• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Höhenberechnung von Kraterwänden des Mondes

Unterrichtseinheit

Mithilfe von Fotografien des Mondes werden über die beobachteten Schattenlängen die Höhen von Kraterwänden und Mondbergen berechnet. Mit der Ausstattung der Schulsternwarte (Cassegrain Spiegelteleskop, Camcorder) und der Software RegiStax und iMerge (beide kostenfrei) wurde ein detailreiches Bild der Mondoberfläche erstellt. Eine Bildbearbeitungssoftware (hier Adobe Photoshop) wurde genutzt, um daraus eine farbige Darstellung der Mondoberfläche zu erzeugen, die die Verteilung verschiedener Gesteinstypen erkennen lässt. Aus den Schattenlängen auf der Oberfläche und den Positionsdaten von Sonne, Erde und Mond zum Zeitpunkt der Aufnahmen wurden die Höhen von Kraterwänden und Zentralgebirgen bestimmt. Von dem Krater Theophilus wurde zudem - basierend auf den berechneten Daten und Fotos - ein dreidimensionales Modell gebaut. Zum mathematischen Rüstzeug für das Projekt gehören Kenntnisse aus dem Bereich der Trigonometrie und das Rechnen mit Zehnerpotenzen. Hintergrundinformationen, Software, Materialien und Ergebnisse Der Mond als Beobachtungsobjekt Unser Nachbar ist aus vielerlei Gründen ein dankbares Objekt für astronomische Streifzüge. Einsatz von RegiStax, iMerge und Photoshop Aus den Einzelbildern eines Films wird ein hoch auflösendes und farbiges Mondbild erzeugt. Daten, Berechnungen, Ergebnisse Fotos und Berechnungen dienen als Grundlage eines 3D-Kratermodells. Arbeitschritte und Zeitaufwand Das hier vorgestellte Projekt wurde von zwei Schülern mit Unterstützung der Lehrkraft im Rahmen des Freifachs Astronomie am Grazer Kepler-Gymnasium durchgeführt und mit dem Förderpreis der Kepler Gesellschaft ausgezeichnet (2006, zweiter Platz). Der Zeitaufwand für die einzelnen Arbeitsschritte: Aufnahme der Mondbilder Für die Videoaufnahmen der Mondes (in unserm Fall 91 Ausschnitte der Oberfläche) benötigt man als erfahrener Astrofotograf etwa fünf Stunden. Alle Aufnahmen müssen unbedingt an einem Abend gemacht werden! Bearbeitung der Einzelvideos Für die Bearbeitung der Mondbilder aus einem Einzelvideo mit RegiStax sind etwa 30 Minuten zu veranschlagen. In unserem Projekt (91 Einzelvideos) betrug der Gesamtzeitaufwand für diesen Arbeitsschritt somit etwa 45 bis 46 Stunden. Montage der Einzelbilder Für das Zusammenfügen der 91 Einzelbilder zum Gesamtbild des Mondes mit iMerge und der Bildnachbearbeitung benötigen wir acht bis neun Stunden. Messungen und Berechnungen Die für die Berechnungen notwendige Erarbeitung der Theorie nahm uns über einige Wochen in Anspruch. Mithilfe der von uns verfassten detaillierten Dokumentation sollten vier Stunden für die Berechnungen der Daten eines Kraters ausreichen. Modellierung des Kratermodells Die Modellierung und Bemalung des Modells nimmt etwa zwei Stunden in Anspruch. Die Schülerinnen und Schüler sollen mithilfe geeigneter Bildbearbeitungssoftware aus Videosequenzen ein hoch auflösendes Bild der Mondoberfläche erzeugen. aus Schattenlängen und den Positionsdaten der Himmelskörper die Höhe von Kraterwänden bestimmen und ein maßstabsgetreues Kratermodell bauen. Thema Höhenberechnung von Kraterwänden des Mondes Autoren Florian Mikulik, Florian Andritsch Fach Astronomie, Mathematik Zielgruppe Astronomie-AGs, Schülerinnen und Schüler ab Jahrgangsstufe 11 Zeitraum Das Projekt wurde über einen Zeitraum von drei Monaten durchgeführt (Zeitaufwand für die einzelnen Arbeitsschritte siehe unten). Technische Voraussetzungen Teleskop (hier Cassegrain Spiegelteleskop, Öffnung 12,5 Zoll/32 Zentimeter, Brennweite 476 Zentimeter), Camcorder oder Webcam mit Adapter; Software: RegiStax , Bildbearbeitungsprogramm (hier Adobe Photoshop), Astronomiesoftware (GUIDE 8.0 oder als kostenfreie Alternative Virtual Moon Atlas ). Florian Andritsch hat als Schüler mehrfach an nationalen und internationalen Physik- und Mathematik-Wettbewerben teilgenommen. Zurzeit studiert er Physik und Mathematik an der ETH-Zürich. Sein Hauptinteresse gilt dabei der Relativitätstheorie und der Kosmologie. Bernd Lackner ist Lehrer für Physik und Mathemathik am Grazer Kepler-Gymnasium und hat das hier vorgestellte Projekt im Rahmen des Freifachs Astronomie betreut. Aufgrund seiner geringen Entfernung zur Erde kann man sich bereits mit "leichtem Gerät" wie einem Fernglas oder einem kleinen Teleskop ein Bild von Kratern und Gebirgen sowie