• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Trennen von Stoffgemischen

Unterrichtseinheit

Die Schülerinnen und Schüler untersuchen Stoffgemische und lernen die Begriffe „Reinstoff“ und „Stoffgemisch“ kennen. Sie werden zum eigenständigen experimentellen Erforschen naturwissenschaftlicher Phänomene ermuntert. Mit dieser Unterrichtseinheit sollen Schülerinnen und Schüler dazu befähigt werden, naturwissenschaftliche Projekte weitgehend selbstständig durchführen zu können. Die Lernenden untersuchen verschiedene Stoffgemische in praktischen Experimenten. Dabei werden sie vor das Problem gestellt ein vorliegendes Stoffgemisch in seine Bestandteile zu zerlegen. Die Schülerinnen und Schüler erhalten die geeigneten Gerätschaften und dürfen dann ausprobieren. Begonnen wird mit der einfachen Auslese, gefolgt von Filtrieren und Trennen mit einem Magnete, dabei steigert sich nach und nach der Schwierigkeitsgrad. Im letzten Schritt experimentieren die Kinder selbst mit Reagenzglas und Brenner, um ein Gemisch zu erhitzen und es auf diese Weise in seine Bestandteile zu trennen. Entstanden ist diese Unterrichtseinheit im Rahmen der Initiative "Naturwissenschaftliche Erlebnistage" mit jährlich stattfindenden Präsentationstagen. Die Schülerinnen und Schüler können sich allein oder in Gruppen mit dem Thema beschäftigen, wobei die Gruppenarbeit bevorzugt werden sollte. Es bietet sich an, dass die Lernenden im Anschluss an ihre eigene Durchführung als Experten für andere auftreten. Zur Dokumentation erstellen sie einfache, übersichtliche Plakate, die den Versuchsablauf zeigen und mit Bildern illustrieren. Die Versuche führen sie dann mit anderen Schülerinnen und Schülern, die die Versuche noch nicht kennen, gemeinsam durch. Für diese Präsentation eignet sich der Rahmen der Naturwissenschaftlichen Erlebnistage. Hinweise zur Durchführung Verschiedene Versuche zum Thema Stofftrennung, die die Schülerinnen und Schüler eigenständig durchführen können, werden erläutert. Die Schülerinnen und Schüler sollen ihre naturwissenschaftlichen Kenntnisse und methodischen Fähigkeiten erweitern. anhand der angeeigneten Methoden eigene Versuche planen und durchführen. mit dem Brenner umgehen können, um Wasser von Salz zu trennen. die Versuche und Versuchsergebnisse dokumentieren und präsentieren. Thema Trennen von Stoffgemischen Autor Nicole Neumann Fach Sachkunde, Chemie, Biologie Zielgruppe Grundschule Klasse 3-4 Hauptschule Klasse 5-6 Realschule Klasse 5 Zeitraum etwa 4 Stunden Technische Voraussetzungen Computer mit Internetzugang für die Recherche; Präsentationsprogramm wie PowerPoint oder Ähnliches Material Laborbedarf: Bechergläser, Reagenzgläser, Reagenzglashalter, Brenner, Trichter, Rundfilter, Eisenspäne, Petrischale, Siedesteinchen, Schutzbrillen; Haushaltsmaterialien: verschiedene Döschen, mehrere Haushaltssiebe, Lupe, zu siebende Substanzen (Vollkornmehl, Salz, Erdboden, Nüsse, Linsen Senfkörner, Reis und Ähnliches), Löffel, Sand, Küchenrolle; der Umgang mit dem Gasbrenner sollte vertraut sein. Dieser Versuch eignet sich, um mit den Schülerinnen und Schülern den Begriff "Reinstoff" und "Stoffgemisch" zu erläutern. Den Lernenden werden Dosen ausgeteilt, in denen sich verschiedene Hülsenfrüchte befinden: Reiskörner, Senfkörner, Linsen, Nüsse, Bohnen und so weiter. Die Schülerinnen und Schüler erhalten die Aufgabe, Ordnung in dieses "Chaos" zu bringen. Anschließend wird geklärt, nach welchen Kriterien die Kinder sortiert haben. Hier gibt es verschiedene Möglichkeiten. Manche von ihnen sortieren zum Beispiel nach Farbe oder Größe. Wichtig ist, dass die Lösungen nicht falsch sind. Die Lernenden sollen letztlich aber den Unterschied zwischen Stoffgemisch und Reinstoff verstehen. Reinstoff Einheitliche Stoffe, die nicht mit anderen Stoffen gemischt sind, nennt man "Reinstoffe". Sie bestehen aus gleichen Teilchen. Stoffgemisch Ein Stoffgemisch besteht aus verschiedenen Reinstoffen. Ein Stoffgemisch ist nicht einheitlich. Zunächst erhalten die Schülerinnen und Schüler die Aufgabe, das Mehl mit einer Lupe zu betrachten, um die einzelnen Stoffe, die vielleicht mit bloßem Auge nicht zu erkennen sind, zu identifizieren. Anschließend sollen sie selbstständig das Vollkornmehl in Schrot und Mehl trennen. Die Bodenprobe wird in einem Becherglas mit Wasser vermischt und mit dem Löffel umgerührt. Die Lernenden setzten den Trichter auf den Erlenmeyerkolben und setzten den Rundfilter ein. Langsam gießen die Schülerinnen und Schüler das Schmutzwasser in den Filter. Der Vorgang kann nach Bedarf wiederholt werden. Die Kinder erhalten eine Petrischale, die ein Sand-Eisenspäne-Gemisch enthält. Mithilfe des Magneten sollen die Schülerinnen und Schüler nun das Gemisch trennen. Achtung: Unbedingt den Magneten mit einem Küchentuch einwickeln lassen, da sich die feinen Eisenspäne nur schwer bis gar nicht vom Magneten lösen und dieser unbrauchbar wird! Die Lernenden erhalten die Salz-Wasser-Lösung und überlegen, wie sie dieses Gemisch trennen können. Dazu erhalten sie die im rechten Kasten angegebenen Materialien. In das Reagenzglas werden Siedesteinchen gegeben, damit das Wasser nicht so leicht aus dem Reagenzglas spritzt. Die Schülerinnen und Schüler setzten sich Schutzbrillen auf. Während das Gemisch erhitzt wird, ist darauf zu achten, dass die Kinder das Reagenzglas leicht hin und her bewegen und die Öffnung nie auf Personen richten, da das heiße Wasser herausspritzen kann. Das Wasser verdampft und im Reagenzglas bleibt das Salz zurück. Die Kinder können unter Anleitung der Lehrkraft überlegen, ob ihnen ein Beispiel zur Salzgewinnung dazu einfällt. In manchen Ländern nutzt man die Verdunstungskraft der Sonne und lässt Meerwasser in flachen Becken verdunsten, bis das Salz auskristallisiert, das man anschließend "erntet". Die Schülerinnen und Schüler bekommen die Aufgabe im Internet nach Informationen zum Thema "Reinstoff" und "Stoffgemisch" zu suchen. Ziel ist es, Beispiele für Reinstoffe und Stoffgemische zu finden. Außerdem sollen die Schülerinnen und Schüler recherchieren, ob sie noch weitere Trennverfahren von Stoffgemischen finden. Zur Dokumentation bietet es sich an, dass die Gruppen einfache, übersichtliche Plakate zu ihren Versuchen erstellen. Es wäre aber auch denkbar, dass die Schülerinnen und Schüler am Computer kleine PowerPoint-Präsentationen erstellen, in denen die Durchführung der Versuche in kleinen Schritten dargestellt wird. Diese Präsentationen könnten dann an Schülerinnen und Schüler einer anderen Schule weitergeleitet werden. Mithilfe einer Plattform wie lo-net² können sich die Lernenden der beiden Schulen austauschen und über ihre Erfahrungen berichten.

