte geschätzt werden. Auswertung der Daten per Tabellenkalkulation Excel oder andere Tabellenkalkulations-Software erlauben das praktische Einfügen von Datenkolonnen per "Copy" und "Paste". Sie ermöglichen auch eine automatisierte Berechnung der Helligkeiten aus den Stufenwerten (siehe "mappe_auswertung.xls"). Hierbei kann die zuvor mit Excel bestimmte Formel der Regressionsgeraden im Stufenwert-Helligkeit-Diagramm genutzt werden. Abb. 5 zeigt die von den Schülerinnen und Schülern ermittelte Lichtkurve des Veränderlichen R Cas. 7. Stunde Die Jugendlichen praktizieren die Argelander Stufenschätzmethode am Computerbildschirm oder anhand von Ausdrucken der Schätzungsfelder. 8. Stunde Die Schülerinnen und Schüler bestimmen Stufendifferenzen, berechnen Mittelwerte, korrigieren die Stufenwerte und ermitteln endgültige Stufenwerte. 9. Stunde Die Lernenden ermitteln Stufenwerte für die Vergleichssterne, zeichnen das Stufenwert-Helligkeit-Diagramm (Millimeterpapier oder Tabellenkalkulation) und bestimmen mit diesem aus den Stufenwerten die Helligkeiten. Sie zeichnen die Lichtkurve auf Millimeterpapier oder mithilfe eines Tabellekalkulations-Programms. Alternativ zur Auswertung mit Excel oder einem anderen Tabellenkalkulationsprogramm können auch Taschenrechner und Millimeterpapier zum Einsatz kommen. Die folgenden Begriffe und Phänomene müssen den Schülerinnen und Schülern bereits bekannt sein, um die physikalischen Hintergründe des Pulsationsmechanismus von Mira-Sternen zu verstehen: gedämpfte, ungedämpfte und erzwungene Schwingungen Kompression und Expansion von Gas Wärme und Wärmeenergie Ionisation und Ionisationsenergie Energietransport durch Strahlung Absorption Interpretation der Lichtkurve von R Cas Die Jugendlichen zeichnen eine Ausgleichskurve durch ihre Datenpunkte, beschreiben den Kurvenverlauf, ermitteln die Periodendauer von R Cas (etwa 430,5 Tage) und bestimmen anhand der Lichtkurve den Variablentyp (Mira-Stern). Sie erzeugen mithilfe eines Online-Lichtkurvengenarators eine Vergleichslichtkurve auf der Basis der Daten von geübten Amateurbeobachtern. Die Übereinstimmung wirkt sehr motivierend. Gemeinsamkeiten, aber auch Unterschiede werden beschrieben und erörtert: Die Verläufe sind sehr ähnlich, die Helligkeitsbereiche unterscheiden sich jedoch. Dies liegt daran, dass die Sonneberger Daten fotografisch gewonnen wurden, die Amateurdaten aber auf Augenbeobachtungen basieren. Die Empfindlichkeit der fotografischen Emulsion über der Wellenlänge ist etwas anders als die des Auges. Mira-Sterne und ihr Lichtwechsel Der die Stunde abschließende Lehrervortrag zu Mira-Sternen und dem Zustandekommen ihrer Pulsationen erfordert die oben genannten physikalischen Vorkenntnisse. Mira ist ein Roter Riese vom Spektraltyp M. Mira selbst hat einen mittleren Durchmesser von etwa 550 Millionen Kilometern. Der Stern würde damit das Sonnensystem bis hin zum Planetoidengürtel ausfüllen. Die wahre mittlere Sterngröße ist jedoch kleiner, denn eine den Stern umgebende Wolke aus Molekülen täuscht ein größeres Ausmaß vor. "Die Wunderbare" im Walfisch repräsentiert das Endstadium eines Sterns von der Masse unserer Sonne. Der Pulsationsmechanismus von Mira Die Pulsation ist mit einer ungedämpften Schwingung vergleichbar. Dieser Mechanismus funktioniert nur, wenn Energie im richtigen Schwingungszustand (in der richtigen Phase) zugeführt wird. Ein anschauliches Bild dafür bietet eine Spielplatz-Schaukel: Die Schwingung der Schaukel bleibt erhalten, wenn man sie bei der "Auswärtsbewegung" anschiebt. So muss auch der Hülle eines schwingenden Sterns Energie zugeführt werden, wenn sie expandiert. (Wärme-)Energie kann im Stern nur durch Strahlung zugeführt werden. Dazu ist es erforderlich, dass der Stern bei Kompression "undurchsichtiger" wird, das heißt, Strahlungswärme "tankt", die dann bei der Expansion treibend (entdämpfend) frei werden kann. In "normalen" (nicht veränderlichen) Sternen sind die Verhältnisse gerade umgekehrt, so dass Schwingungen schnell ausgedämpft werden. In Riesensternen kann dieser Fall aber in der richtigen Tiefe eintreten. Weitere Details In Mira sind die Bedingungen für die Ionisation von Wasserstoff (Temperatur und Druck) in genau der Tiefe gegeben, die für die Aufrechterhaltung des Pulsationsmechanismus erforderlich ist. Da die Sternmaterie größtenteils aus Wasserstoff besteht (im Zentrum eines Sterns ist in der Endphase seines "Lebens" zwar nur noch Helium oder Kohlenstoff vorhanden, aber rundherum bleibt viel Wasserstoff übrig, der nicht zum Fusionieren kommt) und dessen Ionisationsenergie hoch ist, wird dabei viel Energie gespeichert, die bei der Expansion massiv frei wird. Mira-Sterne pulsieren weitaus stärker als Cepheiden. Ihre starke Helligkeitsänderung beruht auch auf der periodischen Entstehung von absorbierenden Molekülen im Außenbereich. Allgemeine Hinweise Mira soll nun gezielt mit bloßem Auge gesichtet werden (Beobachtungszeit: Herbst und Winter). Dazu ist es wichtig, die Zeit des Maximums und Minimums zu kennen. Diese Zeiten können im Internet recherchiert werden. Mit der Kenntnis des Lichtkurvenverlaufs (hier wird der Einfachheit halber eine Lichtkurve von R Cas zu Grunde gelegt) können die Jugendlichen nun auch den Zeitraum abschätzen, innerhalb dessen die Helligkeit von Mira unterhalb der 6. Größenklasse liegt (Wissenstransfer). Das Julianische Datum findet nochmals Anwendung, indem es ins bürgerliche (gregorianische) Datum umgerechnet werden muss. Ein anderes Beobachtungsprojekt betrifft den Bedeckungsveränderlichen Algol im Sternbild Perseus. Dieser Stern bietet die Möglichkeit, den Helligkeitsabfall innerhalb einiger Stunden mit bloßem Auge zu verfolgen. Dies können die Schülerinnen und Schüler auch an der Lichtkurve ersehen. Damit man das Minimum optimal beobachten kann, müssen einige Voraussetzungen erfüllt sein: möglichst kein Mondlicht während des Minimums möglichst große Höhe über dem Horizont günstige Abendzeit Zusammen mit astronomischen Grundkenntnissen sind hier die planerischen Fähigkeiten der Schülerinnen und Schüler gefordert. Ausblickend lässt sich das für R Cas gegebene Sternfeld (27 Grad mal 27 Grad) nach weiteren Veränderlichen durchforsten. Die Plattendaten können beim Autor dieses Artikels, Dr. Olaf Fischer, angefragt werden. Es besteht auch die Möglichkeit einer Verlängerung der Messreihe für R Cas durch weitere Daten. Hier sollte eventuell entstandenes Schülerinteresse weitere Nahrung finden können.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II
ANZEIGE