den großen "Meeren" verschaffen. Da der Mond ein sehr helles Objekt ist, können bei seiner Beobachtung hohe Vergrößerungen genutzt werden. Die Lichtverschmutzung macht sich wegen der Helligkeit des Objektes nicht bemerkbar, so dass der Mond auch in Städten gut zu beobachten ist. Gegenüber vielen weiteren Himmelsobjekten hat der Erdtrabant zudem den großen Vorteil, dass er das ganze Jahr über zu sehen ist - Neumondnächte ausgenommen. Eine Beobachtung um die Zeit des Vollmondes ist nicht zu empfehlen. Da die Sonne dann in fast rechtem Winkel auf die Oberfläche trifft, sind die Schatten sehr kurz und selbst markante Strukturen wirken flach. Schöne Beobachtungen kann man an der Licht-Schattengrenze machen, da hier die von den Formationen geworfenen Schatten sehr lang sind und der Oberfläche ein eindrucksvolles Profil verleihen. Mit einem größeren Teleskop und der Möglichkeit zur Astrofotografie gelingen Aufnahmen der Mondoberfläche, auf denen Details wie kleine Rillen oder Gebirgsketten sehr gut zu erkennen sind. Wir verwendeten für unsere Aufnahmen das Cassegrain Spiegelteleskop der Schulsternwarte (Öffnung 12,5 Zoll/32 Zentimeter, Brennweite 476 Zentimeter). Die Videosequenzen wurden mit einem Camcorder aufgenommen (Abb. 1). Prinzipiell kann auch eine handelsübliche Webcam mit Adapter verwendet werden. Luftunruhen können die Bildschärfe deutlich reduzieren. Dieser Effekt lässt sich durch bildtechnische Verfahren ausschalten: Man filmt einen Teil der Mondoberfläche und legt die Einzelbilder der Sequenz mithilfe eines Computerprogramms übereinander ("Stapeln" von Bildern). Entsprechende Software, wie zum Beispiel RegiStax, erzeugt aus den vielen Bildern dann ein scharfes Endergebnis. Zuerst werden die Bitmap-Sequenzen (BMP) geöffnet. Dann wird eine möglichst kontrastreiche Formation gewählt, wobei die Auswahlfelder "Color" und "LRGB" sowie "FFT" und "Graph" aktiviert sind. Die "Processing-Area" wird dimensioniert (in unserem Fall auf 1.024 Pixel). Die Größe der "Alignmentbox" (64 Pixel) und die "Lowest Quality" (50 Prozent) werden festgelegt. Anschließend werden die Funktionen "Align" und "Limit" ausgeführt. Um ein optimales Bild zu erhalten, wird einen "Reference Frame" erzeugt, wobei jedes Mal fünf Bilder berücksichtigt werden. Dann wird die Funktion "Continue" ausgeführt und die "Search Area" eingestellt (vier Pixel). Nun wird der Arbeitsschritt "Optimize" eingeleitet. Dieser nimmt etwas Zeit in Anspruch. Danach wird in der oberen Menüleiste die Kategorie "Stack" gewählt. An den Feineinstellungen nehmen wir an dieser Stelle keine Veränderungen vor. Jetzt wird das Endergebnis abgewartet. Wir wechseln in die Menüauswahl "Wavelet" und können das fertige Bild betrachten. Um noch weitere Details hervorzulocken, werden wir die Schieberegler der ersten beiden Filter verstellt (in unserem Fall auf 4,0 für den 1:1-Filter und 2,0 für den der 1:2-Filter). Nun ist das Bild fertig und wird per "Save Image" gespeichert. Bildränder wegschneiden - "Feathering" Da die Bilder aus RegiStax einen ungenauen Bildrand haben, kann man diesen mit der Funktion "Feathering" wegschneiden. Unter dem Menüpunkt "View/Settings" werden dazu "Feather margin" und "Feather trim" eingestellt (bei unseren Bildern liegt der "Feather margin"-Wert bei 170 und der "Feather trim"-Wert bei 13). "Autobrighten" und "Monochrome" Ist die Funktion "Autobrighten" aktiviert, werden die Bilder, die man übereinander legt, automatisch in ihrer Helligkeit korrigiert. In unserem Fall ist Autobrighten jedoch deaktiviert, da - bedingt durch die Aufnahmetechnik und das Aufnahmeobjekt - die Helligkeit der Bilder bereits korrekt ist. Eine automatische Helligkeitskorrektur würde zudem den dunkleren Terminator (die Licht-Schattengrenze) der Helligkeit der restlichen Mondoberfläche angleichen. Ist "Monochrome" aktiviert, wird das Bild in Graustufen gespeichert. Bei unserem Bild ist diese Einstellung im Prinzip bedeutungslos, weil der Mond im Wesentlichen nur grau ist. Um die schwachen Farbinformationen später jedoch verstärken und so ein farbiges Bild erzeugen zu können, das die Verteilung verschiedener Gesteinsarten auf der Mondoberfläche erkennen lässt, muss das Bild im Farbmodus gespeichert werden. Allgemeine Hinweise Fotos von der Mondoberfläche enthalten schwache Farbinformationen - von Blau über Grün und Gelb bis hin zu Rot kann man nahezu alle Farben finden. Diese Informationen können für die