  • Chemie / Natur & Umwelt
  • Primarstufe, Sekundarstufe I

Umgang mit dem Gasbrenner: der Gasbrenner-Führerschein

Unterrichtseinheit
14,99 €

In der Unterrichtseinheit "Umgang mit dem Gasbrenner: der Gasbrenner-Führerschein" lernen die Schülerinnen und Schüler in den ersten Stunden des Chemie-Unterrichts den sicheren Umgang mit dem Gasbrenner, indem sie die Bauteile vom Teclu-Brenner oder Bunsenbrenner benennen und Schritt für Schritt an das Entzünden herangeführt werden.Im Chemie-Anfangsunterricht der Sekundarstufe I starten die Lernenden oft mit der Hoffnung auf spannende Experimente und aufregende Unterrichtssituationen. Um die Motivation zu erhalten und gleichzeitig von Anfang an das sichere Arbeiten und die Selbstständigkeit bei Versuchen zu trainieren, bietet es sich an, zuerst den Umgang mit dem Gasbrenner zu erlernen. Dieses Unterrichtsmaterial eignet sich daher für die ersten Stunden im Chemie-Unterricht, in denen die Schülerinnen und Schüler relevante Sicherheitsregeln kennenlernen müssen, bevor sie die ersten Experimente durchführen können. Als Einführung in das Fach Chemie erarbeiten die Lernenden dabei zunächst je nachdem, welches Gerät im Unterricht verwendet wird, die Bauteile vom Teclu-Brenner oder auch vom Bunsenbrenner, bevor sie Stück für Stück an das Entzünden des Gasbrenners herangeführt werden, das die schließlich in einer abschließenden Prüfung für den Gasbrenner-Führerschein unter Beweis stellen. Zum Abschluss der Einheit ist es für die Lernenden damit selbstverständlich, dass sie beim Experimentieren beispielsweise Schutzbrillen tragen, lange Haare zusammenbinden, den Tisch vorab aufräumen und den Gasbrenner kippsicher aufstellen. Das Thema "Umgang mit dem Gasbrenner: der Gasbrenner-Führerschein" im Unterricht Bei vielen Versuchen im Chemie-Unterricht wird der Gasbrenner benötigt, wenn auch nur oft sehr kurz. Es ist daher sinnvoll, wenn die Lernenden den Gasbrenner ganz selbstverständlich und ohne Berührungsängste nutzen können. Durch dieses Unterrichtsmaterial zum Umgang mit dem Gasbrenner haben die Schülerinnen und Schüler Gelegenheit, die Arbeit mit dem Gasbrenner oder auch Bunsenbrenner zu trainieren, relevante Sicherheitsregeln kennenzulernen und das selbstständige Arbeiten in ihrer Stammgruppe zu üben. Vorkenntnisse Die Lernenden sollten die allgemeinen Sicherheitsregeln für den Chemie-Raum kennen. Didaktische Analyse Zum Einstieg schauen die Lernenden sich den Gasbrenner genau an und finden heraus, welche Bauteile beweglich sind, wie man sie bewegt und was dabei passiert. Sie stellen erste Vermutungen über die Aufgaben der Bauteile an. Da es noch nicht darum geht, den Gasbrenner anzuzünden, können alle Lernenden unbefangen arbeiten. Anschließend werden die Bezeichnungen und Bauteile vorgestellt, durch die Lernenden zugeordnet und die Aufgaben kurz zusammengefasst. Ein erstes, von der Lehrkraft begleitetes, Anzünden kann an dieser Stelle des Unterrichts bereits erfolgen, um zunächst die Erwartung der Lernenden zu befriedigen. Bevor die Lernenden den Gasbrenner selbstständig anzünden dürfen, erarbeiten sie sich die Abläufe vor dem Anzünden und beim Löschen. Anhand dieser wird der richtige Umgang mit dem Gasbrenner geübt. Zum Schluss zeigen die Lernenden bei einer praktischen Prüfung, dass sie den Gasbrenner vorschriftsmäßig anzünden können und erhalten dafür den "Gasbrenner-Führerschein", die Bestätigung ihrer neu erworbenen Kenntnisse und Belohnung zugleich. Methodische Analyse Die Arbeit in der Gruppe oder in Partnerarbeit führt dazu, dass die Lernenden etwaige Berührungsängste nach und nach abbauen. Die Gruppe kann Hilfestellung beim Umgang mit dem Gasbrenner geben und ermutigen. In Erarbeitungsphasen können unsichere Lernende sich zuerst in der Gruppe oder beim Partner rückversichern, bevor sie ihre Ergebnisse im Plenum vorstellen. Die praktische Prüfung am Schluss verdeutlicht den Lernenden die Relevanz dieser Unterrichtssequenz und motiviert zum Mitmachen. Erkenntnisgewinnung Die Schülerinnen und Schüler beobachten Phänomene nach vorgegebenen Kriterien. stellen Untersuchungsmaterialien nach Vorgaben zusammen und nutzen sie unter Beachtung von Umwelt- und Sicherheitsaspekten. Kommunikation Die Schülerinnen und Schüler finden Informationen zu vorgegebenen Begriffen in ausgewählten Quellen und fassen sie angemessen zusammen. arbeiten mit einer Partnerin, einem Partner oder in einer Gruppe gleichberechtigt, zielgerichtet und zuverlässig. beachten unterschiedliche Sichtweisen. Fachwissen Die Schülerinnen und Schüler können Fachbegriffe angemessen und korrekt verwenden.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Dünnschichtchromatographie - Farbstoffe, Schmerztabletten

Unterrichtseinheit

Die hier vorgestellten spielerischen Versuche zur Auftrennung gängiger Faserstift-Farben und die folgende wissenschaftlich exakte Identifizierung von Inhaltsstoffen gängiger Schmerztabletten mithilfe von Referenzsubstanzen sind der Garant für eine hohe Motivation der Lernenden. Modellierungen mit Excel veranschaulichen den Begriff des multiplikativen Gleichgewichts bei der Chromatographie.Die Experimente zur Chromatographie verdeutlichen die Bedeutung der Trennmethode und geben Denkanstöße zu anderen Themenbereichen - bis hin zur DNA-Analyse oder dem Nachweis von toxischen Verunreinigungen oder Fremdsubstanzen in Modedrogen. Vor den praktischen Übungen werden mit einem Tabellenkalkulationsprogramm (hier Excel) die Verteilungsvorgänge bei der Dünnschichtchromatographie (Austauschvorgänge zwischen mobiler und fester Phase) mathematisch modelliert und grafisch dargestellt. Die Lernenden verstehen die Verteilungsvorgänge mithilfe des Computers als ?Zeichen- und Rechenknecht?. In der Unterrichtseinheit verbinden sich somit am Computer entwickelte Modellvorstellungen mit greifbaren Versuchsergebnissen. 1. Stunde: Chromatographie - eine revolutionäre Technik Allgemeine Hinweise zur Dünnschichtchromatographie 2. Stunde: Mathematische Simulation der multiplikativen Verteilung Mit Excel-Dateien wird die multiplikative Verteilung von zwei zu trennenden Stoffen berechnet und in Diagrammform dargestellt. 