• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Elektromagnetische Induktion – Stromerzeugung im ruhenden Leiter

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit erfahren die Lernenden, dass es neben der Stromerzeugung mittels einer bewegten Leiterschleife in einem Magnetfeld auch möglich ist, allein durch die Änderung eines vorhandenen Magnetfeldes in einer Spule eine Spannung und damit Stromfluss zu induzieren.Dieses vom englischen Physiker Michael Faraday bereits im Jahr 1831 entdeckte physikalische Phänomen macht es möglich, anhand von Transformatoren Spannungen und Ströme auf entsprechende Beträge hinauf- oder hinunter zu transformieren, was heute vor allem in der Starkstromtechnik und der Energieübertragung, aber auch für das Laden von Kleinstgeräten an der heimischen Steckdose von essentieller Bedeutung ist. Ausgehend von einfachen Grundversuchen mit einem Permanentmagneten können Schülerinnen und Schüler leicht nachvollziehen, welche Wirkung eine Änderung der Stärke eines eine Spule durchsetzenden Magnetfeldes auf den entstehenden Stromfluss hat. Mit der Erweiterung auf einen Elektromagneten und der Möglichkeit, diesen an eine Wechselspannung anzuschließen, erhöhen die Lernenden ihr Wissen dahingehend, dass durch diese Wechselspannung in einer über einen gemeinsamen Weicheisenkern gekoppelte Induktionsspule zum einen ebenfalls eine Wechselspannung induziert werden kann und zum anderen diese Wechselspannung in Abhängigkeit von der Stärke des Magnetfeldes und der Windungszahl der Spulen auf unterschiedliche Werte transformiert werden kann. Elektromagnetische Induktion – Stromerzeugung im ruhenden Leiter Das Vorhandensein von Stromquellen in Form von Batterien, Akkus oder Steckdosen ist heutzutage für uns alle eine Selbstverständlichkeit. Für die großtechnische Stromproduktion ist dabei die Umwandlung von magnetischer Energie in elektrische Energie - und umgekehrt – in Form der elektromagnetischen Induktion von entscheidender Bedeutung. Nur auf diese Weise lassen sich die für den Stromfluss nötigen Elektronen in Leitern in nahezu beliebiger Menge in Bewegung setzen und auf unterschiedliche Stromstärken und Stromspannungen transformieren. Vorkenntnisse Vorkenntnisse von Lernenden können nur insofern vorausgesetzt werden, dass der Strombegriff natürlich bekannt ist – einschließlich aller seiner Anwendungsmöglichkeiten im täglichen Leben. Die Vorgänge bei Gleichstrom liefernden Batterien beziehungsweise Akkus und Wechselstrom liefernden Steckdosen unter Einbeziehung der unterschiedlichen Elektronenbewegung dürfte für meisten Lernenden eher neu sein. Didaktische Analyse Die Erzeugung von Strom durch Generatoren in riesigen Kraftwerken sowie deren Weitertransport zu den vielfältigsten Verbrauchern über komplexe Netzstrukturen ist nicht zuletzt wegen der komplizierten Physik von Wechselstrom bzw. Drehstrom im Rahmen des normalen Schulunterrichts nur eingeschränkt zu vermitteln. Die Lernenden können aber trotz dieser Tatsachen durchaus dafür sensibilisiert werden, wie die Stromversorgung prinzipiell funktioniert. Methodische Analyse Die in der Sekundarstufe I vermittelbaren Kenntnisse zur Stromerzeugung sind in erster Linie auf grundlegende Beschreibungen und Erklärungen beschränkt. Ergänzende Übungsaufgaben wie etwa zu den einfachen Gesetzmäßigkeiten beim Transformator sind zwar möglich, zeigen aber nur sehr idealisiert die realen Zusammenhänge. Letztere können nur in entsprechenden Kursen im Rahmen der Sekundarstufe II in einem trotzdem noch eingeschränkten Rahmen angeboten werden. Fachkompetenz Die Schülerinnen und Schüler kennen die unterschiedlichen Möglichkeiten der Stromerzeugung. wissen um die technische Bedeutung der Induktion im ruhenden Leiter. können die die Vorgänge bei der Stromerzeugung im ruhenden Leiter beschreiben und anhand der Lenz'schen Regel näher erläutern. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern oder Freunden wertfrei diskutieren zu können.

  • Technik / Sache & Technik / Physik / Astronomie
  • Sekundarstufe I

Erzeugung von Wechselstrom und Drehstrom – Grundlagen

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zum Thema "Erzeugung von Wechselstrom und Drehstrom" beschäftigen sich die Lernenden mit den einfachen Möglichkeiten der Stromerzeugung (Drehspule im Magnetfeld und Fahrraddynamo) sowie den aus diesen Prinzipien abgeleiteten Möglichkeiten der technischen Stromerzeugung von Wechselstrom und Drehstrom mittels entsprechender Generatoren.Mithilfe einfacher Schulversuche zur Erzeugung von Wechselstrom wird das Prinzip der sich daraus ergebenden sinusförmigen Wechselspannung eingehend vorgestellt und erläutert. Anhand entsprechender Abbildungen (Folien) oder auch geeigneten Animationen/Videos werden den Lernenden die Abläufe bei der Herstellung von Drehstrom nähergebracht. Zudem werden die Vorteile dieser Spezialform des Wechselstroms in Hinblick auf Transport über weite Strecken sowie für den Hausgebrauch besprochen. Ziel der Unterrichtseinheit ist es, dass die Lernenden einen ersten groben Einblick in die Bedeutung der Drehstromerzeugung erhalten – ohne eine vertiefende Herleitung der Gesetzmäßigkeiten der Wechselstromtechnik. Dazu erhalten die Lernenden ein Arbeitsblatt, das ihnen die Thematik in verschiedenen Übungsaufgaben näherbringt. Im Sinne des selbstständigen Arbeitens können die Schülerinnen und Schüler auch die Musterlösung erhalten, um die bearbeiteten Aufgaben eigenständig zu kontrollieren. Erzeugung von Strom im Unterricht Das Wissen um die Erzeugung von Strom wird sich bei vielen Menschen darauf reduzieren, dass dies in großen Kraftwerken (Wasser-, Kern-, Gas- und Kohlekraftwerken) geschieht. Der eigene Umgang mit Strom beschränkt sich meist auf das Wechseln von Batterien, das Laden von Akkus oder das Tauschen einer Glühlampe. Erst wenn es – wegen eines Problems im gigantischen Stromleitungssystem – zu einem Stromausfall kommt, wird man schnell unruhig, wenn nicht binnen kurzer Zeit die Stromversorgung wiederhergestellt ist. Dabei wäre es für das Verständnis für ein fast ausnahmslos einwandfreies Funktionieren der Stromversorgung sehr wichtig zu wissen, was alles lückenlos ineinandergreifen muss, damit wir zu jeder Tages- und Nachtzeit auf den Strom in der Steckdose zurückgreifen können. Nicht zuletzt deshalb sollte im Unterricht an allen Schulen die Stromversorgung und die dazu notwendigen Geräte wie Generatoren, Transformatoren, Hochspannungsleitungen und der Anschluss an den eigenen Haushalt zum Thema gemacht werden. Vorkenntnisse Vorkenntnisse von Lernenden werden sich meist darauf beschränken, dass man für verschiedene Kleingeräte Strom aus Batterien und Akkus benötigt. Ein grobes Wissen um die Erzeugung von Strom in Kraftwerken wird bei Lernenden kaum vorhanden sein – kann aber mithilfe von einfachen und anschaulichen Versuchen im Physikunterricht problemlos gefördert werden. Didaktische Analyse Die Wichtigkeit des Themas für unser Alltagsleben und die dauernde Abhängigkeit von funktionierenden Stromnetzen sollte ausreichen, um bei den Schülerinnen und Schülern Interesse für die Grundlagen der Erzeugung von Wechsel- und Drehstrom zu wecken. Dazu sind die in der Schule möglichen Grundversuche ausreichend – darüber hinaus gehende physikalische Kenntnisse sind nur für interessierte Lernende von Bedeutung und können gegebenenfalls in der gymnasialen Oberstufe (Sek II) erworben werden. Methodische Analyse Die Erzeugung von Wechselstrom ist mithilfe der "Rechten-Hand-Regel" leicht nachvollziehbar. Etwas schwieriger wird es, wenn aus einzelnen Wechselströmen ein sich kreisförmig "fortbewegender" Drehstrom verstanden werden soll. Deshalb sollten die aufgrund der Kreisbewegung des Permanentmagneten entstehenden und um 120° gegeneinander versetzten Wechselströme genau erklärt und besprochen werden. Fachkompetenz Die Schülerinnen und Schüler beschreiben und erklären, welche Vorgänge während einer kompletten Umdrehung einer Leiterschleife im Feld eines Permanentmagneten zu einer Sinuskurve führen. wissen, wie ein Fahrraddynamo funktioniert und dass die technische Erzeugung von Wechsel- und Drehstrom prinzipiell ähnlich funktioniert. unterscheiden bei der Stromerzeugung zwischen einem Drehstrom-Generator und einem reinen Wechselstrom-Generator. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und vergleichen deren Ergebnisse mit den eigenen Ergebnissen. erwerben fachliches Wissen, um mit anderen Lernenden, Eltern und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Elektromagnetische Induktion – Stromerzeugung mithilfe der Lorentzkraft

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit entwickeln die Schülerinnen und Schüler ein Verständnis für die Voraussetzungen zur Erzeugung von elektrischem Strom, den wir ganz selbstverständlich der Steckdose entnehmen können. Den Lernenden wird dabei vermittelt, dass in einem Leiter, der senkrecht zu einem Magnetfeld bewegt wird, die mit dem Leiter mitbewegten Ladungsträger senkrecht zu ihrer Bewegungsrichtung abgelenkt werden. Diese Erkenntnis des niederländischen Physikers Hendrik Anton Lorentz schuf Ende des 19. Jahrhunderts die Grundlagen für die technische Stromerzeugung, die bis heute gültig sind.Mit einfachen Versuchen mittels einer sogenannten Leiterschaukel werden die Schülerinnen und Schüler damit vertraut gemacht, wie die Ladungsträger des elektrischen Stromes – die Elektronen – in einem Leiter je nach Bewegungsrichtung des Leiters abgelenkt werden. Somit baut sich an den Leiterenden eine Spannungsdifferenz auf und bei Verbindung der Leiterenden durch ein dünnes Kupferkabel entsteht ein mit einem Messgerät feststellbarer Stromfluss. Ebenso lässt sich ganz leicht zeigen, dass sich durch das sich selbst überlassene schaukelartige Hin- und Herschwingen des Leiters die Stromrichtung periodisch ändert; daraus entsteht eine Wechselspannung und somit Wechselstrom. Strom aus der Steckdose – wie funktioniert das eigentlich? Strom aus der Steckdose ist für Schülerinnen und Schüler eine Selbstverständlichkeit. Doch dass es sich dabei um Wechselstrom handelt, welcher Unterschied zwischen Wechselstrom und Gleichstrom besteht, warum manchmal Wechselstrom nötig ist und manchmal aber auch Gleichstrom notwendig ist – das dürfte für viele Lernende neu und interessant sein. Vorkenntnisse Physikalische Vorkenntnisse der Lernenden sind trotz der Kenntnis, dass der Strom für fast alle Haushaltsgeräte aus der Steckdose kommt und dass dieser Strom in Kraftwerken mit riesigen Generatoren erzeugt wird, kaum vorhanden. Dazu fehlt das Wissen, um die eigentlichen Vorgänge, die innerhalb des stromführenden Leiters ablaufen, zu beschreiben. Didaktische Analyse Die Grundlagen für die weiterführenden Themen in der Sek II – wie etwa die Vorgänge und Gesetzmäßigkeiten bei der elektromagnetischen Induktion – werden durch die einfachen Versuche zur Lorentzkraft gelegt. Haben die Lernenden diese Zusammenhänge verstanden, kann mit diesem Grundwissen auch der weiterführende Stoff gut verstanden werden. Methodische Analyse Durch die einfach durchzuführenden und nachzuvollziehenden Versuche mit der Leiterschaukel, die von den Lernenden gefahrlos selbst ausprobiert werden können, kann sowohl ein schneller Lernerfolg generiert werden als auch ein nachhaltiges Interesse an der Elektrizitätslehre. Fachkompetenz Die Schülerinnen und Schüler erkennen die Zusammenhänge bei der Ablenkung von Elektronen im Magnetfeld. können die Entstehung einer Wechselspannung mithilfe der Lorentzkraft beschreiben. kennen die Bedeutung der Lenz'schen Regel für die Stromerzeugung. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen anderer Gruppen auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewissen Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden diskutieren zu können.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Erneuerbare Energien

Unterrichtseinheit

In dieser Materialsammlung finden Sie Unterrichtsmaterialien rund um die Erneuerbaren Energien – Wasserkraft, Windenergie und Sonnenenergie. Erneuerbare Energien aus nachhaltigen Quellen wie Wasserkraft, Windenergie, Sonnenenergie, Biomasse und Erdwärme sind zum Schlagwort schlechthin der internationalen Klimabewegung geworden. Im Gegensatz zu fossilen Energieträgern wie Erdöl, Erdgas, Stein- und Braunkohle sowie dem Uranerz verbrauchen sich diese Energiequellen nicht. Erneuerbare Energien sollen in Deutschland zukünftig den Hauptanteil der Energieversorgung übernehmen – bis zum Jahr 2050 soll ihr Anteil an der Stromversorgung mindestens 80 Prozent betragen. Im Jahr 2020 betrug ihr durchschnittlicher Anteil pro Jahr an der Nettoostromerzeugung über 50 Prozent. Die erneuerbaren Energien müssen daher kontinuierlich in das Stromversorgungssystem integriert werden, damit sie die konventionellen Energieträger mehr und mehr ersetzen können. Schon im alten Ägypten und im römischen Reich wurde die Wasserkraft als Antrieb für Arbeitsmaschinen wie Getreidemühlen genutzt. Im Mittelalter wurden Wassermühlen im europäischen Raum für Säge- und Papierwerke eingesetzt. Seit Ende des 19. Jahrhunderts wird aus Wasserkraft Strom erzeugt. Heute ist die Wasserkraft eine ausgereifte Technologie und weltweit neben der traditionellen Biomassenutzung die am meisten genutzte erneuerbare Energiequelle. Die Windenergie als Antriebsenergie hat bereits eine lange Tradition. Windmühlen wurden zum Mahlen von Getreide oder als Säge- und Ölmühle eingesetzt. Moderne Windenergieanlagen gewinnen heute Strom aus der Kraft des Windes. Sie nutzen den Auftrieb, den der Wind beim Vorbeiströmen an den Rotorblättern erzeugt – heute hat die Windenergie einen Anteil von über 25 Prozent an der deutschen Stromversorgung. Aus der Sonnenenergie kann sowohl Wärme als auch Strom gewonnen werden. Photovoltaikmodule auf dem Dach oder auf großen Freiflächen wandeln mithilfe von Halbleitern wie Silizium das Sonnenlicht in elektrische Energie um. Mit Solarkollektoren , in denen Flüssigkeit zirkuliert, wird Wärme zum Heizen und zur Warmwasserbereitung sowie für Klimakälte gewonnen. Eine dritte Technologie macht es möglich, Strom, Prozesswärme und Kälte durch die Konzentration und Verstärkung der Sonnenstrahlen zu erzeugen. Dabei wird in solarthermischen Kraftwerken das Sonnenlicht mit Reflektoren gebündelt und auf eine Trägerflüssigkeit gelenkt, die dadurch verdampft. Mit dem Dampf können dann ein Generator oder eine Wärme- und Kältemaschine betrieben werden. Biomasse ist ein vielseitiger erneuerbarer Energieträger und wird in fester, flüssiger und gasförmiger Form zur Strom- und Wärmeerzeugung und zur Herstellung von Biokraftstoffen genutzt. Pflanzliche und tierische Abfälle kommen genauso zum Einsatz wie nachwachsende Rohstoffe , zum Beispiel Energiepflanzen oder Holz . Die größte Bedeutung kommt der Bioenergie in Deutschland aktuell beim Heizen zu – aber auch für die Stromerzeugung und als Biokraftstoff kommt Biomasse zum Einsatz. Unter Geothermie (Erdwärme) versteht man die Nutzung der Erdwärme zur Gewinnung von Strom, Wärme und Kälteenergie. Die Temperaturen im Erdinneren erwärmen die oberen Erdschichten und unterirdischen Wasserreservoirs. Mithilfe von Bohrungen wird diese Energie erschlossen. Bei einer Erdwärmenutzung in bis zu 400 Metern Tiefe ("oberflächennah") nutzt eine Wärmesonde in Kombination mit einer Wärmepumpe das unterschiedliche Temperaturniveau zwischen Boden und Umgebungsluft. In tieferen Schichten wird heißes Wasser und Wasserdampf zur Stromerzeugung und für Fernwärmenetze gewonnen.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Klimaschutz und regenerative Energiegewinnung

Unterrichtseinheit

Ausgehend vom eigenen Energieverbrauchsverhalten der Schülerinnen und Schüler vermittelt diese aktualisierte Unterrichtseinheit grundlegende Informationen rund um die Themen Klimaschutz, Nachhaltigkeit und regenerative Energiegewinnung. Dabei werden auch zukunftsweisende Technologien thematisiert. Das aktualisierte Unterrichtsmaterial führt die Schülerinnen und Schüler schrittweise an das Thema Klimaschutz im Zusammenhang mit erneuerbaren Energien und zukunftsweisenden Technologien heran. Ausgehend von der Reflexion des eigenen Umgangs mit Energie und den Möglichkeiten des sparsamen Umgangs mit Energie setzen sie sich anhand von Grafiken und Zahlenmaterial mit regenerativen Energieträgern sowie deren Rolle in der aktuellen und zukünftigen Stromversorgung auseinander. Dabei befassen sie sich unter anderem auch mit dem Thema der dezentralen Energieversorgung. Fächerübergreifender Zugang zum Thema Energie Die aktualisierte Unterrichtseinheit ermöglicht Schülerinnen und Schülern einen fächerübergreifenden Zugang zu den Themen Energieeffizienz, regenerative Energiegewinnung und Nachhaltigkeit. Dazu befassen sie sich in einem ersten Schritt mit der Frage des Stromverbrauchs in privaten Haushalten und den Möglichkeiten, Energie zu sparen. Videoclips und Online-Medienberichte zu den Themen E-Haus und Smart Home sowie eine Internetrecherche bieten den Lernenden dabei Unterstützung zur Lösung dieser Aufgabe. In einem zweiten Schritt befassen sich die Schülerinnen und Schüler mit der Notwendigkeit der Nutzung alternativer Energiequellen zur Sicherung der Energieversorgung. In einem Essay setzen sie sich nach der Analyse von Grafiken und Schaubildern mit der Bedeutung erneuerbarer Energieträger für die Stromerzeugung in Deutschland auseinander. Abschließend befassen sich die Schülerinnen und Schüler mit den Energieformen Windkraft und Sonnenenergie näher. Dabei geht es auch um die Frage der Realisierung der Energiewende im Wohnquartier sowie den damit verbundenen Chancen und Herausforderungen einer dezentralen Energieversorgung. Einsatzmöglichkeiten Die Unterrichtseinheit kann aufgrund ihres Bezuges zu den Lehr- und Bildungsplänen in allen deutschen Bundesländern in der Sekundarstufe II eingesetzt werden. Dabei bildet Geographie den fachlichen Bezugspunkt für diese Lerneinheit, ein fächerübergreifender Einsatz zusammen mit Politik/SoWi kann ebenfalls erfolgen. Auch Vertiefungen in den Fächern Physik sind denkbar. Anknüpfungspunkte bieten die Auseinandersetzung mit der Funktionsweise von Windkraft- und Photovoltaikanlagen sowie von solarthermischen Kraftwerken. Ablauf Ablauf der Unterrichtseinheit "Klimaschutz und nachhaltige Energiegewinnung" Den detaillierten Ablauf der Unterrichtseinheit "Klimaschutz und nachhaltige Energiegewinnung" können Sie auf dieser Seite nachlesen. Fachkompetenz Die Schülerinnen und Schüler kennen Gründe und Möglichkeiten, Energie zu sparen. wissen, was ein Energieausweis ist und was darin dokumentiert wird. definieren die Begriffe Smart Home und intelligente Gebäudetechnik und können dabei eine Verbindung zum Thema Energieeffizienz herstellen. kennen die wichtigsten erneuerbaren Energieträger. können mit eigenen Worten grundlegend die Energiegewinnung aus Wind- und Sonnenkraftwerken beschreiben. setzen sich anhand von Grafiken mit der Entwicklung der weltweiten Energieversorgung sowie dem zunehmenden Anteil erneuerbarer Energieträger an der Energieversorgung auseinander. diskutieren die Auswirkungen der verstärkten Hinwendung zu erneuerbaren Energien für die Bereiche Wirtschaft, Infrastruktur, Landwirtschaft und Umwelt. wissen, was "Wohnen und Arbeiten in Quartieren" bedeutet und was dies mit den Themen Nachhaltigkeit, Klimaschutz sowie regenerativer Energiegewinnung zu tun hat. setzen sich mit Merkmalen. Vorteilen und Herausforderungen einer dezentralen Energieversorgung auseinander. Medienkompetenz Die Schülerinnen und Schüler trainieren das selbstständige Erschließen von Themen und Inhalten sowie das Recherchieren im Internet. üben sich im eigenständigen Beschaffen, Strukturieren und Interpretieren von Informationen, die sie im Internet recherchiert haben. nutzen aktiv verschiedene Medien und erkennen deren Vor- und Nachteile im Rahmen der Informationsaufbereitung. trainieren das verständliche und zielgruppenadäquate Schreiben beim Verfassen von Definitionen und einem Essay. Sozialkompetenz Die Schülerinnen und Schüler trainieren im Rahmen von Partner- beziehungsweise Gruppenarbeit ihre Zusammenarbeit mit anderen Personen. lernen Diskussionen argumentativ und rational zu führen. schulen im Rahmen von Diskussionen und Präsentationen die eigene Ausdrucksfähigkeit und aktives Zuhören. trainieren das kreative Entwickeln und Ausformulieren eigener Ideen. Private Haushalte verbrauchen ein Viertel der gesamten Energie in Deutschland. Zwar ist der Energieverbrauch der einzelnen Haushaltsgeräte gesunken, aber in den Haushalten finden sich immer mehr elektrische Geräte und auch der Weltenergiebedarf steigt. Vor dem Hintergrund der Endlichkeit nicht regenerativer fossiler Energieressourcen und der mit der Energieproduktion und dem Energieverbrauch verbundenen Umweltbelastung ist der Einsatz und der Ausbau erneuerbarer Energie deshalb ein wichtiges gesellschaftspolitisches Thema. Die Schülerinnen und Schüler befassen sich auf der Grundlage des Stromverbrauchs in privaten Haushalten mit den Gründen und Möglichkeiten, Energie zu sparen. Hier tragen sie auch Ideen zusammen, wie Energie dezental und ressourcenschonend eingesetzt werden kann Gleichzeitig lernen sie das Energielabel kennen. Anschließend setzen sie sich unter der Nutzung von Videoclips und Online-Medienberichten mit der Frage auseinander, was die Modernisierung von Wohngebäuden mit der effizienten Verwendung von Energie zu tun hat. Dabei lernen sie unter anderem die Begriffe Smart Home und intelligente Gebäudetechnik kennen. Darüber hinaus recherchieren sie eigenständig, welche Informationen im Energieausweis festgehalten werden. Anhand der Analyse einer Grafik zur weltweiten Primärenergieversorgung setzen sie sich mit der Entwicklung des globalen Energieverbrauchs auseinander und erkennen die Veränderungen in den Anteilen der einzelnen Energieträger an der Gesamtversorgung. Darauf aufbauend verfassen die Lernenden ein Essay zur Bedeutung erneuerbarer Energieträger für die Stromerzeugung in Deutschland und interpretieren dabei eine Grafik zur Entwicklung der Stromerzeugung aus erneuerbaren Energien für den Zeitraum von 2000 bis 2018. Eine Recherche zur Energieeffizuenzstrategie 2050 und dem Masterplan der Bundesregierung zur Ladeinfrastruktur sowie eine Diskussion über die Auswirkungen der Hinwendung zu erneuerbaren Energien auf die Bereiche Wirtschaft, Infrastruktur, Landwirtschaft und Umwelt rundet die Doppelstunde ab. Anhand der Informationstexte auf dem Arbeitsblatt setzen sich die Schülerinnen und Schüler näher mit den Energieformen Windkraft und Sonnenenergie als Beispiele für erneuerbare Energien auseinander. Darauf aufbauend beschreiben sie mit eigenen Worten, wie aus Wind und Sonne elektrische Energie entsteht. Auf der Grundlage eines Schaubildes erläutern sie danach mit eigenen Worten den Begriff "dezentrale Energieversorgung". Dabei gehen sie auf die Apsekte Energiegewinnung, Konsumenten und Produzenten, Vorteile und Herausforderung des Konzeptes "Wohnen und Arbeiten im Quartier" ein. Danach recherchieren sie, wo auf der Welt Solarkraftwerke existieren oder gerade entstehen. Optional kann diese Aufgabe auch als vorbereitende Hausaufgabe aufgegeben werden. Die Ergebnisse werden dann in der Klasse zusammengetragen. Anschließend erstellen die Lernenden in Partner- oder Kleingruppenarbeit einen maximal halbseitigen Steckbrief zu mindestens einem Solarkraftwerk. Die Ergebnisse werden in der Klasse präsentiert. Gemeinsamkeiten und Unterschiede bezüglich Standort, Leistung, Aufbau sollten hier vorgestellt werden.

  • Geographie / Jahreszeiten / Politik / WiSo / SoWi / Technik / Sache & Technik / Fächerübergreifend
  • Sekundarstufe II

Windenergie: Windkraft im Aufwind

Unterrichtseinheit

Die Nutzung regenerativer Energiequellen hat in den vergangenen Jahren stark zugenommen. Neben Wasserkraft, Fotovoltaik und Geothermie spielt die Windkraft eine zunehmende Rolle bei der Stromversorgung. In dieser Unterrichtseinheit erarbeiten sich Schülerinnen und Schüler die Grundlagen der Windenergie. Wind gibt es überall. Nicht immer weht er gleichmäßig und nicht überall gleich stark, aber er ist vorhanden und grundsätzlich nutzbar. Das wird auch gemacht, wie unschwer an der Zunahme von Windparks im Landschaftsbild in den letzten 15 Jahren zu erkennen ist. Allerdings ist festzustellen, dass die Anzahl solcher Anlagen in der nördlichen Hälfte Deutschlands bedeutend höher ist als in der südlichen. Das liegt vor allem am Nord-Süd-Gefälle des ?Windangebots?. Ist die durchschnittliche Windgeschwindigkeit zu gering, ist der Betrieb von Windenergieanlagen nach heutigen Maßstäben und beim derzeitigen Stand der Technik unwirtschaftlich. In dieser Unterrichtseinheit betätigen sich die Schülerinnen und Schüler sozusagen als "Windscouts" und erkunden geeignete Regionen für die Errichtung von Windenergieanlagen. Ein Ziel dieser Unterrichtseinheit ist, dass sich die Schülerinnen und Schüler die Bedeutung, die regenerative Energiequellen für die Stromversorgung mittlerweile haben, erarbeiten. Ein weiteres Ziel liegt darin, herauszufinden, worin die räumlich unterschiedliche Nutzung der Windenergie begründet ist. Die Lernenden entwickeln und begründen Vorschläge für Regionen, die für den Betrieb von Windenergieanlagen in Deutschland bevorzugt genutzt werden können, und vergleichen ihre Vorschläge mit den aktuellen Schwerpunktregionen der Windenergienutzung. Sie führen dazu Informationen aus unterschiedlichen Quellen zusammen. Die Unterrichtseinheit kann in Einzel- oder auch in Gruppenarbeit durchgeführt werden. Ablauf der Unterrichtseinheit Die Schülerinnen und Schüler erarbeiten sich die natürlichen Grundlagen und die Bedeutung der Nutzung der Windenergie mithilfe vorgegebener Internetadressen. Fachkompetenz Die Schülerinnen und Schüler sollen Grundwissen zu Funktion und Betrieb von Windenergieanlagen erwerben. Gründe erarbeiten für die räumlich ungleichmäßige Nutzung der Windkraft und für die Bestrebungen, vermehrt Windenergie im Offshore-Bereich zu gewinnen. Medienkompetenz Die Schülerinnen und Schüler sollen unterschiedliche Informationen verknüpfen und bewerten und sich mit mit grafischen Darstellungsformen auseinander setzen. Sozialkompetenz Die Schülerinnen und Schüler sollen lernen, ihren Mitschülerinnen und Mitschülern gegenüber ihre Ansicht zu verschiedenen Sachverhalten zu vertreten und mit ihnen mit verständlichen und nachvollziehbaren Argumenten zu diskutieren. lernen, sich der Kritik der anderen Lernenden zu stellen, mit Kritik umzugehen und damit ihre Kritikfähigkeit zu steigern. Thema Eine windige Angelegenheit: Die Nutzung der Energie des Windes Autor Dr. Gunnar Meyenburg Fach Geographie, Technik Zielgruppe Klasse 5 und 6 aller Schulformen, empfohlen für Gymnasium und Gesamtschule Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Rechner mit Internetzugang für Einzel- und Gruppenarbeit Selbst gesteuertes Lernen Wesentlicher Bestandteil der Unterrichtseinheit ist das selbst gesteuerte Lernen unter Nutzung ausgewählter Fachinformationen und eines Filmbeitrags im Web. Der Filmbeitrag vermittelt grundlegende Informationen über Windenergieanlagen und deren Betrieb und liefert damit eine Einführung in die Thematik. Im Fokus dieser Lerneinheit steht die Erarbeitung von elementarem Wissen über die Nutzung und Bedeutung der Windenergie für die Energieversorgung Deutschlands. Die Schülerinnen und Schüler recherchieren eigenständig anhand vorgegebener Webadressen die für die Bearbeitung der Aufgabenstellungen erforderlichen Informationen. Arbeitsinhalte Am Beispiel Deutschlands wird anhand von Quellen im Web die Suche nach besonders geeigneten Regionen für die Nutzung der Windenergie recherchiert. Die Schülerinnen und Schüler nutzen Kartenmaterial, um Teilregionen zu erkunden und hinsichtlich ihres Windpotenzials zu bewerten. Sie werden feststellen, dass es erhebliche regionale Unterschiede bei den durchschnittlichen Windgeschwindigkeiten gibt. Diese spiegeln sich schon jetzt deutlich in entsprechenden Unterschieden in der Intensität der Windenergienutzung wider. Sie werden sich weiterhin mit wichtigen, die Windgeschwindigkeit beeinflussenden Faktoren befassen. Auf diese Weise sollen Erkenntnisse gewonnen werden, die zu einem Verständnis für aktuelle Bemühungen führen, verstärkt Offshore-Windenergieanlagen zu bauen. Zur Einführung und zur Vermittlung elementarer Grundlagen der Nutzung der Windenergie sehen sich die Schülerinnen und Schüler einen kurzen Filmbeitrag im Web an. planet-schule.de: Strom aus Strömung Dieser 15-minütige Film des SWR demonstriert verschiedene Möglichkeiten, die Strömung von Wind und Wasser zur Stromerzeugung zu nutzen. Aufgabe Recherchiert zu folgender Frage: Warum wird mit dem Bau von Windenergieanlagen eine - wie viele meinen - "Verunstaltung" der Landschaft in Kauf genommen? Die Schülerinnen und Schüler werden mit den Herausforderungen Klimawandel und Endlichkeit fossiler und radioaktiver Energieträger konfrontiert. Sie befassen sich mit der Bedeutung regenerativer Energieträger für die Stromversorgung und setzen diese mit dem Anteil in Beziehung, die mit herkömmlichen Kraftwerken gewonnen wird. Dabei sollte eher die Relation zu einzelnen Energieträgern hervorgehoben werden als die zum Gesamtanteil an der Stromerzeugung. Weiterhin soll den Schülerinnen und Schülern insbesondere die Bedeutung der Windenergie vermittelt werden, auch im Vergleich zu anderen regenerativen Energieträgern. Materialien Grafiken zum Energieverbrauch und zur Energieerzeugung in Deutschland: wind-energie.de: Grafik "Anzahl der Windenergieanlagen in Deutschland" Die Website bietet zu allen Aspekten der Windenergienutzung Informationen in Form von Text, Statistiken und Bild. Auch zum Thema Offshore-Windparks werden Infos geboten. Aufgabe Erkundet die Windverhältnisse in Deutschland und findet Regionen mit Windverhältnissen, die sich für den Aufbau von Windparks eignen. Herangehensweise Die Schülerinnen und Schüler lokalisieren Regionen mit hoher durchschnittlicher Windgeschwindigkeit und versuchen, ihre Beobachtungen mit Faktoren wie Relief, Höhenlage und/oder Küstennähe in Beziehung zu setzen. Letztendlich schlagen sie Regionen vor, in denen der Betrieb von Windkraftanlagen aus ihrer Sicht besonders wirtschaftlich wäre, und vergleichen ihre Vorschläge mit den Standorten bestehender Anlagen oder Windparks. Materialien Grafiken zur räumlichen Verteilung der Windgeschwindigkeit, zu Standorten von Windparks und zum Relief: Karte Mittlere Windgeschwindigkeit in Westeuropa Die Website bietet zu allen Aspekten der Windenergienutzung Informationen in Form von Text, Statistiken und Bild. Auch zum Thema Offshore-Windparks werden Infos geboten. wikipedia.org: Topographische Karte Deutschlands Die Online-Enzyklopädie bietet eine topographische Karte von Deutschland an. wikipedia.org: Karte Windkraftanlagen in Deutschland Die Online-Enzyklopädie liefert auf ihrer Seite zur Windenergie vielfältige Informationen über Wind und Windenergienutzung. Aufgabe Warum werden derzeit Planungen zum Bau von Offshore-Windkraftanlagen stark vorangetrieben? Herangehensweise Die Schülerinnen und Schüler diskutieren zunächst darüber, warum Windkraftanlagen in Norddeutschland sehr viel häufiger anzutreffen sind als im Süden. Über die Erkenntnis, dass die topographischen Gegebenheiten einen starken Einfluss auf die Windgeschwindigkeit haben, arbeiten sie sich an die Thematik der Windenergienutzung im Offshore-Bereich heran. Grund für den derzeitigen Forschungs- und Entwicklungsaufwand ist, dass im der Küste vorgelagerten Bereich die Windgeschwindigkeiten höher und die Windverhältnisse insgesamt beständiger sind als an Land. Materialien Die folgenden Grafiken und Karten können zum Einsatz kommen: dewi.de: Folie "Status der Windenergienutzung in Deutschland" - Stand 30.06.2009 (PDF) Die Website des Instituts bietet Informationen über den Status der Windenergienutzung in Deutschland, über Forschung und Entwicklung, auch zum Thema Offshore-Windkraft. wind-energie.de: Windprofil Die Website bietet zu allen Aspekten der Windenergienutzung Informationen in Form von Text, Statistiken und Bild. Auch zum Thema Offshore-Windparks werden Infos geboten.

  • Geographie / Jahreszeiten
  • Sekundarstufe I

Elektrizität im Haushalt – Beispiele, Fragen und Übungsaufgaben

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit geht es darum, die Lernenden mit den Gegebenheiten der elektrischen Stromversorgung im Haushalt bekannt zu machen. In Form von Beispielen, Fragestellungen und Übungsaufgaben werden die Funktionsweisen des Drehstrom-Systems im Haushalt und deren vielfältige Anwendungsmöglichkeiten erläutert.Nach einer kurzen – eventuell auch wiederholenden – Besprechung des Wechselstrom-Versorgungssystems in Form von Drehstrom werden den Schülerinnen und Schülern die vielfältigen Möglichkeiten der Stromzuführung zu zahlreichen häuslichen Elektrogeräten anhand der Phasenleiter L 1 ..L 3 sowie die Stromrückführung über den gemeinsamen Nullleiter vermittelt. Mit diesem Wissen können die Lernenden auch die zahlreichen Stromkabel einer Überlandleitung nachvollziehen. Am Beispiel eines Phasenprüfers zum ungefährlichen Auffinden des Phasenleiters in der Steckdose wird gezeigt, wie man feststellen kann, ob Strom an der Steckdose vorhanden ist. Als typisches Beispiel für ein in jedem Haushalt vorhandenes Elektrogerät wird der schematische Aufbau und damit die unterschiedliche Funktionsweise von Herdplatten erläutert und mit konkreten Beträgen für entsprechende Leistungen durch ausführliche Berechnungen vertieft. Das Thema "Elektrizität im Haushalt" in der Schule Elektrizität im Haushalt ist aus unserem heutigen Leben nicht mehr wegzudenken – wie sehr wir davon abhängig sind, bemerken wir immer dann, wenn der Strom einmal ausfällt. Schülerinnen und Schüler kennen Elektrizität in Form von Batterien und Akkus, die alle Geräte von den Smartphones bis zu den Taschenlampen speisen. Ebenso bekannt ist natürlich die Bedeutung der Steckdose für die Entnahme von Elektrizität – die dahinterstehende Technik dürfte allerdings für viele Lernende Neuland sein, nicht zuletzt wegen der nicht so einfach zu verstehenden Wechselstromtechnik. Vorkenntnisse Grobe Vorkenntnisse von Lernenden können dahingehend vorausgesetzt werden, dass im Unterricht der Begriff des Wechselstroms anhand des Leiterschaukel-Versuchs in Verbindung mit der Lorentzkraft bereits besprochen sein sollte. Didaktische Analyse Die auf der Wechselstrom-Technik beruhende Drehstrom-Technik ist von entscheidender Bedeutung für die großtechnische Stromerzeugung mittels Generatoren, die unter anderem durch Wasserkraft, Windkraft oder auch Kernkraft angetrieben werden. Nur mit Gleichstrom aus Batterien wären die etwa in einem Haushalt notwendigen Elektrogeräte nicht zu betreiben. Die mit Drehstrom-Technik betriebenen Elektrogeräte werden in Deutschland mit einer Spannung von 230 Volt betrieben, die daraus resultierende Lebensgefahr bei einer eventuellen Berührung eines Phasenleiters muss im Unterricht intensiv besprochen werden. Nur über Geräte wie den Phasenprüfer kann gefahrlos festgestellt werden, wo sich der Phasenleiter befindet und ob somit Strom fließen kann. Fachkompetenz Die Schülerinnen und Schüler wissen um die Bedeutung von Drehstrom für die häusliche Stromversorgung. kennen die verschiedenen Wege der Stromzuführung über die drei Phasen des Drehstroms. können Berechnungen anstellen, unter welchen Bedingungen ein Stromkreis belastet werden kann und gegebenenfalls auch überlastet wird. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbstständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern, Freundinnen und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe I

Materialsammlung Elektrizitätslehre

Unterrichtseinheit

In dieser Materialsammlung für den Physik-Unterricht sind Unterrichtsmaterialien rund um die Elektrizitätslehre und ihre Teilbereiche gebündelt. Dazu zählen elektrische Ladungen und Strom, elektrische und magnetische Felder, die elektromagnetische Induktion, elektromagnetische Schwingungen und Wellen sowie Grundlagen der Elektronik. Die Elektrizitätslehre umfasst alle Vorgänge, die entweder mit ruhender Ladung (Elektrostatik) oder bewegter Ladung (Elektrodynamik) zu tun haben. Der Begriff selbst leitet sich aus dem griechischen Wort electron (deutsch: Bernstein) ab. Er geht zurück auf den griechischen Naturwissenschaftler und Philosoph Thales von Milet, der mit Bernstein vor etwa 2500 Jahren Versuche durchgeführt und dabei beim Reiben von Bernstein festgestellt hat, dass dieser kleine leichte Teilchen anziehen kann. Lernziele und Lehrplanbezüge für die Elektrizitätslehre im Fach Physik Elektrische Ladungen sind Bestandteile von Atomen und werden als Ladungsträger bezeichnet. Man unterscheidet die negativ geladenen Elektronen (m e = 9,11×10 -31 kg) der Atomhülle von den positiv geladenen Protonen (m p = 1,67×10 -27 kg) des Atomkernes, wobei der Betrag der Ladung bei beiden gleich groß ist. Bedeutsam ist, dass sich gleichnamige Ladungen abstoßen , während sich ungleichnamige Ladungen anziehen . Elektrischer Strom ist ein Naturphänomen und kein Produkt eines genialen Physikers. Es fließen dabei in erster Linie leicht bewegliche Elektronen der Atomhülle durch einen dafür geeigneten Leiter wie etwa Kupfer oder Wolfram . Ein elektrisches Feld entsteht, wenn sich um positive oder negative Ladungen herum infolge der gegenseitigen Anziehung oder Abstoßung bestimmte Kraftwirkungen ergeben, die man mithilfe von Feldlinienbildern darstellen kann. Ein magnetisches Feld hingegen entsteht sowohl durch die Kraftwirkung zwischen Dauermagneten aus Eisen, Kobalt oder Nickel als auch um bewegte elektrische Ladungen herum wie etwa Stromleitungen oder Spulen . Ein für sehr viele technische Entwicklungen äußerst wichtiger Bereich ist die elektromagnetische Induktion , bei der sowohl durch die Bewegung eines Leiters in einem Magnetfeld als auch durch Änderung eines von einem Leiter umschlossenen Magnetfeldes (zum Beispiel einer Spule) eine elektrische Spannung und ein elektrischer Stromfluss erzeugt werden. Von großer Bedeutung für die Stromerzeugung (zum Beispiel durch Generatoren) und die Stromübertragung über weite Strecken durch Hochspannung (erzeugt durch sogenannte Transformatoren) ist der Wechselstrom , der uns auch im Haushalt zur Verfügung gestellt wird. Er unterscheidet sich vom Gleichstrom dadurch, dass er regelmäßig seine Richtung ändert (in Deutschland mit 50 Hz, was 100 Richtungsänderungen pro Sekunde entspricht). Von elektromagnetischen Schwingungen spricht man, wenn sich die Feldstärke eines elektrischen Feldes und eines magnetischen Feldes periodisch ändern (zum Beispiel beim Kondensator oder bei Spulen). Zudem senden in einem Leiter beschleunigte oder abgebremste Ladungen elektromagnetische Felder aus, die sich im Raum mit Lichtgeschwindigkeit ausbreiten. Dabei ändern sich die Stärken des elektrischen und magnetischen Feldes sowohl räumlich als auch zeitlich periodisch und besitzen daher die gleichen Eigenschaften wie Wellen. Man bezeichnet sie deshalb als elektromagnetische Wellen . Die Grundlagen der Elektronik beschäftigen sich mit Bauelementen aus der Halbleitertechnologie wie etwa Dioden und Transistoren sowie den daraus anwendbaren Schaltungen .

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Forschung zu fossilen Energieträgern

Unterrichtseinheit

Wie lange können fossile Energieträger noch genutzt werden? Was macht ökonomisch Sinn, was ist ökologisch vertretbar und was sind die sozialen Folgen? Diese Unterrichtseinheit behandelt aktuelle Forschungsfelder und fordert zur Diskussion über die strategische Ausrichtung der Energiepolitik auf. Unser materieller Wohlstand basiert zu einem sehr großen Teil auf der Nutzung fossiler Energieträger. Strom und Wärme werden traditionell durch die Verbrennung von Kohle, Öl und Erdgas erzeugt – sowohl für die Industrie als auch für die private Nutzung. Die Energiewende, also der Umbau der Energieversorgung weg von fossilen Energieträgern hin zur Nutzung erneuerbarer Energien, braucht Zeit. Gründe hierfür sind vielfältig und zur Dauer des Übergangs gibt es unterschiedliche Einschätzungen. Sicher ist jedoch, dass fossile Energiequellen noch viele Jahre genutzt werden. Lohnt es sich also, die bestehenden Technologien weiterzuentwickeln? Zum Einstieg in das Thema spielen die Schülerinnen und Schüler das „KEEP COOL mobil“. Während des Spiels können gemeinsam Forschungen zu verschiedenen Energiebereichen durchgeführt werden, die einen bestimmten Einfluss auf den Spielfortgang haben. Diese Forschungstätigkeiten sollen anschließend vertieft werden, speziell die Forschungstätigkeiten für sogenannte „Schwarze Fabriken“, also aus dem Bereich der fossilen, klimabelastenden Energienutzung. Hierfür stehen vier Arbeitsblätter zur Verfügung, sodass vier Gruppen gebildet werden können. Nach einer ersten Erarbeitungsphase sollen die Schülerinnen und Schüler ihre Ergebnisse vorstellen und diskutieren. In einer zweiten Arbeitsphase beschäftigen sich die Schülerinnen und Schüler mit den fossilen Energieträgern als Teil des gesamten Energiemixes. Auch hierfür steht ein Arbeitsmaterial zur Verfügung, das am zielführendsten in Gruppenarbeit bearbeitet wird. Zum Abschluss sollten auch diese Ergebnisse präsentiert und im Plenum diskutiert werden. Forschungsprojekte im Spiel „KEEP COOL mobil“ Die Spielerinnen und Spieler haben die Möglichkeit, gemeinsame Forschungsprojekte durchzuführen und sich dadurch einen wirtschaftlichen Vorteil zu verschaffen. Forschungsfelder der fossilen Energieversorgung Früher oder später versorgen wir uns zu 100 Prozent aus erneuerbaren Energien. Bis dahin wird weiter zu fossilen Energieträgern geforscht. Energiemix der Zukunft Die Schülerinnen und Schüler werden Energieminister eines fiktiven Landes. Welche Rolle spielen die verschiedenen Energiequellen? Woran soll geforscht werden? Fachkompetenz Die Schülerinnen und Schüler lernen Forschungsthemen aus dem Bereich der fossilen Energienutzung kennen: Fracking, Tiefsee-Ölförderung, Kraftwerkstechnologie, Flugverkehr, Bauwirtschaft. analysieren Chancen und Risiken dieser Technologien. nehmen die fossile Energienutzung als Teil des Energiemix wahr. erörtern Zukunftsvisionen, wägen Handlungsoptionen ab und entwerfen einen vereinfachten Plan für die zukünftige Energieversorgung eines Landes. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren in dem mobilen Multiplayer-Spiel „KEEP COOL mobil“ mit anderen Spielern. entwickeln gemeinsam eine Gruppenarbeit gemeinsam zur Zukunft der Energieversorgung. präsentieren ihre Ergebnisse und diskutieren im Plenum. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet. nutzen das mobile Multiplayer-Spiel „KEEP COOL mobil“. Anmeldung und Start des Spiels In "KEEP COOL mobil" übernimmt jeder Spieler die Rolle einer Metropole (zum Beispiel Sao Paolo, Berlin, Shanghai oder Mexico City). Die Metropolen sind dabei vier Ländergruppen zugeordnet: Europa USA & Partner BRIC (Schwellenländer Brasilien, Russland, Indien und China) G77 (Entwicklungsländer) Spielablauf Nachdem der Spielleiter das Spiel freigegeben beziehungsweise gestartet hat, laufen die Ticks und der Spieler kann definierte Aktionen durchführen. Aktionen sind etwa: Fabriken oder Gebäude bauen/abreißen (Anpassungsmaßnahmen) Forschungen betreiben (Forschungsfonds) in Kontakt/Verhandlung treten mit einem anderen Spieler Gelder anderen Spielern senden oder von anderen Spielern erhalten Informationen zu anderen Spielern einholen (inklusive Einsicht ins Spielerprofil) eigene Statistiken und Ergebnisse betrachten Mehr Informationen zum Spielablauf von "Keep Cool mobil" finden Sie hier. Forschungsprojekte bei Keep Cool mobil Während des Spiels haben die Spielerinnen und Spieler die Möglichkeit, „grüne“ (erneuerbare) oder „schwarze“ (fossile) Forschungsprojekte zu starten und können andere Mitspielerinnen und -spieler einladen, mit ihnen zu forschen. Da zu Forschungszwecken Geld in einen Forschungs-Fonds eingezahlt werden muss, ist es sogar sinnvoll, gemeinsam zu forschen. Forschungsprojekte zahlen sich für alle teilnehmenden Metropolen aus: Der Neubau einer grünen oder schwarzen Fabrik – je nach Forschungsart – kostet nach erfolgreichem Abschluss eines Forschungsprojektes weniger Geld. Auf diese Art und Weise können die Spielerinnen und Spieler die wirtschaftliche Entwicklung ihrer Metropolregion langfristig lenken – doch Vorsicht – massive Investitionen in fossile Energieträger beschleunigen die Gesamterwärmung der Erdatmosphäre. Klimafolgen können mit Fortschreiten der Spielrunde stärker und häufiger auftreten. Reflektion Wie in der realen Welt, können auch in "Keep Cool mobil" diejenigen Akteure Profit erzielen (im Spiel: Siegpunkte und Siegpunkte aus politischen Forderungen), die auf schwarze Fabriken und somit auf die Weiternutzung und Förderung fossiler Energieträger setzen. Wirtschaftlich gesehen macht das Sinn, denn bis die Energieversorgung das Label „100 Prozent erneuerbar“ trägt, vergehen auch in der Realität noch einige Jahre. Der Effekt der Weiternutzung fossiler Energieformen nach heutigen Standards und mit den derzeitigen CO 2 -Emissionen allerdings ist mit Blick in die Zukunft besorgniserregend – die dadurch konstant steigende Erderwärmung bildet sich auch im Spielverlauf einer Runde "Keep Cool mobil" ab. Hieran und an den Klimafolgen kann die Lehrkraft exemplarisch aufzeigen, dass die Erforschung bestehender fossiler Energieversorgungssysteme wichtig ist, um neben dem Voranbringen erneuerbarer Energien auch Optimierungspotentiale zu nutzen. Eine effizientere Technik spart nicht nur Kosten, sondern auch CO 2 -Emissionen. Die Energiewende lässt auf sich warten Die Nutzung fossiler Energieträger ist der Hauptgrund für den Klimawandel. Wir verbrennen Kohle und Gas zur Stromerzeugung. Wir verbrennen Benzin, Diesel und Kerosin als Treibstoff für unsere Mobilität. Erst allmählich werden erneuerbare Energien genutzt. Der Umstieg braucht Zeit. Das liegt einerseits an technischen Hürden. Aber auch ökonomische Interessen spielen eine Rolle. Denn je länger eine Technologie genutzt werden kann, desto eher amortisieren sich die Investitionen in Forschung und Innovation. Die großen Energieversorger sind daher träge und wollen die hohen Gewinnmargen ihrer Kraftwerke möglichst lange abschöpfen. Übergangsfrist für fossile Energieversorgung Bis wir unsere Energieversorgung mit dem Label "100 Prozent erneuerbar" versehen und komplett umgestellt haben werden, vergehen noch einige Jahre. Aber sollen die bestehenden Kraftwerke und Energieversorgungssysteme einfach so weitermachen wie bisher, ohne Optimierungspotentiale zu nutzen? Eine effizientere Technik spart nicht nur Kosten sondern auch CO 2 -Emissionen. An sich also ein lohnendes Forschungsfeld. Oder etwa nicht? Forschungsgebiete der fossilen Energieversorgung Anhand der Arbeitsblätter 1 bis 4 sollen sich die Schülerinnen und Schüler mit ausgewählten Forschungsthemen aus dem Bereich der fossilen Energieversorgung beschäftigen. Die Arbeitsblätter enthalten kurze Zusammenfassungen, weiterführende Internetadressen und Aufgaben. 1. Neue Rohstoffvorräte 2. Kraftwerkstechnik 3. Flugverkehr 4. Bauwirtschaft Hier bietet es sich an, vier kleinere Gruppen zu bilden. Nach einer Erarbeitungsphase sollen die Schülerinnen und Schüler ihre Ergebnisse vorstellen und diskutieren. Fossile Energieträger sind endlich Es dauert Jahrmillionen, um fossile Energieträger wie Kohle und Öl entstehen zu lassen. Nach menschlichen Zeitmaßstäben sind die fossilen Vorräte also endlich. Und die Lagerstätten sind unterschiedlich leicht auszubeuten. Selbstverständlich werden zunächst die Lagerstätten genutzt, die einfach auszubeuten sind. Je näher wir dem Ende der weltweiten Ressourcen kommen, desto schwieriger wird es, die Rohstoffe zu fördern. Deshalb werden neue Fördertechnologien erforscht, die bislang unwirtschaftliche Lagerstätten interessant werden lassen. Schwer zugängliche Rohstoffquellen Oberflächennahe Ölsande und Ölschiefer, Erdgas in dichten Speichergesteinen, flach und sehr tief liegende Erdgasvorkommen, Gas in Kohleflözen und Gashydrat, diese Rohstofflagerstätten waren lange Zeit nicht wirtschaftlich nutzbar. Durch Fortschritte bei der Erkundung der Lagerstätten als auch bei der Förderung, werden große Mengen fossiler Energieträger zusätzlich nutzbar. Was ist Fracking? Der Begriff Fracking leitet sich von Hydraulic Fracturing ab, also dem „hydraulischen Zerbrechen“, und zwar von Untergrund-Gestein. Dadurch sollen mehr gasförmige und lösliche Stoffe (Erdöl und Erdgas) zugänglich gemacht werden. Wissenschaftler sprechen von „Stimulierung“. Erreicht wird dieses Aufbrechen, indem man chemische Substanzen mit sehr hohem Druck (mehrere hundert Bar) in das Gestein presst. Die Chancen Im Vordergrund stehen ökonomische Interessen. Durch Fracking werden noch mehr Rohstoffe pro Lagerstätte genutzt. Oder es wird die Nutzung von bislang ökonomisch nicht nutzbaren Lagerstätten erst möglich. Abgesehen von den technischen und wirtschaftlichen Aspekten, spielen auch geopolitische Interessen eine Rolle. So setzten die USA unter anderem deshalb so stark auf Fracking, weil es dadurch unabhängiger wird von Rohstoffimporten aus dem mittleren Osten. In Deutschland überwiegen die Bedenken vor den schädlichen Auswirkungen. Dementsprechend ist Fracking bei uns (Stand Juli 2016) nur sehr eingeschränkt erlaubt. Die Risiken Die chemischen Substanzen, die mit hohem Druck in den Untergrund gepumpt werden, sind hochgiftig. Sie enthalten krebserregende Kohlenwasserstoffe, Schwermetalle und teilweise auch radioaktive Substanzen. Immer wieder dringen diese Schadstoffe an die Oberfläche oder ins Grundwasser. Die Bohrschlämme müssen in speziellen Deponien entsorgt werden. Umweltverbände rechnen vor , dass bereits im Jahr 2016 bis zu 35 Millionen Tonnen Sondermüll entsorgt werden müssen. Die Chancen Ob in der Tiefsee Öl gefördert wird, hängt vorrangig davon ab, ob es sich wirtschaftlich lohnt. Durch entsprechende Forschungsaktivitäten können Verfahren entwickelt werden, die den Kostenaufwand für die Förderung reduzieren. Und wenn die Nachfrage steigt, kann das geförderte Öl auch noch teuer verkauft werden. So kann sich insgesamt das wirtschaftliche Verhältnis von Aufwand zu Nutzen dahingehend verschieben, dass sogar die Tiefseeförderung ein lohnendes Geschäft wird. Neben den rein wirtschaftlichen Interessen gibt es auch geopolitische Interessen. Die Unabhängigkeit von Staaten mit hohen Öl- und Gasvorkommen kann auch eine große Rolle spielen. Die Risiken Das Bohren in großen Wassertiefen ist mit besonderen technischen Anforderungen verbunden. Der Druck in großen Tiefen ist enorm. In 2.800 Metern Tiefe ist der Druck der Wassersäule doppelt so groß wie der einer Autopresse. Entsprechend teuer sind die eingesetzten technischen Geräte und Verfahren. Schwierigkeiten bereiten auch die Temperaturunterschiede. In diesen Tiefen ist der geförderte Rohstoff teilweise sehr heiß. Beim kilometerlangen Aufstieg zur Bohrplattform können durch das Abkühlen störende Effekte wie Wachsbildung auftreten. Wenn ein Störfall eintritt, ist er viel schwieriger zu kontrollieren. Schon allein aufgrund der Entfernung zum Bohrloch, aber auch aufgrund der extremen Bedingungen in solchen Tiefen. Trauriges Beispiel ist die Katastrophe am 20. April 2010 auf der Plattform "Deepwater Horizon", einer Bohrplattform im Golf von Mexico. Höhere Wirkungsgrade Übliche Kohlekraftwerke erreichen hinsichtlich der Stromerzeugung einen Wirkungsgrad von 30 bis 40 Prozent. Moderne Kohlekraftwerke erreichen bis zu 45 Prozent. Eine weitere Steigerung auf über 50 Prozent wird angestrebt. Möglich sein soll das durch höhere Temperaturen und höheren Druck. Bisherige Materialien der Kraftwerkstechnik würden diesen Belastungen nicht oder nur sehr kurz standhalten. Deshalb wird an neuen Materialien geforscht, die auch extremen Bedingungen lange standhalten. Eine andere Möglichkeit, den Wirkungsgrad zu erhöhen, ist die Verbrennung von Kohle mit reinem Sauerstoff. Allerdings ist bislang die Herstellung von reinem Sauerstoff sehr aufwendig. Aus diesem Grund versucht man das Herstellungsverfahren zu optimieren oder andere, effizientere Verfahren zu entwickeln. Häufige Lastwechsel Kraftwerke müssen zunehmend flexibel auf unterschiedlichen Strombedarf reagieren können. Grund hierfür ist der steigende Anteil der Stromerzeugung aus erneuerbaren Energien. Sie hängt vom Wetter ab und schwankt entsprechend. Der Stromverbrauch ist aber unabhängig vom Wetter. Diese Differenz müssen Kraftwerke ausgleichen (dabei können fossile oder erneuerbare Brennstoffe eingesetzt werden). Je nach Wetterlagen können kurzfristige und häufige Lastwechsel auftreten. Entsprechend müssen Kraftwerke hoch- oder runtergefahren werden. Jeder Lastwechsel führt zu Temperatur- und Druckwechseln in der Kraftwerkstechnik. Die Folge ist, dass die Materialien stärker beansprucht werden und schneller verschleißen. Abhilfe können neue Materialien bringen. Aber auch die Wartungstechnik muss auf die höheren Belastungen reagieren, um sicherzustellen, dass Bauteile rechtzeitig ausgetauscht werden. Chancen und Risiken Höhere Wirkungsgrade haben zur Folge, dass bei gleicher erzeugter Strommenge weniger CO 2 freigesetzt wird. Das ist natürlich grundsätzlich zu begrüßen. Gleichzeitig besteht das Risiko, dass durch sogenannte Rebound-Effekte der Vorteil der modernen Technik wieder zunichte gemacht wird. Das bedeutet, dass der Stromverbrauch in gleichem Maß oder sogar mehr steigt als der Wirkungsgrad des Kraftwerks. Leider sind solche Rebound-Effekte nicht selten. Als Beispiel hierfür sei die Autobranche genannt: Motoren werden immer sparsamer, gleichzeitig werden die Autos immer leistungsstärker. Auch die Atomenergie beruht auf einem fossilen Energieträger, dem Uran. Zwar emittieren Kernkraftwerke prinzipiell kein CO 2 . Aufgrund des außerordentlichen Gefährdungspotentials und der ungelösten Entsorgungsproblematik verliert diese Art der Energieversorgung nicht nur in Deutschland an Bedeutung. Selbst nach dem Atomausstieg wird die Entsorgung von Atommüll und der Rückbau stillgelegter Atommeiler noch lange als Herausforderung beziehungsweise als Forschungsfeld relevant bleiben. Belastung für das Klima Der Flugverkehr hat bislang einen Anteil von 2 Prozent an den globalen CO 2 -Emissionen. Der Anteil am anthropogenen Klimawandel liegt allerdings bei 5 Prozent, da nicht nur CO 2 , sondern auch weitere klimarelevante Gase in großen Höhen freigesetzt werden. Zudem muss davon ausgegangen werden, dass in Zukunft noch mehr geflogen wird als heute. Kein Wunder also, dass zu umweltverträglicheren Alternativen geforscht wird. Propellerantriebe der Zukunft Bei der sogenannten Open-Rotor-Technologie kommen große, vielblättrige Rotoren zum Einsatz. Sie sollen bis zu 30 Prozent weniger Treibstoff verbrauchen. Es gibt aber auch Nachteile. So erreichen Flugzeuge mit diesem Antrieb nur geringere Fluggeschwindigkeiten als mit herkömmlichen Triebwerken. Außerdem sind die Antriebe deutlich lauter. Und der dritte große Nachteil ist die Größe der Triebwerke. Sie passen nicht unter die Flügel und müssen stattdessen im Heckbereich integriert werden. Dadurch werden neue Bauarten von Flugzeugen notwendig. Biokraftstoff Könnte man Biokraftstoffe im Flugverkehr einsetzen, wäre die CO 2 -Bilanz deutlich besser. Denn im Prinzip wird nur die Menge an CO 2 freigesetzt, die vorher eine Pflanze aus der Atmosphäre entnommen hat, um ihre Biomasse aufzubauen. Beachtet werden muss allerdings auch, ob die Quellen, aus denen die Biomasse stammt, nachhaltig bewirtschaftet wurden. Wenn nämlich Regenwald gerodet wird, um dort Soja für Biokraftstoff anzubauen, dann ist die Ökobilanz nicht mehr so rosig. Brennstoffzelle Ähnliches gilt für die Idee, Energie aus Brennstoffzellen zu nutzen. Die meisten Brennstoffzellen erzeugen Strom aus Wasserstoff und Sauerstoff, und zwar mit einem beachtlichen Wirkungsgrad. Theoretisch können 80 Prozent der Energie in Strom umgewandelt werden. In der Praxis werden jedoch „nur“ 45 Prozent erreicht. In der Gesamt-Ökobilanz muss allerdings berücksichtigt werden, wie das Wasserstoff-Gas hergestellt wurde. Dafür muss nämlich zunächst eine Menge Energie investiert werden. Nur wenn diese Energie aus erneuerbaren Quellen stammt, stellen Brennstoffzellen eine Entlastung des Klimas dar. Der Gesamt-Wirkungsgrad (Wasserstoff-Herstellung – Stromerzeugung – Antriebsenergie) kann zwar theoretisch bis zu 45 Prozent betragen, in der Praxis dürfte er jedoch deutlich darunter liegen. Auch der Preis der Technologie ist für den Massenmarkt noch nicht attraktiv. Ressourcenverbrauch und CO 2 -Emissionen Die Bauwirtschaft hat einen sehr hohen Anteil an unserem Ressourcenverbrauch. Aus ökologischer Sicht ist insbesondere das Bauen mit Beton problematisch. Beton besteht aus Sand, Kies und dem Bindemittel Zement. Zement wird aus Kalkstein, Ton, Sand, Eisenerz und Gips hergestellt. Bei der Zementherstellung werden enorme Mengen an CO 2 freigesetzt. Einerseits entsteht CO 2 als chemisches Produkt beim Brennen von Kalkstein. Andererseits wird CO 2 durch Verbrennungsvorgänge frei, die für die hohen Temperaturen von über 1.400 °C benötigt werden. Laut IPCC gehen weltweit 7 Prozent der anthropogenen (vom Mensch gemachten) CO 2 -Emissionen auf das Konto der Zementherstellung. Auch Ersatzbrennstoffe machen schlechte Luft Zur Einsparung fossiler Brennstoffe werden bei der Zementherstellung zunehmend sogenannte „Ersatzbrennstoffe" verwendet. Unter anderem Altöl, Lösemittel, Haus- und Gewerbemüll, Autoreifen, Tiermehl. Auch wenn Filteranlagen einen Teil der Schadstoffe aus den Abgasen entfernen können, ein mehr oder weniger großer Rest an Schadstoffen entweicht in die Umwelt. Forschung zur Zementherstellung Wissenschaftler haben ein Verfahren entwickelt, das deutlich weniger CO 2 emittiert. Statt 1.450°C sollen weniger als 300°C ausreichen, um den alternativen Zement herzustellen. Zudem wird weniger Kalk benötigt, wodurch sich die CO 2 -Emissionen weiter senken lassen. Forschung im Bereich Betonbau An der Hochschule Bochum wurde ein Verfahren entwickelt, um bei gleicher Bauweise den Betonanteil zu verringern. Dazu werden Hohlkörper aus recyceltem Kunststoff in den Beton gemischt. Auf diese Weise werden über 20 Prozent weniger Primärenergie verbraucht. Außerdem sind die Bauteile leichter, wodurch die gesamte Gebäudekonstruktion schlanker ausfallen kann. Das spart weitere Ressourcen und dadurch auch CO 2 -Emissionen. Bislang haben sich die Schülerinnen und Schüler schwerpunktmäßig mit fossilen Energieträgern beschäftigt. Diese sind aber nur ein Teil der Energieversorgung. Zur Energieversorgung tragen auch die erneuerbaren Energien einen erheblichen Teil bei. Beim Strom ist das bereits über 25 Prozent, Tendenz stark steigend. Die Zukunft der Energieversorgung Legen Sie die Zukunft der Energieversorgung schon heute in die Hände Ihrer Schülerinnen und Schüler (später werden ohnehin sie es sein, die bestimmen werden). Arbeitsblatt 5 bietet hierfür eine einfache Vorlage, um auf einem sehr hohen Abstraktionsniveau die Planung bis ins Jahr 2100 durchzuführen. Es kommt dabei weniger auf „richtig“ oder „falsch“ an, sondern darauf, dass sich die Schülerinnen und Schüler gemeinsam in kleinen Gruppen über Ideen und Ansätze zu einer generellen Strategie und den damit verbundenen Entscheidungsfaktoren unterhalten. Welche Gewichtung haben ökonomische und ökologische Fragestellungen? Wo sind die Investitionen am sinnvollsten? Welche sozialen Konsequenzen haben die Entscheidungen (Energiepreis, Bau von Stromleitungen, Gesundheitsrisiken, Folgen des Klimawandels …), im eigenen Land, aber auch weltweit?

  • Politik / WiSo / SoWi / Geographie / Jahreszeiten
  • Sekundarstufe II
ANZEIGE