Darstellung der Verteilung verschiedener Gesteinsarten an der Mondoberfläche genutzt werden. Um diese Informationen "herauszukitzeln" haben wird die Farbsättigung des Mondbildes mit der Software Adobe Photoshop erhöht und leichte Änderungen an der Farbbalance vorgenommen. Da das Bild durch diese Manipulationen an Schärfe verliert, ist es notwendig, über das farbige Ergebnis noch einmal das Originalbild zu legen. So werden die Kontrastwerte des Originals mit den Farbwerten des bearbeiteten Bildes kombiniert und man erhält einen ungewohnt farbenfrohen Mond, der einen guten Überblick über die verschiedenen Bodengesteine und ihre Formationen bietet (Abb. 4, zur Vergrößerung anklicken). Blaue Gebiete sind sehr titanhaltig, während orange und violette Farben auf Gesteine hinweisen, die relativ arm an Titan und Eisen sind. Die zum gewünschten Ergebnis führende Vorgehensweise hängt sehr stark von dem für die Aufnahmen verwendeten Teleskop ab. Zur Einstellung der optimalen Farbsättigung und Farbbalance muss man mit den Werten etwas experimentieren. Die Bildbearbeitung erfolgt in drei Schritten: Bearbeiten des Tonwert-Histogramms Anpassen der Farbsättigung Veränderung der Farbbalance Beispiel Theophilus Die für die Berechnungen erforderlichen Daten zu den Positionen von Erde, Mond und Sonne zum Zeitpunkt der Aufnahmen wurden dem Programm "Guide 8.0" entnommen. Eine kostenfreie Alternative bietet der "Virtual Moon Atlas" (siehe Links und Literatur zum Thema ). Erläuterungen und Grafiken zu den Rechenwegen sowie sämtliche Ergebnisse finden Sie in der Datei "mondberge.pdf". Hier ein Beispiel: Die Höhe der Wand des Kraters Theophilus (Abb. 5), vom Kraterboden aus gemessen, wurde mit 4.483 Metern berechnet (beobachtete Schattenlänge: 28.413 Meter). Für die Höhe des Zentralgebirges bestimmten wir einen Wert von 1950 Metern (Schattenlänge: 14.400 Meter). Unsere Ergebnisse stimmen mit den Literaturwerten überein: So liegen die Angaben für die Höhe des Kraters Theophilus in verschiedenen Quellen zwischen 4.300 bis 4.500 Metern (Mondatlas, Antonin Rükl, Dausien Verlag; Virtual Moon Atlas). Um nicht bei jedem Krater die komplette Rechenoperationen auf dem "Fußweg" durchführen zu müssen, haben wir eine Excel-Tabelle erstellt (mondberge.xls), in die wir unsere Daten nur noch eintragen mussten, um verschiedene Formationen berechnen zulassen (Abb. 6, Platzhalter bitte anklicken). Die Erstellung der Tabelle beanspruchte viel Zeit, weil lange Formeln schnell unübersichtlich werden können und es dann sehr schwierig ist, Fehler zu finden und auszubessern. Erschwerend kam noch hinzu, dass Excel den Sinus eines Winkels nicht direkt berechnen kann, sondern der Winkel zuerst in den Radiant umgewandelt werden muss. Später erkannten wir, dass Excel eine Funktion zum Umwandeln von Winkel in Bogenmaß zur Verfügung stellt, was uns die Erstellung der Tabelle erheblich erleichterte [BOGENMASS(?)]. 3D-Modell des Theophilus Unsere Daten nutzten wir als Grundlage für die Erstellung eines maßstabsgetreuen Modells des Kraters Theophilus, um so die Proportionen von Kraterwänden, Zentralberg und Kraterdurchmesser erlebbar zu machen (Abb. 7). Mithilfe einer handelsüblichen Modelliermasse formten wir zuerst einen kreisförmigen Block und ritzten in diesen mit einem Holzstäbchen die Umrisse des Kraters ein. Theophilus hat einen Durchmesser von etwa 100 Kilometern, das Modell einen Durchmesser von 15 Zentimetern. Somit entsprechen der Höhe der Kraterwände von etwa vier Kilometern in unserem Modell etwa sechs Millimeter. Nun entfernten wir aus der Mitte des Blocks die überflüssige Masse und bildeten so die Kraterwände. Abschließend wurde noch das Zentralgebirge geformt und platziert. Um eine originalgetreue Färbung zu erzielen wurde der Krater mit Wasserfarbe bemalt. Schattenwirkungen am Modell Das Modell ermöglichte uns die Simulation verschiedener Mondphasen am Krater. Dazu wurde es auf ein höhenverstellbares Stativ platziert, so dass der Krater stufenlos in andere Positionen gebracht werden konnte. Als Lichtquelle verwendeten wir eine Kohleelektroden-Lampe, die einen recht punktförmigen Lichtbogen und somit einen scharfen Schatten erzeugt. Besonders beeindruckend ist der Moment, in dem fast der ganze Krater im Schatten liegt und nur die Spitze des Zentralgebirges angestrahlt wird (Abb. 8, oben). Außerdem haben wir das Modell aus einer Position fotografiert, aus der man den Krater betrachten könnte, wenn man auf seinem Rand stehen oder mit einem Raumschiff knapp darüber hinweg fliegen würde (Abb. 8, unten). J. W. Ekrutt Höhenmessung auf der Mondoberfläche, Sterne und Weltraum 1968 (10), Seiten 259-260

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe II

Mars - Beobachtung einer Planetenschleife

Unterrichtseinheit

Beobachtungen unseres äußeren Nachbarplaneten lohnen sich nur während der Monate um die Oppositionen, die etwa alle zwei Jahre und zwei Monate eintreten. Die Dokumentation einer Marsschleife ist eine reizvolle Aufgabe für ein kleines Beobachtungsprojekt.Die rötliche Färbung des Planeten fällt auch ungeübten Beobachterinnen und Beobachtern sofort auf. Sie ist besonders beeindruckend, wenn Mars noch nicht allzu hoch über dem Horizont steht. Der Grund dafür ist derselbe, der auch die Sonne oder den Mond beim Auf- und Untergang rötlich erscheinen lässt - kurzwellige Lichtanteile werden durch die Atmosphäre stärker gestreut als die langwelligen. Die Marsfarbe wird durch diesen Effekt aber nur verstärkt. Der allgegenwärtige eisenoxidhaltige Staub hat dem Planeten zu Recht den Beinamen des "Roten" eingebracht - "rostiger" Planet wäre ebenso zutreffend. Die linke Abbildung zeigt eine Aufnahme des Hubble-Weltraumteleskops und ein Marsfoto, das mit einem kleinen Amateurteleskop aufgenommen wurde. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur zum Thema Mars . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden.Kaum ein Planet hat die Fantasie der Menschen so sehr in Gang gesetzt wie Mars: Die "Entdeckung" der Marskanäle ist ein schönes Beispiel aus der Wissenschaftsgeschichte dafür, dass auch die Objektivität von Naturwissenschaftlern optischen Täuschungen und einer guten Portion Autosuggestion unterliegen kann. Aber auch für eine Massenhysterie ist Mars gut: Die 1938 am Holloween-Abend über das Radio ausgestrahlte fiktive Schilderung eines Marsmenschen-Überfalls soll in den USA eine Panik ausgelöst haben. UFO-Fans und Esoteriker sahen in einer von der Raumsonde Viking I im Jahr 1976 aufgenommen Gebirgsformation, die als "Marsgesicht" Berühmtheit erlangte, einen extraterrestrischen Monumentalbau, der es bis in die Kultserien "Akte X" und "Futurama" schaffte. Mars bietet also reichlich Stoff, um das Interesse der Schülerinnen und Schüler für Astronomie und Naturwissenschaften zu wecken. Obwohl den meisten von ihnen der eine oder andere Science-Fiction-Film zum Thema Mars bekannt sein dürfte, haben nur die wenigsten den Planeten bewusst mit eigenen Augen gesehen. Nutzen Sie also die nächste Marsopposition, um zusammen mit Ihren Schülerinnen und Schülern den faszinierenden Planeten näher kennen zu lernen und zu beobachten. Historisches und Histörchen Ob Götter, Marsmenschen, Kanäle oder andere Monumentalbauten - die Raumfahrt hat Jahrtausende alte Vorstellungen sowie Fiktionen aus dem 19. und 20. Jahrhundert beendet. Erforschung des "Rostigen Planeten" Mars-Orbiter, Landegeräte und mobile Rover übermittelten nicht nur wissenschaftliche Daten, sondern auch Bilder mit faszinierenden Mars-Impressionen und Landschaften. Der Mars - Oppositionen des Exzentrikers Die Entstehung von rückläufiger Bewegungen und Schleifen der äußeren Planeten und die Besonderheiten der Marsoppositionen werden erläutert. Beobachtung des Planeten Lernende können mit einfachen Hilfsmitteln eine Marsschleife dokumentieren und versuchen, mit einem Teleskop Oberflächenstrukturen zu erkennen. Dokumentation einer Marsschleife Vorschläge für Arbeitsmaterialien und Hinweise zur Verfolgung der Bewegung des Planeten Mars in dem Zeitraum um seine Opposition Die Schülerinnen und Schüler sollen Mythologie und Science Fiction zum Thema Mars kennen lernen. die Geschichte der Erforschung des Planeten überblicken - von der "Entdeckung" der Marskanäle bis hin zur Erforschung der Oberfläche durch NASA-Rover. Mars mit eigenen Augen sehen und in dem Lichtpunkt mithilfe der NASA- und ESA-Fotos eine fremde Welt erkennen. den Planeten durch ein Teleskop beobachten (Schul- oder Volkssternwarte) und versuchen, Oberflächendetails mithilfe eines "Onlinerechners" der Webseite CalSky zu benennen. verstehen, wie eine Marsschleife entsteht. die Bahn des Planeten über einige Monate verfolgen und mit einfachen Mitteln eine "Marsschleife" aufzeichnen. Thema Marsbeobachtung Autoren Dr. André Diesel, Peter Stinner Fächer Naturwissenschaften ("Nawi"), Astronomie, Astronomie AG Zielgruppe Klasse 5 bis Jahrgangsstufe 13 (je nach Thema und Vertiefung) Zeitraum variabel, vom einmaligen Beobachtungsabend bis hin zur Dokumentation einer Marsschleife über mehrere Monate Technische Voraussetzungen Beobachtung mit bloßem Auge oder dem Amateurteleskop; für die fotografische Dokumentation der Planetenbewegung Bildbearbeitungssoftware, zum Beispiel Fitswork (kostenloser Download); Planetarium-Software zur Vorbereitung der Beobachtung, zum Beispiel Stellarium (kostenfrei) Traditionelle Rolle als Kriegsgott Mars fasziniert die Menschen schon seit Jahrtausenden. Im Altertum war der Planet bei vielen Völkern mit dem jeweiligen Kriegsgott verknüpft - Nergal im Zweistromland, Ares bei den Griechen und eben Mars bei den Römern. Ursache dafür dürfte seine auffällig orange-rote Färbung sein - verursacht durch den auf der Marsoberfläche allgegenwärtigen Eisenoxidstaub -, die schon dem bloßen Auge nicht entgeht. Die rote Farbe ist übrigens umso kräftiger, je tiefer der Planet am Himmel steht. Hoch über dem Horizont erscheint Mars eher orange bis gelblich. Ein weiteres Charakteristikum des Planeten sind die großen Helligkeitsunterschiede während seiner Oppositionen. In einigen Jahren kann er über mehrere Wochen sehr hell werden und sogar mit der Leuchtkraft von Jupiter konkurrieren, in anderen Jahren bleibt er relativ unscheinbar und in seiner Helligkeit etwa dem Polarstern vergleichbar. Sein Aufleuchten haben unsere Vorfahren möglicherweise als Symbol für entfesselte Feuersbrünste oder das Vergießen von Blut gedeutet. Wikipedia: Nergal Gottheit der sumerisch-akkadischen und der babylonischen und assyrischen Religion Wikipedia: Ares Griechischer Gott des Krieges, des Blutbades und Massakers Wikipedia: Mars Der Kriegsgott war neben Jupiter der wichtigste Gott der Römer. Schiaparellis "Canali" Aber auch in modernen Zeiten fasziniert Mars und entfesselte Fantasien. 1877 glaubte der Leiter der Mailänder Sternwarte, Giovanni Schiaparelli (1835-1910), mit dem Teleskop Marskanäle entdeckt zu haben - ein Effekt, der einer optischen Täuschung zuzuschreiben ist. Schiaparelli hielt die "Canali" für natürliche geradlinige Senken, durch die Wasser auf der Marsoberfläche fließen könnte. Eine ungenaue Übersetzung ins Englische ("canals" statt "channels") suggerierte jedoch die Entdeckung von Artefakten auf dem Mars. Schnell verbreitete sich so der Glaube an eine hochtechnisierte Marszivilisation, die in den hundert Kilometer breiten Kanälen das Schmelzwasser der Marspole in die gemäßigten Breiten leiten sollte, um die Anbaugebiete der Marsianer im Vegetationsgürtel des Planeten zu bewässern. Wikipedia: Marskanäle Die Kanäle wurden erstmals im Jahr 1877 beschrieben. Science Fiction Der Glaube an eine Marszivilisation war auch die Grundlage zahlreicher Werke des Science-Fiction-Genres. Spektakulär soll der Effekt eines Hörspiels von Orson Wells (1915-1985) gewesen sein, das auf dem Roman "War of the Worlds" von Herbert George Wells (1866-1946) basiert. Orson Wells' fiktive Radio-Reportage über eine Invasion bösartiger Marsianer wurde im Jahr 1938 am Halloween-Abend ausgestrahlt und soll an der Ostküste der USA eine Massenpanik ausgelöst haben (ob dies tatsächlich so war, ist heute allerdings umstritten). Vielen älteren Schülerinnen und Schülern dürfte die beklemmende Verfilmung des Stoffs von Steven Spielberg aus dem Jahr 2005 bekannt sein, ebenso die skurrile filmische Aufarbeitung von Tim Burton aus dem Jahr 1996, "Mars Attacks". Keine Kanäle, weder Zivilisation noch Vegetation Auch wenn man bereits in den dreißiger Jahren begann, die "Marskanäle" für das Ergebnis optischer Täuschungen zu halten - Gewissheit bekam man erst durch die Bilder der Raumsonde Mariner 4, die im Jahr 1965 an dem Planeten vorbei flog und deren Kameras den Mars erstmals aus der Nähe betrachteten. Zwar könnte die Wahrnehmung einiger "Canali" durch geomorphologische Großstrukturen erklärt werden, von dem ausgeklügelten Bewässerungssystem der Marsmenschen fand man jedoch keine Spur. Für die bis dahin mit Besuchern vom Mars in Verbindung gebrachten "Fliegenden Untertassen" mussten UFOlogen fortan andere Erklärungen finden. Aber auch von der bis dahin teilweise noch gehegten Vorstellung, der Planet könne von Moosen und Flechten bewachsen sein (dessen Vegetationsperioden die beobachteten Veränderungen auf der Oberfläche hätten erklären können), musste man sich