3. Stunde: Chromatographie von Farbstoffgemischen Einstieg in die Chromatographie-Praxis: Hier finden Sie Hinweise zur Durchführung, Ergebnisbeispiele und eine ausführliche Versuchsanleitung für die Lernenden. 4. Stunde: Chromatographie von Schmerzmitteln Die Schülerinnen und Schüler analysieren die Bestandteile eines Schmerzmittels und nutzen das Internet, um die Medikamenten-Marke zu bestimmen. Weitere Versuchsvorschläge und Anregungen Experimente zur Trennung von Pflanzenfarbstoffen Die Schülerinnen und Schüler sollen die Verteilung von Farbstoffen mithilfe einer vorgegebenen Excel-Datei bei unterschiedlichen Verteilungskoeffizienten simulieren und die Auswirkungen an der Excel-Grafik ablesen. an einigen Beispielen die zugrunde liegende Excel-Rechenanweisungen zur Konzentrationsberechnung nachvollziehen. experimentell sauber arbeiten und Versuchsprotokolle führen können. in einem Versuch zur Trennung von Farbstoffgemischen erleben, dass die Dünnschichtchromatographie überraschende Ergebnisse liefert. in einem Versuch zur Trennung von Schmerzmitteln die Komponenten einer Schmerztablette identifizieren und mithilfe von Internetrecherchen einem Markennamen zuordnen oder die Auswahl der in Frage kommenden Produkte eingrenzen. weitere Versuche durchführen (Trennung von Paprika-, Curry- und Blattfarbstoffen). Das Wort "Chromatographie" (aus dem Griechischen) bedeutet "mit Farbe schreiben" (chroma = Farbe, graphein = schreiben). In der Chemie fasst man unter diesem Begriff keine Maltechnik, sondern eine Reihe von Techniken zur analytischen Trennung von Stoffen zusammen: Papier-, Dünnschicht-, Gaschromatographie und noch weitere moderne Methoden. Die Chromatographie war und ist für die Naturstoff- und Biochemie von sehr großer Bedeutung, da man mit ihr Stoffgemische sehr leicht trennen und die Bestandteile identifizieren kann. Erwin Chargaff hat zum Beispiel mithilfe chromatographischer Techniken einen wesentlichen Beitrag zur Strukturaufklärung der DNA geleistet. In modernen Labors werden Chromatographien automatisiert durchgeführt und per Computer ausgewertet. Feste Phase Bei der Dünnschicht-Chromatographie benutzt man eine feste Phase auf einem Trägermaterial (Alufolie, Plastikfolie oder Glasplatte), an der die zu untersuchenden Stoffe getrennt werden. Die feste Phase kann zum Beispiel Cellulose, Aluminiumoxid oder Kieselgel sein. Sie ist sehr fein und gleichmäßig auf dem Trägermaterial verteilt. Mobile Phase: Das Laufmittel Die flüssige Phase bewegt sich durch Kapillarkräfte durch die feste Phase und transportiert dabei die Stoffe des Substanzgemisches. Auftragung der Substanzproben Auf die Dünnschichtchromatographie-Folie trägt man mithilfe einer Kapillare die Proben punktförmig entlang einer Startlinie auf und lässt sie eintrocknen. Nach dem Auftragen der Proben stellt man die Folie aufrecht in einen Chromatographie-Tank, der gerade soviel von der mobilen (flüssigen) Phase enthält, dass die Startlinie mit den aufgetragenen Proben einen halben Zentimeter oberhalb des Flüssigkeitsspiegels liegt. Durch Kapillarkräfte beginnt die mobile Phase durch die feste Phase zu wandern und zieht dabei die Substanzproben mit sich. Während der Chromatographie stellt sich entlang der Laufstrecke ständig ein neues Gleichgewicht ein zwischen der Lösung des Stoffes (in der mobilen Phase) und der Adsorption des Stoffes (an die stationäre Phase). Nimmt man die Folie aus dem Gefäß und trocknet sie, so befindet sich der "Fleck" jeder Komponente der Probe auf einer ganz bestimmten Höhe des Chromatogramms (wobei sich die Farbstoffmengen der mobilen und der stationären Phase nach der Trocknung der Folie an jedem Ort jeweils addieren). Die Trennung kommt dadurch zustande, dass sich die Substanzen verschieden gut in der mobilen Phase lösen und weitertransportiert werden. verschieden fest an die feste Phase angelagern (Adsorption). Der Rf-Wert Je besser sich eine Substanz im wandernden Lösungsmittel löst und je kleiner ihre Affinität zum Trägermaterial ist, desto schneller und weiter wird sie mit dem Lösungsmittel wandern. Daraus ergibt sich als eine charakteristische Größe der Rf-Wert ("Ratio of front") der Substanz (Wanderungsstrecke der Substanz / gesamte Wanderungsstrecke des Lösungsmittels). Der maximale Rf-Wert beträgt somit 1, meist liegt er deutlich darunter. Er hängt von der chemischen Struktur der Substanz, vom Trägermaterial und vom Lösungsmittelgemisch ab (Kammmersättigung und konstante Versuchstemperatur werden vorausgesetzt). Jonas Hostettler vom Departement Chemie der Universität Basel hat ein kleines Simulationsprogramm entwickelt und für die Veröffentlichung zur Verfügung gestellt. Es eignet sich sehr gut als Ergänzung zu den eher trockenen Erklärungen der Vorgänge bei der multiplen Verteilung (Beamerpräsentation, Nutzung am heimischen Rechner oder im Computerraum). In dem ZIP-Ordner "dc_simulation_verteilung" (siehe unten) finden Sie die Datei "Verteilung.htm", mit der Sie das Programm per Mausklick starten (Abb. 1, Platzhalter bitte anklicken). Weisen Sie Ihre Schülerinnen und Schülern darauf hin, dass in den Reagenzgläsern die untere (grüne) Phase der stationären Phase, die obere (blaugrüne) Phase der mobilen Phase, also dem Fließ- oder Laufmittel, entspricht. Um die Simulation starten zu können, müssen für die beiden zu trennenden Stoffe Verteilungskoeffizienten (v) Werte eintragen werden. Mit dem Wert für "i" geben Sie die Zahl der im ersten Schritt zu simulierenden Trennschritte vor. Durch den Klick auf "Rechne!" wird dann das multiplikative Gleichgewicht für eine entsprechende Zahl von Reagenzgläsern berechnet. Die Konzentrationen der Stoffe werden als Balkendiagramme dargestellt. Dabei werden leider nur die Konzentrationen in der mobilen Phase (grün) berücksichtigt. Durch Klick auf "i+1" wird jeweils ein weiterer Trennschritt berechnet. (Aus programmiertechnischen Gründen startet die Software bei i-Werten, die größer sind als eins, jeweils beim "letzten" Trennschritt.) Die Excel-Dateien können zur Unterstützung des Unterrichtsgespräches eingesetzt werden. Dazu sind lediglich ein Präsentationsrechner und ein Beamer erforderlich. Machen Sie sich mit den Simulationen vor der Verwendung im Unterricht vertraut. Verwenden Sie am besten die Verteilungskoeffizienten 0,5 für den roten und blauen Farbstoff - hier werden die Zahlenreihen am verständlichsten. Die Funktionen und Eigenschaften der beiden Excel-Simulationen werden in den folgenden Abschnitten dargestellt. Darstellung der multiplikativen Verteilung Mit der Datei "1_multiplikative_verteilung_5_schritte.xls" (Abb. 2, Platzhalter bitte anklicken) wird eine Stofftrennung (rechnerisch) mit nur fünf Trennschritten simuliert: Die Konzentrationen eines roten und eines blauen Farbstoffs in der mobilen und der stationären Phase werden rechnerisch und grafisch dargestellt. Die Konzentrationen und die Verteilungskoeffizienten der Stoffe (rote Zahlen = roter Farbstoff, blaue Zahlen = blauer Farbstoff) lassen sich ändern. Die Ergebnisse werden jeweils in einer Grafik ("Multiple Verteilung - stationäre und mobile Phase") dargestellt, die sich den eingegeben Werten automatisch anpasst. In der Spalte B steht "GG" für die Einstellung des Gleichgewichtes, der nach rechts gerichtete Pfeil für das "Vorrücken" der Fließmittelfront. Variation der Verteilungskoeffizienten In den Feldern L2 und L4 (siehe Abb. 3) können die Verteilungskoeffizienten geändert werden (Werte zwischen 0 und 1). Experimentieren Sie mit verschiedenen Werten. Diese Felder geben an, zu welchen Anteilen die beiden Stoffe in die mobile Phase übergehen: In Feld D6 steht dann der Anteil roten Farbstoffs, der in die mobile Phase übergeht (0,25 entspricht 25 Prozent), im Feld G6 der Anteil roten Farbstoffs, den die stationäre Phase in dem jeweiligen Schritt absorbiert (1 - 0,25 = 0,75; also 75 Prozent). Um den Inhalt der Felder D6 und G6 brauchen Sie sich nicht zu kümmern - ihre Werte richten sich nach der Eingabe in L2 und L4 (Vorgabe der Verteilungskoeffizienten). Stoffmengen In den Feldern E2 und E4 (Abb. 3) können die Stoffmengen variiert werden. Werte unter zehn liefern im Graphen zu flache Kurven und werden nicht angenommen. Wie werden die Berechnungen durchgeführt? Die gelb unterlegten Felder (siehe Abb. 4 und Abb. 5) enthalten die Stoffmengen der mobilen Phase, die blau unterlegten enthalten die absorbierten Anteile der stationären Phase. Vor dem Weiterwandern der mobilen Phase, also hinter der Fließmittelfront, findet eine Gleichgewichtseinstellung statt (Abb. 4). Nach der Gleichgewichtseinstellung wandert die mobile Phase weiter - zunächst ohne erneute Gleichgewichtseinstellung (Abb. 5). Danach findet wieder eine Gleichgewichtseinstellung statt und das Fließmittel wandert wieder eine Zelle weiter - und so geht es weiter, bis fünf Trennschritte simuliert sind. Ganz unten in der Tabelle (Zeile 48 und 49, siehe Abb. 2) werden die Stoffmengen der stationären und der mobilen Phase für jeden Farbstoff und jede Zelle addiert. Diese Werte erscheinen in der Grafik. Natürlich sind fünf Trennschritte noch zu wenig, um eine scharfe Trennung der Farbstoffe zu simulieren. Dies ist mit der zweiten Excel-Datei möglich (2_multiplikative_verteilung_stat _mobil_10_schritte.xls), die zehn Trennschritte simuliert (Abb. 6, Platzhalter bitte anklicken). Dabei werden die Verteilungen in der stationären und mobilen Phase - im Unterschied zur ersten Simulation - zusammengefasst. Dies ist im Vergleich zur ersten Simulation ein Vorteil: dort müssen bei der Betrachtung der Trennschritte die Stoffmengen der mobilen und der stationären Phase jeweils addiert werden. Wieder gilt: Rote Zahlen gelten für den roten, blaue für den blauen Farbstoff. Wie funktioniert diese "Zusammenfassung" der Stoffmengen in der stationären und mobilen Phase? Betrachten wir in Abb. 7 das oval markierte Feld E14. Wir wollen gerade die Teilchenmengen berechnen, die im dritten Trennschritt anfallen. E14 wird mit zwei Teilchenmengen "versorgt": Von der Zelle davor kommt der Anteil an Substanz hinzu, der in ihr in die mobile Phase übergegangen ist ("C12*D6", also das Produkt der Werte aus den Zellen C12 und D6) und weitertransportiert wird (grüner Pfeil). Zusätzlich kommt der Inhalt der Zelle hinzu, der von der stationären Phase festgehalten (E12*G6) und nicht weiter transportiert wird (roter Pfeil). Für eine detaillierte und mehr schrittweise Betrachtung der Einzelvorgänge ist die Excel-Datei mit den fünf Schritten geeigneter - besonders für jüngere Lernende. Erfahrungsgemäß verstehen Schülerinnen und Schüler des Gymnasiums (ab Klasse 10) die gekoppelten Vorgänge in der Excel-Simulation mit zehn Schritten gut - zumal das zweite Excel-Arbeitblatt auch noch eine Grafik zeigt, die nur fünf Trennschritte darstellt (in Abb. 6 nicht dargestellt): man erkennt im Vergleich mit dem oberen Diagramm (zehn Trennschritte) deutlich den Unterschied, der sich mit der steigenden Zahl der Trennschritte einstellt. Hier noch zwei wichtige Hinweise: Sie können sich bei geöffneter Excel-Datei die verwendeten Formeln anzeigen lassen. Klicken Sie auf "Extras", "Formelüberwachung", "Formelüberwachungsmodus". Der "Klick-Rückweg" führt zur normalen Tabellendarstellung zurück. Beim Schließen der Excel-Datei sollten die vorgenommenen Änderungen nicht gespeichert werden (Abb. 8). So bleibt der Originalzustand der Simulationen erhalten. Im Rahmen einer Projektarbeit können die Schülerinnen und Schüler - je nach Interesse und Fähigkeiten - in selbständiger Arbeit das mathematische Modell zur multiplikativen Verteilung mit einer objekt-orientierten Programmiersprache wir zum Beispiel Visual Basic "automatisieren". So lassen sich über Hundert Trennschritte in einer "Schleife" berechnen. Die Diagramme der Auftrennung werden so erheblich klarer und aussagekräftiger. Mit der Dünnschichtchromatographie kann man Farbstoffgemische auftrennen und zeigen, dass eine scheinbar einfarbige Lösung oder die Farbe eines Faserschreibers oft aus vielen Einzelkomponenten unterschiedlicher Farbe besteht. Die Auftrennung verschiedenfarbiger Faserschreiber liefert - abhängig von der Herstellerfirma und der Farbe - optisch eindrucksvolle Resultate. Dabei kann zum Beispiel untersucht werden, welcher Herstellerfirma ein Faserschreiber zuzuordnen ist. Abb. 9 zeigt einige Ergebnisse aus Schülerversuchen. Die Betrachtung der getrockneten Chromatogramme unter langwelligem UV-Licht (UV-Lampe nicht auf die Augen richten beziehungsweise in die Lampe hineinsehen, im Idealfall Schutzbrillen verwenden!) zeigt - je nach Fabrikat und Farbe - schwach fluoreszierende Zusatzstoffe, die im Tageslicht die Brillanz der Farben erhöhen. Bereitgestellt werden müssen die Dünnschichtchromatographie-Folien (siehe "dc_versuch_1_farbstoffe.pdf"), Trennkammern mit Deckeln, eine Flasche mit vorbereitetem Fließmittel, ein Trichter, weiche Bleistifte (zur Markierung der Folien) und eventuell eine UV-Lampe mit umschaltbarem Wellenlängenbereich. Das verwendete Laufmittel enthält Acetonitril (siehe "dc_versuch_1_farbstoffe.pdf"). Es liefert in kurzer Zeit sehr gute Trennerfolge und ist für Schülerversuche noch zugelassen. Führen Sie den Versuch nur in einem gut ziehenden Abzug durch. Nach der Chromatographie wird Fließmittel aus den Gefäßen durch einen Trichter ins Vorratsgefäß zurückgegeben. Die Filter werden seitlich an die Gefäße gestellt und unter dem Abzug getrocknet. Achten Sie bei längerer Lagerung des Laufmittels auf den pH-Wert - er sollte bei etwa 7,0 liegen. Farbstifte bringen die Schülerinnen und Schüler mit. Achten Sie jedoch darauf, dass keine Permanentstifte verwendet werden. Als Lehrkräfte müssen wir bei den weiteren Versuchen dieser Unterrichtseinheit immer wieder auf die exakten Vorbereitungen zurückgreifen und uns darauf verlassen können, dass die Schülerinnen und Schüler selbstständig die Folien vorbereiten, die Stoffe auftragen und die Trennung sorgfältig durchführen können. Achten Sie bei diesem ersten Versuch daher besonders auf folgende Punkte: Sind alle Folien ordnungsgemäß vorbereitet? Sind auf den Folien Farbe und Fabrikat der Farbstifte vermerkt? Sind die Folien mit dem Namen der Arbeitsgruppe beschriftet? Weiß jede Arbeitsgruppe, welches Gefäß und welche Folie zu ihr gehört? Werden die Farbtupfer nicht zu dick aufgebracht? Zu viel Farbstoff führt zu verschmierten Flecken, daher gilt: Weniger ist mehr! Beim Auftragen der Proben lieber mehrmals tüpfeln - Proben dabei zwischendurch trocknen lassen. Lassen die Schülerinnen und Schüler die Folie einfach in die Chromatographiekammer fallen? Tauchen die Farbtupfer nicht in das Fließmittel ein? Vergleichen die Lernenden die Trennergebnisse mit anderen Arbeitsgruppen? Nach dem spielerischen Einsteig wird nun eine anspruchsvollere Aufgabe wissenschaftlich exakt bearbeitet. Die Datei "dc_versuch 2_schmerzmittel.pdf" (siehe unten) liefert neben einer Liste mit den benötigten Materialien eine genaue Versuchsvorschrift - von der Vorbereitung der Folie bis hin zur Auswertung der Ergebnisse unter UV-Licht (Abb. 10). Zeigen Sie den Schülerinnen und Schülern vor Versuchsbeginn die weißen Substanzen in Reinform (Acetylsalicylsäure, Coffein, Paracetamol; Sie benötigen diese Stoffe bei der Chromatoghraphie auch als Referenzsubstanzen). Sie werden gleich die Problematik erkennen, dass weiße (oder farblose) Stoffe auf dem weißen Folienbelag bei Tageslicht nicht sichtbar sind. Bei der Frage nach Möglichkeiten zum Nachweis "unsichtbarer" Substanzen können die Schülerinnen und Schüler - spätestens nach dem Hinweis auf die Geldscheinprüfung - die Begriffe UV-Licht oder Fluoreszenz ins Spiel bringen. Bitte halten Sie die vorgegebenen Stoff- und Lösungsmittelmengen ein - sie sind erprobt (siehe "dc_versuch 2_schmerzmittel.pdf"). Aspirin (Acetylsalicylsäure) in methanolischer Lösung sollte nicht zu lange aufbewahrt werden oder gar mit Luftfeuchtigkeit in Kontakt kommen. Es findet eine langsame Hydrolyse beziehungsweise Umesterung statt. Die entstehende Salicylsäure erzeugt im Chromatogramm oberhalb des Aspirins einen diffusen, blau fluoreszierenden Fleck, der sehr störend ist. Verwenden Sie daher nur frisch zubereitete Aspirinlösungen. Verwenden Sie als Analysenprobe möglichst Schmerztabletten, die entweder alle drei Vergleichssubstanzen oder mindestens zwei davon enthalten. Führen Sie den Versuch nur unter einem gut ziehenden Abzug durch und beachten Sie die Brennbarkeit der Lösungsmittel! Die Markierung der Lösungsmittelfront muss sofort nach der Entnahme der Folie aus dem Chromatographiegefäß erfolgen, sonst ist sie nicht mehr eindeutig erkennbar. Betrachten Sie nur völlig trockene Folien unter UV-Licht. Richten Sie die Lampe nie auf Augen. Weisen Sie die Schülerinnen und Schüler dauf hin, nie in die Lampe zu blicken (im Idealfall Schutzbrillen verwenden). Bei der Betrachtung der Folien unter UV-Licht (254 nm) fluoresziert die weiße Trägersubstanz durch ihren Fluoreszensfarbstoff grünlich. Farblose Substanzen, die nicht fluoreszieren, schwächen die Fluoreszens des Trägermaterials und machen sich als "dunkle Flecken" bemerkbar. Die Schülerinnen und Schüler umfahren diese Flecken der aufgetrennten Substanzen vorsichtig mit einem weichen Bleistift. Besonders intensive Flecke werden schraffiert. Dabei ist darauf zu achten, dass die weiße Schicht der Folie nicht beschädigt wird. Achten Sie auch darauf, dass die Gruppen ihre Markierungen bei Tageslicht kontrollieren und noch einmal mit dem Erscheinungsbild unter UV-Licht vergleichen, bevor sie die Lampe verlassen: Wurde auch kein Fleck vergessen? Wurden besonders intensive Flecken schraffiert? Dies sind die Voraussetzung für klare Aussagen: Was sind die Rf-Werte für die Referenzsubstanzen Aspirin, Coffein und Paracetamol? Welche "Flecke" mit gleichem Rf-Wert sieht man bei der Schmerzmittelprobe? Abb. 11 zeigt das Ergebnis der Auswertung eines Schülerversuchs (a: Ergebnis unter UV-Licht; b: beschriftete Originalfolie). Die Schülerinnen und Schüler zeigen sich überrascht, wenn zum Beispiel bei einer Gruppe ein "Fleck" auftaucht, der keiner Referenzsubstanz zugeordnet werden kann. Eine "heimliche" Zugabe von 100 mg Ibuprofen zur Lösung der Analysenprobe liefert einen solchen "Rätselfleck", der zu weiterführenden Überlegungen anregen und die Bedeutung der Chromatographie als einfache Methode zum Aufspüren von Verunreinigungen verdeutlichen soll: Um welchen Stoff (welche Verunreinigung) kann es sich handeln? Welche wirksamen (rezeptfreien) Substanzen zur Schmerzbekämpfung gibt es sonst noch? Wie könnte man die unbekannte Substanz identifizieren? Die Schülerinnen und Schüler können die Aufgabe erhalten, die Zusammensetzung gängiger Schmerztabletten im Internet zu recherchieren und zumindest eine Auswahl der für die Zuordnung ihrer Probe in Frage kommenden Präparate zu erstellen. Erfahrungsgemäß erweisen sie sich dabei als sehr findig! Die Schülerinnen und Schüler sollen nun auf der Basis ihrer experimentellen Erfahrungen die benötigten Geräte selbst zusammenstellen (Hilfestellung durch die Lehrkraft), die Chemikalien und Proben besorgen und den Versuch eigenverantwortlich durchführen und auswerten. Die Anleitungen zu den folgenden drei Experimenten (Trennung von Paprika-, Curry- und Blattfarbstoffen) sind daher nicht mehr so ausführlich. Gegebenenfalls können die Lernenden auch noch weitere Anleitungen recherchieren und Experimente durchführen. Beachten Sie bei den hier vorgeschlagenen Pflanzenfarbstoff-Chromatographien folgende Punkte: Frische Ausgangsmaterialien Besonders beim Paprikapulver ist darauf zu achten, dass es frisch ist und nicht längere Zeit Luft und Licht ausgesetzt wurde. Feuergefährliches Fließmittel Besondere Vorsicht ist bei der Entwicklung der Chromatogramme geboten. Dies sollte nur im gut ziehenden Abzug erfolgen. Verwenden Sie hier keine offenen Flammen, keine heißen Gegenstände und keine Handys (Fotoblitz)! Um die Entzündung feuergefährlicher Lösungsmittel auszuschließen, fotografieren Sie die Chromatogramme nie unter dem Abzug. Lichtempfindliche Substanzen Die Entwicklung der Chromatogramme findet sowieso im Abzug statt - daher dürfte Licht- oder gar Sonneneinstrahlung dabei kein Thema sein. Nach dem Trocknen sollten die Chromatogramme lichtgeschützt aufbewahrt werden. Paprikafarbstoffe Abb. 12 zeigt ein Chromatogramm von Paprika-Farbstoffen. Je nach Paprikasorte können auch weniger Banden erzielt werden. Die hier verwendeten Paprika-Früchte stammten aus Ungarn. Curry- beziehungsweise Curcuma-Farbstoffe Bei der chromatographischen Analyse von Curcuma sollten sich fünf Flecke ergeben: drei gelbe (Rf-Werte 0,17, 0,29 und 0,46) und zwei blau fluoreszierende (Rf-Werte 0,25 und 0,54). Bei Currypulver erhält man mindestens einen intensiv orangefarbigen Fleck und drei gelbe Flecke mit kleineren Rf-Werten. Die aufgetrennten Blattfarbstoffe (Abb. 13) unterscheiden sich farblich teilweise nur durch Nuancen: Carotine (goldgelb) Phaeophytin (olivgrün) Chlorophyll a (blaugrün) Chlorophyll b (gelbgrün) Lutein (graugelb) Violaxanthin (gelb) Neoxanthin (gelb) Im Unterricht kann die Dünnschichtchromatographie auch als Möglichkeit zum Nachweis von Verunreinigungen beziehungsweise Fremdsubstanzen bei illegalen Modedrogen wie Exstacy oder Speed thematisiert werden - mit dem ausdrücklichen Hinweis, dass diese toxischen Fremdsubstanzen oft einen beträchtlichen Anteil der Droge ausmachen, teils absichtlich zugegeben werden und andere bei der Herstellung unvermeidbar als Nebenprodukte entstehen, die weder bekannt noch toxikologisch geprüft sind. Die Abnehmerinnen und Konsumenten der Drogen sind daher Versuchskaninchen, um deren Gesundheit und die Spätfolgen (Krebs, cerebrale Effekte, persönlichkeitsverändernde Wirkungen) sich niemand kümmert. Die Vermeidung oder Beseitigung gesundheitsschädlicher Nebenprodukte hätte Zeit-, Substanz- und damit Einnahmeverluste der "Produzenten", Dealerinnen und Dealer zur Folge. "Cash" ist deren Maxime, das erhebliche gesundheitliche und psychische "Restrisiko" tragen allein die Abnehmer und Konsumentinnen. Dieser Aspekt ist als Übergang oder Anknüpfungspunkt zu einer fachübergreifenden Unterrichtseinheit zum Thema "Suchtstoffe und Drogen" gut geeignet.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Venus - Beobachtung der Phasen unseres Nachbarn

Unterrichtseinheit

Der Wechsel der Venusphasen und die Metamorphose vom Abend- zum Morgenstern bieten ein astronomisches Lehrstück und schulen das räumliche Verständnis. "Sie loderte silbern, entsandte verfliegende Strahlen, brannte in Zacken, und eine längere Flamme schien gleich der Spitze eines Speeres obenauf ihr zu stehen" - so beschreibt Thomas Mann (1875-1955) die Erscheinung der Venus am Himmel über Kanaan in dem Roman "Joseph und seine Brüder". Nach Sonne und Mond ist unser Nachbarplanet das hellste Objekt am Himmel, aber nicht zu jeder Zeit: Bedingt durch die innerhalb der Erdbahn gelegene Umlaufbahn zeigt Venus verschiedene Phasen (Vollvenus, Halbvenus, Neuvenus) und dabei eine erhebliche Veränderung des scheinbaren Durchmessers. Zum Zeitpunkt ihres größten Glanzes erscheint Venus als breite Sichel. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Beobachtung ohne optische Hilfsmittel Eine Beobachtung der Venus über einen längeren Zeitraum, insbesondere die "Metamorphose" vom Morgenstern zum Abendstern - bietet ein schönes astronomisches Lehrstück. Schülerinnen und Schüler können die Dynamik des Sonnensystems dabei ganz ohne optische Hilfsmittel erleben. Sie verstehen den Wandel vom Abend- zum Morgenstern als Projektion eines einfachen Manövers an die Himmelskugel: Venus überholt die Erde auf der "Innenbahn". Ausführliche Hinweise zur Beobachtung und Dokumentation von Planetenbewegungen über einen längeren Zeitraum finden Sie in dem Beitrag zur Allgemeine Hinweise zur Planetenbeobachtung . Beobachtung der Venusphasen Mit dem bloßen Auge sind im Laufe von Wochen und Monaten lediglich deutliche Veränderungen der Venushelligkeit erkennbar. Das zugrunde liegende Zusammenspiel von Venusgröße und -phase offenbart sich allerdings erst beim Blick durch optische Hilfsmittel. Wenn Sie keinen Zugriff auf ein Amateurteleskop haben, bietet sich ein Besuch in der nächsten Volkssternwarte an. Falls Sie Hobby-Ornithologen im Kollegium oder Freundeskreis haben: Auch mit einem guten Spektiv lassen sich die Phasen der Venus beobachten. Die schlanke Sichel der erdnahen Venus ist sogar schon mit einem guten Feldstecher (10-fache Vergrößerung) erkennbar. Besonders Scharfsichtigen soll dies sogar mit bloßem Auge gelingen - darauf bezieht sich möglicherweise auch Thomas Manns Beschreibung. Auf den Spuren von Galileo Galilei und Simon Marius Auch ohne die Einbettung in ein längeres Beobachtungsprojekt lohnt es sich, die Schülerinnen und Schüler einen Blick auf die Sichelform des strahlenden Planeten werfen zu lassen. Dabei wandeln sie in den Fußstapfen bedeutender Vorgänger: Galileo Galilei (1564-1642) und der weniger bekannte deutsche Astronom Simon Marius (1573-1624) entdeckten 1610 mit den ersten Fernrohren nahezu zeitgleich die Venusphasen - eine Beobachtung, die zum Sturz des geozentrischen und zur Untermauerung des heliozentrischen Weltbildes beitrug. Entstehung der Venusphasen Geometrische Betrachtungen zur Perspektive unseres Blicks auf die Venus veranschaulichen die Entstehung der Venusphasen. Die Erforschung des Planeten Die Atmosphäre gleicht einem heißen Ozean, der eine dämmrige und von erstarrten Lavaflüssen geprägte Landschaft bedeckt. Die Schülerinnen und Schüler sollen Bewegung und Phasen der Venus durch die Bahngeometrie erklären können und ihr räumliches Vorstellungsvermögen schulen. erläutern können, warum die Entdeckung der Venusphasen durch Galileo Galilei (1564-1642) und Simon Marius (1573-1624) das heliozentrische Weltbild unterstützte. die schon in der Dämmerung strahlende Venus mit eigenen Augen betrachten und - wenn möglich - mithilfe geeigneter optischer Instrumente die Sichelform des Planeten beobachten. die charakteristischen Eigenschaften der Venusatmosphäre und -oberfläche kennen lernen und den Planeten nicht nur als Lichtpunkt betrachten, sondern in ihm eine fremde Welt erkennen. eine astronomische Beobachtung gemeinsam planen und zusammen mit Mitschülern, Lehrpersonen, Eltern, Freundinnen oder Freunden erleben. Planetarium-Software als Werkzeug zur Planung astronomischer Beobachtungen kennen und nutzen lernen. Thema Beobachtung der Venus Autor Dr. André Diesel Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Sekundarstufe I und II Zeitraum variabel: vom einmaligen Beobachtungsabend bis hin zur Dokumentation der Venusbahn über Wochen oder Monate Technische Voraussetzungen Beobachtung mit dem bloßen Auge oder einem guten Feldstecher (dieser ermöglicht zumindest die Betrachtung der schmalen Venussichel); Spektive (40-60-fache Vergrößerung) und kleine Amateurteleskope lassen alle Venusphasen erkennen. Software Planetarium-Software zur Vorbereitung (Beamerpräsentation) oder zum Ausdrucken von Himmelskarten, zum Beispiel Stellarium (kostenfreier Download) Untere und Obere Konjunktion Die innerhalb der Erdbahn kreisende Venus "pendelt" von uns aus gesehen zwischen der größten westlichen und der größten östlichen Elongation hin und her (Abb. 1). Im Gegensatz zu Mars und den äußeren Planeten ist bei Venus und Merkur zwischen der unteren und der oberen Konjunktion zu unterscheiden. In den Zeiten um beide Konjunktionen befinden sich die inneren Planeten nahe bei der Sonne am Taghimmel und sind nicht zu beobachten (ähnlich der "Neumondsituation"). Zum Zeitpunkt der unteren Konjunktion ist Venus etwa 40 Millionen Kilometer von der Erde entfernt, zum Zeitpunkt der oberen Konjunktion etwa 150 Millionen Kilometer. Daraus ergeben sich die deutlichen Änderungen des scheinbaren Durchmessers des Planetenscheibchens an unserer Himmelskugel. Venustransite Wenn sich Merkur oder Venus zum Zeitpunkt der unteren Konjunktion genau zwischen Erde und Sonne befinden, ist ein so genannter Transit zu beobachten: Der Planet wandert als schwarzes Scheibchen über die Sonnenscheibe. Aufgrund der nicht ganz identischen Bahnebenen der Planeten geschieht dies jedoch nur selten (aus demselben Grund haben wir auch nicht bei jedem Neumond eine Sonnenfinsternis). Abb. 2 zeigt den Venustransit von 2004, aufgenommen von einer Schülergruppe am Gymnasium Isernhagen (Niedersachsen). Der nächste Venustransit am 6. Juni 2012 ist, wenn die Sonne in Mitteleuropa aufgeht, schon fast beendet. Der nächste Merkurtransit am 09. Mai 2016 kann dagegen vollständig beobachtet werden. Solche Beobachtungen sind nur mit geeigneten Schutzbrillen und Instrumenten möglich! Phasen der Venus Im Gegensatz zu den anderen Planeten zeigen Venus und Merkur aufgrund ihrer innerhalb der Erdbahn liegenden Bewegung um die Sonne Phasen: Etwa während der größten östlichen Elongation (siehe Abb. 1) ist eine abnehmende Halbvenus als auffälliger Abendstern zu beobachten. Um den Zeitpunkt der größten westlichen Elongation ist eine zunehmende Halbvenus als Morgenstern zu sehen. Vor oder nach der unteren Konjunktion erscheint Venus (kurz nach Sonnenuntergang beziehungsweise kurz vor Sonnenaufgang) als große, aber sehr schmale Sichel. Um die obere Konjunktion herum erscheint das Planetenscheibchen dagegen voll beleuchtet, aber sehr klein und ist dadurch in der Dämmerung sehr unauffällig. Durch das Zusammenspiel von Entfernung und Beleuchtung (Phase) des Planeten kommen die großen Helligkeitsschwankungen der Venus zustande. An einem bestimmten Punkt zwischen unterer und oberer Konjunktion erstrahlt Venus in ihrem größten Glanz. Zu diesem Zeitpunkt sind 28 Prozent der uns zugewandten Seite des Planeten beleuchtet (Venus erscheint dann als breite Sichel). Abb. 3 zeigt die Entwicklung der abnehmenden Venus bis hin zur scharfen Sichelform. Die Aufnahmen stammen von Jens Hackmann. Weitere Astronomie-Fotos finden Sie auf seiner Homepage: Java-Applet zur Entstehung der Venusphasen Ein Java-Applet von Rob Scharein veranschaulicht dynamisch die Entstehung der Phasen bei den inneren Planeten Venus und Merkur. Sonne, Erde und die Bewegung des inneren Planeten werden in der Aufsicht dargestellt. Zeitgleich sieht man - aus der Perspektive irdischer Beobachter - die Entwicklung der Phasen und die Veränderungen der Größe des Planetenscheibchens. Java-Applet "Phases of the inner planets" (Astronomy and Physics Simulations) Klicken Sie auf der Website von Rob Scharein unter "Solar system explorer" auf das Saturn-Icon vor "Phases of the inner planets". Venus benötigt für die Umrundung der Sonne 243 Tage und um sich einmal um sich selbst zu drehen 225 Tage. Der Drehsinn der Eigenrotation ist bei ihr - als einzigem Planeten - retrograd: Die Sonne geht also im Westen auf und im Osten unter. Daraus ergibt sich, dass auf der Venusoberfläche alle 117 Tage die Sonne aufgeht. Die Ursache für die retrograde Rotation ist nicht bekannt - möglicherweise war hier eine Kollision im Spiel. Ein "Venuszyklus" am Erdhimmel dauert länger als ein Venusjahr, da sich die Erde während eines Venusjahrs ja auch weiterbewegt: Von Neuvenus zu Neuvenus vergehen 584 Erdentage. Undurchdringliche Wolkenschicht Venus wird von dichten Wolken eingehüllt, die Teleskopen den Blick auf die Oberfläche verwehren und den Planeten als "Billardkugel" erscheinen lassen. Abb. 4 zeigt ein Venus-Portrait, aufgenommen von der NASA-Sonde Mariner 10. Die dichte Wolkendecke sorgte vor der Ära der Raumsonden für vielfältige Spekulationen. So vermutete man unter den Wolken eine Landschaft, die der der "Urerde" vor 200 Millionen Jahren entsprechen sollte, bedeckt von dampfenden Dschungeln, durch die saurierähnliche Geschöpfe stapfen sollten. Die Wolkendecke macht Venus nicht nur geheimnisvoll, sondern sorgt auch für den strahlenden Glanz des Planeten an unserem Himmel: Drei Viertel des Sonnenlichtes werden von den Wolken reflektiert. Planet im Fieber Als 1970 erstmals eine russische Raumsonde auf der Nachtseite des Planeten landete (Venera 7), meldete sie eine Temperatur von 475 Grad Celsius und den enormen Druck von 90 Erdatmosphären - das entspricht etwa dem Druck in 900 Metern Wassertiefe. Zwei Jahre später schickte eine weitere russische Sonde ähnliche Werte von der Tagesseite. Unter den dampfdruckkesselartigen Bedingungen verhält sich die Atmosphäre wie ein heißer Ozean, der die Temperaturunterschiede zwischen Tag- und Nachtseite ausgleicht. Die Zusammensetzung der Atmosphäre - 96 Prozent Kohlenstoffdioxid! - macht Venus zur perfekten Strahlungsfalle, die den Planeten in ein Dauerfieber versetzt. Der Treibhauseffekt wird noch verstärkt von Wasserdampfspuren und den Wolken aus 80-prozentiger Schwefelsäure, die die von der Oberfläche reflektierte Strahlung nicht in den Weltraum entkommen lassen. Der Schwefel wurde ursprünglich durch vulkanische Aktivitäten in Form von Schwefeldioxid ausgestoßen. Turbulente Atmosphäre Die amerikanischen Pionier-Sonden erkundeten in den siebziger Jahren die Zusammensetzung der Venusatmosphäre. Die von der Erde aus sichtbaren Wolken befinden sich etwa 65 Kilometer über der Oberfläche und werden von heftigen Winden (350 Kilometer pro Stunde) in nur vier Tagen um den gesamten Planeten gejagt. Wenige Kilometer darunter gehen die Wolken in eine gelbliche Dunstschicht über, die möglicherweise aus Schwefelsäuretröpfchen besteht. Etwa 50 Kilometer über der Oberfläche findet sich die dichteste Wolkenschicht. Aus ihr fällt ständig saurer Regen, der jedoch verdampft bevor er die Oberfläche erreicht. Auf dieser sind die Winde eher schwach (wenige Stundenkilometer). Die 2005 gestartete ESA-Sonde Venus Express umkreist den Planeten und erforscht dessen Atmosphäre und Klima genauer. Abb. 5 zeigt ein Wirbelsturmsystem, das von der Sonde fotografiert wurde. Blitzgewitter und dämmrige Tage Unterhalb der Wolken erzeugen zahlreiche Blitze ein verschwommenes Glühen - dass es dabei heftig grollen muss, kann man sich vorstellen. Nur ein Prozent des Sonnenlichts erreicht die Venusoberfläche. Hier ist es immer dämmrig, etwa wie an einem wolkenverhangenen Tag auf der Erde. Eine junge vulkanische Landschaft Die ersten Fotos der Oberfläche machten russische Raumsonden in den siebziger Jahren. Viele Bilder finden Sie auf der Website von Don P. Mitchell (siehe unten). Eine systematische Untersuchung der Oberfläche erfolgte durch die NASA-Sonde Magellan in den Jahren 1989 bis 1994. Die Sonde umkreiste den Planeten und durchdrang mit ihrem Radarauge die dichte Wolkendecke. Aus den gewonnenen Daten wurde eine detaillierte Karte erstellt, die 98 Prozent der Venusoberfläche erfasst. Von erstarrten Lavaströmen bedeckte Ebenen prägen weite Teile des Planeten. Es gibt aber auch Hochebenen, Gebirge und Vulkane. Der Computer kann aus den Radardaten dreidimensionale Reliefs berechnen und aus jeder gewünschten Perspektive darstellen. Abb. 6 zeigt ein solches Bild von Maat Mons, dem mit acht Kilometern höchsten Vulkan der Venus. 85 Prozent der Planetenoberfläche scheinen vor erst 500-800 Millionen Jahren aus einer gigantischen Lavaflut hervorgegangen zu sein, die das Vorgängerrelief kilometerdick bedeckte. Globaler Katastrophenzyklus oder langsames Ausklingen des Vulkanismus? Die von der Erde bekannte Plattentektonik gibt es auf der Venus nicht. Einige Wissenschaftler vermuten daher, dass die vulkanische Freisetzung von Wärme auf der Venus nicht - wie auf der Erde - kontinuierlich erfolgt. Sie glauben, dass Venus ihren geologischen Wärmehaushalt über einen periodischen Vulkanismus reguliert, der in heftigen Schüben ausbricht und dabei die Oberfläche des Planeten rundum erneuert. Andere Wissenschaftler favorisieren dagegen ein langsames Ausklingen der vulkanischen Aktivitäten während der letzten zwei Milliarden Jahre. Beide Hypothesen erklären, warum Einschlagkrater von Meteoriten auf der Venusoberfläche nicht älter als etwa 750 Millionen Jahre sind. Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse und deren Begleitumstände: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE