• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Was sieht ein Satellit? Dem Unsichtbaren auf der Spur

Unterrichtseinheit

In dieser Unterrichtseinheit zu Satelliten setzen sich die Lernenden anhand der Fernerkundung mit dem Thema Optik auseinander. Dabei erkennen sie die Zusammenhänge zwischen elektromagnetischem Spektrum, Reflexion, Absorption und der Entstehung von Satellitenbildern. Die Materialien sind auf Deutsch und auf Englisch verfügbar und somit auch im englisch-bilingualen Unterricht einsetzbar. Die hier vorgestellte Lerneinheit erläutert die Funktionsweise eines Satelliten, der das von der Erdoberfläche reflektierte Licht zur Bildaufnahme nutzt und dabei auch Wellenlängen jenseits des sichtbaren Lichts einbezieht. Zusätzlich zum Verständnis der physikalischen Inhalte lernen die Schülerinnen und Schüler auf diese Weise auch Aspekte der Fernerkundung kennen. Eine "Vermittlerfigur" in Form eines virtuellen Professors begleitet die Lernenden bei der Erforschung des elektromagnetischen Spektrums. Das Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Unterrichtseinheit "Was sieht ein Satellit? Dem Unsichtbaren auf der Spur" beschäftigt sich mit dem Themenkomplex Optik und geht dabei vor allem auf Reflexion, Absorption und die Wellenlängen des elektromagnetischen Spektrums ein. Durch den Bezug zur Satellitenbild-Fernerkundung werden diese drei Bereiche miteinander verknüpft und ergänzt. Zunächst soll an einem einfachen Beispiel die Charakterisierung verschiedener Objekte hinsichtlich ihrer unterschiedlichen Reflexions- und Absorptionseigenschaften untersucht werden. Weiterführend soll das gesammelte Wissen auf den Satelliten übertragen werden, so dass die Funktionsweise eines Satelliten verstanden wird. Als dritter Punkt wird dann neben der Betrachtung des sichtbaren Lichts der erweiterte Bereich des elektromagnetischen Spektrums (infrarotes Licht) mit einbezogen. Ziel der Unterrichtseinheit ist es, Zusammenhänge zwischen elektromagnetischem Spektrum, Reflexion, Absorption sowie Aufnahme und Entstehung von Satellitenbildern zu verstehen. Aufbau des Computermoduls Das interaktive Modul "Was sieht ein Satellit?" gliedert sich in eine Einleitung und zwei darauf aufbauende Bereiche. Inhalte des Computermoduls Hier wird der Aufgabenteil mit den drei Bereichen Einleitung, Satellit und "unsichtbares" Licht genauer beschrieben. Die Schülerinnen und Schüler lernen Reflexionseigenschaften unterschiedlicher Objekte kennen. können die Begriffe "Reflexion" und "Absorption" erklären und unterscheiden. können den Zusammenhang zwischen Objektfarbe und Reflexionseigenschaften erklären. lernen das elektromagnetische Spektrum kennen und verstehen, dass es neben dem sichtbaren Licht noch andere Wellenlängenbereiche gibt. können die Grundlagen der Umwandlung der Reflexionswerte in Bildinformationen beschreiben. können die Entstehung von Falschfarbenbildern beschreiben. Reflexion und Absorption - Alles was wir sehen Einführung in die Thematik, Zusammenhang zwischen Reflexion und Absorption So funktioniert ein Satellit Entstehung von Satellitenbildern anhand des unterschiedlichen Reflexionsverhaltens der Erdoberfläche Dem Unsichtbaren auf der Spur Elektromagnetisches Spektrum Beginn Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik der Satellitenbilder durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus sind die durchgeführten Analysen und Manipulationen des Satellitenbildes nur mithilfe eines Rechners durchführbar - ein Umstand, der den Lernenden den Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei Reflexion_Startmanager.exe gestartet. Allgemeine Hinweise Das Computermodul besteht aus drei Bereichen, die aufeinander aufbauen. Zu Beginn ist die gelbe Navigationsleiste am linken Rand noch leer. Erst nach Bestehen eines kleinen Tests am Ende jeder Einheit wird das Icon für den jeweiligen Bereich sichtbar, so dass man später über die Navigationsleiste wieder dorthin zurück gelangen kann. Jeder Bereich enthält einen Aufgabenteil mit Fragestellungen. So können die Schülerinnen und Schüler den Kern des Problems erfassen, durch den Test überprüfen und damit interaktiv arbeiten. Der erste Teil des Moduls wird nach dem Start automatisch geladen. In einem kurzen Einführungstext erfahren die Schülerinnen und Schüler, was sie in dem Modul erkunden und lernen sollen. Sie können interaktive Versuche durchführen, indem sie am Bildschirm das Reflexionsverhalten verschiedener Gegenstände beobachten. Die Fragen unter "Aufgaben" geben Hinweise, worauf dabei zu achten ist. Als Abschluss des Modulteils ist das Bestehen eines kleinen Multiple Choice-Tests erforderlich. Satellit Im zweiten Bereich "So funktioniert ein Satellit" wird das unterschiedliche Reflexionsverhalten von Gegenständen auf die Landschaft übertragen. Mit dem Vorwissen aus der Einführung können die Schülerinnen und Schüler nun diesen Aufgabenteil im Zweiergespräch diskutieren. Abschließend wird das Verständnis wieder mit einem kleinen Quiz überprüft. Sind alle Fragen richtig beantwortet, wird man zum dritten Teil weitergeleitet. Unsichtbares Licht Im dritten Teil ("Dem Unsichtbaren auf der Spur") können die Schülerinnen und Schüler die vorangegangenen Inhalte auf ein echtes Satellitenbild übertragen. Auch hier sind sie aufgefordert, sich in Zweiergruppen auszutauschen und die Fragestellungen am Computer interaktiv zu bearbeiten. Nach richtiger Beantwortung der Testfragen fasst der virtuelle Professor die Erkenntnisse abschließend noch einmal kurz zusammen. Reflexion Im ersten Teil des Lernmoduls werden die Schülerinnen und Schüler zunächst in die Thematik der Reflexion eingeführt. Nachdem sie das Lernprogramm starten, sehen sie zunächst eine relativ dunkle Bildschirmoberfläche. Um die Bedeutung des Lichts hervorzuheben, werden die Lernenden zunächst aufgefordert das Licht anzuschalten. Erst nach Einschalten aller relevanten Geräte (Licht, Kamera und Bildschirm) funktioniert der Versuch. Die Kamera lässt sich mit dem Mauszeiger ansteuern und entlang der Schiene hin- und herbewegen. Indem die Schülerinnen und Schüler mit dem virtuellen Professor spielerisch einen Versuch durchführen, erfahren sie, wie verschieden die Objekte auf dem Tisch - ein Kaktus, eine Chilischote, ein Hühnerei und eine schwarze Arbeitsunterlage - das Licht der Lampe reflektieren. Auf dem Bildschirm können sie nachvollziehen, in welchem Wellenlängenbereich des sichtbaren Lichts ein Objekt sehr viel beziehungsweise sehr wenig reflektiert. So können die Lernenden den Zusammenhang zwischen Objektfarbe und Höhe der Reflexion in den verschiedenen Wellenlängenbereichen herleiten. Absorption Um den Begriff der Absorption näher zu verdeutlichen, ist als Besonderheit eine schwarze Arbeitsunterlage integriert. Die Lernenden sollen zu der Frage angeregt werden, warum auf dem Bildschirm keine Ausschläge zu erkennen sind, wenn sich die Kamera über der Arbeitsunterlage befindet. Die Fragen, die sich unter "Aufgabe" finden, geben Arbeitshinweise zur Versuchsdurchführung (Abbildung 2, zum Vergrößern anklicken). Zur Überprüfung und Festigung des Gelernten ist ein Test integriert, den man über einen Button unten rechts im Bild erreicht (Box mit Fragezeichen). Aufnahme der Erdoberfläche Im zweiten Modulteil soll das Wissen aus dem virtuellen Labor übertragen werden. Ziel ist es, grundsätzlich die Funktionsweise eines Satelliten zu verstehen. Die Schülerinnen und Schüler erfahren, dass Satelliten die Erdoberfläche ähnlich aufnehmen wie zuvor die Kamera die Gegenstände auf dem Tisch im Labor. Ein Satellit misst vergleichbar einer Kamera beziehungsweise eines Spektroradiometers die von der Erdoberfläche reflektierte Strahlung. Darüber hinaus sollen die Schülerinnen und Schüler erfahren, dass die gemessenen Reflexionssignale zu Bildinformation verarbeitet werden können. Die Moduloberfläche des zweiten Teils zeigt zu Beginn eine skizzierte Landschaft über die ein Satellit hinweg fliegt (Abbildung 3). Am Boden zeigt ein rotes Quadrat an, welchen Ausschnitt der Satellit aktuell aufnimmt. Visualisierung Die Lernenden können mit dem Button "Bild übertragen" den aktuellen Ausschnitt der Landschaft visualisieren. Zur Förderung der visuellen Kompetenzen sowie der Sprachkompetenzen werden die Schülerinnen und Schüler dazu aufgefordert die Landschaft zu charakterisieren. Die Bilddarstellung erfolgt im rechten Teil des Bildschirmfensters über ein Farbbild und drei Grauwertbilder. Neben dem Farbbild wird für die Wellenlängenbereiche Blau, Grün und Rot das jeweilige Grauwertbild eingeblendet. Links neben den Bildern ist als zusätzliche Informationsquelle ein Diagramm integriert, in welchem für jedes Bildpixel die Höhe der Reflexion in den drei Wellenlängenbereichen angezeigt wird. Abschließend sollen sich die Lernenden mit der Frage beschäftigen, wie ein Satellit Bilder der Erdoberfläche erzeugt und wie ein Farbbild entsteht. Dritter Bereich: "unsichtbares" Licht Elektromagnetisches Spektrum Im dritten und letzten Teil des Lernmoduls erfolgt eine Erweiterung in der Betrachtung des elektromagnetischen Spektrums: Lernende können sich darüber informieren, dass das Spektrum auch aus weiteren Wellenlängenbereichen besteht. Einige dieser Bereiche des elektromagnetischen Spektrums können vom Satelliten bei der Bilderzeugung zusätzlich genutzt werden. Farbige Satellitenbilder Entsprechend enthält der dritte Modulteil statt einer schematischen Landschaftsskizze ein hochaufgelöstes Satellitenbild als Grundlage. Ähnlich wie im vorherigen Kapitel kann ein Bild übertragen und visualisiert werden. Der Unterschied besteht darin, dass neben den drei Wellenlängenbereichen des sichtbaren Lichts ein vierter Kanal aus dem Bereich des Infraroten Lichts zur Verfügung steht. Die Lernenden können somit aus den vier Kanälen drei auswählen und zur Erstellung eines Farbbildes jedem Kanal eine der Farben Rot, Grün oder Blau zuweisen (Abbildung 4). Durch Mausklick in das Farbbild am rechten oberen Bildschirmrand werden die Reflexionswerte für die einzelnen Wellenlängenbereiche angezeigt. Sie erscheinen als Kurve im elektromagnetischen Spektrum am oberen Bildschirmrand. Über die Kombination der Informationen sollen die Lernenden sich mit dem Begriff Falschfarbenbild auseinandersetzen und erklären können, warum zum Beispiel bei der Kanalkombination Infrarot - Rot - Grün die Vegetationsflächen im Farbbild rot dargestellt werden.

  • Physik / Astronomie
  • Sekundarstufe I

Materialsammlung Optik

Unterrichtseinheit

Auf dieser Seite haben wir Informationen und Anregungen für Ihren Astronomie- und Physik-Unterricht zum Thema Optik für Sie zusammengestellt. Die Optik (vom griech. opticos – "das Sehen betreffend") beschäftigt sich als Teilgebiet der Physik mit dem aus Photonen bestehenden Licht. Photonen werden gemäß dem Welle-Teilchen-Dualismus auch als Lichtteilchen bezeichnet, die je nach Beobachtung Teilcheneigenschaften oder Welleneigenschaften aufweisen können – man unterscheidet deshalb zwischen der geometrischen Optik und der Wellenoptik . Geometrische Optik In der geometrischen Optik wird Licht durch idealisierte (geradlinig gedachte) Lichtstrahlen angenähert. Dabei lässt sich der Weg des Lichtes (zum Beispiel durch optische Instrumente wie Lupe, Mikroskop, Teleskop, Brillen oder auch durch die Reflexion des Lichtes an einem Spiegel) durch Verfolgen des Strahlenverlaufes konstruieren; man spricht in diesem Zusammenhang auch von Strahlenoptik . Die dazu notwendigen Abbildungsgleichungen oder Linsengleichungen ermöglichen es, zum Beispiel den Brennpunkt einer optischen Linse zu bestimmen. Analog dazu kann auch die Brechung des Lichtes – beispielsweise durch eine Prisma – und die Aufspaltung in seine sichtbaren Anteile von violett bis rot ( Regenbogen-Farben ) mittels des Snelliu'schen Brechungsgesetzes beschrieben werden. Wellenoptik Die Wellenoptik beschäftigt sich mit der Wellennatur des Lichtes – dabei werde diejenigen Phänomene beschrieben, die durch die geometrische Optik nicht erklärt werden können. Bedeutende Elemente der Wellenoptik sind die Interferenz von sich überlagernden Wellenfronten, die Beugung beim Durchgang von Licht durch sehr kleine Spalten oder Kanten oder die Streuung von Licht an kleinen Partikeln, die in einem Volumen verteilt sind, die das Licht gerade durchdringt. Zudem kann die Wellenoptik auch Effekte beschreiben, die von der Wellenlänge des Lichtes bestimmt sind – man spricht in diesem Zusammenhang auch von Dispersion. Die häufig gestellte Frage "Warum ist der Himmel blau?" kann in diesem Zusammenhang erklärt werden. Oberflächlich auftretende Phänomene wie die Abgabe von Licht ( Lichtemission ) und die Aufnahme von Licht ( Lichtabsorption ) werden weitestgehend der Atom- und Quantenphysik (auch unter dem Begriff Quantenoptik ) zugeordnet. Die für den Unterricht an Schulen notwendigen Gesetze der Optik betreffen hingegen in erster Linie die Ausbreitung des Lichtes und sein Verhalten beim Durchqueren durchsichtiger Körper . Die hier vorgestellte Lerneinheit erläutert die Funktionsweise eines Satelliten, der das von der Erdoberfläche reflektierte Licht zur Bildaufnahme nutzt und dabei auch Wellenlängen jenseits des sichtbaren Lichts einbezieht. Zusätzlich zum Verständnis der physikalischen Inhalte lernen die Schülerinnen und Schüler auf diese Weise auch Aspekte der Fernerkundung kennen. Eine "Vermittlerfigur" in Form eines virtuellen Professors begleitet die Lernenden bei der Erforschung des elektromagnetischen Spektrums. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen Reflexionseigenschaften unterschiedlicher Objekte kennen lernen. die Begriffe "Reflexion" und "Absorption" erklären und unterscheiden können. den Zusammenhang zwischen Objektfarbe und Reflexionseigenschaften erklären können. das elektromagnetische Spektrum kennen und verstehen, dass es neben dem sichtbaren Licht noch andere Wellenlängenbereiche gibt. die Grundlagen der Umwandlung der Reflexionswerte in Bildinformationen beschreiben können. die Entstehung von Falschfarbenbildern beschreiben können. Thema Dem Unsichtbaren auf der Spur: was sieht ein Satellit? Autoren Dr. Roland Goetzke, Henryk Hodam, Dr. Kerstin Voß Fach Physik Zielgruppe Klasse 7 Zeitraum 3-4 Stunden Technische Ausstattung Adobe Flash-Player (kostenloser Download) Planung Dem Unsichtbaren auf der Spur Die Unterrichtseinheit "Dem Unsichtbaren auf der Spur" beschäftigt sich mit dem Themenkomplex Optik und geht dabei vor allem auf Reflexion, Absorption und die Wellenlängen des elektromagnetischen Spektrums ein. Durch den Bezug zur Satellitenbildfernerkundung werden diese drei Bereiche miteinander verknüpft und ergänzt. Zunächst soll an einem einfachen Beispiel die Charakterisierung verschiedener Objekte hinsichtlich ihrer unterschiedlichen Reflexions- und Absorptionseigenschaften untersucht werden. Weiterführend soll das gesammelte Wissen auf den Satelliten übertragen werden, so dass die Funktionsweise eines Satelliten verstanden wird. Als dritter Punkt wird dann neben der Betrachtung des sichtbaren Lichts der erweiterte Bereich des elektromagnetischen Spektrums (infrarotes Licht) mit einbezogen. Ziel der Unterrichtseinheit ist es, Zusammenhänge zwischen elektromagnetischem Spektrum, Reflexion, Absorption sowie Aufnahme und Entstehung von Satellitenbildern zu verstehen. Aufbau des Computermoduls Das interaktive Modul gliedert sich in eine Einleitung und zwei darauf aufbauende Bereiche. Inhalte des Computermoduls Hier wird der Aufgabenteil mit den drei Bereichen Einleitung, Satellit und "Unsichtbares" Licht genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der didaktischen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Dr. Kerstin Voß ist Akademische Rätin am Geographischen Institut der Universität Bonn und leitet das Projekt "Fernerkundung in Schulen". Sie studierte Geographie an der Universität Bonn und schloss ihre Dissertation 2005 im Bereich Fernerkundung ab. Die Schülerinnen und Schüler sollen mithilfe des Reflexionsgesetzes beschreiben können, wie ein Bild durch Reflexion am ebenen Spiegel entsteht. in der verwendeten GEONExT-Konstruktion die Elemente Einfallswinkel, Ausfallwinkel, Gegenstand und Bild zuordnen können. mithilfe des Arbeitsblattes ein einfaches Konstruktionsverfahren für die Bildentstehung am ebenen Spiegel erarbeiten. die Ergebnisse mit einem Bildbearbeitungsprogramm, zum Beispiel dem kostenlosen GIMP, dokumentieren. Thema Reflexion am ebenen Spiegel mit GEONExT Autor Dr. Karl Sarnow Fach Physik Zielgruppe Klasse 8 Zeitraum 1 Stunde Voraussetzungen idealerweise pro Schülerin oder Schüler ein Rechner; Internetbrowser, Java Runtime Environment , GEONExT (kostenloser Download aus dem Netz), Bildbearbeitungssoftware (zum Beispiel GIMP) Die Schülerinnen und Schüler können offline oder online mit dem HTML-Arbeitsblatt arbeiten, in das die GEONExT-Applikation eingebettet ist. Voraussetzung ist, dass auf den Rechnern die benötigte Java-Abspielumgebung installiert ist. Falls dies nicht der Fall ist, bleibt das GEONExT-Applet in der Online-Version des Arbeitsblattes (siehe Internetadresse) für Sie unsichtbar. Mithilfe des Screenshots (Abb. 1, Platzhalter bitte anklicken) können sich aber auch (Noch-)Nicht-GEONExTler einen Eindruck von dem Applet machen. Bereits Philosophen der Antike wie Empedokles (494-434 v. Chr.), Aristoteles (384-322 v. Chr.) und Heron von Alexandria (zwischen 200 und 300 v. Chr.), stellten Überlegungen und Mutmaßungen zur Endlichkeit der Lichtgeschwindigkeit an. Johannes Kepler (1571-1630) und René Descartes (1596-1650) hielten die Lichtgeschwindigkeit für unendlich, erst Olaf Christensen Römer (1644-1710) gelang 1676 der Nachweis der Endlichkeit. Heute kann an vielen Schulen mit Demonstrationsexperimenten die immer noch faszinierende Frage nach der Geschwindigkeit des Lichts experimentell untersucht und beantwortet werden. Der Foucaultsche Drehspiegelversuch ist jedoch vorbereitungsaufwändig für die Lehrkraft und enttäuschend im beobachteten Effekt für die Schülerinnen und Schüler. Auf einer Messung der Phasenverschiebung eines modulierten Lichtsignals beruhende Versuche sind für Lernende nicht einfach zu verstehen. Das RCL "Lichtgeschwindigkeit" arbeitet daher mit einem modifizierten Leybold-Versuch nach der auch für Schülerinnen und Schüler der Sekundarstufe I verständlichen Laufzeitmethode von Lichtimpulsen. Darüber hinaus können die Lernenden anhand selbst durchgeführter Messungen die Lichtgeschwindigkeit bestimmen. Die Schülerinnen und Schüler sollen die Bestimmung der Lichtgeschwindigkeit als messtechnisches Problem erkennen. mit dem RCL "Lichtgeschwindigkeit" Messungen nach der Laufzeitmethode durchführen. aus Strecke-Zeit-Messwertpaaren möglichst genau die Lichtgeschwindigkeit bestimmen und den Messfehler abschätzen. sich mit geeigneten Materialien und Kenntnissen aus der geometrischen Optik und Mechanik weitere Bestimmungsmethoden (Olaf Christensen Römer, Hippolyte Fizeau, Jean Bernard Léon Foucault) erarbeiten und vortragen. eine Vorstellung von der Bedeutung der Lichtgeschwindigkeit in der Physik gewinnen. Thema Bestimmung der Lichtgeschwindigkeit Autor Sebastian Gröber Fach Physik Zielgruppe Sekundarstufe I (ab Klasse 10) und II Zeitraum Teil 1 für Sekundarstufe I oder II: 3 Stunden Teil 2 für Sekundarstufe II: 3 Stunden Technische Voraussetzungen Computer mit Internetzugang und Beamer Software Zeichenprogramm (zum Beispiel Paint) zur Auswertung des Oszilloskopbildes, Tabellenkalkulationsprogramm (zum Beispiel Excel) zur Auswertung der Messdaten

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Globale Erwärmung

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Globale Erwärmung" erarbeiten die Schülerinnen und Schüler in verschiedenen Sozialformen anhand eines Videos und selbstständiger Recherchearbeit Ursachen und Folgen der globalen Erwärmung. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden. Die Schülerinnen und Schüler erarbeiten mit diesem Unterrichstmaterial Ursachen und Folgen der globalen Erwärmung. Dazu setzten sie sich anhand eines Videos mit dem Treibhauseffekt auseinander und benennen negativen Langzeitfolgen. Durch eine anschließende Recherchearbeit beziehen die Lernenden Stellung bezüglich verschiedener in der Gesellschaft diskutierter Fragen wie etwa zum Verhältnis von anthropogenen und natürlichen Ursachen oder zum Pariser Abkommen. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema "Globale Erwärmung" im Unterricht Das Thema "Globale Erwärmung" ist ein aktuelles und weltweit vielseitig diskutiertes Thema. Nicht nur die Relevanz dieses Themas für unsere Weltgemeinschaft, sondern auch die Brisanz der Klimapolitik wird wohl kaum einem Lernenden entgangen sein. Eine Beschäftigung mit dem Thema beispielsweise im Rahmen einer Unterrichtseinheit zum Thema Ökologie im Fach Biologie oder im Zusammenhang mit Kohlenstoffdioxid im Fach Chemie ist daher legitim und weckt das Interesse der Lernenden. Vorkenntnisse Die Unterrichtssequenz ist so aufgebaut, dass die Schülerinnen und Schüler damit eine gemeinsame fachliche Grundlage erlangen. Es werden daher keine Fachkenntnisse beispielsweise zum Treibhauseffekt oder zu Klima-Abkommen vorausgesetzt. Die Kenntnis über Reflexion, Absorption und Emission von Wellenlängen ist jedoch hilfreich für eine sprachlich korrekte Darstellung des Treibhauseffektes in der Sekundarstufe II. Didaktische Analyse Das Arbeitsmaterial soll die Schülerinnen und Schüler dazu befähigen, einen eigenen Standpunkt zu immer wieder diskutierten klimapolitischen Themen zu finden. Dazu wird zunächst eine gemeinsame fachliche Grundlage erarbeitet (Treibhauseffekt und negative Folgen der globalen Erwärmung), um anschließend drei in der Öffentlichkeit diskutierte Fragestellungen zu thematisieren. Hierbei können die Lernenden nach individuellen Interessen wählen, zu welcher Fragestellung sie entsprechend ihrer Vorkenntnisse recherchieren möchten. In einer anschließenden Diskussion in Gruppen wird geübt, den eigenen Standpunkt in Worte fassen zu können. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz wird eine hohe Schüleraktivität erreicht. Verschiedene Sozialformen regen die Schülerinnen und Schüler zum Austausch und zur Diskussionen an. Der möglichst aktuelle Einstieg, beispielsweise über eine aktuelle Schlagzeile, wie auch das Video als Medium sollen das Interesse und die Diskussionsbereitschaft schon zu Beginn der Sequenz wecken. Schwierige Arbeitsaufträge werden durch Partnerarbeiten aufgefangen. Fachkompetenz Die Schülerinnen und Schüler stellen den Treibhauseffekt schlüssig und unter Gebrauch der Fachsprache dar. benennen negative Folgen der globalen Erwärmung. beziehen fachlich begründet Stellung zu aktuellen Diskussionsfragen bezüglich des Themas und können diese kommunizieren. Medienkompetenz Die Schülerinnen und Schüler können das in einem Video dargestelltes Wissen nach Relevanz filtern und strukturiert wiedergeben. üben sich darin, aus komplexen und informationsreichen Internetquellen wesentliche Sachverhalte herauszuschreiben. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken ihr Selbstkonzept durch die geschützte Atmosphäre in den Partnerarbeitsphasen. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie
  • Sekundarstufe I, Sekundarstufe II

Temperaturmessung aus dem All: Summer in the City

Unterrichtseinheit

In dieser Unterrichtseinheit zum Themenkomplex Temperatur und Energie unterscheiden die Lernenden mithilfe von Thermalbildern Oberflächen unterschiedlicher Temperatur voneinander. Dabei lernen sie den Zusammenhang zwischen Oberflächentemperatur, spezifischer Wärmekapazität und weiteren thermalen Objekteigenschaften kennen.Klimatisch unterscheiden sich Städte stark von ihrem Umland. Am Beispiel von Berlin sollen Lernende die Temperaturunterschiede in der Großstadt am Tag und in der Nacht erklären und bewerten. Eingebettet in diesen Kontext erkennen sie den Zusammenhang von Sonnenstrahlung und Wärmeenergie. Die von der Erde abgestrahlte Wärmeenergie wird von Satellitensensoren aufgenommen und in Thermalbildern visualisiert. Diese dienen den Schülerinnen und Schülern als Grundlage für ihre Untersuchungen. Darüber hinaus erhalten sie erste Einblicke in die Methodik der Fernerkundung (Kartenerstellung, Klassifikation). Die Unterrichtseinheit entstand im Rahmen des Projekts Fernerkundung in Schulen (FIS) am Geographischen Institut der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II.Diese Unterrichtseinheit zum Themenfeld Temperatur und Energie soll die klimatischen Besonderheiten einer Großstadt verdeutlichen. Als wissenschaftliche Grundlage dient eine Einführung in die Methodik der Fernerkundung, mit deren Hilfe die Schülerinnen und Schüler in der Lernumgebung Temperaturunterschiede bestimmen und erste Einblicke in die Erstellung von Karten gewinnen. Inhalte und Einsatz im Unterricht Hinweise zum Aufbau der Lernumgebung "Summer in the City". Screenshots veranschaulichen die Funktionen und die interaktiven Übungen zum Themenfeld Temperatur und Energie. Die Schülerinnen und Schüler können die Begriffe Spezifische Wärmekapazität, Reflexion und Absorption mit eigenen Worten erklären. können verschiedene Stoffe und Oberflächen anhand ihrer spezifischen Wärmekapazität einordnen. können die Erwärmung verschiedener Oberflächen im Tagesgang bewerten. können die Temperaturunterschiede verschiedener Oberflächen in Thermalbildern von Tag- und Nachtaufnahmen erkennen und benennen. können Thermalbilder auswerten, interpretieren und bewerten. Computereinsatz und technische Voraussetzungen Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um den Themenkomplex Temperatur und Energie durch Animation und Interaktion zu vermitteln. Den Lernenden wird der Computer nicht als reines Informations- und Unterhaltungsgerät, sondern als nützliches Werkzeug nähergebracht. Die interaktive Lernumgebung "Summer in the City" ist ohne weiteren Installationsaufwand lauffähig. Auf Windows-Rechnern wird das Modul durch Ausführen der Datei "SummerInTheCity.exe", unter anderen Betriebssystemen durch Klick auf die Datei "SummerInTheCity.swf" gestartet. Dafür ist der Adobe Flash Player ( kostenloser Download ) notwendig. Der jeweils aktivierte Bereich wird auf der linken Leiste der Lernumgebung eingeblendet (Abbildung 1, Platzhalter bitte anklicken). Während der erste Teil einen Einblick in die Thematik Temperatur und Energie liefert und eine übergeordnete Aufgabestellung benennt, gliedert sich der Hauptteil in zwei thematische Sequenzen, die neue Aufgaben sowie Info-Boxen mit Hintergrundinformationen enthalten. Den Abschluss eines jeden Bereichs bildet ein Quiz. Erst nach dem Bestehen dieser kleinen Übung wird der jeweils folgende Teil der Lernumgebung zugänglich und erscheint in der Seitenleiste. Danach ist auch ein Springen zwischen den Teilbereichen möglich. Ergänzt wird das Modul durch Tutorials, die die Nutzung der Lernumgebung veranschaulichen. Arbeit in Zweierteams Der Ablauf der Unterrichtsstunden wird durch die Struktur des Computermoduls vorgegeben. In Zweierteams erarbeiten sich die Schülerinnen und Schüler die drei Teilbereiche der Lernumgebung. Der Unterricht beginnt jeweils mit einer Erläuterung des Moduls und gegebenenfalls der Aufgabenstellung. Dann folgt die selbstständige Erarbeitung und Überprüfung der Kenntnisse im Quiz (Partnerarbeit). Abschließend können die Ergebnisse jeder Stunde noch einmal im Plenum gebündelt werden. 1. Einstieg Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Zu Beginn ist ein Professor zu sehen, der sich mit einem Getränk erfrischt, während er im Radio eine Hitzemeldung hört (siehe Abbildung 1). Mithilfe der Infobox (Abbildung 2) erhalten Schülerinnen und Schüler Hintergrundinformationen zum Thema "Spezifische Wärmekapazität". Ein kurzes Quiz schließt den einführenden Teil ab. Erst nach der Beantwortung der Fragen wird der folgende Bereich der Lernumgebung zugänglich. Der zweite Teil beginnt mit einem Tutorial, das die Lernenden in die Nutzung der Lernumgebung einweist. Inhaltlich beschäftigen sie sich mit der Darstellungsform von Thermalbildern und vergleichen die Temperaturunterschiede verschiedener Landoberflächen bei Tag. Ein Thermalbild sowie eine Landnutzungskarte können in das Hauptfeld gezogen und untersucht werden. Die Info-Box gibt Auskunft über die Besonderheit von Thermalbildern (Abbildung 3) und macht die Vorteile dieser Technologie deutlich. Ein Quiz schließt die Bearbeitung des Moduls ab und leitet zum letzten Teil der Lernumgebung über. Hier stehen den Lernenden neben den am Tag aufgenommenen Bildern auch Thermalbilder zur Verfügung, die dieselben Orte während der Nacht zeigen (Abbildung 4). Die Schülerinnen und Schüler sollen die Bilder vergleichen, mithilfe des Pipetten-Werkzeugs Flächen markieren und auf diese Weise unterschiedlich temperierte Flächen kartografisch herausarbeiten. Abschließend soll die übergeordnete Frage beantwortet werden, welcher Ort im Sommer als Aufenthaltsort am angenehmsten ist. Nach dem Absolvieren des Quiz haben die Lernenden das Modul erfolgreich beendet.