endgültig verabschieden - Mars scheint ein toter Planet zu sein. Das Marsgesicht Auch wenn die Raumfahrt die menschliche Fantasie weitgehend auf den Boden der Tatsachen zurückholte, bot ein Foto der Raumsonde Viking I aus dem Jahr 1976 Anlass für ganz neue Spekulationen. Aus knapp 2.000 Kilometern Höhe nahm die Sonde beim Landeanflug eine Gebirgsformation auf, die als "Marsgesicht" berühmt wurde (Abb. 1). UFO-Fans erkannten darin das monumentale Artefakt einer außerirdischen Spezies. Das Marsgesicht wurde von diversen TV- und Kinoproduktionen aufgegriffen. In der Trickfilmserie "Futurama" bildet es zum Beispiel den Eingang zur marsianischen Unterwelt, in der Aliens hausen. Aufnahmen des NASA-Orbiters Mars Global Surveyor aus dem Jahre 2001 zeigen jedoch nichts anderes als eine verwitterte Felsformation und beendeten so auch diese Illusion. Durchmesser, Tageslänge, Neigung der Rotationsachse Der Durchmesser des Planeten ist mit etwa 6.800 Kilometern doppelt so groß wie der des Mondes, aber nur halb so groß wie der unserer Erde. Ein Marstag dauert nur 40 Minuten länger als ein irdischer Tag. Dies fanden schon Christian Huygens (1629-1695) und Giovanni Domenico Cassini (1625-1712) heraus, die die Rotationsdauer durch die Beobachtung von Oberflächendetails bestimmen konnten. Die Neigung der Rotationsachse (etwa 25 Grad) entspricht ungefähr derjenigen der Erdachse (23 Grad) und beschert dem Mars Sommer und Winter. Die marsianischen Jahreszeiten dauern allerdings doppelt so lange wie die unsrigen, da Mars für eine Runde um die Sonne etwa zwei Erdenjahre benötigt. Entfernung und Jahreslänge Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Ein Marsjahr dauert etwa 687 Tage (siderische Umlaufzeit). Alle 780 Tage wird er von der Erde überrundet (synodische Umlaufzeit). Zwischen den Marsoppositionen liegen also zwei Jahre, ein Monat und drei Wochen. "Furcht" und "Schrecken" begleiten den Kriegsgott Bei den beiden kleinen, etwas kartoffelförmigen Marsmonden handelt es sich möglicherweise um eingefangene Asteroiden. Standesgemäß wurden die Trabanten des Kriegsgotts auf die Namen Phobos und Deimos, Furcht und Schrecken, getauft. Während unser Mond groß genug ist, um die Rotationsachse der Erde zu stabilisieren (was ihrer Bewohnbarkeit sehr entgegen kommt), sind Phobos und Deimos dafür viel zu klein. Deshalb vollführt die Mars-Rotationsachse eine viel deutlichere Taumelbewegung als die der Erde. Die Marsatmosphäre besteht zu 95 Prozent aus Kohlenstoffdioxid. Der Atmosphärendruck beträgt am Boden weniger als ein Prozent des Luftdrucks der Erde. Flüssiges Wasser kann an der Oberfläche unter diesen Bedingungen - selbst oberhalb des Gefrierpunkts - nicht existieren. Die dünne Atmosphäre speichert kaum Wärme, sodass die Temperaturunterschiede zwischen Tag (bis zu 20 Grad Celsius in Äquatornähe) und Nacht (bis zu -85 Grad Celsius) beträchtlich sind. Die mittlere Temperatur liegt bei -55 Grad Celsius. Neben der gemäßigten Neigung der Rotationsachse trägt die Exzentrizität der Umlaufbahn zu einer deutlichen Ausprägung der Jahreszeiten mit dynamischen Vorgängen in der dünnen Atmosphäre bei. Im Marsfrühjahr können heftige Staubstürme große Teile des Planeten verhüllen. Durch die Verwehungen hellen Staubs in dunklere Gebiete kommt es zu jahreszeitlichen Veränderungen der Marsoberfläche, die im Teleskop beobachtet werden können. Die Veränderung der dunklen Schattierungen hielt man früher für eine mögliche Folge marsianischer Vegetationszyklen. Die Polkappen bestehen zum größten Teil aus gefrorenem Kohlenstoffdioxid, enthalten aber auch Wassereis. Sie "pulsieren" mit dem Wechsel der Jahreszeiten. Die Dicke der nördlichen Polkappe (1.000 Kilometer im Durchmesser) wird auf immerhin fünf Kilometer geschätzt. Abb. 2 zeigt eine Aufnahme des NASA-Orbiters Mars Global Surveyor. Die Suche nach Wasser Eine Hauptaufgabe der im Jahr 2008 etwas nördlich des Polarkreises gelandeten NASA-Sonde Phoenix war die Suche nach Spuren von Wasser. Fließspuren an der Oberfläche (trockene Flusstäler und Überschwemmungsgebiete) waren bereits vorher bekannt. Durch Gesteinsanalysen konnte bestätigt werden, dass der Mars einst wärmer und feuchter und somit seine Atmosphäre dichter gewesen sein muss. Abseits der Polkappen versteckt sich das Wassereis heute im Permafrostboden einige Meter unter der Marsoberfläche. In seiner nördlichen Position konnte Phoenix Wassereis jedoch schon wenige Zentimeter unter der Oberfläche nachweisen. Spuren von Leben hat man bisher nicht gefunden. Konjunktion und Opposition Mars ist im Schnitt 1,5 astronomische Einheiten, also 1,5 Mal soweit von der Sonne entfernt wie die Erde. Aufgrund seiner stark exzentrischen Bahn schwankt sein Abstand zur Sonne zwischen 207 und 250 Millionen Kilometern. Dies ist auch die Ursache für die unterschiedliche Leuchtkraft des Planeten am Himmel während seiner Oppositionsstellung (Abb. 6). Etwa alle 15 Jahre kommt uns der Rote Planet besonders nah. Zuletzt war dies im Jahr 2003 der Fall - auf die nächste spektakuläre Marsopposition müssen wir also bis zum Jahr 2018 warten. Überholen wir Mars auf unserer Innenbahn, während er sich in seiner sonnenfernsten Position befindet (Aphel), dann bleibt er an unserem Himmel relativ unauffällig. Die maximale Oppositionsentfernung zur Erde liegt bei mehr als 100 Millionen Kilometern. Überholen wir Mars dagegen, wenn er sich in seiner sonnennächsten Position befindet (Perihel), kann sich ihm die Erde bis auf 56 Millionen Kilometer nähern. Abb. 7 (zur Vergrößerung bitte anklicken) gibt einen Überblick über die geometrischen Situationen der Marsoppositionen in den Jahren von 1999 bis 2022 sowie die jeweiligen scheinbaren Durchmesser des Marsscheibchens. Die Entfernungen Erde - Mars sind in Millionen Kilometern angegeben. Rückläufigkeit und Schleifen Um die Zeit der Opposition überholt die Erde einen äußeren Planeten "auf der Innenbahn". Beobachterinnen und Beobachter auf der Erde sehen den gleichen Effekt wie ein Läufer, der in der Stadionkurve auf der Innenbahn an einem Läufer auf der Außenbahn vorbeizieht. Während dieses Überholvorgangs bewegt sich der überholte Läufer auf der Außenbahn vom Läufer auf der Innenbahn aus gesehen vor dem Publikum auf der Kurventribüne kurzzeitig rückwärts. Übertragen auf die Bewegungen im Sonnensystem heißt dies, dass der äußere Planet sich während der Opposition von der Erde aus gesehen vor dem Fixsternhimmel rückwärts, das heißt von Ost nach West bewegt. Der Fixsternhimmel hat jetzt die Rolle des Publikums auf der Kurventribüne übernommen. Weil die Bahnebenen der Planeten geringfügig gegen die Erdbahn geneigt sind, erscheinen die Bahnen von Mars und den übrigen äußeren Planeten um die Zeit der Opposition herum als "Schleifen" an der Himmelskugel. Dies wird durch Abb. 8 und die folgenden Java-Applets veranschaulicht: Auffällige Oppositionsschleifen Weil Mars von allen äußeren Planeten der Erde am nächsten ist, fällt seine Oppositionsschleife am Sternhimmel deutlich größer aus als die von Jupiter und Saturn. Die Ausdehnung der Oppositionsschleife von Saturn erreichte zum Beispiel im Jahr 2010 nur etwa 30 Prozent derjenigen von Mars. Somit gilt als Fazit: Mars ist das ideale Objekt für die Beobachtung der Oppositionsschleife eines Planeten im Rahmen eines schulischen Projekts! Im Bereich Fachmedien finden Sie eine kurze Einführung in das einfach zu bedienende virtuelle Planetarium Stellarium . (Als ebenso hilfreich, aber etwas komplexer, erweist sich das Programm Cartes du Ciel ) Führen Sie nach dem Start von Stellarium den Mauszeiger in die linke untere Bildschirmecke. Danach öffnen sich die beiden Menüleisten links und unten (Abb. 9, zur Vergrößerung des Ausschnitts bitte anklicken). Per Mausklick auf das Uhrensymbol in der linken Leiste öffnet sich ein Dialogfenster, in das man Datum und Uhrzeit eingibt. Nach Klick auf das Lupensymbol in der linken Menüleiste gibt man den Namen "Mars" ein. Stellarium wählt jetzt den Himmelsausschnitt so, dass sich Mars genau im Zentrum befindet. Drehen am Scrollrad der Maus vergrößert oder verkleinert den dargestellten Himmelsauschnitt. So kann man leicht die Lage vom Mars relativ zum Horizont oder relativ zu markanten Sternbildern einschätzen. Was ist zu sehen? In einem 60 Millimeter Teleskop erscheint Mars lediglich als kleines, oranges Scheibchen. Ab etwa zehn Zentimetern Öffnung können unter günstigen Umständen helle und dunkle Bereiche der Oberfläche schemenhaft wahrgenommen werden. Auch Polkappen sind - je nach marsianischer Jahreszeit - zu sehen. Teleskope mit 15 bis 20 Zentimetern Öffnung lassen weitere Details erkennen. Christian Huygens beschrieb bereits im Jahr 1659 die "Große Syrte", ein dunkles, auffällig dreieckiges Wüstengebiet. Die Suche nach Oberflächendetails lohnt sich jedoch nur während weniger Monate um den Oppositionstermin herum. Abb. 10 zeigt eine Aufnahme des Planeten von Heinrich Kuypers, die im Rahmen einer Astronomie-AG mithilfe eines kleinen Amateurteleskops entstand. Dabei wurden viele Einzelbilder mit der kostenfreien Software RegiStax addiert. Das Foto zeigt Oberflächendetails somit deutlicher als der Blick durch das Okular des Teleskops. Übersichtskarte Die im Folgenden vorgestellten Arbeitsmaterialien wurden für die Dokumentation der Marsschleife im Jahr 2010 erstellt. Sie können bei künftigen Oppositionen als Anregung für die Zusammenstellung entsprechender Schülermaterialien dienen. Passende Sternkarten müssen dann für den jeweiligen Beobachtungszeitraum mit geeigneter Astronomie-Software, etwa GUIDE oder den kostenfreien Progeammen Cartes du Ciel und Stellarium , erstellt werden. Die mit der Software GUIDE 8.0 erzeugte Übersichtskarte (uebersichtskarte.jpg) zeigt den Ost- und Südhimmel mitsamt Horizont, wie er sich Beobachterinnen und Beobachtern in Deutschland am 15. Februar 2010 um 21:00 Uhr darstellte. Der aufgehellte Bereich in der rechten Bildhälfte entspricht der Milchstraße. Den Himmelsanblick einer solchen Karte findet man - bei gleicher Horizontlage - 15 Tage später schon eine Stunde früher oder 15 Tage früher erst eine Stunde später vor. Anhand des Ausdrucks einer solchen Karte können sich die Schülerinnen und Schüler grob am Sternhimmel orientieren. Wichtig ist, dass sie die Sternbilder, durch die sich Mars während des gewählten Beobachtungszeitraums bewegen wird, eindeutig identifizieren können. Negativ-Übersichtskarte Die Grafik der Datei "uebersichtskarte_negativ.jpg" ist die Negativ-Darstellung der Karte "uebersichtskarte.jpg". Der Himmelshintergrund ist weiß gehalten, die Sterne sind als schwarze Kreise dargestellt. Ihre Helligkeit wird durch die verschieden großen Kreisdurchmesser veranschaulicht. Solche Negativ-Sternkarten eignen sich gut für handschriftliche Einträge und Ergänzungen. Detailkarten Nach etwas Übung in der Orientierung am Himmel genügen den Schülerinnen und Schülern für weitere Beobachtungen dann die vergrößerten Ausschnittkarten, zum Beispiel "detailkarte.jpg" oder "detailkarte_negativ.jpg" (Abb. 12; zur Vergrößerung des Ausschnitts bitte anklicken). Letztere Karte liegt auch mit dem Gradnetz des äquatorialen Himmelskoordinatensystems vor ("detailkarte_negativ_gradnetz.jpg"). Händische Einträge in die Himmelskarten In allen Karten fehlt der am Sternhimmel nicht ortsfeste Mars. Er ist jedoch in der betrachteten Himmelsgegend bei einer "durchschnittlichen" Opposition ein auffälliges Objekt und deshalb leicht aufzufinden. Aufgabe der Schülerinnen und Schüler ist es nun, an möglichst vielen klaren Abenden während der Beobachtungsmonate (in dem hier vorgestellten Beispiel Januar bis April 2010) nach dem Planeten Mars Ausschau zu halten, ihn am Himmel aufzufinden, seine Position relativ zu den umgebenden Sternen nach Augenmaß zu ermitteln, um diese Marspositionen dann nebst Datum in der Detailkarte (Negativdarstellung) festzuhalten. Durch Einbeziehen des Koordinatenrasters in der Detailkarte kann eine ordentliche Genauigkeit bei der Bestimmung der Positionen erzielt werden. Brauchbares Wetter vorausgesetzt, sollte man im Laufe einiger Wochen viele unterschiedliche Marspositionen beobachten und dokumentieren können. Man wird zuerst die retrograde (rückläufige) Bewegung erkennen, dann den scheinbaren Stillstand, dem danach die normale prograde Bewegung von Westen nach Osten folgt. Abb. 13 (Grafik zur Vergrößerung des Ausschnitts bitte anklicken) zeigt den mit der Software GUIDE 8.0 erzeugten Verlauf der Marsbewegung um dessen Opposition (Beobachtungsbeispiel Oktober 2009 bis Mai 2010). Technikbegeisterte Schülerinnen und Schüler werden eher an der fotografischen Dokumentation der Marsbewegung interessiert sein. Unter Verwendung der kostenlosen Software Fitswork kann man aus Fotografien einfacher Digitalkameras Planetenbahnen am Sternhimmel rekonstruieren und nebenbei Grundlagen der digitalen Bildbearbeitung erlernen. Das dieser Technik zugrunde liegende Vorgehen wird ausführlich beschrieben in dem Beitrag zur Allgemeine Hinweise zur Planetenbeobachtung . Literatur Die astronomischen Jahrbücher informieren über die wesentlichen Ereignisse, deren Begleitumstände sowie über die Sichtbarkeiten der Planeten: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag (Stuttgart)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE