• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Schwarze Löcher – rätselhafte Phänomene in den Tiefen des Universums

Unterrichtseinheit

Mit der Verleihung des Physik-Nobelpreises 2020 für den Nachweis der Existenz des supermassereichen Schwarzen Loches Sagittarius A* im Zentrum der Milchstraße an Reinhard Genzel, Andrea Ghez und Roger Penrose rückte die extrem aufwendige Erforschung des Universums einmal mehr in den Fokus der Öffentlichkeit. Die vorliegende Unterrichtseinheit hat zum Ziel, Schülerinnen und Schülern der gymnasialen Oberstufe ein schwieriges und sehr komplexes Thema – ohne die im Detail dafür notwendige, aber im Schulunterricht nicht mögliche höhere Mathematik – näherzubringen. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Erkenntnisse von Albert Einstein, die er mit seiner Allgemeinen Relativitätstheorie (ART) im Jahr 1915 veröffentlichte, hatten die Existenz Schwarzer Löcher als natürliche Konsequenz der Raum-Zeit-Krümmung prognostiziert. Der laut der Königlich Schwedischen Akademie der Wissenschaften bisher überzeugendste Beweis für ein superschweres Schwarzes Loch mit einer Masse von rund vier Millionen Sonnenmassen im Zentrum der Milchstraße war die Bestätigung für jahrzehntelange akribische Forschung und Auswertung immenser Datenmengen mit den heute den Astrophysikern zur Verfügung stehenden technischen Möglichkeiten. Der im Laufe von Milliarden von Jahren entstandene heute bekannte Kosmos hat aufgrund seiner ständig fortschreitenden Ausdehnung eine Größe von 1023 km überschritten und enthält Milliarden von Galaxien und Sternen. Den Lernenden wird zunächst mithilfe von Animationen, erläuternden Videos und Schaubildern die Entwicklung von Sternen und deren weiterer Verlauf in ihrem Lebenszyklus vorgestellt. So anschaulich wie möglich werden dann die Vorgänge besprochen, die ein Riesenstern auf seinem Weg über eine Supernova hin zum Schwarzen Loch nimmt. Die nur eingeschränkt zu verstehenden Fakten der ART Einsteins werden mithilfe von Videos und Animationen verständlich gemacht, bevor mit den Möglichkeiten der gymnasialen Oberstufenmathematik Begriffe wie Ereignishorizont und Schwarzschild-Radius eingeführt und hergeleitet werden. Der Nachweis von Schwarzen Löchern am Beispiel von Sagittarius A* wird anhand von Schaubildern im Arbeitsblatt 2 vorgestellt, erläutert und durch Berechnungen (Übungsaufgaben) verfestigt. Zudem wird die Bedeutung von Gravitationswellen und deren Messung als weiterer Nachweis für Schwarze Löcher besprochen. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier Die Forschung der Nobelpreisträger im Unterricht . Schwarze Löcher – rätselhafte Phänomene in den Tiefen des Universums Schwarze Löcher gehören noch immer zu den größten Rätseln des Universums, wenngleich ihre Existenz mit weltweit verbundenen Teleskopen immer besser nachgewiesen werden kann – wie etwa im Jahr 2019 durch eine radioteleskopische Aufnahme des mit 6,6 Milliarden Sonnenmassen gigantischen Schwarzen Loches M87* im Zentrum der Galaxie M87. Man weiß heute, dass Schwarze Löcher aus dem Tod eines Riesensterns entstehen können. Man vermutet Milliarden davon im Universum und es stellen sich Fragen: Was passiert genau in den Schwarzen Löchern? Wieviel Materie können Schwarze Löcher verschlingen? Wird unser Universum eines Tages komplett von Schwarzen Löchern verschlungen? Haben Schwarze Löcher Auswirkungen auf unser irdisches Leben? Wie verändern Schwarze Löcher das Universum? Handelt es sich bei allen dunklen Himmelskörpern um Schwarze Löcher? Neue Theorien tauchen auf, die mit naturwissenschaftlichen Methoden untersucht werden müssen, ob sie denn schlüssig sind und somit einen weiteren Schritt nach vorne bedeuten oder wieder verworfen werden müssen. Undurchschaubare Schwarze Löcher und ihre Wirkungen auf Raum und Zeit werden noch lange Ansporn sein für kreative Wissenschaftlerinnen und Wissenschaftler und ihren Forschungsdrang! Vorkenntnisse Wichtig für ein grobes Verständnis sind das Newton'sche Gravitationsgesetz sowie die Kepler'schen Gesetze. Beide sollten im Rahmen des gymnasialen Physikunterrichts hinreichend besprochen sein, damit zum einen die mathematisch gut nachvollziehbaren Berechnungen zum Ereignishorizont und dem Schwarzschild-Radius durchgeführt werden können und zum anderen die daraus resultierenden Berechnungen zur Größe und Masse von Schwarzen Löchern. Didaktische und methodische Analyse Schwarze Löcher waren bis in die späten 1960er Jahre nur für Mathematikerinnen und Mathematiker sowie theoretische Physikerinnen und Physiker von Bedeutung, weil kein Weg zu ihrer Beobachtung vorstellbar schien. Zudem hielt man es für unwahrscheinlich, dass es Objekte mit einer derart unvorstellbar großen Dichte geben könnte. Auch der Name "black hole" oder "Schwarzes Loch" wurde erst Ende der 1960er Jahre geprägt. Zu einem Umdenken kam es, als erste astronomische Objekte im Röntgenlicht sowie ein extremer Strahlungsausstoß sogenannter Quasare nachgewiesen werden konnte. Der britische Physiker Stephen Hawking (1942–2018) konnte in den 1980er Jahren zeigen, dass in der Umgebung verschiedener Schwarzer Löcher physikalische Effekte auftreten konnten, bei denen Strahlung nach außen abgegeben werden kann – völlig widersprüchlich zum ursprünglichen Bild des Schwarzen Loches. Bis in die 1990er Jahre konnten einige Kandidaten für stellare Schwarze Löcher von nur wenigen Sonnenmassen in Doppelsternsystemen gefunden werden – ein Nachweis für supermassive Schwarze Löcher im Zentrum vieler Galaxien stand noch aus. Dies war der Auslöser für den Astrophysiker Reinhard Genzel und die Astrophysikerin Andrea Ghez, das Zentrum unserer Milchstraße genau zu untersuchen. In jahrelangen Forschungen fanden sie – übereinstimmend – die Bahnen mehrerer Sterne, die sich auf elliptischen Bahnen um ein Zentrum drehen. Als besonders interessant stellte sich der innerste Stern, mit S2 bezeichnet, heraus. Er brauchte nur 16 Jahre für einen Umlauf; die von den Forschenden beobachteten Bahnparameter ließen nur einen Schluss zu – im Zentrum unserer Milchstraße muss sich ein supermassereiches Schwarzes Loch (Sagittarius A*) mit einer Masse von rund vier Millionen Sonnenmassen befinden. Der mithilfe von weltweit zusammengeschlossenen riesigen Teleskopen gefundene Nachweis ist ein Meilenstein der Astrophysik und hat durch die Verleihung des Nobelpreises für Physik im Jahr 2020 für weltweites Aufsehen gesorgt. Noch nicht völlig eindeutig ist, welche Rolle die Schwarzen Löcher in der Kosmologie einnehmen. Ein großes Problem ist, wie Schwarze Löcher so schnell entstehen und in so kurzer Zeit solche gigantischen Materiemengen ansammeln konnten. Sind die supermassereichen Schwarzen Löcher vielleicht die "Geburtshelfer" für Galaxien? Viele Fragen, die auf Antworten warten. Die hinter all diesen Fragen und bisherigen Erkenntnissen steckende Physik ist aufgrund der dafür notwendigen Mathematik äußerst kompliziert und im gymnasialen Unterricht nicht anwendbar. Dennoch ist die Allgemeine Relativitätstheorie eine Theorie der klassischen Physik und macht es möglich, mit Gesetzmäßigkeiten wie dem Gravitationsgesetz von Newton und den Kepler'schen Gesetzen Berechnungen durchzuführen und damit ein grobes, aber ausreichendes Verständnis für den Aufbau und die Funktion Schwarzer Löcher zu erhalten. Zudem können durch relativ einfache Gleichungen die Schwarzschild-Radien für die Sonne und die Erde berechnen werden – die geringen Beträge zeigen uns, welche unvorstellbaren Kräfte herrschen müssten, damit auch diese beiden Himmelskörper zu Schwarzen Löchern zusammengekrümmt würden. Am Beispiel von Sagittarius A* kann man schließlich nachvollziehen, welche Größen und Massen sich für Schwarze Löcher ergeben können, wenn man das Sonnensystem verlässt und in das 26.000 Lichtjahre entfernte Zentrum der Milchstraße vorstößt. Die genannten Beispiele und Berechnungen zeigen den Lernenden unter anderem, um welche Größenordnungen es geht, wenn man vom Universum spricht. Schülerinnen und Schüler sollen mit dieser Unterrichtseinheit zu Schwarzen Löchern auch animiert werden, darüber nachzudenken, welche Rolle wir Menschen auf unserer Erde in diesem gigantischen Kosmos spielen. Fachkompetenz Die Schülerinnen und Schüler können Entstehung, Aufbau und Wirkungsweise von Schwarzen Löchern beschreiben. kennen die Forschungsarbeit der beteiligten Astrophysiker, die zum Nachweis eines Schwarzen Loches geführt haben. können die physikalischen Gesetzmäßigkeiten Schwarzer Löcher herleiten und entsprechende Berechnungen ausführen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbstständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Apps auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern, Freundinnen und Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Lichtablenkung in der Nähe Schwarzer Löcher

Unterrichtseinheit

Schülerinnen und Schüler lernen die Begriffe Schwarzschildradius und "knife-edge-orbit" kennen. Mit einer Computersimulation untersuchen sie das Verhalten von Lichtstrahlen in der Nähe Schwarzer Löcher. Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie (ART). Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie, die Albert Einstein (1879-1955) im Jahr 1915 veröffentlichte und die ihm zu so großer Popularität verhalf. In der Unterrichtseinheit gehen die Schülerinnen und Schüler unter anderem der Frage nach, wie ein Schwarzes Loch aus der Nähe aussehen würde. Lehrpersonen finden im Bereich "Mein LO" detaillierte Lösungen zu den hier vorgeschlagenen Aufgaben. Zur Behandlung des Themas in der Schule eigenen sich auch die hervorragenden Computergrafiken und -animationen der Webseite "Tempolimit Lichtgeschwindigkeit". Phänomene der ART Neben der hier vorgestellten Simulation zur Lichtablenkung in der Nähe Schwarzer Löcher bietet die Simulation zu den Phänomenen der Allgemeinen Relativitätstheorie die Möglichkeit, drei wissenschaftsgeschichtlich wichtige Beobachtungen beziehungsweise Experimente für den "Beweis" der Allgemeinen Relativitätstheorie darzustellen und zu besprechen: die Relativitätstheorie: Lichtablenkung am Sonnenrand , die Relativitätstheorie: Die Periheldrehung der Merkurellipse und die Relativitätstheorie: Der Shapiro-Effekt bei der Reflexion an der Venusoberfläche. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Hintergrundinformationen Was ist der Schwarzschildradius? Was bedeutet "knife-edge-orbit" und wie sieht ein Schwarzes Loch aus der Nähe aus? Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen den Schwarzschildradius mithilfe der zweiten kosmischen Geschwindigkeit herleiten können. den Schwarzschildradius verschiedener Himmelskörper berechnen können. erfahren, dass Lichtstrahlen unter bestimmten Voraussetzungen ein Schwarzes Loch umkreisen können. mithilfe der Computersimulation das Verhalten von Lichtstrahlen in der Nähe Schwarzer Löcher spielerisch untersuchen und die angegebene Formel verifizieren können. mithilfe der Computersimulation verstehen lernen, wie ein Schwarzes Loch vor dem Hintergrund eines sternenübersäten Himmels für eine Beobachterin oder einen Beobachter aussehen würde. Thema Allgemeine Relativitätstheorie: Lichtablenkung in der Nähe Schwarzer Löcher Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum mindestens 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Edwin F. Taylor, John A. Wheeler Exploring Black Holes. Addison Wesely, Longman, Inc., 2000 Die sogenannte "zweite kosmische Geschwindigkeit" beschreibt die Mindestgeschwindigkeit, die eine Masse haben muss, um dem Schwerefeld eines Himmelskörpers vollständig entweichen zu können. Diese Fluchtgeschwindigkeit lässt sich mithilfe der Formel berechnen. Dabei bedeutet R der Radius der Oberfläche des Himmelskörpers, von dem man startet. Nun kann man sich vorstellen, diesen Radius (bei gleich bleibender Masse) stetig schrumpfen zu lassen. Es ist leicht einzusehen, dass dadurch die Fluchtgeschwindigkeit ebenfalls steigen muss. Interessant ist die Frage, bei welchem Radius die absolute Grenzgeschwindigkeit, die Lichtgeschwindigkeit c = 3 • 10 8 Meter pro Sekunde, erreicht wird. Würde man den Himmelskörper noch stärker zusammenpressen, könnte selbst Licht nicht mehr von seiner Oberfläche entweichen. Damit wäre ein Zustand erreicht, der im Allgemeinen als "Schwarzes Loch" bezeichnet wird. Der oben beschriebene kritische Radius wurde erstmals von dem deutschen Ingenieur Karl Schwarzschild (1873-1916) im Jahr 1916 aus den Gleichungen der Allgemeinen Relativitätstheorie berechnet. Daher spricht man auch vom "Schwarzschildradius". In dieser Unterrichtseinheit berechnen die Schülerinnen und Schüler nach der Herleitung des Schwarzschildradius diesen Wert für Sonne und Erde. Wie verhalten sich nun Lichtstrahlen, die weit entfernt vom Schwarzen Loch starten, seinem Schwarzschildradius jedoch sehr nahe kommen? Interessanterweise kann der Lichtstrahl vollständig vom Schwarzen Loch eingefangen werden. Dabei spielt ein spezieller Stoßparameter eine entscheidende Rolle, der sich aus der Formel ergibt (etwas einfacher: b KE ≈ 2,6 R S ). Lichtstrahlen, die genau bei diesem seitlichen Abstand starten und auf das Schwarze Loch zulaufen, werden dieses auf einer Umlaufbahn ewig umkreisen (Abb. 1, Mitte). Kleine Variationen dieses Parameters bewirken bereits ein anderes Verhalten: Ist b kleiner als b KE , stürzt das Licht in das Schwarze Loch (Abb. 1, links). Ist b größer als b KE , umrundet der Lichtstrahl den Kollapsar einige Male, um sich dann wieder von diesem zu entfernen (Abb. 1, rechts). Die Umlaufbahn des Stoßparameters b KE wird treffend auch mit dem Begriff "knife-edge-orbit" beschrieben. Wie würden wir ein Schwarzes Loch visuell vor dem Hintergrund eines sternenübersäten Himmels wahrnehmen? Je näher die Lichtstrahlen am Kollapsar vorbeilaufen, desto stärker werden sie gekrümmt. Beobachterinnen und Beobachter werden also in der Nähe eines Lichtkreises den umgebenden Himmel mehrfach und völlig verzerrt wahrnehmen. Außerdem erscheint der schwarze Fleck, den der Kollapsar vor dem Himmel abgibt, etwa 2,6-mal so groß wie nach dem Schwarzschilddurchmesser zu erwarten wäre. Diese Phänomene untersuchen die Lernenden mithilfe der Simulation. Sie verändern den Stoßparameter, beobachten das Verhalten der Lichtstrahlen und zeichnen in Screenshots die Sehstrahlen ein, die den schwarzen Bereich begrenzen (Abb. 2). Auf der Webseite "Tempolimit Lichtgeschwindigkeit" finden Sie faszinierende Grafiken und Computeranimationen, die zeigen, wie ein Schwarzes Loch aus der Nähe aussähe. Auf den Abbildungen sind die oben simulierten Strahlenverläufe gut wiederzuerkennen, insbesondere die verzerrte, mehrfache Abbildung des gesamten Himmels innerhalb eines Kreisrings. Tempolimit Lichtgeschwindigkeit Hier finden Sie Ideen und Materialien von Ute Kraus und Corvin Zahn: Visualisierung der Speziellen und Allgemeinen Relativitätstheorie sowie Modellexperimente. Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Objekten, die sich in Gravitationsfeldern von Sternen bewegen. Dabei kann man wählen, ob die Bahnkurven nach Newton oder Einstein dargestellt werden sollen. Die klassische Herleitung für den Schwarzschildradius liefert erstaunlicherweise dasselbe Ergebnis wie die relativistische Herleitung. Man sollte sich aber darüber im Klaren sein, dass der Schwarzschildradius eigentlich durch die Relativitätstheorie beschrieben wird. Abb. 3 (Platzhalter bitte anklicken) zeigt einen Screenshot aus der Simulation zur Lichtablenkung in der Nähe Schwarzer Löcher. Die Schülerinnen und Schüler verändern den Stoßparameter und beobachten dabei das Verhalten des Lichtstrahls. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differenzieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation (Shapiro-Verzögerung, Lichtablenkung am Sonnenrand, Periheldrehung der Merkurbahn) um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Simulation ermöglicht dabei eine direkte Veranschaulichung der Ergebnisse aus den Berechnungen. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren".

  • Physik / Astronomie
  • Sekundarstufe II

Ein Schwarzes Loch im Zentrum der Galaxie M87

Unterrichtseinheit

Schülerinnen und Schüler nutzen Aufnahmen und Spektren, die mit dem Hubble-Weltraumteleskop gewonnen wurden, um die Masse eines Schwarzen Lochs in der Galaxie M87 zu berechnen. Mithilfe des Doppler-Effekts können Schülerinnen und Schüler die Geschwindigkeit ermitteln, mit der sich Gas in einer bestimmten Entfernung um das Zentrum der Galaxie M87 bewegt. Aus diesen Daten können sie dann auf die Masse schließen. Die mit einfachen Mitteln zu erzielenden Resultate sind durchaus mit den in der Literatur publizierten Werten vergleichbar. Das vom Hubble-Weltraumteleskop aufgenommene Bild (links) zeigt den aktiven Kern der Galaxie, aus dem ein gebündelter Jet aus Elektronen und subatomaren Teilchen mit nahezu Lichtgeschwindigkeit herausschießt. Das hier vorgestellte Projekt ist eine von mehreren Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, die von der Arbeitsgruppe Fachdidaktik der Physik und Astronomie an der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität Jena entwickelt wurden (weitere Projekte: Die Entfernung der Supernova SN 1987A und Die Entfernung der Galaxie M100 ). Von den mathematisch anspruchsvollen Übungen stellt das hier vorgestellte Projekt die höchsten Anforderungen an die Schülerinnen und Schüler. Die Suche nach Schwarzen Löchern Neben der Geschwindigkeit von Sternen oder Gas im Kern der Galaxien müssen bei der Suche nach möglichen Schwarzen Löchern noch weitere Kriterien herangezogen werden. Die Schülerinnen und Schüler erklären den Verlauf der Rotationskurven von Galaxien mit und ohne Schwarzem Loch im Kern der Galaxie. bestimmen mithilfe des Doppler-Effekts die Geschwindigkeit, mit der das Gas in Abhängigkeit von der Entfernung zum Zentrum der Galaxie M87 rotiert und schließen daraus auf die Masse. beziehen die Geometrie der um das Zentrum der Galaxie rotierenden Gasscheibe (Projektion des kreisförmigen Rings als Ellipse an die Himmelssphäre) in ihre Berechnungen mit ein und schulen dadurch ihr räumliches Vorstellungsvermögen. erkennen, dass die Auflösung des Hubble-Weltraumteleskops nicht ausreicht, in der Nähe des Schwarzschildradius relativistische Geschwindigkeiten nachzuweisen zu können. lernen für das Vorhandensein eines Schwarzen Lochs im Zentrum einer Galaxie neben den charakteristischen Eigenschaften der Rotationskurve noch weitere Indizien kennen. In letzter Zeit mehren sich die Anzeichen dafür, dass Schwarze Löcher nicht nur theoretisch möglich sind, sondern tief im Innern vieler Galaxien auch wirklich existieren. Sie könnten durch dynamische Vorgänge in den Galaxienzentren, wie etwa der Akkretion von Materie aus einer Gasscheibe, entstanden sein und so die am wenigsten exotische Erklärung für die Aktivitäten von Galaxienkernen, wie zum Beispiel intensive Röntgen- und Radiostrahlung und die Aussendung von Materie-Jets, darstellen. So deuten seit Langem gleich mehrere Indizien darauf hin, dass auch die riesige elliptische Galaxie M87 (Abb. 1), die zum Virgo-Galaxienhaufen gehört, ein massereiches Schwarzes Loch beherbergt. Dem hohen Auflösungsvermögen des Hubble-Weltraumteleskops verdanken wir die Entdeckung einer rotierenden Scheibe aus ionisiertem Gas im Zentrum dieser Galaxie. Keplersch oder nicht? Die empirische Abhängigkeit der Rotationsgeschwindigkeit v vom Abstand R ist bei normalen Galaxien nicht keplersch. Die inneren Partien von Spiral- und elliptischen Galaxien rotieren nämlich wie starre Körper, das heißt, die Bahngeschwindigkeit wächst linear mit dem Abstand. Dies lässt auf eine konstante Massendichte schließen. Weiter außen bleiben dann die Bahngeschwindigkeiten über große Abstände nahezu konstant, das heißt, dort wächst die Masse linear mit dem Abstand. Enthielte das Zentrum einer Galaxie nun ein Schwarzes Loch mit der Masse von einer Milliarde Sonnen, zeigt die Rotationskurve bei enger Annäherung an dieses Zentrum einen keplerschen Verlauf, so wie die des Sonnensystems. Geschwindigkeit von Sternen oder Gas im Kern der Galaxien Damit liegt eine Strategie für die Suche nach Schwarzen Löchern in Galaxienzentren auf der Hand: Wir müssen in möglichst kleinen Abständen vom Zentrum einer Galaxie die Geschwindigkeit von Sternen oder Gas messen. Ist die Rotationskurve dann keplersch, gibt dies einen deutlichen Hinweis darauf, dass im Galaxienzentrum ein sehr massereiches, kompaktes Objekt verborgen ist. Ein beeindruckendes Beispiel dafür ist die mit dem Langspalt-Spektrographen des Hubble-Weltraumteleskops aufgenommene Rotationskurve für das Zentrum der Galaxie M84. Abb. 2 zeigt die Zentralregion der Galaxie M84 in einer Aufnahme der Weitwinkelkamera des Weltraumteleskops (links). Der rechte Bildteil zeigt die Verteilung der Geschwindigkeiten von Sternen und Gas über die von dem Rechteck im linken Bild markierten Abstände vom Zentrum. Diese Radialgeschwindigkeitskurve zeigt die auf den Beobachter zu (blau) und von ihm weg (rot) gerichteten, messbaren Komponenten der Bahngeschwindigkeit. Ihre Auswertung führt auf 300 Millionen Sonnenmassen in einer Kugel mit 26 Lichtjahren Radius! Das begrenzte Auflösungsvermögen des Hubble-Weltraumteleskops verhindert bei Weitem die für den endgültigen Nachweis eines Schwarzen Lochs nötige Annäherung an dessen Schwarzschild-Radius, wobei sich relativistische Bahngeschwindigkeiten ergeben müssten. Aber auch dann, wenn die empirische Feststellung des keplerschen Verlaufs der Rotationskurve bei Annäherung an das Zentrum bei einem bestimmten kleinsten Abstand R abbricht, können wir aus einem ( R, v )-Messpunkt auf die von der Kugel mit dem Radius R eingeschlossene Masse schließen. Anschließend müssen jedoch andere Argumente zugunsten eines Schwarzen Lochs im Zentrum von M87 als die (für noch kleinere Abstände empirisch nicht mehr vorhandene) Rotationskurve herangezogen werden, um Alternativen auszuschließen: Viel Masse auf engem Raum Ein Schwarzes Loch wird umso wahrscheinlicher, je mehr Masse in einem bestimmten Volumen enthalten ist und je mehr diese die Masse der darin leuchtenden Materie übersteigt. Mathematische Modelle Dynamische Rechnungen zeigen, dass nicht leuchtende Himmelskörper, wie zum Beispiel Braune Zwerge, Neutronensterne und stellare Schwarze Löcher, in der erforderlichen Anzahl rasch zu einem einzigen Schwarzen Loch kollabieren würden. Materie-Jet Nahezu senkrecht auf der Gasscheibe im Zentrum von M87 steht ein sogenannter Materie-Jet (Abb. 3), der radioastronomischen Beobachtungen zufolge aus einem Gebiet von höchstens sechs Lichtjahren Durchmesser austritt. Zur Erklärung dieses Phänomens wird seit Langem ein Schwarzes Loch diskutiert. Die in diesem Projekt durchgeführte Auswertung der M87-Daten drängen zu folgender Schlussfolgerung: Wenn wir die in einem relativ kleinen Volumen konzentrierte Masse nicht als die eines Schwarzen Lochs deuteten, wüssten wir nach dem heutigen Stand der Wissenschaft gar keine Erklärung dafür abzugeben. Um uns dieser Deutung noch mehr zu vergewissern, müsste die Bewegung von Sternen und Gas in noch größerer Nähe zum Zentrum der Galaxie analysiert werden. Zumindest für das Milchstraßensystem ist dies in jüngster Zeit geschehen (siehe Links und Literatur ). Eckart, A., Genzel, R. Erster schlüssiger Beweis für ein massives Schwarzes Loch?, Physikalische Blätter 54 (1998) (l) 25-30 Eckart, A., Genzel, R. Der innerste Kern des galaktischen Zentrums, Sterne und Weltraum 37 (1998) (3) 224-230 Ford, H.C., Tsvetanov, Z.I. Massive Black Holes in the Hearts of Galaxies, Sky & Telescope (1996) (6) 28-33 Ford, H.C., Harms, R.J., Tsvetanov, Z.I. et al Narrow Band HST Images of M87: Evidence for a Disk of Ionized Gas Around a Black Hole, Astrophysical Journal Letters 435 (1994) L27-30 Harms, R.J., Ford, H.C., Tsvetanov, Z.I. et al HAST FOS Spectroscopy of M87: Evidence for a Disk of Ionized Gas Around a Massive Black Hole, Astrophysical Journal Letters 435 (1994) L35-38 Lotze, K.-H. Schwarze Löcher - vom Mythos zum Unterrichtsgegenstand, Praxis der Naturwissenschaften/Physik 49 (2000) (5) 21-27 Lotze, K.-H. Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, Projekt Nr. 1: Die Entfernung der Supernova SN1987A, Der Mathematische und Naturwissenschaftliche Unterricht (MNU) 51 (1998) (4) 218-222 Lotze, K.-H. Praktische Schülerübungen mit Originaldaten des Hubble-Weltraumteleskops, Projekt Nr. 2: Die Entfernung der Galaxie M100, Der Mathematische und Naturwissenschaftliche Unterricht (MNU) 52 (1999) (2) 85-91 Rubin, V.C. Dark Matter in Spiral Galaxies, Scientific American 248 (1983) (6) 96-106

  • Physik / Astronomie
  • Sekundarstufe II

Gravitationswellen: erster direkter Nachweis mit Interferometern

Unterrichtseinheit

Diese Unterrichtseinheit thematisiert den ersten erfolgreichen Nachweis von Gravitationswellen, der 2015 mithilfe zweier riesiger Laser-Interferometer in den USA gelang. Quelle des Ereignisses war die Verschmelzung zweier eng umeinanderkreisender Schwarzer Löcher in einer Entfernung von 1,3 Milliarden Lichtjahren. Die Arbeitsblätter zum ersten direkten Nachweis von Gravitationswellen bauen auf einem Erklärvideo aus der Mediathek der Lindauer Nobelpreisträgertagungen auf. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.In dieser Unterrichtseinheit erarbeiten die Schülerinnen und Schüler einige wichtige physikalische Zusammenhänge des als sensationell eingestuften Beobachtungsergebnisses, das den ersten direkten Nachweis von Gravitationswellen darstellte. Thematisiert werden: die Umlauffrequenz, der Abstand und die Bahngeschwindigkeit der beiden Schwarzen Löcher, die Frequenz und die Amplitude der Gravitationswelle am Ort der Beobachtung sowie die Lokalisierung der Quelle am Himmel. Die Materialien sind so angelegt, dass die Schülerinnen und Schüler ihre Rechenergebnisse stets mit den Daten aus den Originalveröffentlichungen zu dem Gravitationswellenereignis GW150914 vergleichen können. Sie erfahren dabei auch, dass die klassische Gravitationsphysik nach Newton bei der Beschreibung des vorliegenden Phänomens an ihre Grenzen stößt und die Allgemeine Relativitätstheorie von Albert Einstein durch den direkten Nachweis von Gravitationswellen eine weitere wichtige Bestätigung findet. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Gravitationswellen im Unterricht Das Thema Gravitationswellen berührt verschiedene Inhalte der Oberstufenphysik. Insbesondere sind Themen wie Gravitation, Kreisbewegungen und das Michelson-Interferometer von besonderer Relevanz – aber auch Grundkenntnisse der Physik Schwarzer Löcher und Neutronensterne spielen für das Verständnis des Phänomens Gravitationswellen eine wichtige Rolle. In den Lehrplänen sind die Allgemeine Relativitätstheorie und ihre Folgerungen gar nicht oder nur ansatzweise enthalten. Dennoch lassen viele schulinterne Curricula durchaus Luft für besondere Themen, wie zum Beispiel für dieses brandaktuelle Forschungsgebiet der Gravitationswellenastronomie. Gut lässt sich die Thematik in Astronomie-Kurse der Oberstufe, Projektkurse oder Arbeitsgemeinschaften einbauen. Vorkenntnisse Die Lernenden sollten mit dem Gravitationsgesetz Newtons und der Physik der Kreisbewegungen vertraut sein. Auch Begriffe aus der Wellenlehre wie Frequenz, Wellenlänge und Amplitude sollten bekannt sein. Astronomisches Grundwissen, auch zum Thema Schwarze Löcher (auch Schwarzschildradius), ist durchaus hilfreich; es kann aber durch Recherche oder Lehrerhilfe auch während der Bearbeitung der Unterrichtseinheit zum Nachweis von Gravitationswellen vermittelt werden. Dies gilt in ähnlicher Weise ebenso für den Aufbau und die Funktionsweise eines Michelson-Interferometers. Didaktische Analyse Die Berechnungen zu Gravitationswellen beruhen auf der Allgemeinen Relativitätstheorie. Da diese in der Regel schulisch nicht thematisiert wird, ist die Frage berechtigt, ob ein Thema wie Gravitationswellen im normalen Schulalltag überhaupt so umgesetzt werden kann, dass der Unterricht über eine rein qualitative Betrachtung hinausgeht. Die Materialien dieser Unterrichtseinheiten zeigen, dass dies möglich ist, denn viele Rechnungen lassen sich zunächst rein klassisch, also mit der Gravitationsphysik Newtons, durchführen. Dass sich an einigen Stellen, wie beispielsweise bei der Berechnung der Umlaufgeschwindigkeit der Schwarzen Löcher, dann eine deutliche Diskrepanz zu den Vorhersagen der Einstein‘schen Physik zeigt, ist didaktisch positiv zu werten. Es ist aber auch didaktisch vertretbar, fertige Formeln aus der Relativitätstheorie vorzugeben und die Schülerinnen und Schüler nur die entsprechenden Rechnungen durchführen zu lassen. Dies ist zum Beispiel bei der Berechnung der Gravitationswellen-Amplitude der Fall. So lernen die Schülerinnen und Schüler zum einen, dass die Relativitätstheorie das geeignete Handwerkzeug zur Beschreibung extremer physikalischer Verhältnisse zur Verfügung stellt. Zum anderen erfahren sie aber auch, dass ihre Kenntnisse der Mathematik und Physik aus der Oberstufe ausreichen, um sich den Vorhersagen der Theorie und den veröffentlichten Messdaten zu nähern. Methodische Analyse Ein Ziel dieser Unterrichtseinheit zum direkten Nachweis von Gravitationswellen besteht darin, dass die Lernenden erfahren, dass sie mithilfe oberstufenüblicher Inhalte aus Mathematik und Physik in der Lage sind, Erkenntnisse zum Gravitationswellenereignis GW150914 eigenständig herzuleiten und zu berechnen. So werden mithilfe der Newtonschen Physik Formeln für den Abstand und die Umlaufgeschwindigkeit zweier gleich schwerer, sich gegenseitig umkreisender Massen hergeleitet. Mithilfe der Gravitationswellenfrequenzen aus den Aufzeichnungen der LIGO-Interferometer können die Lernenden dann Ergebnisse für den Abstand und die Bahngeschwindigkeit der Schwarzen Löcher berechnen, mit den Angaben aus den Originalveröffentlichungen vergleichen und so die Möglichkeiten und Grenzen der klassischen Physik erkunden. Fachkompetenz Die Schülerinnen und Schüler leiten mithilfe von Gravitationsgesetz und Gesetzen der Kreisbewegung Formeln zum Abstand und zur Bahngeschwindigkeit her. berechnen physikalische Größen mit komplexen Formeln. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit. diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar. Hier können Sie sich das Video zur Unterrichtseinheit "Gravitationswellen: erster direkter Nachweis mit Interferometern" anschauen.

  • Physik / Astronomie
  • Sekundarstufe II

Relativitätstheorie: Lichtablenkung am Sonnenrand

Unterrichtseinheit

In dieser Unterrichtseinheit zur Relativitätstheorie lernen die Schülerinnen und Schüler die Lichtablenkung am Sonnenrand als wichtigen historischen Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART) kennen. Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Lichtablenkung von Sternenlicht am Sonnenrand, die Periheldrehung der Merkurbahn, und die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zur Lichtablenkung von Sternenlicht am Sonnenrand und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zur Lichtablenkung von Sternenlicht am Sonnenrand und einem Informations- und Arbeitsblatt vergleichen die Schülerinnen und Schüler die klassischen mit den relativistischen Vorhersagen: Um welchen Winkel wird ein Lichtstrahl beim Passieren des Sonnenrandes aufgrund der Gravitation "verbogen"? Historisches zum Thema & Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass Licht innerhalb von Gravitationsfeldern abgelenkt wird. mithilfe einer vereinfachten Herleitung diese Ablenkung klassisch berechnen können. erfahren, dass diese klassische Betrachtungsweise nicht der Wirklichkeit entspricht. erkennen, dass erst die Allgemeine Relativitätstheorie den richtigen Wert für die Lichtablenkung am Sonnenrand liefert. mithilfe einer Computersimulation die unterschiedlichen Szenarien spielerisch erfahren und nachstellen können. erkennen, dass die exakte Bestimmung der Lichtablenkung am Sonnenrand ein wichtiger historischer Beweis für die Relativitätstheorie ist. Thema Allgemeine Relativitätstheorie: Lichtablenkung am Sonnenrand Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit 1801: Johann Georg von Soldner berechnet die Lichtablenkung "klassisch" Wenn sich ein Lichtstrahl durch das Gravitationsfeld eines Sterns bewegt, wird seine Bahn gekrümmt. Bemerkenswerterweise stammt diese These bereits aus der Zeit vor der Aufstellung der Allgemeinen Relativitätstheorie. Der Gründer der Münchener Sternwarte, Professor Johann Georg von Soldner (1776-1883), hatte bereits im Jahr 1801 ausgerechnet, dass ein Lichtstrahl, der den Sonnenrand passiert, eine Ablenkung von 0,87 Bogensekunden erfahren müsste (1 Bogensekunde = 1/3.600 Grad). Dem Licht gestand er dabei Teilcheneigenschaften zu. Über die Masse dieser Teilchen brauchte er sich keine Gedanken zu machen, da sie sich im Laufe seiner Herleitung, die auf der Newtonschen Physik basiert, herauskürzte. 1919: Eine Sonnenfinsternis bestätigt Einsteins relativistische Vorhersage Albert Einstein entwickelte dagegen aus den Feldgleichungen seiner Allgemeinen Relativitätstheorie (ART) eine Formel für die Lichtablenkung, die in erster Näherung den doppelten Ablenkwinkel am Sonnenrand ergab, nämlich 1,75 Bogensekunden. Die berühmte Sonnenfinsternis-Expedition von 1919, bei der die Verschiebungen von Sternpositionen in der Nähe des Sonnenrandes bei verdunkelter Sonne bestimmt wurden, konnte schließlich den von Einstein vorhergesagten Wert bestätigen. Diese Beobachtung stellte einen wichtigen Meilenstein zur Etablierung seiner neuen Theorie dar und katapultierte Einstein über Nacht in den Rang eines Superstars der modernen Physik. Wikipedia: Sonnenfinsternis vom 29. Mai 1919 Hier finden Sie Informationen zu der historischen Expedition auf die Vulkaninsel Príncipe vor der westafrikanischen Küste. Klassische Physik Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Planeten oder Photonen, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetztes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zur Lichtablenkung gemäß der Newtonschen Physik. Relativistische Physik Per Klick auf den Button "Bahnkurve nach Einstein" können die Schülerinnen und Schüler die betrachteten Effekte gemäß der Allgemeinen Relativitätstheorie darstellen lassen (Abb. 2, Platzhalter bitte anklicken): Der rechte, stärker abgelenkte Lichtstrahl folgt Einsteins Formel. So ist ein Vergleich beider Zugänge zur Gravitation möglich. Sinnvolle Anfangsbedingungen sind im Programm voreingestellt, sodass man die Simulationen direkt starten kann. Natürlich lassen sich die Werte beim Start der Simulation auch frei wählen. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differentieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Formel Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Schülerinnen und Schüler sollen zunächst eine vereinfachte Herleitung der Formel von Soldner durchführen, danach die Formel von Einstein kennen lernen und mithilfe der Computersimulation beide Szenarien "durchspielen". Die Simulation ermöglicht dabei eine direkte Veranschaulichung der Ergebnisse aus den Rechnungen. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren". Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat.

  • Physik / Astronomie
  • Sekundarstufe II

Relativitätstheorie: Die Periheldrehung der Merkurellipse

Unterrichtseinheit

Schülerinnen und Schüler lernen die Periheldrehung des innersten und kleinsten Planeten des Sonnensystems als wichtigen historischen Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART) kennen. Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Periheldrehung der Merkurbahn, die Lichtablenkung von Sternenlicht am Sonnenrand und die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zur Periheldrehung der Merkurellipse und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Klassische Physik und Relativitätstheorie Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zur Periheldrehung von Ellipsenbahnen, der Formel für die Verschiebung des Perihels sowie einem Informations- und Arbeitsblatt diskutieren und vergleichen die Schülerinnen und Schüler die Vorhersagen der Newtonschen Physik mit denen der Allgemeinen Relativitätstheorie. Lehrpersonen finden im Bereich "Mein LO" detaillierte Lösungen der vorgeschlagenen Aufgaben. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Hintergrundinformationen Die Bahnbewegungen des Merkur weichen von der Vorhersagen der Newtonschen Physik ab. Sie konnten erst mit der Allgemeinen Relativitätstheorie erklärt werden. Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise und Materialien zum Einsatz im Unterricht Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass die Bahnellipse des Planeten Merkur sich im Laufe der Zeit kontinuierlich verschiebt. erkennen, dass ein Teil dieser Verschiebung mithilfe der klassischen Physik nicht erklärbar ist. die Formel für die Verschiebung des Perihels aus der Allgemeinen Relativitätstheorie kennenlernen und für Beispielrechnungen anwenden können. mithilfe der Computersimulation und von Berechnungen (Arbeitsblatt) ein Gefühl für die Abhängigkeit der Periheldrehung von der Masse des Zentralkörpers und den Parametern der Ellipse bekommen. erkennen, dass die Allgemeine Relativitätstheorie nur in Extremsituation eine deutliche Abweichung von der Newtonschen Physik zeigt. erfahren, dass die Erklärung der Periheldrehung durch die Relativitätstheorie historisch ein wichtiger Beweis für die Richtigkeit der neuen Gravitationsphysik war. Thema Allgemeine Relativitätstheorie: Periheldrehung der Merkurellipse Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Edwin F. Taylor, John A. Wheeler Exploring Black Holes. Addison Wesely, Longman, Inc., 2000 Mithilfe des Gravitationsgesetzes von Isaac Newton (1643-1727) lässt sich zeigen, dass die Planeten die Sonne auf Ellipsenbahnen umlaufen. Eigentlich sollte man annehmen, dass diese Ellipsen feste Positionen im Raum einnehmen und sich über Jahrtausende nicht verändern. Aber wir dürfen die Planeten nicht als voneinander isolierte Objekte betrachten. Vielmehr zerren die einzelnen Himmelskörper durch ihre Gravitationskräfte aneinander, sodass sich die Lage ihrer Bahnen mit der Zeit leicht verändert - die Ellipsen beginnen sich so zu drehen, dass der sonnennächste Punkt der Ellipse, das Perihel, sich langsam verschiebt. Diese gravitativen Störungen lassen sich mithilfe der Newtonschen Physik berechnen. Bei der Merkurbahn ergibt sich so zum Beispiel eine Periheldrehung von 532,1 Bogensekunden pro Jahrhundert. Die tatsächliche Drehung der Merkurellipse, also das, was Astronomen beobachten, beträgt jedoch 575,2 Bogensekunden. Dies war bereits im neunzehnten Jahrhundert bekannt, aber die fehlenden 43 Bogensekunden blieben lange Zeit rätselhaft, denn die Gravitationsphysik Newtons konnte keine schlüssige Erklärung dafür liefern. Abb. 1 zeigt - nicht maßstabsgetreu! - die Drehung der Ellipse eines Planeten. Im Perihel (sonnennächster Punkt einer Planetenbahn) ist Merkur etwa 46, im Aphel (sonnenfernster Punkt einer Planetenbahn) fast 70 Millionen Kilometer von der Sonne entfernt. Erst die im Jahr 1915 von Albert Einstein veröffentlichte Allgemeine Relativitätstheorie war in der Lage, die fehlenden 43 Bogensekunden vorherzusagen. Dies war ein erster starker und wichtiger Beweis für die Richtigkeit der neuen Theorie über die Gravitation. Die Newtonsche Physik erweist sich als gut brauchbare Näherung für die Betrachtung kleiner Massen beziehungsweise großer Abstände. Da die Bahn des kleinsten Planeten des Sonnensystems der Sonne von allen Planeten am nächsten kommt, macht sich eine Abweichung von der klassischen Beschreibung der Planetenbahnen bei Merkur am deutlichsten bemerkbar. Informationen zum Planeten Merkur und Hinweise für seine Beobachtung finden Sie bei Lehrer-Online und im Netz: Merkur - Beobachtung des flinken Planeten Nur an wenigen Tagen eines Jahres hat man Gelegenheit, Merkur mit bloßem Auge als auffälliges Objekt zu sehen. Relativistische Physik Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Planeten oder Photonen, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetztes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 2 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zur Periheldrehung gemäß der Allgemeinen Relativitätstheorie. Klassische Physik Per Klick auf den Button "Bahnkurve nach Newton" können die Schülerinnen und Schüler die betrachteten Effekte gemäß der Newtonschen Physik darstellen lassen (Abb. 3, Platzhalter bitte anklicken). So ist ein Vergleich beider Zugänge zur Gravitation möglich. Sinnvolle Anfangsbedingungen sind im Programm voreingestellt, sodass man die Simulationen direkt starten kann. Natürlich lassen sich die Werte beim Start der Simulation auch frei wählen. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Periheldrehung der Merkurbahn Lichtablenkung am Sonnenrand Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differentieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Zusammen mit den vielfältigen Animationen der Webseite "Tempolimit Lichtgeschwindigkeit" von Prof. Dr. Ute Kraus (Physik und ihre Didaktik an der Universität Hildesheim) eröffnen die Simulationen interessante und vielfältige Möglichkeiten, verschiedene Effekte der Allgemeinen Relativitätstheorie einem größeren Publikum sehr anschaulich vorzustellen. Tempolimit Lichtgeschwindigkeit Visualisierung und Veranschaulichung der Relativitätstheorie: Hier finden Sie Artikel, Bilder, Filme und Bastelbögen. Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Periheldrehung, Lichtablenkung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Auch am heimischen Rechner können die Lernenden mithilfe des kostenfreien Programms "experimentieren".

  • Physik / Astronomie
  • Sekundarstufe II

Relativitätstheorie: Der Shapiro-Effekt

Unterrichtseinheit

Einmal Venus und zurück – Schülerinnen und Schüler untersuchen mithilfe einer Simulation die Laufzeitverzögerung von Radarechos. Der Effekt beruht auf der Krümmung des Raums durch die Masse der Sonne. Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche, die Lichtablenkung von Sternenlicht am Sonnenrand und die Periheldrehung der Merkurbahn. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zum Shapiro-Effekt und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Der amerikanische Physiker Irwin Shapiro schickte im Jahr 1970 Radarimpulse zur Venus, die an der Oberfläche des Planeten reflektiert und auf der Erde wieder aufgefangen wurden. Aufgrund der Raumkrümmung sollten die Impulse etwas länger unterwegs sein, als es die Newtonsche Gravitationsphysik vorhersagt. Die von Shapiro festgestellte Laufzeitverzögerung der Signale war eine wichtige Bestätigung der Allgemeinen Relativitätstheorie. Grundlage dieser Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zum Shapiro-Effekt und einem Informations- und Arbeitsblatt vergleichen die Schülerinnen und Schüler die klassischen mit den relativistischen Vorhersagen. Historisches zum Thema Um die obere Konjunktion der Venus herum macht sich die Laufzeitverzögerung ihrer Radarechos durch die Raumzeitkrümmung am stärksten bemerkbar. Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass die Allgemeine Relativitätstheorie mit der Idee der Raumzeitkrümmung einen längeren Weg eines Radarimpulses zur Venus vorhersagt. an einem einfachen Beispiel diese Laufzeitverzögerung berechnen können. mithilfe eines Computerprogramms das Langzeit-Experiment des Physikers Irwin Shapiro aus dem Jahr 1970 simulieren, auswerten und die Ergebnisse miteinander vergleichen. erkennen, dass die Messungen Shapiros ein wichtiger Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie sind. Thema Allgemeine Relativitätstheorie: Der Shapiro-Effekt Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Einmal Venus und zurück - Laufzeitverzögerung von Radarwellen Im Jahr 1970 konnte der amerikanische Physiker Irwin Shapiro die Raumkrümmung in der Nähe der Sonne experimentell nachweisen. Er lieferte damit einen weiteren Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART). Seine Idee war, die Entfernung Erde-Venus mithilfe von Radarstrahlung exakt zu bestimmen. Dabei sollten sich Venus und Erde so gegenüberstehen, dass die Radarimpulse den Sonnenrand in geringem Abstand passieren mussten, denn in der Nähe der Sonne wirkt sich der Effekt der Raumkrümmung durch die Sonnenmasse besonders stark aus (Abb. 1). Ausgestrahlt wurden die Radarimpulse von einer riesigen Antenne auf der Erde. An der Venusoberfläche wurden sie reflektiert und auf der Erde wieder aufgefangen. Mithilfe der Laufzeit der Impulse und der Geschwindigkeit der Radarwellen (Lichtgeschwindigkeit) konnte der von den Wellen zurückgelegte Weg sehr genau berechnet werden. Der krumme Weg ist um 80 Mikrosekunden länger Shapiro führte im Laufe einiger Monate eine Vielzahl von Messungen durch. Als Beispiel betrachten wir hier die Daten, die er am 16. März 1970 ermitteln konnte. Die Positionen von Erde und Venus an diesem Tag sind in Abb. 2 dargestellt. Da die Planetenpositionen genau berechnet werden können, wusste man, dass der Abstand von Erde und Venus zu diesem Zeitpunkt 249 Millionen Kilometer betrug. Die Lichtgeschwindigkeit (Geschwindigkeit der Radarwellen) beträgt 300.000 Kilometer in einer Sekunde. Die Messung von Shapiro ergab jedoch nicht den erwarteten Wert von 1.660 Sekunden (27 Minuten und 40 Sekunden), sondern einen etwas größeren Wert, nämlich 1.660,000080 Sekunden. Die Laufzeit hatte sich also um 80 Mikrosekunden (80 millionstel Sekunden) vergrößert. Das ist nicht viel, war aber von großer Bedeutung, denn die Allgemeine Relativitätstheorie hatte genau diesen Wert vorhergesagt. Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Objekten, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetzes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 3 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zum Shapiro-Effekt. Zunächst wurde die "Bahnkurve nach Newton" simuliert. Danach wurde - ohne die Erde-Venus-Konstellation zu ändern - die Laufzeit der Signale nach Einstein simuliert. Beide Laufzeiten sowie die ermittelte Differenz werden in dem Feld "Daten für Radarecho-Experimente" angezeigt (oben rechts in Abb. 3). Die Konstellationen können im Zeitraum von 200 Tagen vor beziehungsweise nach der oberen Konjunktion gewählt werden. (Zum Zeitpunkt der oberen Konjunktion befindet sich die Sonne zwischen Erde und Venus.) Je näher die Radarwellenechos an der Sonne vorbei müssen, um zur Erde zurückzukehren, desto größer die Laufzeitverzögerung. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differenzieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Simulation liefert konkrete Werte, die im Arbeitsblatt ausgewertet werden können und veranschaulicht das Experiment von Shapiro auf dem Computermonitor. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren". Anmerkung zu den Begriffen Raumkrümmung und Raumzeitkrümmung Im Sinne der Allgemeinen Relativitätstheorie sollte man bei der Beschreibung von Bahnkurven bewegter Körper und Photonen eigentlich nicht den Begriff Raumkrümmung verwenden, sondern stattdessen von der Raumzeitkrümmung sprechen. Die Darstellung der Situation als gekrümmte Fläche (siehe Abb. 1) beinhaltet nämlich zwei starke Vereinfachungen: zum einen die Reduktion des dreidimensionalen Raumes auf zwei Dimensionen und zum anderen die Vernachlässigung der Zeitkomponente. Diese Vereinfachungen machen aber - gerade für jüngere Schülerinnen und Schüler- die Ideen der Relativitätstheorie begreifbar. In höheren Klassen sollte man jedoch auf diese didaktischen Reduzierungen hinweisen. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Arbeitsblatt Das Arbeitsblatt zur Simulation des Shapiro-Effekts enthält einfache Aufgaben zur Berechnung der Laufzeit und damit der Wegdifferenz. Außerdem wird die Simulation benutzt, um das Experiment Shapiros nachzustellen. Dabei werden Messungen der Laufzeit mithilfe der Simulation durchgeführt. Die gewonnenen Daten werden grafisch dargestellt und mit der Originalkurve Shapiros verglichen. Abb. 5 zeigt eine grafische Darstellung der mit der Simulation erzielten Ergebnisse. Form und Verhalten der Kurve entsprechen genau den Ergebnissen Shapiros. Einziger Unterschied: Durch die extrem überhöhte Zentralmasse in der Simulation (Faktor 10.000) liegen die Zeitdifferenzen entsprechend in einem anderen Größenbereich.

  • Physik / Astronomie
  • Sekundarstufe II

Cartoon der Woche: Video-Konferenz mit einem schwarzen Loch

Cartoon

Mysteriös, dass die sonst aufgeweckten Schülerinnen und Schüler in Video-Konferenzen plötzlich so schüchtern werden ... Hoffentlich kann der Unterricht bald wieder im Klassenzimmer stattfinden, sodass Sie nicht mehrmals die Woche gezwungen sind, mit einem schwarzen Loch zu telefonieren!

  • Fächerübergreifend

Gravitationswellen: erster indirekter Nachweis mit Pulsar

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema "Gravitationswellen" behandelt deren ersten indirekten Nachweis im Jahr 1974 durch Messung der Umlaufdauer eines Pulsars in einem Binärsystem. Zwei Neutronensterne, einer davon ist ein Pulsar, umkreisen sich auf stark elliptischen Bahnen. Dieses System stellt ein ideales Testlabor für die Vorhersagen der Allgemeinen Relativitätstheorie dar. Dabei treten zwei relativistische Effekte besonders stark zutage: die Drehung der Bahn-Ellipse des Pulsars (Periastrondrehung) und die Verringerung der Umlaufdauer des Pulsars aufgrund der Abstrahlung von Gravitationswellen. Beide Effekte werden in dieser Unterrichtseinheit thematisiert, wobei der Schwerpunkt auf dem Thema Gravitationswellen liegt. Die Materialien nehmen Bezug auf ein Erklärvideo aus der Mediathek der Lindauer Nobelpreisträgertagungen. Zu diesem Video finden Sie bei Lehrer-Online noch zwei weitere Unterrichtseinheiten, welche die Sonnenfinsternis-Expedition im Jahr 1919 (1974) sowie den ersten direkten Nachweis von Gravitationswellen mithilfe von Laser-Interferometern im Jahr 2015 – also die Vorgeschichte beziehungsweise die weitere Entwicklung der Forschung in diesem Bereich – zum Inhalt haben und ergänzend zur vorliegenden Einheit im Unterricht eingesetzt werden können. Das Thema Gravitationswellen im Unterricht Das Thema Gravitationswellen berührt verschiedene Inhalte der Oberstufenphysik. Insbesondere sind Themen wie Gravitation, Kreisbewegungen und das Michelson-Interferometer von besonderer Relevanz – aber auch Grundkenntnisse der Physik Schwarzer Löcher und Neutronensterne spielen für das Verständnis des Phänomens Gravitationswellen eine wichtige Rolle. In den Lehrplänen sind die Allgemeine Relativitätstheorie und ihre Folgerungen gar nicht oder nur ansatzweise enthalten. Dennoch lassen viele schulinterne Curricula durchaus Luft für besondere Themen, wie zum Beispiel für das brandaktuelle Forschungsgebiet der Gravitationswellen-Astronomie. Gut lässt sich die Thematik in Astronomiekurse der Oberstufe, Projektkurse oder Arbeitsgemeinschaften einbauen. Didaktische Analyse Die Berechnungen zu Gravitationswellen beruhen auf der Allgemeinen Relativitätstheorie. Da diese in der Regel schulisch nicht thematisiert wird, ist die Frage berechtigt, ob ein Thema wie Gravitationswellen im normalen Schulalltag überhaupt so umgesetzt werden kann, dass der Unterricht über eine rein qualitative Betrachtung hinausgeht. Die Materialien dieser Unterrichtseinheiten zeigen, dass dies möglich ist, denn viele Rechnungen lassen sich zunächst rein klassisch, also mit der Gravitationsphysik Newtons, durchführen. Dass sich an einigen Stellen, wie beispielsweise bei der Berechnung der Umlaufgeschwindigkeit der Schwarzen Löcher, dann eine deutliche Diskrepanz zu den Vorhersagen der Einsteinschen Physik zeigt, ist didaktisch positiv zu werten. Es ist aber auch didaktisch vertretbar, fertige Formeln aus der Relativitätstheorie vorzugeben und die Schülerinnen und Schüler nur die entsprechenden Rechnungen durchführen zu lassen. So lernen die Schülerinnen und Schüler zum einen, dass die Relativitätstheorie das geeignete Handwerkzeug zur Beschreibung extremer physikalischer Verhältnisse zur Verfügung stellt. Zum anderen erfahren sie aber auch, dass ihre Kenntnisse der Mathematik und Physik aus der Oberstufe ausreichen, um sich den Vorhersagen der Theorie und den veröffentlichten Messdaten zu nähern. Methodische Analyse Ein Ziel dieser Unterrichtseinheit besteht darin, dass die Lernenden erfahren, dass sie mithilfe oberstufenüblicher Inhalte aus Mathematik und Physik in der Lage sind, sich bestimmten Vorhersagen der Allgemeinen Relativitätstheorie von Albert Einstein zu nähern. Dies gelingt im Fall der Periastron-Verschiebung der Bahnellipse durch die Verwendung einer Computersimulation. Für die Berechnung der Umlaufdauer und des Abstandes der beiden Neutronensterne sowie des Energieverlustes aufgrund von Gravitationswellen werden Formeln der klassischen Physik (Newton) und eine Formel aus der Allgemeinen Relativitätstheorie bereitgestellt. Mithilfe von Daten aus Originalveröffentlichungen zur Physik des Neutronensternsystem PSR1913+16 sind die Schülerinnen und Schüler dann in der Lage, wichtige Größen des Systems für das Jahr 2020 vorauszuberechnen und mit der Prognose aus der Allgemeinen Relativitätstheorie zu vergleichen. Vorkenntnisse Die Lernenden sollten mit dem Gravitationsgesetz Newtons und der Physik der Kreisbewegungen vertraut sein und über Kenntnisse zu den Keplergesetzen verfügen. Die Berechnungen erfordern einen sicheren Umgang mit dem Taschenrechner, insbesondere die Behandlung von hohen Zehnerpotenzen und Zahlen mit vielen Nachkommastellen. Auch die Verwendung von Speicherstellen des Taschenrechners sollte beherrscht werden, da dies manche Berechnungen erheblich vereinfacht. Darüber hinaus sollten die Schülerinnen und Schüler keine Scheu vor großen Formeln haben. Fachkompetenz Die Schülerinnen und Schüler… erkennen, dass die Drehung der Bahn-Ellipse den Vorhersagen der Relativitätstheorie entspricht. berechnen physikalische Größen mit komplexen Formeln. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler… können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler… arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. diskutieren in Partner- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Partner- und Gruppenarbeit angemessen und verständlich im Plenum dar. Müller, Andreas (2017). 10 Dinge, die Sie über Gravitationswellen wissen wollen. Berlin: Springer.

  • Physik / Astronomie
  • Sekundarstufe II

Der Farbkreis: Farbenlehre und Bildgestaltung zum Malen und Zeichnen

Unterrichtseinheit
14,99 €

In der Unterrichtseinheit "Der Farbkreis: Farbenlehre und Bildgestaltung zum Malen und Zeichnen" lernen die Schülerinnen und Schüler als Grundlage der Kunsttheorie die Wirkung und Bedeutung von Farben kennen und wenden ihr Wissen an, indem sie Farben mischen und beschreiben. In eigenen Zeichnungen nähern sie sich dann der angemessenen Darstellung von Größenverhältnissen an.Die ersten Erfahrungen mit Kunst machen die meisten Kinder bereits im Kindergarten, in dem viel gebastelt und gemalt wird. In der Grundschule sowie in der Sekundarstufe I werden diese Grundlagen dann im Zuge der bewussten Farbwahrnehmung durch die entsprechende Kunsttheorie ergänzt. Die Schülerinnen und Schüler sollen bei der Bildanalyse die Farbwahl der Künstlerin oder des Künstlers begründen sowie erklären, warum sie selbst ihre Bilder in dieser Art und Weise gestaltet haben. Ein wesentlicher Bestandteil der Theorie ist in der Kunst dafür der Zwölfteilige Farbkreis von Johannes Itten als Darstellungsform von Farbbeziehungen, der in dieser Unterrichtseinheit deshalb im Vordergrund steht. Die Schülerinnen und Schüler probieren in Gruppen selbst die Wirkungen einzelner Farbkombinationen aus und begreifen so Begriffe wie Komplementärfarben, Grundfarben und Sekundärfarben besser. Drei Ideen für Kunstprojekte runden die Einheit ab und geben Anregungen für die Umsetzung in der Praxis. Dabei malen die Schülerinnen und Schüler wahlweise mit Buntstiften, Tusche oder Bleistiften. Das Thema "Farbkreis" im Unterricht Spätestens ab der Mittelstufe müssen die Schülerinnen und Schüler in einem begleitenden Text belegen, warum sie welche Farben gewählt haben und ihre Platzierung der Objekte rechtfertigen. Um zu wissen, welchen Regeln die Farbenlehre folgt, müssen der Farbkreis und entsprechende Grundlagen zur Bildgestaltung bereits in der Grundschule oder der Sekundarstufe entsprechend eingeübt werden. Didaktisch-methodische Analyse Um die Vermittlung der theoretischen Grundlagen im Fach Kunst interessanter zu gestalten, probieren die Schülerinnen und Schüler in dieser Unterrichtseinheit viele Effekte selbst aus: So bringen sie beispielsweise in Erfahrung, wie gelb neben schwarz oder die Komplementärfarben rot und grün nebeneinander wirken. Auf diese Weise können sie den Aufbau des Farbkreises leichter verstehen und Begriffe wie Sekundärfarben mit Inhalt füllen. Als Hausaufgabe soll ein Farbkreis selbst erstellt und beschriftet werden. Darüber hinaus werden in dem Unterrichtsmaterial diverse Ideen für Kunstprojekte aufgezeigt: Die Schülerinnen und Schüler sollen dabei zum Beispiel den Blick durch ein Schlüsselloch malen oder das Innenleben einer Schneekugel gestalten. Bei diesen Vorschlägen müssen sie neben der Farbwahl auf die Größenverhältnisse achten. Der Vergleich zweier Kunstwerke, die im Falle von Van Gogh eher mit warmen und im Falle von Claude Monet eher mit kalten Farben gestaltet worden sind, wird durch Nachzeichnen ergänzt. Die Vielfalt der Arbeitsaufträge sowie die Möglichkeit des freien Zeichnens regen die Lernenden zu Phantasie und Kreativität an. Darüber hinaus wird auf diese Weise dem Prinzip der individuellen Förderung Rechnung getragen. Der Abschlusstest dient der Selbstüberprüfung oder auch als Vorbereitung für eine Klassenarbeit, um zu prüfen, ob das Gelernte verstanden und behalten wurde. Fachkompetenz Die Schülerinnen und Schüler lernen den Farbkreis kennen. malen bedeutende Kunstwerke nach und wenden ihr Wissen der Farbenlehre aktiv an. gestalten das Innenleben einer Schneekugel oder eines Schlüssellochs und achten auf die angemessenen Größenverhältnisse der Bildgestaltung. Sozialkompetenz Die Schülerinnen und Schüler erarbeiten sich gemeinsam in der Diskussion Grundwissen über die Kunsttheorie sowie die Wirkung und Bedeutung der Farben. arbeiten in der Gruppe zusammen und nehmen die Vorschläge der anderen in ihre Überlegungen mit auf.

  • Kunst / Kultur
  • Primarstufe, Sekundarstufe I

Quantenphysik multimedial: Quantenspiegel

Video

In diesem Video wird der Übergang von klassischen Drehoperatoren zu Quantenoperatoren diskutiert und sowie die Bedeutung des Planck'schen Wirkungsquantums für die Quantenphysik herausgestellt. Kerzen und Spiegel stehen als Sinnbild für Zustände und Operatoren. Besonders symmetrische Zustände sind ihr eigenes Spiegelbild; sie befinden sich genau in der Mitte und teilen die Spiegelebene. Alle anderen Zustände werden nicht auf sich selbst gespiegelt, sondern treten paarweise auf. In diesem Fall kann nur eine ungerade Anzahl von Zuständen existieren: einer - drei - fünf - und so weiter. Das Video betrachtet den Fall von sieben Zuständen genauer. Hier gibt es insgesamt l=3 azimutale Knotenlinien, im symmetrischsten Fall drei waagerechte. Die Knotendrehoperatoren drehen eine waagerechte Knotenlinie in die Senkrechte und erzeugen aus dem Zustand m=0 den Zustand m=+1 mit einer rechtsdrehenden Knotenlinie; im Spiegelbild m=-1 mit einer linksdrehenden Knotenlinie. Nochmaliges Anwenden des Knotendrehoperators dreht noch eine Knotenlinie aus der Waagerechten in die Senkrechte. Nochmaliges Anwenden führt zu den Zuständen, bei denen alle Knotenlinien sich rechts, beziehungsweise links um die z-Achse drehen. Mehr waagerechte Knotenlinien gibt es nicht - eine weitere Anwendung der Knotendrehoperatoren führt zur Null. Damit sind alle möglichen Schwingungszustände auf der Kugeloberfläche in drei Dimensionen vorgestellt. Sie lassen sich klassifizieren bezüglich des Dz-Operators, zu dem alle hier gezeigten Zustände Eigenzustände sind. Die Knotendrehoperatoren d plus / d minus drehen Knotenlinien aus der Waagerechten in die Senkrechte und erzeugen so aus dem Zustand m den Zustand m+ eins / m- eins. Ausgehend von den symmetrischsten Eigenzuständen des Dz Operators auf der Spiegelebene ergeben sich alle weiteren Eigenzustände durch das Anwenden der Knotendrehoperatoren. In dem bis hierher gezeigten Bild von Operatoren und Zuständen auf der Kugeloberfläche gibt es noch einen freien Parameter. Verändert man den Abstand zwischen den Zuständen und deren Spiegelbildern, bleibt alles andere wie gehabt bestehen. Dieser Abstand lässt sich also beliebig wählen, ohne die Symmetrie zwischen den Eigenzuständen zu zerstören. Für klassische Operatoren auf der Kugeloberfläche hat dieser Abstand Delta keine tiefere Bedeutung und ist je nach Anwendung unterschiedlich. In der Quantenphysik liegt hier des Pudels Kern: Dieser Abstand ist eine universelle Naturkonstante: ℏ, also 10-34 Joulesekunden. Dieser Wert ist absolut unveränderlich und gilt auf der Erde genauso wie im Sonnenkern oder in einem Schwarzen Loch. Beim Übergang zur Quantenphysik werden die Operatoren also "nur" skaliert, die eigentliche Schwierigkeit für die Physik liegt eher in der Interpretation dieser Skalierung als in der mathematischen Struktur. Vergleicht man Operatoren und Zustände auf der Kugeloberfläche in der Quantenphysik und im klassischen Fall, so ist bei der Quantenphysik der Abstand zwischen den Zuständen eine universelle Naturkonstante, im klassischen Fall beliebig. Wie sieht es mit den Zuständen aus? In beiden Fällen können die Eigenzustände als Schwingungen auf der Kugeloberfläche, und somit durch Anzahl und Position von Knotenlinien klassifiziert werden. Hier der Fall l=2, m=0. Aber es gibt einen entscheidenden Unterschied: In der klassischen Physik sind die Schwingungszustände direkt beobachtbare, reale Schwingungen auf einer Kugeloberfläche, wie zum Beispiel eine schwingende Seifenhaut. In der Quantenphysik handelt es sich um eine nicht direkt beobachtbare Schwingung, die man als Wurzel aus einer Wahrscheinlichkeit, beziehungsweise als Wellenfunktion interpretieren kann. Schneidet man die Kugel auf, erhält man im klassischen Fall die Schwingung auf einer Kreislinie zurück - aber in der Quantendimension erhält man einen Ausschnitt aus einer komplexen Wellenfunktion. Die Operatoren Lz, L+ und L- tragen aus historischen Gründen in der Quantenmechanik den Namen Drehimpulsoperatoren. Mehr Gemeinsamkeiten als die physikalische Einheit Joulesekunde haben diese Operatoren mit dem klassischen Drehimpuls aber nur in sehr wenigen Spezialfällen. Das hier vorgestellte Video ist Teil des Projektes "U2: Quantenspiegelungen" vom Institut für Didaktik der Physik der Universität Münster. Mathematisch fundierte Visualisierungen eröffnen Schritt für Schritt einen Zugang zu moderner Atomphysik – vom Wasserstoffatom bis zum Periodensystem der Elemente.

  • Physik / Astronomie
  • Sekundarstufe II

Bestimmung der Mondentfernung durch Triangulation

Unterrichtseinheit

Schülerinnen und Schüler aus Südafrika, Griechenland und Deutschland fotografierten zur selben Zeit Mond, Jupiter und Saturn. Nachdem die Bilder über das Internet ausgetauscht worden waren, wurde die Mondparallaxe bestimmt und die Entfernung des Mondes von der Erde berechnet. Eine günstige Stellung des Mondes wurde genutzt, um in Kooperation mit Schulen in fernen Ländern die Mondentfernung zu bestimmen. Dazu wurde der Winkelabstand Jupiter-Saturn mit einem Jakobsstab gemessen. Der Winkelabstand des Mondes wurde mithilfe von Fotografien bestimmt, die zeitgleich an verschiedenen Orten (Neumünster, Thessaloniki, Johannesburg) aufgenommen, digital bearbeitet und ausgewertet wurden. Aus den ermittelten Werten wurde mithilfe des Sinussatzes die Entfernung der Erde zum Mond mit 372.500 Kilometern bestimmt. Der Literaturwert für die mittlere Entfernung beträgt 384.401 Kilometer. Das hier vorgestellte anspruchsvolle Projekt eignet sich für Astronomie-Arbeitsgemeinschaften und wurde vom Autor im Rahmen des SINUS-Programms in Schleswig-Holstein durchgeführt. Die Auswertung der Messdaten gelingt im Mathematik-Unterricht der 10. Klasse (Sinussatz). Das Thema ist Teil des Unterrichts zur Gravitation in Jahrgangstufe 11 (Mechanik). Die Aufgabe "Bestimme die Entfernung des Mondes" ist schnell formuliert, lässt sich aber nur mit relativ großem Aufwand lösen. Sie erfordert neben vielfältigem Wissen aus verschiedenen Gebieten auch handwerkliche und organisatorische Fähigkeiten und Fertigkeiten Vorbereitung und Softwaretipps Hinweise für die Suche nach Beobachtungspartnern und Tipps zur Softwarenutzung bei der Auswahl des Beobachtungstermins und der Bildbearbeitung Grundlagen und Winkelmessungen Geometrische Grundlagen und praktische Vorschläge zur Durchführung der Winkelmessungen Ergebnisse Vorschläge zur Auswertung der Fotografien und zur Berechnung der Entfernung von der Erde zum Mond Die Schülerinnen und Schüler sollen Kenntnisse über die Positionen und Bewegungen der Körper im Sonnensystem erwerben. ein ziemlich großes Dreieck vermessen. Fotografie für Messzwecke einsetzen lernen. verschiedene Winkelmessverfahren kennen lernen. Thema Messung der Mondentfernung durch Triangulation Autor Bernd Huhn Fach Physik, Astronomie Zielgruppe Astronomie-AGs, Schülerinnen und Schüler ab Klasse 10 Zeitraum Das komplette Projekt dauert sicher mehrere Monate. Wenn man auf vorhandene Fotos zurückgreift, geht es schneller, es verliert aber einen Teil seines Reizes. Technische Voraussetzungen "klassischer" Fotoapparat oder Digitalkamera, Stativ, Drahtauslöser, Winkelmessscheibe, Geodreieck, Kompass, Wasserwaage, Knetgummi, dünner Stab (z.B. Schaschlikspieß), Schiebelehre, doppelseitiges Klebeband, Globus, Telefon- und E-Mail-Anschluss Software, Literatur Bildbearbeitungsprogramm (Corel Photo-Paint, GIMP oder vergleichbare Software), Astronomie-Software wie KStars, XEphem (beide kostenlos), SkyMap, Skyplot oder Tabellenwerke, zum Beispiel das Kosmos Himmelsjahr (Franckh-Kosmos Verlags-GmbH) oder Ahnerts Kalender für Sternfreunde (Spektrum der Wissenschaft Verlagsgesellschaft) Keller, Hans-Ulrich Kosmos Himmelsjahr, Franckh-Kosmos Verlags-GmbH, erscheint jährlich; alle wichtigen Infos zu Sonne, Mond und Sternen, den Planeten, Finsternissen und sonstigen Himmelsschauspielen sowie den "Monatsthemen" mit aktuellen und interessanten Beiträgen. Neckel, Thorsten; Montenbruck, Oliver Ahnerts Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft mbH, erscheint jährlich; in den Monatsübersichten wird unter anderem dargestellt, welchen Planeten und hellen Sternen der Mond begegnet und wie die Sichtbarkeitsbedingungen der Planeten sind. Soffel, Michael ; Müller, Jürgen Lasermessungen der Monddistanz, Sterne und Weltraum 7/1997, Seiten 646-651; Die Autoren erläutern das Messverfahren und stellen weit reichende Folgerungen dar, die man aus dem auf wenige Zentimeter genauen Messergebnis ziehen kann. Zimmermann, Otto Astronomisches Praktikum, Spektrum der Wissenschaft Verlag GmbH, ISBN 3-8274-1336-2 (2003); hier werden weitere Methoden zur Messung der Mondentfernung beschrieben (Erdschattendurchmesser auf dem Mond ,Änderung der Mondgröße mit der Höhe, parallaktische Libration, Sternbedeckungen durch den Mond) Gut geeignet für die Triangulation ist eine Kombination von Beobachtungsstandorten mit einer großen Differenz der geographischen Breiten und einer kleinen Differenz der geographischen Längen. Die erste Bedingung sichert eine große Basislänge, die zweite sorgt dafür, dass die fotografierte Himmelsgegend etwa zur gleichen Zeit an beiden Standorten möglichst hoch über dem Horizont steht. Wenn sich ein Standort in Deutschland befindet, sollte der zweite also idealerweise im Süden Afrikas liegen. Auch das östliche Südamerika kommt in Frage. Aufgeschlossene Kolleginnen und Kollegen findet man durch Nachfragen bei den deutschen Auslandsschulen: Bundesverwaltungsamt: Schulverzeichnis Auf der Website des BVA finden Sie das Schulverzeichnis der Zentralstelle für das Auslandsschulwesen. Für die vorbereitenden Verabredungen und den Austausch der Ergebnisse reicht der Kontakt per E-Mail. Zum Zeitpunkt der Aufnahmen selbst ist eine Telefonverbindung nützlich: Wenn der Himmel nur teilweise klar ist und "Wolkenlöcher" genutzt werden müssen, können kurzfristige Absprachen gewährleisten, dass die Aufnahmen möglichst zeitgleich entstehen. Alternativ können dafür auch Chat-Rooms genutzt werden. Für die Aufnahme muss sich der Mond in möglichst geringem Winkelabstand zu zwei hellen und sehr viel weiter entfernten Objekten am Himmel befinden. Günstig dafür ist eine Konjunktion von mindestens zwei der Planeten Venus, Mars, Jupiter und Saturn; der Mond sollte zwischen ihnen stehen. Die Mondphase ist nicht entscheidend; ein zunehmender Mond ist allerdings zu bevorzugen, wenn jüngere Schülerinnen und Schüler mitarbeiten sollen, da er vor Mitternacht kulminiert. Einen geeigneten Zeitpunkt findet man durch systematische Suche in entsprechenden Tabellenbüchern (Kosmos Himmeljahr, Ahnerts Astronomisches Jahrbuch) oder durch Verwendung eines Astronomieprogramms, das ein Planetarium simulieren kann: KStars Diese Software unterliegt der GNU General Public License (GPL) und steht kostenfrei zur Verfügung. XEphem Auf der Website des Clear Sky Institute ist auch dieses Programm kostenlos erhältlich. Skyplot Informationen und Bestellmöglichkeit zur Software auf der Website des Autors Frank P. Thielen. Skyplot ist für 30 € zu haben. SkyMap Die kommerzielle Software ist in der Lite-Version für etwa 37 € und in der Pro-Version für etwa 100 € zu haben. In dem hier beschriebenen Projekt wurden die beiden Planeten Jupiter und Saturn als "Fixpunkte" verwendet. Besser wäre natürlich die Verwendung von Sternen, weil sie der Forderung, unendlich weit entfernte Fixpunkte zu sein, besser entsprechen. Allerdings müssen die Sterne relativ dicht nebeneinander und nahe der Ekliptik stehen und auch noch hell genug sein. Gute Gelegenheiten für Aufnahmen mit Fixsternen bieten totale Mondfinsternisse. Der dann nur schwach beleuchtete Mond überstrahlt auch die schwächeren Sterne in seiner Umgebung nicht. Allerdings bietet sich diese Gelegenheit seltener, wodurch man mehr von günstigen Beobachtungsbedingungen abhängig ist. Probeaufnahmen In dem hier vorgestellten Projekt wurde eine klassische Kamera benutzt, natürlich kann auch eine Digitalkamera verwendet werden. Probeaufnahmen vor dem Aufnahmetermin sind anzuraten. Die Qualität der Aufnahmen sollte immer am Negativ oder an der Rohdatei beurteilt werden. Bildverwackelungen können durch die Nutzung eines Stativs und eines Drahtauslösers vermieden werden. Eine Nachführung ist nicht nötig. Für die spätere Auswertung der Fotos ist es wichtig, die Aufnahmezeitpunkte und die verwendete Zonenzeit zu notieren! Der Winkelabstand Jupiter-Saturn betrug bei unseren Messungen etwa 10 Grad. Dabei ist eine Brennweite von 15 Zentimetern beim Kleinbildformat 24 Millimeter mal 36 Millimeter optimal. Die Auflösung von Standardfilmen reicht völlig, unabhängig davon, ob Farb- oder Schwarz-Weiß-Filme verwendet werden. Verschiedene Belichtungszeiten bei jedem Aufnahmezeitpunkt Die Belichtungszeit soll so gewählt werden, dass die im Vergleich zum Mond lichtschwachen Planeten (oder Sterne) gerade sicher zu erkennen und der Mond nicht unnötig überbelichtet wird. Der Mondrand sollte auf den Bildern noch gut erkennbar sein. Belichtungszeiten zwischen 0,1 und 10 Sekunden sollten bei mittlerer Blende passen. Die Zeiten sind allerdings stark von den aktuellen Dunstverhältnissen und der lokalen Lichtverschmutzung abhängig. Daher ist es sinnvoll, zu jedem Aufnahmezeitpunkt immer mehrere Aufnahmen mit unterschiedlichen Belichtungszeiten zu machen. Lichtschwache und lichtstarke Objekte auf einem Bild? Wie in der Astronomie üblich, werden die Bildnegative bearbeitet, also dunkle Objekte vor hellem Hintergrund. Wenn die punktförmigen Objekte - zwei Planeten oder Sterne - auf den Fotografien sicher abgebildet sind, der Mondrand aber unscharf dargestellt ist, nutzt man ein Bildbearbeitungsprogramm um für die Auswertung der Bilder einen scharfen Mondrand zu erzeugen, ohne dabei die lichtschwachen Objekte zu verlieren. Dabei geht man in zwei Schritten vor. Retusche der lichtschwachen Planeten Zunächst werden die zentralen Pixel der Planetenbilder bei hoher Vergrößerung schwarz eingefärbt. Es reichen Quadrate von vier oder neun retuschierten Bildpunkten. Abb. 1 (Platzhalter bitte anklicken) zeigt ein Beispiel: S-01-03-1 zeigt das stark vergrößerte digitalisierte Bild des Planeten Jupiter aus der linken unteren Ecke des Bildes S-01-03. Darunter sieht man in s-01-03-2 das retuschierte Jupiterbild mit neun zentralen schwarzen Pixeln. Noch wichtiger ist die Retusche beim relativ schwachen Bild des Saturns rechts im oberen Drittel des Bildes S-01-03. Benutzt wurde das Programm Corel Photo-Paint, Version 6.0. "Scharfstellen" des Mondes Im zweiten Schritt wird die Helligkeit des gesamten Bildes angehoben und der Kontrast so verstärkt, dass der "echte" Mondrand scharf erscheint. Das ist dann der Fall, wenn der Mond hellgrau vor weißem Hintergrund erscheint und das Mondbild bei einer weiteren Anhebung der Helligkeit nicht mehr kleiner wird (Abb. 2, Platzhalter bitte anklicken). Mithilfe der Vorschaufunktion von Corel Photo-Paint lässt sich dies gut beurteilen. Anschließend kann der Kontrast des Bildes weiter erhöht werden, bis die Abbildung schwarze scharfe Objekte vor weißem Hintergrund zeigt. Alternativ zu kommerzieller Software kann auch das kostenfreie Bildbearbeitungsprogramm GIMP verwendet werden: Zwei Punkte A und B auf der Erde und der Mittelpunkt M des Mondes bilden ein Dreieck (Abb. 3). Die Längen der Strecken AM beziehungsweise BM sind gesucht. Um sie zu ermitteln, müssen wir drei Stücke dieses Dreiecks messen, ohne die Erde zu verlassen. Eines dieser Stücke muss eine Seitenlänge sein, dafür kommt nur die Länge der Strecke AB in Frage. Zwei Winkel sind also noch zu messen. Da die Messgenauigkeit der gesuchten Längen sehr empfindlich von dem Winkel pi mit dem Scheitelpunkt M abhängt, ist es unerlässlich, diesen direkt zu messen und ihn nicht etwa aus der Differenz 180 Grad - Winkel BAM - Winkel MBA zu errechnen, denn kleine relative Fehler bei den Messungen der Winkel BAM und MBA hätten einen großen relativen Fehler für den Wert von pi zur Folge. Leider können wir uns nicht auf den Mond begeben und von dort einfach die beiden Punkte A und B auf der Erde anpeilen. Wir können pi aber auch auf der Erde messen, denn er ist gleich der Winkeldifferenz der Richtungen, in denen der Mond von den beiden Punkten A und B aus gesehen erscheint, also gleich dem Winkel zwischen BM und der Parallele zu AM durch B. Er heißt daher auch Parallaxenwinkel (Abb. 3). Einer der beiden weiteren Winkel - BAM oder MBA - muss außerdem gemessen werden. Die Genauigkeit dieser Messung ist unkritisch für die Genauigkeit des Ergebnisses, besonders wenn der Wert des Winkels nahe 90 Grad liegt. Mithilfe des Sinussatzes ergeben sich die gesuchten Längen der Seiten MA oder MB. Um die Entfernung des Mondmittelpunktes vom Erdmittelpunkt und nicht von einem Punkt der Erdoberfläche zu erhalten, wäre weiterer Aufwand nötig. Dies erscheint angesichts der erzielbaren Messgenauigkeit jedoch nicht sinnvoll. Das Vorgehen sollte für Schülerinnen und Schüler, die gerade den Sinussatz am ebenen Dreieck verstanden haben, gut nachvollziehbar sein. Jüngere Schülerinnen und Schüler können die Anwendung des Sinussatzes möglicherweise durch eine Dreieckskonstruktion ersetzen, die aber sehr präzise sein muss, da der Parallaxenwinkel naturgemäß recht klein ist. Kenntnisse über astronomische Koordinatensysteme oder sphärische Trigonometrie sind nicht nötig. Es sollte Wert darauf gelegt werden, alle Schritte durch manuelle Tätigkeiten an einem räumlichen Modell (Globus mit aufgesetztem Horizontsystem, Mond in einiger Entfernung davon) zu veranschaulichen. Hinweise zur Aufnahme der Fotos Wir haben den Parallaxenwinkel pi auf fotografischem Weg gemessen. Ideal für die Auswertung ist ein Paar von zwei Aufnahmen des Mondes und der Hintergrundobjekte - hier Jupiter und Saturn -, die an den beiden Positionen A und B exakt zum gleichen Zeitpunkt gemacht werden. Wenn merklich Zeit zwischen den Aufnahmen liegt, weil zum Beispiel die Bewölkung an den Aufnahmestandorten dies erzwingt, könnte das Ergebnis durch die Bewegung des Mondes vor dem Hintergrund (etwa 15 Grad in 24 Stunden) verfälscht werden. Sollte diese Gefahr bestehen, so fotografiert man an einem oder an beiden Standorten mehrfach zu verschiedenen Zeitpunkten, etwa in jedem geeigneten Wolkenloch, und rekonstruiert dann jeweils die Position des Mondes für einen vereinbarten Zeitpunkt aus diesen Aufnahmeserien durch eine lineare Interpolation. Auswertung der Fotos Legt man zwei zeitgleich entstandene Bilder von den Standorten A und B so übereinander, dass die beiden Planetenbilder aufeinander liegen, so sind die Mondbilder gegeneinander verschoben. Diese Verschiebung kann man in den Parallaxenwinkel pi umrechnen, wenn man einen passenden Umrechnungsfaktor hat. Man erhält ihn aus einer Messung des Winkelabstandes delta der beiden Hintergrundobjekte am Himmel und dem Abstand ihrer Abbilder auf den auszuwertenden Fotos. Der Parallaxenwinkel ergibt sich dann per Dreisatz. Zur Kontrolle des Verfahrens kann man damit den Winkeldurchmesser des Mondes bestimmen: er muss etwa 0,5 Grad betragen. Messung des Winkels zwischen den Planeten Für die Messung des Winkels delta zwischen den Planeten Jupiter und Saturn haben wir in unserem Projekt einen improvisierten "Jakobsstab" benutzt (Abb. 4). Er besteht aus Stativmaterial und Längenmessgeräten aus der Physik-Sammlung. Das Durchblicksloch sollte möglichst klein sein. Man schaut durch die Öffnung und verschiebt die Markierungen auf dem Querstab so lange, bis die Peilung zu den Planeten passt. Dann lässt sich der Winkel delta messen beziehungsweise errechnen. Diese Winkelmessung sollte etwa zeitgleich mit den fotografischen Aufnahmen erfolgen. Messung von Azimut- und Höhenwinkel zum Aufnahmezeitpunkt Während wir zur Messung des Parallaxenwinkels pi mindestens zwei zeitgleich aufgenommene Fotografien von verschiedenen Standorten benötigen, kann der zweite Winkel im Dreieck an nur einem der Beobachtungsorte, zum Beispiel am Punkt A, ermittelt werden. Dazu bestimmt man die Position des Mondes im Horizontsystem (Azimut- und Höhenwinkel) zum Aufnahmezeitpunkt. Daraus lässt sich später der Winkel zwischen den Verbindungslinien zum Mond und zum zweiten Standort B mithilfe eines Globus ermitteln. Das kann man so machen: Man legt eine ebene, leichte und dünne Platte, zum Beispiel eine Winkelmessscheibe, wie sie für Schülerübungen in der Optik verwendet wird, horizontal ausgerichtet (Wasserwaage, Dosenlibelle, Untertasse voll Wasser ... ) auf eine feste Unterlage und markiert darauf mithilfe eines Kompasses die Nord-Süd-Richtung. Dabei muss unbedingt die lokale Missweisung beachtet werden, besonders wenn ein Partner im südlichen Afrika beteiligt ist. Dort erreicht nämlich die Missweisung auf Grund einer geomagnetischen Anomalie beträchtliche Werte. Durch ein Lot vom Himmelspol auf den Horizont oder mithilfe einer Landkarte und Landmarken am Horizont lässt sich das Ergebnis überprüfen. Nun befestigt man mit Knetgummi auf dieser Linie das Ende eines dünnen Stäbchens, zum Beispiel einen Schaschlik-Spieß, und richtet das Stäbchen genau auf den Mond, sodass es im Mondlicht keinen Schatten mehr wirft. Dann kann man den Höhenwinkel eta und den Azimutwinkel gamma mit einem Geodreieck messen (Abb. 5). Diese Messung muss man für jeden Aufnahmezeitpunkt wiederholen und protokollieren. Natürlich kann man für die Messungen von Azimut und Höhe auch einen vertikal stehenden Schattenstab benutzen. Dann lässt sich der Azimutwinkel direkt auf der Winkelmessscheibe ablesen. Der Höhenwinkel muss aus der Schattenlänge und der Stablänge berechnet oder an einem Faden von der Stabspitze zum Ende des Stabschattens abgelesen werden. Auch einen Theodolithen kann man verwenden, wenn man damit einen hinreichend großen Höhenwinkel messen kann. Rekonstruktion der Richtungen und Winkelmessung am Globus In einem letzten Schritt wird nun mit doppelseitigem Klebeband die Platte mit der Vorrichtung zur Bestimmung von Höhen- und Azimutwinkel auf einem Globus am Aufnahmeort A angeklebt. Auf den Ort A fällt der Fußpunkt A' des Stäbchens. Dann liegt die Platte in der Tangentialebene an den Globus in A, also in der Horizontebene von A (Abb. 6). Natürlich muss auch die Nord-Süd-Linie die Tangente an den Längenkreis durch A bilden. Wenn nun Azimut- und Höhenwinkel noch oder wieder passend eingestellt sind, so wird die Position des Mondes relativ zum Globus bei der Aufnahme reproduziert. Eine große "Schiebelehre" wird nun so angelegt, dass die Spitzen ihres "Schnabels" auf den Punkten A und B liegen. Ihre Kante bildet mit dem Stäbchen den gesuchten Winkel alpha, der nun mit einem Geodreieck gemessen werden kann (Abb. 7). Nicht notwendig, aber sehr sinnvoll ist es, auch am Ort B den Azimut- und den Höhenwinkel zum Aufnahmezeitpunkt zu messen und die Richtung zum Mond von Punkt B aus ebenfalls auf dem Globus zu rekonstruieren. Wenn diese Richtungen dann sehr voneinander abweichen, ist irgendwo ein Fehler passiert. Wir haben auf diese Weise die große Kompassmissweisung in Johannesburg "entdeckt". Bestimmung von Azimut- und Höhenwinkel aus Tabellendaten Falls Azimut- und Höhenwinkel nicht messbar sind, kann man sie aus Tabellenwerten der Mondephemeriden, der geographischen Breite und der Sternzeit des Aufnahmeortes rekonstruieren. Das gelingt - wenn auch etwas mühsam - mit den Formeln der sphärischen Geometrie. Zwar nicht so genau, aber anschaulicher und für Schülerinnen und Schüler nicht nur manuell begreifbarer, ist ein Kartonmodell. Abb. 8 zeigt die Mondposition (rotes Kügelchen) im Horizontsystem von Thessaloniki am 12. November 2000 um 20:00 Uhr Weltzeit. Dazu wurde auf der Horizontebene zunächst ein Sektor der Äquatorebene um den Winkel von 90 Grad minus geographische Breite gegenüber der Horizontebene geneigt aufgeklebt. Auf der Äquatorebene sind aus gelbem Karton zwei orthogonal zueinander stehende Sektoren für den Stundenwinkel und die Deklination des Mondes befestigt. Die Deklination des Mondes (hier 18 Grad) erhält man aus einem astronomischen Jahrbuch (Kosmos Himmelsjahr, Ahnerts Astronomisches Jahrbuch), ebenso die Rektaszension (hier 4 h 08 min). Der Stundenwinkel ergibt sich dann aus der Beziehung Stundenwinkel = Sternzeit - Rektaszension. Mit der Sternzeit 1 h 01 min, die man ebenfalls einem Jahrbuch entnimmt und auf den Aufnahmeort und -zeitpunkt umrechnet, erhält man den Stundenwinkel von -3 h 07 min, wie in Abb. 8 näherungsweise abzulesen ist. Mit einem Geodreieck misst man nun Azimut- und Höhenwinkel im Horizontsystem. Das Kartonmodell kann man anstelle der Winkelmessscheibe mit dem Schaschlikstäbchen zur Auswertung auch direkt auf den Globus kleben. Prinzipiell macht man dabei allerdings einen kleinen Fehler: Die Angaben für Deklination und Rektaszension beziehen sich auf einen Beobachter im Erdmittelpunkt, während das Kartonmodell auf der Erdoberfläche sitzt. Der so ermittelte Winkel BAM wird also entsprechend verfälscht. Der Fehler dürfte aber angesichts der begrenzten Genauigkeit des Modells zu vernachlässigen sein. Die Länge der Dreiecksseite AB, das heißt die Entfernung zwischen den Beobachtungspunkten wird, wie in Abb. 7 gezeigt, mit einer großen Schiebelehre auf einem Globus ausgemessen und mithilfe des Globus-Maßstabes berechnet. Die Entfernung BM ergibt sich nun leicht aus dem Sinussatz: Es ist sinnvoll, an dieser Stelle weitere Werte für pi, alpha und die Länge von AB in die Berechnung der Mondentfernung einzusetzen und die Auswirkungen auf das Ergebnis zu diskutieren. Dabei sollte sich als kritische Größe der Parallaxenwinkel herausstellen. Beobachtungsnacht Um sicher auswertbares Fotomaterial zu erhalten, wurde die Begegnung des Mondes mit den Planeten Jupiter und Saturn im Abstand von vier Wochen in zwei Vollmondnächten dokumentiert. Am 12. November 2000 standen neun Kollegen in Brasilien, Südafrika, Griechenland und Deutschland mit ihren Schülerinnen und Schülern bereit, um den Mond und die beiden Planeten zu fotografieren. Allerdings spielte das Wetter nur in Thessaloniki und Johannesburg mit: Lediglich Max Ruf (Deutsche Schule Johannesburg) und Wolfgang Hofbauer (Deutsche Schule Thessaloniki) gelangen auswertbare Aufnahmen. Die folgenden vier Abbildungen zeigen je zwei Bilder von diesen Standorten. Das jeweils erste zeigt die Originalaufnahme mit den ergänzten Aufnahmedaten. In der jeweils zweiten Abbildung ist das digitalisierte Foto mit einem Bildbearbeitungsprogramm zu einer Schwarz-Weiß-Grafik verarbeitet worden. Der Grauton, bei dem die Entscheidung zwischen Schwarz und Weiß liegt, wurde dazu so gewählt, dass der Mondrand optimal zu erkennen ist. Damit die Planeten Jupiter und Saturn bei der Bildbearbeitung nicht verloren gingen, wurden diese vorher retuschiert. Winkelabstand und geographische Koordinaten Den Winkelabstand Jupiter-Saturn hat Max Ruf in Johannesburg zu delta = 10,5° gemessen. Die geographischen Koordinaten der Aufnahmeorte sind: Johannesburg: 26° 12' südlicher Breite, 28° 06' östlicher Länge Thessaloniki: 40° 36' nördlicher Breite, 23° 06' östlicher Länge Bilder aus Johannesburg Bilder aus Thessaloniki Bestimmung der Mondparallaxe am Bildschirm Abb. 13 zeigt eine Montage, in der die beiden Aufnahmen aus Abb. 10 und Abb. 12 so gedreht und zentrisch gestreckt wurden, dass die Verbindungsstrecken Jupiter-Saturn horizontal liegen und gleich lang sind. Nun können die Schülerinnen und Schüler die Mondparallaxe am Bildschirm mit der folgenden Anleitung ermitteln: Markiere auf dem Monitor mit einem abwaschbaren Folienschreiber die Positionen von Jupiter, Saturn und Mond aus der oberen Aufnahme. Verändere nicht die Position deines Kopfes! Schiebe das zweite Bild mithilfe der Scroll-Leiste auf dem Bildschirm in die Position, in der Jupiter und Saturn auf "ihren" Markierungen liegen. Zeichne den "zweiten Mond" auf den Bildschirm. Wenn die Scroll-Funktion zu grob arbeitet, kopiere das Bild zuerst auf eine leere neue Seite eines Webseiten-Editors oder eines Bildbearbeitungsprogramms. Verfahre dann so, wie oben beschrieben. Bestimme auf dem Bildschirm den Abstand Jupiter-Saturn und den Abstand der Mondbilder. Der Abstand Jupiter-Saturn entspricht einem Winkelabstand von [ ... ] Grad. Berechne per Dreisatz den Winkelabstand pi der beiden Mondbilder. Bestimmung der Mondparallaxe mithilfe von Ausdrucken Alternativ zu der beschriebenen Bestimmung der Mondparallaxe am Bildschirm können Ausdrucke der Bilder durch die entsprechende Funktion des Druckprogramms auf den gleichen Abstand Jupiter-Saturn gebracht werden. Man kann dazu auch einen Fotokopierer verwenden. Ein Bild wird auf eine Folie kopiert oder per Hand übertragen. Dann wird die Folie auf das zweite Bild gelegt und die Mondparallaxe wie zuvor beschrieben bestimmt. In der Physik-AG der IKS Neumünster haben wir die beiden Fotos vom 12. November 2000 aus Thessaloniki und Johannesburg ausgedruckt und übereinander gelegt. Jupiter und Saturn hatten dort einen Abstand von 171 Millimetern. Die beiden Mondpositionen lagen 18 Millimeter voneinander entfernt. Daraus ergab sich ein Parallaxenwinkel von pi = 10,5° (18 / 171) = 1,1°. Am großen Globus aus dem Erdkunde-Fachraum haben wir als nächstes die Richtung zum Mond von Thessaloniki aus mithilfe der Winkelmessscheibe rekonstruiert (Abb. 14a) und den Winkel Johannesburg-Thessaloniki-Mond zu 103 Grad gemessen. Gleichzeitig ergab sich der Abstand Johannesburg-Thessaloniki zu 36,4 Zentimetern bei einem Globusdurchmesser von 63,2 Zentimetern (Abb. 14b). Mit dem Erddurchmesser von 12.740 Kilometern konnten wir die wahre Entfernung JT Johannesburg-Thessaloniki errechnen: 12.740 km (36,4 / 63,2) = 7.340 km Um den Sinussatz anwenden zu können, benötigten wir noch den Winkel Mond-Johannesburg-Thessaloniki. Er betrug 180° - 103° - 1,1° = 75,9°. Nun konnten wir alles in den Sinussatz einsetzen und erhielten die Entfernung TM Thessaloniki-Mond: (sin 75,9° / sin 1,1°) 7.340 km = 372.500 km. Fertig (Abb. 15)! Später haben wir erfahren, dass der von uns benutzte Messwert von 85 Grad für den Azimutwinkel um 10 Grad zu groß war. Er beträgt nur 75 Grad. Dadurch muss mit einem kleineren Basiswinkel gerechnet werden. Da dieser nahe bei 90 Grad liegt, wo die Sinuskurve nur eine geringe Steigung hat, wirkt sich dieser Fehler aber kaum auf das Ergebnis aus. Der Mond liegt zwar - in astronomischen Maßstäben - vor unserer Haustür. Dennoch ist die in Zahlen gefasste Entfernung nicht mehr anschaulich. Hilfreicher sind für die Veranschaulichung sind grafische Darstellungen, wie zum Beispiel die folgenden, die uns der Amateur-Astronom Thomas Borowski freundlicherweise zur Verfügung gestellt hat:

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II
ANZEIGE