  • Physik / Astronomie
  • Sekundarstufe I

Spektroskopie an galaktischen Gasnebeln

Unterrichtseinheit

Die Astronomie-AG des Kopernikus-Gymnasiums in Wissen (Rheinland-Pfalz) hat die Spektren verschiedener galaktischer Gasnebel aufgenommen. Physikkurse und astronomische Arbeitsgemeinschaften können das Kalibrieren des Spektrographen nachvollziehen und aus den Bilddateien selbst Spektren extrahieren und auswerten. Seit mehr als 150 Jahren ist die Spektroskopie eine tragende Säule der Astrophysik. Mit spektroskopischen Methoden wurde die chemische Zusammensetzung von Sternen, Gasnebeln und des interstellaren Mediums erforscht. In der hier vorgestellten Unterrichtseinheit werden mittels quantitativer Auswertung der Spektren einer HII-Region und dreier planetarischer Nebel die dort vorhandenen chemischen Elemente identifiziert. In einem Fall können zusätzlich Aussagen zur räumlichen Verteilung der Temperatur in den Gasen des planetarischen Nebels abgeleitet werden. Die dieser Unterrichtseinheit zugrunde liegenden Spektren wurden mit einem DADOS-Spaltspektrographen der Firma Baader-Planetarium gewonnen. Abstract Inhalte der vorliegenden Unterrichtseinheit sind die Vermessung und die astrophysikalische Auswertung von Spektren der planetarischen Nebel NGC 6543 (Katzenaugennebel), M 57 (Ringnebel) und NGC 2392 (Eskimonebel), sowie der HII-Region M 42 (Großer Orionnebel). Die Spektren der planetarischen Nebel wurden mit einem DADOS-Spektrographen der Firma Baader-Planetarium als digitale Bilddateien in der Schulsternwarte der Geschwister-Scholl-Realschule in Betzdorf aufgenommen. Das Spektrum der HII-Region Orionnebel wurde im Rahmen eines Praktikums am Observatorium Hoher List des Argelander-Instituts für Astronomie der Universität Bonn gewonnen (ebenfalls mit dem DADOS). Mithilfe kostenlos zugänglicher oder üblicherweise vorhandener Software werden aus den Bilddateien Spektren extrahiert, aus denen die chemische Zusammensetzung der betrachteten Himmelsobjekte und teilweise auch die räumliche Verteilung der vorkommenden Elemente erschlossen werden. Klassische Themen des Oberstufenlehrplans, Wellenoptik und Atommodelle, werden unter astrophysikalischen Aspekten betrachtet und mit modernen Methoden der rechnergestützten Datenverarbeitung und -auswertung verknüpft. Fachliche Grundlagen Physikalische Grundlagen Bohrsches Atommodell, Energieniveaus und Spektrallinienserien des Wasserstoffatoms und Entstehung der Emissionsspektren galaktischer Gasnebel werden kurz erläutert. HII-Regionen Die Photonen heißer Sterne ionisieren Wasserstoffatome interstellarer Gaswolken und bringen diese zum Leuchten. Planetarische Nebel Darstellung der Bedeutung des hydrostatischen Gleichgewichts im Leben eines Sterns sowie Informationen zur Entstehung und zu den Eigenschaften planetarischer Nebel Material, Methoden und Ergebnisse Aufbau und Kalibrierung des DADOS-Spektrographen Informationen zum verwendeten DADOS-Spaltspektrograph und zu den Teleskopen, mit denen die Spektren aufgenommen wurden Spektrum der HII-Region Orionnebel Ausführliche Beschreibung des Verfahrens zur Kalibrierung des Spektrographen mit einer Energiesparlampe und Dokumentation der Ergebnisse Spektren planetarischer Nebel Hinweise zur Auswertung der Spektren, Beschreibung einer vereinfachten Auswertung und Ergebnisse: Elemente und deren räumliche Verteilung in den Nebeln Die Schülerinnen und Schüler sollen Fotoionisation und Lichtemission im Bohrschen Atommodell erklären und beschreiben können. die Entwicklung sonnenähnlicher Sterne über das Riesenstadium bis hin zu weißen Zwergen mit planetarischen Nebeln verstehen. HII-Regionen und ihre charakteristischen Eigenschaften kennen lernen. die Funktionsweise eines Reflexionsgitterspektrographen verstehen. die mit einem Gitterspektrographen gewonnenen Spektren mithilfe des bekannten Spektrums einer Energiesparlampe kalibrieren. aus digitalen Bilddateien Spektren extrahieren, in denen jeder Wellenlänge im sichtbaren Bereich eine Intensität zugeordnet ist. aus Spektren die chemische Zusammensetzung astronomischer Objekte bestimmen. aus dem Spektrum des Ringnebels M 57 Aussagen zur unterschiedlichen räumlichen Verteilung der Elemente Wasserstoff und Sauerstoff in diesem planetarischen Nebel ableiten. Thema Spektroskopie an galaktischen Gasnebeln Autoren Andreas Gerhardus, Daniel Küsters, Peter Stinner Fächer Physik, Astronomie, Astronomie-AGs Zielgruppe Sekundarstufe II Zeitraum je nach Umfang und Intensität 4 bis 10 Stunden Technische Voraussetzungen Rechner mit Internetzugang für die Einzel-, Partner- oder Kleingruppenarbeit Software Astroart (kostenloser Download der Astroart-Demoversion ) zur Erstellung von Intensitätsprofilen längs beliebiger gerader Linien in Bilddateien; Tabellenkalkulationssoftware, hier MS-Excel Für das Praktizieren der Auswertungsmethodik benötigen Sie neben dem "Hilfsmittel-Ordner" nur die Inhalte eines der vier übrigen Ordner. Wenn Sie sich auf ein Beispiel beschränken möchten, ist eine "Grundausrüstung" aus "Hilfsmittel-Ordner" und "M42.zip" zu empfehlen. Daniel Küsters legte im März 2009 sein Abitur am Kopernikus-Gymnasium Wissen (Rheinland-Pfalz) ab. Zurzeit ist er Praktikant bei der Firma EADS Astrium Satellites. Dort beschäftigt er sich im Rahmen einer Definitionsstudie mit experimentellen Untersuchungen für das geplante Weltraum-Gravitationsinterferometer LISA (Laser Interferometer Space Antenna). Peter Stinner ist Lehrer für Physik und Mathematik am Kopernikus-Gymnasium in Wissen (Rheinland-Pfalz). Mit der Wissener Astronomie-AG betreibt er die Sternwarte der Geschwister-Scholl-Realschule in Betzdorf. Das Bohrsche Atommodell Objekte der spektroskopischen Untersuchungen in dieser Unterrichtseinheit sind planetarische Nebel und HII-Regionen. Die entsprechenden Spektren wurden mit einem Reflexionsgitterspektrographen aufgenommen. Um eine fundierte Basis für die praktische Arbeit zu schaffen, werden hier zunächst grundlegende Informationen zur Theorie der Lichtabsorption und -emission vorangestellt. Nach dem Bohrschen Atommodell gibt es für Elektronen in einem Atom oder Ion verschiedene diskrete Energieniveaus, so genannte Quantenzustände. Es ist nicht möglich, dass die Elektronenenergie Zwischenwerte annimmt. Niels Bohr (1885-1962) schrieb jedem dieser Zustände eine bestimmte Kreisbahn eines Elektrons um den Atomkern zu. Energieniveaus und Spektrallinienserien des Wasserstoffatoms Normalerweise hält das Elektron sich auf dem Grundzustand (n = 1), der Stufe mit der niedrigsten Energie, auf. Der Begriff "Grundzustand" rührt daher, dass das Elektron nach kurzer Zeit immer wieder von den höheren Stufen in diesen Zustand zurückfällt. Theoretisch gibt es unendlich viele dieser Quantenzustände, deren Energiedifferenzen jedoch immer geringer werden, und deren Energie gegen einen bestimmten Wert, die Ionisationsgrenze, konvergiert. Wenn man die Gesamtenergie eines Elektrons im Wasserstoffatom an der Ionisierungsgrenze zu Null Elektronenvolt (eV) festlegt, dann hat es im Grundzustand eine Energie von -13,6 Elektronenvolt. Zur Ionisierung eines Wasserstoffatoms ist also eine Mindestenergie von 13,6 Elektronenvolt erforderlich. Die Energieniveau-Schemata der Atome anderer Elemente sind deutlich komplizierter. Allen gemeinsam ist aber das Auftreten von diskreten Energieniveaus. Der Wechsel zwischen zwei diskreten Energiestufen ist mit Aufnahme oder Abgabe von Energie verbunden. Dies erfolgt entweder strahlungslos durch eine Kollision mit einem anderen Teilchen, oder aber durch Absorption (Energie wird aufgenommen) oder Emission (Energie wird abgegeben) eines Lichtquants, eines so genannten Photons. Besitzt ein absorbiertes Lichtquant mehr Energie, als zwischen Grundzustand und Ionisationsgrenze liegt, löst sich das Elektron vom Atom. Dieser Vorgang wird als Photoionisation genannt. So entstandene freie Elektronen werden nach einer gewissen Zeit wegen der elektrischen Anziehungskräfte von Wasserstoffionen (Protonen) wieder "eingefangen". Auf dem Weg in den Grundzustand geben diese Elektronen 13,6 Elektronenvolt ab. Diese Energie kann sich gemäß Abb. 1 auf mehrere Photonen verteilen, deren einzelne Energien erlaubten Energiedifferenzen entsprechen. Auf diese Weise entstehen Emissionslinienspektren, die sich von Element zu Element unterscheiden. In galaktischen Gasnebeln sind unterschiedliche Elemente vorhanden, was zur Folge hat, dass sich das Spektrum dieser Nebel aus den Emissionslinienspektren der beteiligten Elemente zusammensetzt. Damit werden Rückschlüsse auf die im Gasnebel vorhandenen Elemente möglich. Etwa 70 Prozent des interstellaren Gases bestehen aus atomarem Wasserstoff. Man unterscheidet Wolken aus neutralem Wasserstoff, HI (lies: "H-eins"), und ionisiertem Wasserstoff HII (lies: "H-zwei"). Wolken aus neutralem Wasserstoff, die sich fernab von sehr heißen Sternen befinden, sind im sichtbaren Bereich der elektromagnetischen Strahlung nicht beobachtbar, weil kein Mechanismus zur Verfügung steht, der die Elektronen der Wasserstoffatome aus dem Grundzustand in einen höheren Energiezustand befördert. Folglich werden auch keine Photonen emittiert. Anders ist die Situation in der Nähe von leuchtkräftigen und heißen Sternen. Die Strahlung von Sternen mit einer Oberflächentemperatur über 20.000 Kelvin enthält Photonen mit mehr als 13,6 Elektronenvolt in hinreichender Anzahl, um genügend viele Wasserstoffatome zu ionisieren. Bei deren Rekombination entsteht nach den im Kapitel Physikalische Grundlagen beschriebenen Mechanismus das sichtbare Wasserstoffspektrum. Neben Wasserstoff enthalten HII-Regionen auch Sauerstoff, Helium und Stickstoff. Auch deren Emissionslinien sind in den Spektren von HII-Regionen vertreten. Ein Paradebeispiel für eine HII-Region ist der bekannte Orionnebel. Das Foto des Nebels in Abb. 3 (zur Vergrößerung anklicken) entstand im Rahmen eines Beobachtungspraktikums unserer Astronomie-AG im Observatorium Hoher List in der Eifel. Als ersten planetarischen Nebel entdeckte Charles Messier (1730-1817) im Jahr 1764 den Hantelnebel M 27 im Sternbild Füchslein. Weil die meisten früh entdeckten planetarischen Nebel in den damaligen Teleskopen dem Erscheinungsbild der Planetenscheibchen der Gasplaneten ähnelten, prägte Wilhelm Herschel (1738-1822) diesen irreführenden Begriff. Planetarische Nebel haben nichts mit Planeten zu tun. Vielmehr handelt es sich um von einem Stern abgestoßene gasförmige Materiewolken, die durch diesen, den so genannten Zentralstern, zum Leuchten angeregt werden. Das hydrostatische Gleichgewicht: Gravitation und Strahlungsdruck Planetarische Nebel entstehen immer dann, wenn sich das "Leben" eines Sterns von ein bis fünf Sonnenmassen dem Ende nähert. Während der überwiegenden Zeit seines Lebens fusioniert ein Stern in seinem Inneren Wasserstoff zu Helium. Dadurch entsteht ein nach außen gerichteter Strahlungsdruck, der der eigenen Gravitation des Sterns entgegenwirkt und somit verhindert, dass er kollabiert (Abb. 4). Die Patt-Situation dieser Kräfte bezeichnet man als hydrostatisches Gleichgewicht. Abnahme des Strahlungsdrucks führt zur Kontraktion eines Sterns Nachdem der Wasserstoffvorrat weitgehend aufgebraucht ist, nimmt der Strahlungsdruck eines Sterns ab. Dann beginnt er, sich unter seiner eigenen Gravitation zusammenzuziehen. Durch die Verdichtung steigt die Temperatur des Sterns an. Damit werden die Bedingungen für die Fusion von Helium zu schwereren Elementen, wie zum Beispiel Kohlenstoff und Sauerstoff, geschaffen. Weil die Temperatur des Sterns nach außen hin abfällt, nimmt auch die relative Häufigkeit der schweren Elemente entsprechend nach außen hin ab. Der Stern pulsiert Die äußeren Regionen des Sterns verlieren nach und nach ihre Masse in Form von Sternenwind: Da die Reaktionsgeschwindigkeit der Heliumfusion proportional zu einer sehr hohen Potenz der Temperatur ist (Literaturangaben zum Grad der Potenz sind widersprüchlich!), erhöht sich der Strahlungsdruck bereits bei einem leichten Temperaturanstieg übermäßig. Als Folge dessen dehnt sich die äußere Schicht des Sterns zunächst aus. Dadurch verliert sie an Temperatur und kontrahiert wieder, es entsteht eine Pulsation. Die Expansionsgeschwindigkeit der abgestoßenen Materie beträgt etwa 25 Kilometer pro Sekunde. Durch den Sternenwind wird der heiße Kern immer weiter freigelegt, weshalb später auch ein Anteil der schwereren Elemente abgestoßen wird. Der heiße Zentralstern bringt das abgestoßene Gas zum Leuchten Mit der Zeit steigt somit die Oberflächentemperatur des Zentralsterns. Entsprechend verschiebt sich sein Strahlungsmaximum in den ultravioletten Bereich. Deshalb werden überwiegend hochenergetische Photonen emittiert, welche das abgestoßene Gas nach den bereits dargestellten Mechanismen zum Leuchten anregen. Ein planetarischer Nebel ist entstanden. Planetarische Nebel bestehen zu etwa 70 Prozent aus Wasserstoff, 28 Prozent Helium und neben geringen Mengen anderer Elemente aus Stickstoff, Kohlenstoff und Sauerstoff. Diese Metalle - so bezeichnen Astronomen alle Elemente, die schwerer als Helium sind - stellen einen wichtigen Schritt in der Entwicklung des Universums dar. Sie werden im interstellaren Raum angereichert und sind ein wichtiger Baustoff für die Entstehung der nachfolgenden Sternengenerationen, von Planeten und von Leben. Form Nur jeder fünfte planetarische Nebel ist kugelförmig. Alle anderen haben komplexe oder bipolare Strukturen, wobei die Gestalt formenden Mechanismen nicht eindeutig geklärt sind (Abb. 5). Ursachen könnten Magnetfelder oder Wechselwirkungen mit massereichen Objekten sein. Größe Die Radien der planetarischen Nebel liegen in der Größenordnung von 0,2 Parsec (1 Parsec = 3,3 Lichtjahre). Durch die oben beschriebene Expansion werden sie zunehmend diffuser und vermischen sich mit der interstellaren Materie. Ab einem Radius von etwa 0,7 Parsec emittieren sie so wenig Strahlung, dass sie unsichtbar werden. Flüchtige Erscheinungen Planetarische Nebel sind aufgrund ihrer Expansion in der Regel nur etwa 10.000 Jahre sichtbar. Nach astronomischen Maßstäben ist das eine äußerst kurze Zeitspanne. Umso erstaunlicher ist es, dass man momentan 1.500 planetarische Nebel in unserer Galaxie kennt. Ihre tatsächliche Anzahl auf wird 10.000 bis 50.000 geschätzt. Dichte Die mittlere Dichte der planetarischen Nebel beträgt meist weniger als 10.000 Teilchen pro Kubikzentimeter. Das entspricht dem besten auf der Erde erzeugbaren Hochvakuum. Aus diesem Grund dienen planetarische Nebel den Astrophysikern auch als "Weltraumlaboratorien", deren Bedingungen auf der Erde kaum zu erzeugen sind. Vom mysteriösen Element "Nebulium" In den Spektren planetarischer Nebel und des Orionnebels treten im blauen Spektralbereich starke Emissionslinien bei 495,9 Nanometern und bei 500,7 Nanometern auf (siehe Abb. 9). Lange Zeit misslangen alle Versuche, diese Linien in Verbindung mit Spektrallinien bekannter Elemente zu bringen. Man ging daher von einem neuen Element aus, dass man "Nebulium" nannte. Erst 1927 konnte gezeigt werden, dass es sich bei den fraglichen Spektrallinien um "verbotene Linien" des zweifach positiv geladenen Sauerstoff-Ions handelt. Dieser wird als OIII (lies: "O-drei") bezeichnet. Entstehung der verbotenen OIII-Linien Bei der Entstehung dieser Linien spielen so genannte metastabile Energiezustände des OIII die entscheidende Rolle. Die Lebensdauer solcher Zustände, das heißt die Verweildauer der Elektronen auf diesen Energieniveaus, liegt um mehrere Größenordnungen über der von normalen Niveaus. Die zweifach positiv geladenen Sauerstoff-Ionen gelangen durch Lichtabsorption in hoch liegende Energiezustände und aus diesen durch Lichtemission auch in metastabile Zustände. Bei der Entstehung der "verbotenen Linien" gehen Elektronen von einem metastabilen Energiezustand in einen tieferen Zustand über. Aus Gründen der Drehimpulserhaltung muss bei solchen Übergängen elektromagnetische Strahlung höherer Multipolordnungen entstehen, was nur mit äußerst geringer Wahrscheinlichkeit der Fall ist. Warum sind verbotene OIII-Linien nicht auf der Erde zu beobachten? Die Lebensdauer eines metastabilen Zustands ist so groß, dass auf der Erde auch beim bestmöglichen Vakuum ein OIII-Ion in einem solchen Zustand seine Energie durch einen Stoß mit einem anderen Atom oder Ion strahlungslos verliert, bevor es sie zum Beispiel als elektromagnetische Quadrupolstrahlung abgeben kann. Daher sind die OIII-Linien bei 495,9 Nanometern und bei 500,7 Nanometern auf der Erde nicht zu beobachten. In galaktischen Gaswolken ist die Konzentration der Atome beziehungsweise Ionen jedoch geringer als in dem besten irdischen Vakuum. Stöße der OIII-Teilchen im metastabilen Zustand finden dort also so gut wie keine statt. Daher kann auch keine strahlungslose Energieabgabe stattfinden. Da die Wahrscheinlichkeit für die "verbotenen Übergänge" zwar klein, aber größer als Null ist, zerfallen die metastabilen Zustände dann irgendwann durch Photonenemission und erzeugen so die Linien des "Nebuliums" (Frank Gieseking, Planetarische Nebel Teil 1, Sterne und Weltraum, 1983/2, Seite 68-74; Planetarische Nebel Teil 3, Sterne und Weltraum, 1983/7, Seite 336-341). Aufbau des Geräts Die dieser Unterrichtseinheit zugrunde liegenden Spektren wurden mit einem DADOS-Spaltspektrographen der Firma Baader-Planetarium gewonnen (Abb. 6). Die Teleskop-Optik bündelt das Licht eines zu spektroskopierenden Objekts auf den Spektrographenspalt. Das aus dem Spalt austretende Licht geht durch eine Kollimatorlinse, um dann als paralleles Lichtbündel auf ein Reflexionsgitter zu treffen. Dieses Gitter ist das dispergierende Element, welches das Licht in seine spektralen Bestandteile zerlegt. Eine zweite Kollimatorlinse nach dem Gitter leitet das in die vorhandenen Spektralfarben aufgespaltene Licht zur visuellen Beobachtung oder zur Fotografie weiter. Der DADOS-Spektrograph besitzt drei nebeneinander liegende Spalte unterschiedlicher Breite. Ist man an einer großen Auflösung interessiert, wählt man den schmalen Spalt. Ist man auf kurze Belichtungszeiten angewiesen, verwendet man den breiten Spalt. Die Spalte des DADOS besitzen folgende Breiten: 50 Mikrometer 25 Mikrometer 35 Mikrometer Bei der Spektroskopie des großflächigen Orionnebels konnte die Astronomie-AG Wissen im Rahmen eines Praktikums das RC-Teleskop des Observatoriums Hoher List nutzen. Das Bild des Nebels leuchtete dabei alle drei Spalte gleichzeitig aus. Die Aufnahme in Abb. 7 zeigt daher drei Spektren mit unterschiedlichen Auflösungen und Helligkeiten (oben: Spaltbreite 50 Mikrometer; mittig: Spaltbreite 25 Mikrometer; unten: Spaltbreite 35 Mikrometer). Bei weniger ausgedehnten Objekten, wie zum Beispiel den planetarischen Nebeln, lässt sich nur einer der drei Spalte ausleuchten. Zwei Methoden Nachdem ein Spektrum aufgenommen wurde, stellt sich die Frage, welche Lichtwellenlänge von welchem Ort im Bild des Spektrums repräsentiert wird. Der Spektrograph muss kalibriert (geeicht) werden. Dafür setzten wir zwei Verfahren ein: Spektrallinien des Wasserstoffs Die erste Methode nutzt die in jedem Gasnebel vorhandenen Spektrallinien des Wasserstoffs als Bezugswellenlängen und kommt daher ohne eine zusätzliche Kalibrierlichtquelle aus. Die Vorgehensweise wird im Zusammenhang mit der Auswertung des Spektrums von NGC 2392 (Eskimonebel) erläutert (siehe Spektren planetarischer Nebel ). Spektrallinien von Energiesparlampen Formal richtiger und methodisch exakter - allerdings auch aufwändiger - ist das zweite Verfahren, bei dem eine externe Lichtquelle genutzt wird, die hinreichend viele und möglichst genau bekannte Wellenlängen emittiert, die über das gesamte sichtbare Spektrum verteilt sind. Diese Anforderungen an eine Kalibrierlichtquelle erfüllen handelsübliche und preiswerte Energiesparlampen. Die Methode wird ausführlich bei der Auswertung des Orionnebel-Spektrums beschrieben (siehe Spektren planetarischer Nebel ). Hinweise zur Kalibrierung Für die Kalibrierung des Spektrographen nimmt man unmittelbar nach der Aufnahme jedes auszuwertenden Spektrums ein Spektrum der Energiesparlampe auf. Wichtig ist dabei, dass zwischen beiden Aufnahmen an der Apparatur (Teleskop, optische Zusatzteile, Spektrograph, Aufnahmekamera) keine Änderungen vorgenommen werden. Jedes ausgetauschte optische Bauteil und jede Änderung der Gitterposition im Spektrographen ändern den Ort einer bestimmten Spektrallinie auf dem Sensor der Kamera. Die Technik des Kalibriervorgangs wird noch im Zusammenhang mit der Vermessung des Orionnebel-Spektrums ausführlich beschrieben ( Spektrum der HII-Region Orionnebel ). Observatorium Hoher List Der Spektrograph war zur Untersuchung des Orionnebels am Ritchey-Chretien-Teleskop (kurz: RC-Teleskop) des Observatoriums Hoher List montiert. Dieses Spiegelteleskop ist mit einer Brennweite von 4,80 Metern und dem Objektivdurchmesser 60 Zentimetern ein vergleichsweise großes Gerät. Schulsternwarte Betzdorf Etwas bescheidener sind die Dimensionen des C8-Teleskops in der Schulsternwarte der Geschwister-Scholl-Realschule in Betzdorf, mit dem die Spektren der planetarischen Nebel aufgenommen wurden. Abb. 9 zeigt den experimentellen Aufbau. Aufnahmeoptik ist ein Celestron-8-Schmidt-Cassegrain-Spiegelteleskop mit einer Brennweite von 2 Metern und einem Objektivdurchmesser von 20 Zentimetern. Daran sind nacheinander ein Klappspiegel, der DADOS-Spektrograph und eine digitale Spiegelreflexkamera angebaut. Die Klappspiegeleinheit kann das Licht entweder unmittelbar auf den Spektrographenspalt weiterleiten oder den Strahlengang des Teleskops um 90 Grad in ein Okular umlenken. Letzteres macht man, um ein zu spektroskopierendes Objekt überhaupt erst einmal zu finden und dann in der Mitte des Teleskopgesichtsfelds zu platzieren. Dann wird der Spiegel umgeklappt und das Objektbild auf den DADOS-Spalt zentriert. Jetzt kann die Belichtung ausgelöst werden, die typischerweise 45 bis 60 Minuten erfordert. Während dieser Zeit muss die Nachführung des Teleskops hochgradig präzise laufen, da sonst das Bild unseres Untersuchungsobjekts ganz schnell vom Spektrographenspalt verschwinden würde. Dazu wird über ein Linsenfernrohr als so genanntes Leitrohr mit einer ST4-CCD-Kamera die Position eines Sterns beobachtet. Ändert sich die Sternposition auf dem Sensor der ST4-Kamera, dann erhält die Teleskopnachführung einen Impuls, der diese Abweichung korrigiert. Bei der Vermessung des Spektrums von M 42, einer HII-Region, wurde für die Kalibrierung des Spektrographen das Spektrum einer handelsüblichen Energiesparlampe verwendet. Das gesamte Verfahren der Vermessung und Auswertung verläuft über folgende Schritte: Nach der Aufnahme des Spektrums von M 42 wird mit der kostenfreien Demoversion von Astroart eine Intensitätskurve des Spektrums erstellt. Die Intensitätskurve von M 42 wird als TXT-Datei gespeichert und in ein Tabellenkalkulationssystem (hier Excel) importiert. Die Daten werden in Excel als Intensitätskurve dargestellt. Mit einem nach der Spektroskopie des Nebels ohne Veränderung an den Geräten (!) aufgenommenen Spektrum der Energiesparlampe wird analog verfahren. Mithilfe eines vorhandenen, exakt ausgemessenen Kalibrierungsspektrums der Energiesparlampe (spektrum_energiesparlampe.jpg) wird dann eine Kalibrierungsfunktion ermittelt. Aus der gewonnenen Formel der Kalibrierungsfunktion berechnet Excel für jede Pixelnummer des Spektrums von M 42 die zugehörige Wellenlänge. Materialien bei Lehrer-Online Das gesamte Verfahren wird ausführlich in der Datei "spektrum_vermesseung_m42.pdf" beschrieben. Die Schritt-für-Schritt-Anleitung veranschaulicht die Arbeit mit den Programmen Astroart und Excel per Screenshots. Alle weiteren Daten und Dateien, mit denen Sie die Prozedur selbst durchführen können, stehen im Folgenden einzeln und in den ZIP-Archiven auf der Startseite der Unterrichtseinheit als Pakete zur Verfügung. Die Ergebnisse sind in Abb. 10 und Abb. 11 (zur Vergrößerung anklicken) dargestellt. Im Orionnebel konnte eindeutig das Vorkommen folgender Stoffe nachgewiesen werden: ionisierter Wasserstoff zweifach ionisierter Sauerstoff neutrales Helium einfach ionisierter Stickstoff Es ist bemerkenswert, dass der Nachweis der beiden Linien des zweifach ionisierten Sauerstoffs bei etwa 500 Nanometern so deutlich gelungen ist. Da diese Linien "verboten" sind, konnten wir zeigen, dass die Materiedichte in M 42 (ebenso wie in den betrachteten planetarischen Nebeln) sehr gering ist - noch geringer als im besten künstlich hergestellten Vakuum auf der Erde. Die Entstehung dieser verbotenen Linien wurde bereits im Kapitel Planetarische Nebel erläutert. Anfangs- und Endpunkte für die Profillinien Das Verfahren bei der Konstruktion und Auswertung der Spektren planetarischer Nebel unterscheidet sich nicht von der Vorgehensweise bei der Bearbeitung des Spektrums der HII-Region M 42. Die benötigten Bilddateien und unsere eigenen Auswertungen (Excel-Dateien) können Sie hier einzeln (siehe unten) oder als ZIP-Archive auf der Startseite der Unterrichtseinheit herunterladen. Der Erfolg einer Auswertung hängt von der Wahl der Linie in der Bilddatei eines Spektrums ab, längs der das Intensitätsprofil ermittelt wird. Wir empfehlen folgende Anfangs- und Endpunkte für die Profillinien (die vorgeschlagenen Profile sind natürlich nicht die einzig möglichen): Katzenaugennebel (NGC 6543) (X1; Y1) = (1208, 1301) bis (X2; Y2) = (2248; 1375) Eskimonebel (NGC 2392) (X1 ;Y1) = (1265; 1415) bis (X2; Y2) = (2210; 1515) Ringnebel (M 57) (X1; Y1) = (1220; 1260) bis (X2; Y2) = (2185; 1330) Asymmetrische Spektrallinien Bei der Aufnahme der Spektren von planetarischen Nebeln wurde der mit 50 Mikrometern breiteste der drei DADOS-Spalte verwendet. Ungenauigkeiten bei der Nachführung des Teleskops führen bei sehr hellen Spektrallinien zu Asymmetrien. Abb. 12 zeigt am Beispiel der unsymmetrischen OIII-Linie bei 495,6 Nanometern im Spektrum des Katzenaugennebels (NGC 6543), wie man den "Linienschwerpunkt" dennoch recht genau ermitteln kann: Man druckt den fraglichen Teil des Spektrums aus und bestimmt durch Nachmessen die Linienbreiten bei verschiedenen Intensitäten (rote Linien in Abb. 12). Das arithmetische Mittel der Pixelnummern bei den Linienmitten liefert die Pixelnummer des Linienschwerpunkts, die dann in die Auswertung eingeht. Die Excel-Datei "NGC6543_komplettauswertung.xls" (siehe unten) enthält bereits Profile wie in Abb. 12 für die drei hellsten Spektrallinien. Vereinfachtes Auswertungsverfahren Das hier am Beispiel des Eskimonebels (NGC 2392) vorgestellte Kalibrierungsverfahren setzt die Existenz der Spektrallinien der Balmerserie des Wasserstoffs im Nebelspektrum voraus und nutzt diese (in jedem galaktischen Gasnebel vorhandenen Spektrallinien) als Bezugswellenlängen. Es kommt daher ohne den zeitaufwändigen Vorgang der Kalibrierung auf der Basis des Energiesparlampenspektrums aus. Im Vergleich zu dem für den Orionnebel (M 42) beschriebenen Verfahren ist es methodisch jedoch weniger exakt. Informationen zum Nebel Der Katzenaugennebel (NGC 6543) befindet sich im Sternbild Drache. Verglichen mit fast allen anderen bekannten planetarischen Nebeln ist er sehr komplex strukturiert. Hochauflösende Aufnahmen des Hubble-Weltraumteleskops (Abb. 13) enthüllten außergewöhnliche Strukturen wie Knoten, Jets und bogenartige Merkmale. NGC 6543 wurde am 15. Februar 1786 von Wilhelm Herschel entdeckt. Es war der erste planetarische Nebel, dessen Spektrum im Jahr 1864 untersucht wurde. Der zentrale Stern der Spektralklasse O besitzt eine Oberflächentemperatur von 60.000 Kelvin und bringt die Atome und Ionen des Nebels zum Leuchten. Spektrum des Katzenaugennebels Abb. 14 zeigt das DADOS-Spektrum des Katzenaugennebels zusammen mit dem kontinuierlichen Spektrum des Zentralsterns. Man findet darin die vom Orionnebel her bekannten Linien von Wasserstoff und zweifach ionisiertem Sauerstoff (OIII). Im Unterschied zu den anderen untersuchten planetarischen Nebeln enthält NGC 6543 auch neutrales Helium. Ionisiertes Helium fehlt im Katzenaugennebel. Informationen zum Nebel Der Eskimonebel (NGC 2392) ist ein planetarischer Nebel im Sternbild Zwillinge. Er ist ungefähr 3.000 Lichtjahre von uns entfernt. Abb. 15 zeigt eine Aufnahme des Hubble-Weltraumteleskops. Der Nebel ist vor einigen Tausend Jahren entstanden, als der etwa sonnengroße Zentralstern seine äußere Hülle durch eine Eruption abgeworfen hat. Seine Leuchtkraft übertrifft die der Sonne um das 40fache. Der Eskimonebel expandiert in 30 Jahren um etwa eine Bogensekunde. Spektrum des Eskimonebels Das DADOS-Spektrum des Eskimonebels ist in Abb. 16 dargestellt. Dem Linienspektrum des Gasnebels ist das kontinuierliche Spektrum des Zentralsterns überlagert. Am Beispiel des Eskimonebels wird oben ein vereinfachtes Auswertungsverfahren beschrieben, bei dem die Spektrallinien des im Nebel vorhandenen Wasserstoffs als Bezugswellenlängen genutzt werden. Das Verfahren kann natürlich auch auf alle anderen Nebel angewendet werden. Informationen zum Nebel Der Ringnebel (M 57) ist der Überrest eines Sterns, der vor etwa 20.000 Jahren seine äußere Gashülle abgestoßen hat. Letztere dehnt sich heute mit einer Geschwindigkeit von etwa 20 Kilometern pro Sekunde aus. Abb. 17 zeigt eine Aufnahme des Hubble-Weltraumteleskops. Der scheinbare Durchmesser des Nebels beträgt derzeit zwei Bogenminuten. Bei einer Entfernung von 2.300 Lichtjahren entspricht dies einem absoluten Durchmesser von etwa 1,3 Lichtjahren. Das ringförmige Aussehen des Nebels im Teleskop prägte den Namen "Ringnebel in der Leier". Im Zentrum des Nebels befindet sich ein weißer Zwergstern mit einer Oberflächentemperatur in der Größenordnung von 100.000 Kelvin. Spektrum des Ringnebels Im Spektrum von M 57 (Abb. 18), aber auch in dem des Katzenaugennebels (Abb. 14), erkennt man neben den beschrifteten Emissionslinien des Nebels zahlreiche weitere Linien. Diese können nicht von den Nebeln stammen, denn ihre Form lässt erkennen, dass ihr Licht jeweils den gesamten Spalt ausgeleuchtet hat. Es handelt sich hierbei um das Spektrum der Lichtverschmutzung, also der Aufhellung des Nachthimmels durch künstliche Beleuchtung. Am meisten fallen die blaue und die grüne Linie der weit verbreiteten Quecksilberlampen auf, wobei die blaue Linie fast mit der H-gamma-Linie zusammenfällt. Temperaturverteilung im Ringnebel Das Spektrum des Ringnebels M 57 zeigt eine weitere Besonderheit (Abb. 18): Die "Breite" der Spektrallinien erscheint an deren oberen und unteren Rändern deutlich größer als im zentralen Bereich. Aus dieser Beobachtung ergeben sich Aussagen über die Temperaturen in verschiedenen Zonen des Nebels. Während der gesamten Belichtungszeit des Spektrums war der Ringnebel, wie in Abb. 18 veranschaulicht, auf den Spektrographenspalt fokussiert. Die sichtbare "Ringform" des Nebels führte deshalb dazu, dass der Spalt inhomogen ausgeleuchtet wurde. In Abb. 18 sind zwei Intensitätsprofile zu sehen, welche längs der hellsten Spektrallinien von Wasserstoff und Sauerstoff gewonnen wurden (gelbe Linien in Abb. 18). Daraus lassen sich Aussagen zur Temperaturverteilung im Nebel ableiten: Wasserstoff Der Wasserstoff ist im inneren Bereich des Nebels fast vollständig ionisiert (Ionisierungsenergie 13.6 eV, siehe Abb. 1. Man beobachtet kaum Licht von Linien der Balmerserie, da diese beim Einelektronensystem Wasserstoff nur im neutralen Zustand entstehen können. Die sichtbare Außenkante des Ringnebels, das heißt der Intensitätsabfall an den äußeren Flanken der Kurve im rechten Diagramm von Abb. 18, beschreibt nicht die Grenze der räumlichen Wasserstoffverteilung, sondern den Bereich, in dem die Temperatur unter etwa 5.000 K sinkt. Die höheren Energieniveaus für Balmer Linien können dann nicht mehr besetzt werden. Sauerstoff Beim Sauerstoff sind die Verhältnisse deutlich komplizierter: Man benötigt 13,6 eV, um vom neutralen OI zum einfach ionisierten OII zu kommen und weitere 35.1 eV, um OII ein weiteres Mal zu OIII zu ionisieren. Zusätzlich sind weitere 5.4 eV erforderlich, um im zweifach ionisierten Sauerstoff OIII den für die Entstehung der Linien bei 500,7 Nanometer und 495.9 Nanometer erforderlichen Energiezustand besetzen zu können. Diese insgesamt 54, 1 eV erhält ein Sauerstoffatom in mindestens drei aufeinander folgenden Prozessen von Photonen aus der Strahlung des Zentralsterns des Nebels. Einfache Schlüsse aus dem Verlauf der Kurve im linken Diagramm von Abb. 18 sind deshalb nicht möglich. Genauigkeit der Messungen Die von uns ermittelten Wellenlängen der Emissionslinien im Orionnebel (siehe Abb. 11 ) weichen von den Literaturwerten nur um einige Zehntel Nanometer ab. Die experimentellen Fehler in den Spektren der planetarischen Nebel (siehe Excel-Dateien bei den Downloadmaterialien) liegen zwischen Null und 1,5 Nanometern. Dies ist damit zu erklären, dass die Spektren der planetarischen Nebel mit dem breitesten der DADOS-Spalte aufgenommen wurden. In den Bilddateien werden die Emissionslinien damit automatisch breiter und bei Nachführfehlern zusätzlich unsymmetrisch. Rauschminderung Schwache Linien, die vom Auge in den Bildern eindeutig erkannt werden, verschwinden in den Intensitätsprofil-Spektren öfter im Rauschen. Wer bereit ist, zur Rauschminderung mehr Aufwand zu betreiben, kann natürlich länger belichten. Man kann auch mehrere parallele Linien durch die Spektren legen und die zugehörigen Intensitätskurven Punkt für Punkt aufsummieren. Damit "simuliert" man eine längere Belichtungszeit. Auf diese Weise sollte das Rauschen drastisch vermindert werden, so dass schwache Linien besser erkennbar werden. Frank Gieseking Planetarische Nebel Teil 1, Sterne und Weltraum, 1983/2, Seite 68-74 Frank Gieseking Planetarische Nebel Teil 3, Sterne und Weltraum, 1983/7, Seite 336-341

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE